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Abstract—Multispectral imaging coupled with Artificial Intelli-
gence, Machine Learning and Signal Processing techniques work
as a feasible alternative for laboratory testing, especially in food
quality control. Most of the recent related research has been
focused on reflectance multispectral imaging but a system with
both reflectance, transmittance capabilities would be ideal for a
wide array of specimen types including solid and liquid samples.
In this paper, a device which includes a dedicated reflectance
mode and a dedicated transmittance mode is proposed. Dual
mode operation where fast switching between two modes is
facilitated. An innovative merged mode is introduced in which
both reflectance and transmittance information of a specimen
are combined to form a higher dimensional dataset with more
features. Spatial and temporal variations of measurements are
analyzed to ensure the quality of measurements. The concept is
validated using a standard color palette and specific case studies
are done for standard food samples such as turmeric powder and
coconut oil proving the validity of proposed contributions. The
classification accuracy of standard color palette testing was over
90% and the accuracy of coconut oil adulteration was over 95%.
while the merged mode was able to provide the best accuracy of
99% for the turmeric adulteration. A linear functional mapping
was done for coconut oil adulteration with an R2 value of 0.9558.

Index Terms—Multispectral imaging, Machine Learning, Food
quality estimation, Imaging system, Experimental validation,
Classification, Regression modeling.

I. INTRODUCTION

FOOD quality is an integral and essential part of global
food security. Ensuring food quality includes the as-

surance that the food is void of harmful contaminants and
unacceptable adulterants [1], [2]. However, analyzing food
samples for contaminants and adulterants requires sophisti-
cated laboratory measurement systems and relies on skilled
professionals. There are hardly any convenient and robust
measurement systems that can be used at field level even for
the most rudimentary of such tests.

Humans rely on their senses, especially smell and vision to
gauge the potential quality of food prior to consumption. As
the sense of smell involves complex chemical phenomena, it
does not provide an easy avenue for automatic detection. On
the other hand, visual sensation provides ample opportunities
for such automated testing. Therefore, vision based sensing is
a popular choice for quality assessment in various applications
[3]–[5], including but not limited to medical [6], [7], astronom-
ical [8], [9], cultural heritage [10], [11] and agricultural [12],
[13] fields.
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Multispectral Imaging (MSI) is an enhancement of tri-color
red-green-blue (RGB) imaging. MSI utilizes multiple narrow
bands of color covering not only the visual range but also near-
infrared (NIR) and near-ultraviolet (NUV). Therefore, MSI
provides a rich set of information [14], over standard RGB
imaging, including finer details that depend on chemical prop-
erties. This advantage of MSI can be further enhanced via the
incorporation of the recent advances in artificial intelligence
(AI) and machine learning (ML) [15], [16].

There are high-end industrial grade MSI devices, which
are usually purpose-specific, bulky, and expensive [17]–[19].
However, in cases where onsite testing is necessary, opting
for a versatile and portable design with innovative concepts
to enhance and enrich the captured MSI is a more reasonable
approach. Furthermore, since the purpose of such a system is
primarily to be deployed in the large scale and multilayered
retail market, simplicity and cost effectiveness take priority.
Moreover, the use of MSI system may be extended beyond
food applications to various other types of specimens that
require simple, cost-effective onsite testing.

Contemporary MSI devices utilized different techniques to
acquire multispectral images of specimens [20]. One study
[21] has utilized liquid crystal tunable filters (LCTFs) to divide
the spectrum. Another design [22] has used a multispectral
filter array (MSFA) and a multispectral demosaicing algorithm.
Using filters is a common practice for acquiring MSI as
evidenced by this device [23] which comprises several mirrors
and filters. An iris capture device [24] was also designed using
filters and LEDs as the illumination source. Two studies [25],
[26] were found to make use of hyperspectral tunable filters
and diffraction grating respectively.

One study [27] published in 2020 with the title of ‘Charac-
terization of a multispectral imaging system based on narrow
bandwidth power LEDs’ which has utilized an array of Nar-
rowband LEDs with the wavelength ranging from 410 nm to
950 nm across 15 pairs of LEDs. The system includes a mul-
tispectral lighting system, an optical sensor, a light controller
and an image capture environment. The multispectral lighting
system was a circularly arranged set of LEDs controlled using
the light controller. The light generated by the LEDs was
shined upon the specimen and the reflectance image was
captured using the camera. This process was carried out within
a special image capture environment that was created for this
purpose. The intensity of the light could be controlled using
a PWM (Pulse Width Modulation) signal.

In principle, MSIs of a sample can be acquired either by
illuminating it with light sources of specific narrowband wave-
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lengths [28] or by illuminating the sample with a broadband
light source and filtering the required light frequencies using
an array of narrowband filters [29]–[32]. The former is simpler
in design, robust, expandable, and overall, more economical;
while the latter is more compact, yet much more expensive
and less flexible.

