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FedLED: Label-Free Equipment Fault Diagnosis
with Vertical Federated Transfer Learning
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Abstract—Intelligent equipment fault diagnosis based on Fed-
erated Transfer Learning (FTL) attracts considerable attention
from both academia and industry. It allows real-world industrial
agents with limited samples to construct a fault diagnosis model
without jeopardizing their raw data privacy. Existing approaches,
however, can neither address the intense sample heterogeneity
caused by different working conditions of practical agents, nor
the extreme fault label scarcity, even zero, of newly deployed
equipment. To address these issues, we present FedLED, the first
unsupervised vertical FTL equipment fault diagnosis method,
where knowledge of the unlabeled target domain is further
exploited for effective unsupervised model transfer. Results of
extensive experiments using data of real equipment monitoring
demonstrate that FedLED obviously outperforms SOTA ap-
proaches in terms of both diagnosis accuracy (up to 4.13x) and
generality. We expect our work to inspire further study on label-
free equipment fault diagnosis systematically enhanced by target
domain knowledge.

Index Terms—Label-Free Equipment Fault Diagnosis, Unsu-
pervised Transfer Learning, Vertical Federated Learning.

I. INTRODUCTION

Proliferating data-driven methods have been proven to be
promising in intelligent equipment fault diagnosis [1f], where
the diagnosing process is usually modeled as classifying ‘nor-
mal’ and ‘fault’ samples with multiple features extracted from
various equipment monitoring signals like current, voltage,
vibration, temperature, and acoustic emission [2]]. Predominat-
ing approaches rely on abundant well-labeled samples to train
various Machine-Learning (ML) models (e.g., SVM, DNN)
that significantly outperform conventional diagnosis methods
based on partial system mechanisms or expert experiences.

However, the application of such labeled sample-intensive
methods is severely restricted by the extreme scarcity of
fault samples in a wide range of industrial equipment holders
(referred to as agents below) in practice [3]-[5[. For example,
for any smart manufacturer with a piece of newly deployed
equipment, considering that equipment faults are generally
small probability events, it usually takes a considerably long
time before a single fault occurs and a sample with a deter-
mined ‘fault’ label can be collected [6]. It becomes a common
bottleneck for agents to construct an effective fault diagnosis
model with few or even zero fault label.

To address this issue, an intuitive idea is to train a model at
other agents possessing the same type of equipment with more
well-labeled samples (i.e., the source agent), then deploy the
trained model at the sample-scarce agent (i.e., the target agent),
under the assumption that samples from different agents are
Independently and Identically Distributed (IID). Unfortunately,
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Fig. 1. The General Equipment Fault Diagnosis Scenario based on Vertical
Federated Transfer Learning

such an assumption is almost impossible to be guaranteed in
practice [7]. Due to multi-folded differences such as monitor-
ing setup, working load, transmission path, noise interference,
and fault degree, samples from agents with different work-
ing conditions inevitably have obvious distribution discrepan-
cies [8], i.e., different agents usually have different sample
domains. Transfer Learning [9] is primarily used to construct
and transfer models across different domains, which has been
applied to equipment fault diagnoses [[10]. However, existing
approaches require exchanging samples between the source
and target agents for common knowledge extraction, which
poses serious threats to agents’ data privacy [11] considering
harsh regulations like the General Data Protection Regulation
(GDPR) [12]. Therefore, Federated Transfer Learning (FTL)
methods [[13]] emerge and enable transfer learning across ‘data
islands’ of different agents, where all raw samples remain
local and only intermediate learning results (e.g., gradients)
are exchanged between agents.

As illustrated in Fig[l] to construct a fault diagnosis model
under the aforementioned practical scenario, existing FTL
methods, however, cannot be directly applied due to the
following two fundamental issues of real-world equipment
monitoring data:

1) Intense Sample Heterogeneity: ML-based FTL meth-
ods like [14]] require overlapping samples (i.e., the
same set of samples possessed by both the source
and target agents) to achieve effective model transfer.
This is almost impossible in practice since the two
agents cannot possess overlapping samples (from the
same piece of equipment under the same monitoring



setup) without exchanging raw data. Fault diagnosis
with Deep Learning (DL)-based FTL [15] requires no
overlapping samples, but assumes that both agents share
the same feature space, i.e., horizontal FTL, where
both agents use the same set of sensors with the same
monitoring deployment. However, in practice, feature
spaces of different agents are often multi-scale [16] and
intensely heterogeneous [2]] due to the agents’ different
monitoring setups. For example, the source samples 2%
are collected by Ng sensors while the target samples
2T are collected by Nrp sensors, where only M (0 <
M < min (Ng, Nr)) sensors are shared. Fault diagnosis
based on vertical FTL is of great significance.

2) Zero Fault Label: Most FTL methods like [[17] require
a small set of labeled samples in the target domain for
model training. However, it is highly likely for practical
agents, especially those with newly deployed equipment,
to have zero fault label [S[, [18]], [[19] (i.e., with no
yT). The only unsupervised FTL fault diagnosis ap-
proach [20] requiring no target domain label is restricted
by the same feature space assumption and cannot be
applied to the aforementioned vertical FTL scenario.

To address the above issues, we present the first unsuper-
vised vertical FTL equipment fault diagnosis method FedLED.
It enables model transferring to the target domain with zero
fault label from an intensely heterogeneous source domain.
The main contributions of this paper are as follows:

1) We are the first to concentrate on the problem of trans-
ferring the equipment fault diagnosis model between
agents with heterogeneous feature spaces and zero target
domain fault label, which is a common bottleneck for the
industry. A new fault diagnosis method FedLED based
on unsupervised vertical FTL is proposed, which can
serve a wide range of agents, especially those with newly
deployed equipment.

2) In FedLED, a vertical federated joint domain adversarial
adaptation is proposed to map heterogeneous source
and target features to a public latent feature space. To
enhance the effectiveness of zero fault label model trans-
ferring, we construct a novel joint domain alignment that
minimizes the distance between the source label dis-
tribution and the target classification result distribution,
fundamentally different from the conventional pseudo
label method that does not comprehensively leverage the
target domain information.

3) We conducted extensive experiments using fault datasets
of different real equipment (i.e., two bears and a gear)
to comprehensively validate the effectiveness of our
approach. Experimental results demonstrate that Fe-
dLED prominently outperforms state-of-the-art meth-
ods in diagnosis accuracy (up to 4.13x higher) under
various vertical FTL scenarios. Furthermore, FedLED
stably maintains the highest diagnosis accuracy among
all comparatives under different vertical FTL settings
(i.e., sample/feature overlapping ratios), and shows more
obvious advantages under harsher ones (e.g., when there
is zero sample/feature overlapping).

The rest of the paper is organized as follows. Section 2
discusses related work of intelligent equipment fault diagnosis.
The system model and problem definition are provided in
Section 3. Section 4 presents FedLED in detail. Experimental
results are provided and comprehensively discussed in Section
5. We conclude the paper in Section 6.

II. RELATED WORK

In this section, we discuss existing efforts on intelligent
equipment fault diagnosis.

A. Intelligent Equipment Fault Diagnosis

In recent years, intelligent data-driven equipment fault di-
agnosis has largely benefited from the successful development
of deep learning, which has been attracting the industry due to
its high diagnostic accuracy [21]. However, existing methods
usually rely on abundant well-labeled data or IID assumption
[22], [23]], severely limiting their usability in practice. Transfer
learning can be used to assist training with Non-IID samples
from other related agents under different scenarios.

B. Transfer Learning for Equipment Fault Diagnosis

1) Heterogeneous Transfer Learning: Most existing studies
follow the same distribution assumption that is difficult to
satisfy in practice [24]. Heterogeneous sample processing
methods in the field of fault diagnosis mainly process hetero-
geneous features through feature screening and other methods,
and then substitute them into traditional machine learning
methods (such as SVM [25]], KNN, etc.) for training.

2) Unsupervised Transfer Learning: Widely adopted un-
supervised transfer learning methods can be divided into
discrepancy-based and adversarial-based unsupervised transfer
learning. Discrepancy-based methods align the source and
target domains by measuring the data distributions distance.
Common methods for distribution distance measuring include
correlation alignment (CORAL) [26], maximum mean discrep-
ancy (MMD) [27], and joint distribution adaptation (JMMD)
[28]]. Adversarial-based methods use a domain discriminator
to reduce the feature distribution discrepancy between source
and target domains produced by the feature extractors, en-
abling cross-machine troubleshooting. Predominating methods
include domain adversarial neural network (DANN) [29] and
conditional domain adversarial network (CDAN) [30].

Most of the transfer learning methods need to obtain shared
knowledge by accessing the raw data of the source and the
target domains, casting serious threats to data privacy. FTL
methods emerge [31] to address the data privacy issue.

C. Federated Transfer Learning for Equipment Fault Diagno-
Sis

Traditional FTL methods [31] require shared samples and
a small number of labels in the target domain, which limited
their use in practical scenarios. With the development of Al
technology, deep learning methods have gradually become
mainstream. [32] proposes to address domain drift in federated
learning based on adversarial domain adaptation. [33]] provides



an FTL system that utilizes prior distributional knowledge to
reduce inter-domain gaps.

However, all studies above concentrate on horizontal feder-
ated learning, where the source and target domains share the
same feature space. Their performance cannot be guaranteed
in the vertical FTL scenario.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we provide the general system model of
fault diagnosis based on vertical FTL in Fig[l] and the formal
definition of our research problem.

1) System Model: Taking the scenario in Fig[l] as an
example, there are two vertical FTL agents: the source domain
agent S and the target domain agent T. For the well-labeled
source domain, DS = {(z5, %)}, where N5 is the total
amount of samples of D°. z¥ and y denote the ith sample in
DS and its label, respectively. x7 € RNs, where RS is the
source feature space, and Ng represents the feature number.
For the label-free target domain, DT = {z] fval, zl e RNz,
where N7 is the sample number, RN" represents the target
feature space, and N is the feature number. Considering that
both the source and target domain agents focus on the same
types of faults of the same type of equipment, we assume
that both the source and target domains follow the same fault
distribution in the same label space.

Considering the heterogeneous source and target domains
in practice, there are 1) D n DT = 0§, ie, no over-
lapping samples, and 2) M € [0, N], where M denotes
the number of overlapping features between R™s and RNT,
and N = min (Ng, Nr). It is highly likely that such fea-
ture space heterogeneity induces a non-negligible distance
dist(RNs RNT) > ¢ > 0.

2) Problem Definition: The vertical FTL task is a classifi-
cation problem in machine learning with classifier F¢. Con-
sidering our system model, there are two constraint conditions
must be met: 1) intense sample heterogeneity, D° N DT = ()
and dist(RNs RNT) > ¢ and 2) zero fault label, {y”'}
is unavailable. The vertical FTL task can be defined as a
constrained optimization problem:

min Loss(Fe(x), y)
Fe

D3N DT =, (1)
s.it.{ dist(RNs RNT) > ¢,
{y"}=0.

Considering the intense sample heterogeneity, the feature-
based domain adaptation method can be used to build feature
extractors Fs and F7 to map the source and target domains
to a latent common space. For zero fault label, the source and
target domain output label distributions (F¢(Fs), Fe(Fr))
can be aligned, since their label spaces are assumed to be the
same. Our research problem can be transformed into Eq.(2):

min TLoss(}"c (Fs(2%)),y°) + Mist(Fs(x), Fr(zT))

Fe,Fs,F
+ Bdist(Fe(Fs(2%)), Fe(Fr(ah))). .
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The supplementary details of problem definition is presented
in Supplemental Material E| S.1.

IV. LABEL-FREE EQUIPMENT FAULT DIAGNOSIS WITH
VERTICAL FTL

In this section, considering our system model and problem
definition, we present an unsupervised vertical FTL equip-
ment fault diagnosis method FedLED. It comprises a vertical
federated transfer model that can train a target domain fault
diagnoser without fault labels, and an unsupervised federated
model training scheme.

A. Model Structure

The problem in Eq.(Z) can be modeled as an unsuper-
vised domain adaptation problem, and there are three joint-
optimization objectives, i.e., the classification loss, the feature
alignment loss, and the output label alignment loss. The overall
network structure is shown in Fig[2] Considering the two
constraint conditions of vertical FTL, our unsupervised vertical
federated transfer model structure consists of two parts: 1) the
vertical federated joint domain adversarial adaptation for the
calculation of the classification and feature alignment losses,
and 2) the joint domain alignment to calculate the output label
alignment loss.

We propose a vertical federated joint domain adversarial
adaptation, based on the Adversarial-based method CDAN
and vertical federated scheme. The key is a novel conditional
domain discriminator conditioned on the cross-covariance of
domain-specific feature representations and classifier predic-
tions, which can map heterogeneous source and target feature
spaces to a latent common space. Even if the discrimi-
nator is completely obfuscated, there is no guarantee that
the feature extractor can extract domain-invariant features.
Since the domain adversarial adaptation has already aligned
the feature space, we additionally add the discrepancy-based
joint alignment method as the joint domain alignment to
calculate the output label alignment loss, which minimizes
the distance between the source label distribution and the
target classification result distribution, fundamentally different
from the conventional pseudo label method that does not
comprehensively leverage the target domain information. More
supplementary details of model construction are shown in
Supplemental Material S.2.

![Online Available]: |https://github.com/htkg987/FedLED/blob/main/supple-
mental_material.pdf



https://github.com/htkg987/FedLED/blob/main/supplemental_material.pdf
https://github.com/htkg987/FedLED/blob/main/supplemental_material.pdf

1) Vertical Federated Joint Domain Adversarial adaptation
for Intense Sample Heterogeneity: The vertical federated joint
domain adversarial adaptation is based on adversarial-based
CDAN [34] to calculate the classification loss and feature
alignment loss. The key to CDAN is a novel conditional
domain discriminator conditioned on the cross-covariance of
feature representations and classifier predictions, which can
extract domain-invariant features from heterogeneous features.

Feature alignment loss: It is first defined as a minimax
optimization problem with two competing error terms, and
the overall objective function is as follows:

Lepan(Ors,0rr,0p,0c)
=E,s.psW(P)log [D(fs © gs)] 3)
+Eyrpr W (P])log [1 — D(fr  gr)],

where fg and gg represent the high-level features of the source
domain and the output of the classifier through the high-level
features, respectively, and fr, gr correspond to the high-level
features of the target domain and their outputs on the classifier.
® represents a multi-linear map, which represents the outer
product of multiple random vectors. The joint distribution
P(z,y) of any two random vectors x, y can be obtained
by using the cross covariance (E,[®(z) ® ®(y)]), where
represents the reproducible kernel function. At the same time,
an additional dynamic sample weight method is used to avoid
negative samples from affecting training. The update method
of the sample weight is as Eq.{@), where p represents the
probability that the classifier finally predicts each category:

W(p) =1+ plogy.. 4)

The optimization method of joint domain adversarial learn-
ing is: by minimizing (3)), optimize the parameters of classifier
C and feature extractor F' (Fs, Frr), while maximizing (3) to
optimize the domain discriminator D, the objective function
of each model as follows:

(04, 657) = arg min L(0.05.6,),  (5)
Or,0c
ag-l =arg HelaXE(G%,H%C,QZ) (6)
D

Classification loss: In order to avoid the task difference
between the target domain and the source domain on the
domain-invariant features, the final global classification task
is weakened. Therefore, the supervised learning method on
source domain is added to prevent the classification bias
of the classifier. The objective function of the supervised
classification task is as follows:

NS-1
Lo(Ors,00) =Egs ys1eps Y, LIC(Fs(@?)),y7). (D)
i=0
2) Joint Domain Alignment for Zero Fault Label: Recent
work [34]] reveals that even if the discriminator is completely
obfuscated, there is no guarantee the feature extractor can
extract domain-invariant features. This risk arises from the
equilibrium challenges that exist in adversarial learning. Since
CDAN has already aligned the feature space, we also add the

Algorithm 1 Federated Model Initialization

Input: Source data D% , randomly initialized source domain model
Org, Oc, learning rate p.
Output: Local model parameters (6, 6c) with completed federated
initialization
For epoch = 1 to N['°, do
1) Randomly select a portion of the source domain data from D*.
2) Forward propagation calculation (9).
3) Backpropagation updates the source domain target extractor,
0t+1 — 0t _ (Bllpre)
Fs Fs — Mer )
4) Backpropagation updates the source domain classifier, 9’50“ =
06 — n(%5pe)

9%,
End For

discrepancy-based alignment [35] method as the joint domain
alignment to calculate the output label alignment loss.

Output label alignment loss: The objective function of this
joint domain align process is as follows:

Latign = |Ess (9128 (07 -Epe (02066 I o1 1 ®)

where g represents the input of high-level features in the
source domain into the classifier network, its output on the
I-th layer, and ®;i|1¢l(gl) = ¢H1®,...,0"(gr)) indicates
that the output of each layer of the classifier is projected into
a Hilbert space through multidimensional linear mapping. |L]|
indicates the number of layers in the classifier, usually chooses
the last two layers of classifier output for fault diagnosis task
alignment on different domains.

B. The Unsupervised Federated Training Scheme

The entire federated training scheme is divided into two
steps in the training process: federated model initialization and
federated model training.

1) Federated Model Initialization: The federated initializa-
tion adopts the pre-training-fine-tuning method demonstrated
as effective in [36]. Compared with training from scratch,
pre-training the model reduces training time and speeds up
the training convergence. The result of pre-training is only a
preliminary improvement to prevent overfitting. The objective
function of the federated initialization phase is defined as
follows:

Lpre = Bus y5)~ps LC(Fs(27;055):00),47). 9

Our federated initialization process is shown in Algorithm
where the labeled source domain and label-free target domain
are initialized with pre-training and randomly, respectively.

2) Federated Model Training: In the federated model rain-
ing process, the central server calculates the corresponding loss
and gradient, then transmits the gradient to the corresponding
participants. The overall workflow is shown in Fig[3]

Considering the model structure, the objective function of
FedLED training is shown in Eq.(I0).

Lc(Ors,0r,,0c,0p)
:‘CC(GFS7 90) - A‘CC}[)AJ\T(HFS7 QFT7 9D7 QC)
+ ﬁﬁalign<9Fs ) HFTv 90)7

(10)
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Fig. 3. The Overall Workflow of Federated Model Training

where A and 3 are two hyperparameters, network parameters
are updated during training using the Adam optimizer, and
the adversarial network optimization problem is solved using
a gradient inversion layer [37]]. During each training iteration,
parameters are updated as follows:
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Here, p is the learning rate and ¢ represents the ¢-th iteration
update. Our training process is described in Algorithm

Through the above scheme, a fault diagnoser consisting of
F; and C is obtained, which is deployed at the target domain
for online inference.

V. EVALUATIONS

In this section, we conduct extensive experiments using real
equipment fault data under different vertical FTL scenarios
for performance evaluation. Experimental methodology is first
introduced, then results and analysis are presented.

A. Experimental Methodology

We validated both the effectiveness (diagnosis accuracy)
and generality (applicability to different levels of source-target
domain heterogeneity) of FedLED by comparing it with SOTA
approaches under different settings.

Algorithm 2 Federated Model Training

Input: Source data D, target data DT, learning rate 7, hyperparam-
eters (A, 3), local model of central server (6p,0c), local model of
source domain (frg, 0c), local model of target domain (0., 0c).
Output: The trained local model of target domain (6r,,0c) .
For epoch = 1 to NJ¢i) do
Source Domain

1) Randomly select source domain sample Xg from D .

2) Obtain the advanced feature fs = Fs(X ) and classification

Lc
t
oc

to the central server
3) Block waiting for Ts and Gt“ from the central server.
4) Update feature extractor accordlng to Eq.(L , and overwrite
the current classifier parameters with the 6
Target Domain
1) Randomly select target domain sample X from DT,
2) Obtain the advanced feature fr = Fr(X™) corresponding to
X7, and send the advanced feature to the central server.
3) Block waiting for % and QtC“ from the central server.
4) Update feature extractor according to Eq.(12), and overwrite
the current classifier parameters with the 6
Central Server
1) Accept all agent-uploaded advanced features, as well as tags
corresponding to the source domain.
2) Forward propagation, calculation Eq.(I0).
3) Backpropagation, update the central server parameters of clas-
sifier and discriminator according to Eq.(I3) and Eq @
4) Back propagation, the central server calculates-25 5 f y B

5) Pass (aaf L0571 and (ff , 05 M) to the source domam and the
target domain respectlvely

End For

1) Datasets: Our experiments used two public datasets
containing different monitoring signals and fault labels of three
different pieces of real equipment (two bears and a gear): i.e.,
CWRU [38]] and Gearbox [39].

CWRU is a widely adopted fault diagnosis benchmark con-
taining three vibration signals(drive-side acceleration data DE,
fan-side acceleration data FE, and the reference acceleration
data BA) of an SKF6205 bear of 1067 samples. The vibration
signal can be acquired by the accelerometer close to the
motor-driven end with the 12-kHz sampling frequency. The
faults with a single point are introduced to test bearings by
electric discharge machining (EDM), resulting in damages of
three severity with diameters of 0.007, 0.014, and 0.021 in,
respectively. Depending on the location of the faults, there are
three types of bearing fault, namely inner-race fault (IF), outer-
race fault (OF) and ball fault (BF). Moreover, the bearing of
normal condition (NC) is also tested. For heterogeneity, the
source and target domains respectively comprised two out of
the three signals (features) that were not fully overlapped. Only
the source domain possessed fault labels (nine types of bear
faults). As shown in Table[l] six different fault diagnosis tasks
were selected.

Gearbox contains eight monitoring signals (with a 12-kHz
sampling rate) of a DDS bear and gear. The DDS consists
of a brake, a planetary gearbox, a parallel gearbox, and a
motor. Additionally, two three-axis (x, y, and z) acceleration
sensors collect six channels of vibration signals, which are
mounted on the parallel gearbox and the planetary gearbox,



respectively. A torque sensor is installed between the motor
and the planetary gearbox to measure load. And there are eight
signal characteristics in each data file, which represent: motor
vibration signal, vibration signal of planetary gearbox in three
directions of X, y, and z, motor torque data and parallel gearbox
in three directions of x, y, and z. vibration in one direction.
According to the health status of each mechanical equipment,
a total of 5115 samples were prepared. Each sample has a
number of different features, depending on the task type, with
1024 data points per feature. For heterogeneity, the source
and target domains respectively comprised four/five out of the
eight signals (features) that were not fully overlapped. Only
the source domain possessed fault labels (five types of faults
for bear and gear). As shown in Table [lI} for the bear and gear,
six different fault diagnosis tasks were respectively selected.

Learning samples were extracted from all monitoring sig-

nals above using the non-overlapping sliding window method
[40], and further divided as training and testing sets with a
7:3 ratio. Detailed operations are provided in Supplemental
Material S.3.1).

2) Comparatives: We compared the performance of Fe-

dLED with the following approaches.

1) Baseline: Training the model on the source domain, and
directly applying the trained model to the target domain.

2) SFL-multi [17]: The only FTL-based equipment fault
diagnosis method currently available.

3) Discrepancy-based methods: SOTA unsupervised
transfer learning methods based on different distance
metrics, including CORAL [26] using covariance, MK-
MMD [41] using MMD, and JAN [35]] using JMMD.

4) Adversarial-based methods: SOTA unsupervised
adversarial-based transfer learning methods, including
DANN [29] and CDA+E [30].

5) Ablation study methods: Abl Exp 1 and 2 only retained
the joint domain alignment and joint domain adversarial
adaptation, respectively.

3) Implementations: FedLED and all comparatives were
implemented using PyTorch V1.3.1, and all evaluations were
conducted on a Tesla V100 GPU. For parameter settings, the
training batch size and iteration number were 64 and 100, re-
spectively. We use a learning rate of Ir = 0.01(1+10x p)°-7®,
where p € (0, 1] is the dynamic decaying rate.

4) Evaluation Metrics: We used the accuracy on the target
domain testing set as the evaluation metric:

Necorrect
Accuracy = —2°% % 100%,
Ntest

where, n..s+ represents all testing samples, and Ncorrect 18
the number of all correctly diagnosed samples. To reduce the
randomness and singularity, we recorded the average accuracy
of 10 repeated experiments as the final results.

(15)

B. Fault Diagnosis Accuracy

To verify the effectiveness of our method, we conducted
experiments of FedLED and comparatives on CWRU and
Gearbox datasets following the aforementioned tasks. Consid-
ering that overlapping samples are mandatory to SFL-multi,
we separately set a 10% sample overlapping ratio for it,

TABLE I
FAULT DIAGNOSIS TASKS BASED ON CWRU
Source Domain Target Domain Overlapping
Task
Feature Feature Feature
Tl FE, DE BA, DE DE
T2 BA, DE FE, DE DE
T3 DE, FE BA, FE FE
T4 BA, FE DE, FE FE
T5 DE, BA FE, BA BA
T6 FE, BA DE, BA BA
TABLE 11
FAULT DIAGNOSIS TASKS BASED ON GEARBOX
Task Source Domain Target Domain Feature Overlapping
Feature Feature
Tl MV, PL_x, PL_y, PL_z | MV, PA_x, PA_y, PA_z MV
T2 MYV, PA_x, PA_y, PA_z | MV, PL_x, PL_y, PL_z MV
T3 MT, PL_x, PL_y, PL_z | MT, PA_x, PA_y, PA_z MT
T4 MT, PA_x, PA_y, PA_z | MT, PL_x, PL_y, PL_z MT
Ts MV, MT, PL_x, PL_y, MV,MT, PA_x, PA_y, MYV, MT
PL_z PA_z
T6 MV, MT, PA_x, PA_y, MV, MT, PL_x, PL_y, MV, MT
PA_z PL_z
Lor
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Fig. 4. Fault Diagnosis Accuracy on CWRU

while FedLED and other comparatives were set with non-
overlapping sample spaces. The fault diagnosis accuracy of
all methods is demonstrated in Figs[ 6| and detailed results
are provided in Supplemental Material S.3.2). It is obvious that
FedLED achieves the highest average diagnosis accuracy (i.e.,
77.52%, 95.51%, 98.47%) on all datasets. The performance of
FedLED and comparatives are further analyzed as follows.
According to Figs[hJ6] DANN performs badly on all tasks,
which may be caused by the lack of initialization. Generally,
adversarial-based methods increase the domain adaptation
ability of D by reducing its discrimination ability. Since
DANN lacks initialization, its D has a much stronger dis-
crimination ability, severely restricting the domain adaptation
ability. SFL-multi performs stably on all tasks due to the small
number of overlapping samples that avoid overfitting.
According to FigH] Baseline performs stably on various
CWRU tasks with an average accuracy of 50.92%, reveal-
ing the relatively low similarity between RYs and RNT.
According to Fig[5| and Figlf] Baseline performs well on
Gearbox T4~T6 while weak on Gearbox T1~T3, indicating
that dist(RYs RNT) is relatively small for T4~T6 but large
for T1~T3. Particularly, when dist(R™s RN7) is small (e.g.
Gearbox T4~T6), adversarial-based methods (including Abl
Exp 1) outperform discrepancy-based methods (including Abl
Exp 2). In the case with intense feature heterogeneity, e.g.
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Fig. 6. Fault Diagnosis Accuracy on Gearbox-gear

all CWRU tasks and Gearbox T1~T3, the performance of
adversarial-based methods is weaker than discrepancy-based
methods, due to the strong discrimination ability restricting
the domain adaptation ability of D. Considering such results,
the prominent performance of FedLED clearly indicates that
our introduction of joint domain alignment manages to effec-
tively eliminate the impact of intense feature heterogeneity on
general adversarial-based methods.

C. Generality under Different Levels of Domain Heterogeneity

To verify the generality of our method, we changed the
ratios of sample and feature overlapping in the vertical FTL
scenario. Fault diagnosis accuracy of all methods is demon-
strated in Fig[7] and Figl8] respectively. Detailed results are
provided in Tables S4~S7 in Supplemental Material S.3.2).

1) Impact of Sample Overlapping Ratio: To study the
impact of sample space differences, we first set the sample
overlapping ratio between the source and target domains as
0%, 20%, 50%, and 100%, respectively.

According to Fig[7] FedLED achieves the optimal per-
formance under all sample overlapping ratios (i.e., 90.55%,
91.26%, 91.92%, 92.76%), and the accuracy improves slightly
as the ratio increases. As the sample overlapping ratio in-
creases, the accuracy of SFL-multi is significantly improved.
This is because SFL-multi needs to train a transferable model
on overlapping samples, and its performance is positively
related to the number of overlapping samples. Different from
SFL-multi, the performance of other comparatives requiring
no sample overlapping is not obviously enhanced.

2) Impact of Feature Overlapping Ratio: To study the
impact of feature space differences, we conducted two sets
of experiments with 0% and 100% feature overlapping ratios
between the source and target domains, respectively.
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According to Figl8] FedLED achieves the highest average
diagnosis accuracy (i.e., 98.83%, 90.50%) with/without feature
overlapping, indicating that it manages to map different feature
spaces to a latent common space. Differently, the performance
of all comparatives is significantly degraded without over-
lapping features, clearly demonstrating that the feature space
heterogeneity of source and target domains severely restricts
the usability of existing fault diagnosis approaches.

D. Result Analysis

In order to highlight the statistical significance of our
method, we performed future analysis of above experimental
results on the stability and complexity. Fig[9] shows the box-
plot of different methods under all three datasets, reflecting
the statistical characteristics of their accuracy. It can be found
that our method has relatively good stability and meets the
needs of practical applications.

We counter the average time of our method and compar-
atives running for 100 epochs under the CWRU and Gear-
box datasets, which are recorded in Table m The original
SFL method is only suitable for two-classification problems.
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We have extended it to multi-classification problems through
multiple classifiers, which also results in a much more time
consumption than other methods. Figm (a) and (b) are the
trend charts of loss and accuracy over time under CWRU.
It can be found that the overall convergence speed of our
method is slightly slower than other comparisons due to the
longer training time of each epoch. However, because of the
improvement in accuracy, the time it takes for our method to
achieve the same acceptable accuracy (70%) is actually similar
compared with other comparatives.

Network complexity includes space complexity and time
complexity. The complexity of our FedLED network is on the
same order of magnitude with other comparatives except SFL
Our method and other comparatives except SFL are based on
the same deep transfer learning backbone, with an additional
3-layer domain discriminator whose space complexity is neg-
ligible compared to the backbone, so the space complexity
of our method is similar to other comparatives. As for time
complexity, FedLED consists of the vertical federated joint
domain adversarial adaptation and the joint domain alignment,
their time complexity corresponds to adversarial-based and
discrepancy-based methods respectively. Therefore, the time
complexity of our method is the sum of the two parts’ time
complexity, which means it is on the same order of magnitude
with the time complexities of other comparatives. To sum
up, although our method is slightly more time-consuming
than other comparatives, compared with the improvement in
accuracy, such trade-off is acceptable and worthwhile.

VI. CONCLUSION

In this paper, we present FedLED, the first unsupervised
vertical FTL method facilitating a wide range of industrial
agents to conduct label-free equipment fault diagnosis. It
enables transferring a fault diagnosis model from a labeled
source domain to a highly heterogeneous target domain with
zero fault label while preserving the data privacy of both do-
mains. Extensive experiments using real equipment monitoring
data clearly demonstrate that FedLED manages to achieve

TABLE III
AVERAGE CONSUMING TIME OF DIFFERENT METHODS FOR 100 EPOCH
TRAINING (SEC)

Methods CWRU Gearbox
Baseline 4 22
CORAL 7 49
Mk-MMD 10 54
CDA+E 9 49
DANN 14 82
SFL-multi 168 884
Abl Exp 1 17 92
Abl Exp 2 8 52
Ours 18 94
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Fig. 10. Trend Charts over Time under CWRU

obvious advantages in terms of both diagnosis accuracy (up
to 4.13x higher) and generality by exploiting knowledge from
the unlabeled target domain, different from SOTA approaches
intensely depending on source domain knowledge. We expect
FedLED to inspire more insights on label-free fault diagnosis
enhanced by systematic target domain knowledge extraction,
e.g., contrastive learning.
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