One limitation identified in the above mentioned system
[27] was its inability to process liquid or similar samples
due to the lack of a transmittance mode imaging method.
This is a huge drawback because this limits the use of the
said device strictly to solid specimens and reflectance mode.
Few other above-mentioned studies also contained the same
limitation [21]–[26]. The lack of a light directing mechanism
of the said system [27] is another drawback because the light
generated by LEDs usually disperses around the generation
source. Therefore, a light directing mechanism is required to
guide the light onto the specimen. The other mentioned studies
exhibit a few additional design limitations such as low spectral
resolution [24] (Only three color bands) and the lack of light
directing mechanism onto the specimen [25].

Considering the nature of the problem at hand, an MSI
system which illuminates the sample with narrowband LEDs is
proposed in this paper as it is the more economical alternative
to get more spectral bands in the desired range. Innovative
design concepts of the proposed system include a dual mode
capability for reflectance and transmittance imaging, a ver-
satile modular architecture, an intensity control mechanism
for flexibility, integrating hemispheres to ensure uniform light
distribution and a controller system coupled with an easy-to-
use user interface. Thereafter, context specific AI, data analytic
and signal processing algorithms are developed to obtain
functional relationships between contaminants/adulterants and
statistical characteristics of multispectral measurement data.
Furthermore, ML algorithms are used for classifications based
on contamination/adulteration levels.

To evaluate the imaging system, system validation must
be done. The validation process can be carried out in two
methods. Either by testing standard colors [33] or by conduct-
ing experimental tests on real samples [34] to determine the
applicability of the device. The study under consideration [27]
has only carried out the standard color test. While this gives
substantial information on the functionality of the system, it’s
challenging to determine the real-world applicability of the
system. Hence, conducting experiments on real samples is re-
quired. Furthermore, the study [27] has attempted to visualize
the separation of 24 distinct colors using the imaging device.
Correlation analysis of the spectral signatures of these colors
was done by applying Principal Component Analysis (PCA). It
was compared with a high grade Hyperspectral Imaging (HSI)
system. Moreover, one of the systems under consideration [21]
has utilized both testing using standard lamps and experimen-
tal testing using traditional Chinese medicines as specimens.
Another study [22] was tested experimentally by capturing
their own set of images and comparing them with standard
multispectral datasets. Since the algorithm development part
was one of the main objectives, two algorithms were applied
to the dataset and the results were compared. In another study,
[23] their own synthesized tests were performed and PCA was

used as well. A multispectral Iris Capture Device [24] was
validated by creating a dataset by imaging different subjects.
They have used their own image-level fusion algorithm. 1-
D log-Gabor wavelet recognition method [35] was used to
identify the iris images. A multispectral skin imaging system
[25] was validated using real samples. However, they have
only used two test samples which may have affected their
validation accuracy. One other considered study [25] has also
failed to validate their device using actual real experimental
testing. When examining previous studies, very few studies
have focused on building functional relationships between
the parameters of the sample and the MSI parameters [36].
Functional maps or regression models offer the ability to
operate in a continuum as opposed to mere classification which
operates only on a few designated classes.

Considering the current state of the art and the identified re-
search gaps, the major contributions of the proposed work are
summarized as follows. As opposed to the above studies, the
proposed system is equipped with a dedicated transmittance
mode. Furthermore, rather than being limited to a single mode,
it has dual mode capabilities which enables switching between
reflectance mode or transmittance mode at will. In addition to
the dual mode operation where the device toggles between
reflectance and transmittance modes, it provides the option
to operate effectively on a merged transmittance-reflectance
mode. This enables the spectral information of a given sam-
ple to be captured through both modes separately and then
combined, which will be referred to as the merged mode
hereafter. Essentially, it makes use of spectral components of
both modes, creating a dataset with a higher dimensionality.
Thus allowing AI and ML algorithms to perform better due
to the larger number of features in the dataset, resulting in
increased accuracy. As an example, turmeric powder can be
captured in reflectance mode as a powder. Then, the same
sample can be dissolved in water and captured in transmittance
mode as a liquid, and both sets of images can be combined to
enable the merged mode operation. Furthermore, some non-
translucent liquids can also be tested via this merged mode.

A case study was conducted to analyze turmeric powder
samples using the merged mode as previously described.
A study was also carried out to assess the temporal and
spatial variations of measured data to identify the optimum
image acquisition area. To validate the device and proposed
algorithms on standard and real-world data, first, a validation
study was conducted on a standard color palette. Furthermore,
a case study was conducted to classify among adulteration
levels of rice flour on turmeric powder. Finally, another case
study was performed to build a functional relationship between
the adulteration level of palm oil on coconut oil using the
Kullback-Leibler (KL) divergence as the metric.

II. MULTISPECTRAL IMAGING SYSTEM

The multispectral imaging system encompasses several
noteworthy features. The main elements are the lighting pan-
els, the controller board, the image capture environment and
the controller software including the graphical user interface.
The user is connected to the system via a computer.



3

Fig. 1: Multispectral light panel with one segment enlarged.

Since the LED acts as a single point light source, the light
is concentrated around the center. Reflecting hemispheres with
dull surfaces are used in combination with lighting panels to
diffuse and direct the generated light in the required direction.
Also, the light panels are constructed in a modular architecture,
so the intensity of each light panel quarter could be handled
individually, thus providing better control over the light spread
and intensity on a specimen. The system covers wavelengths
from Ultraviolet (UV) to near Infrared (NIR) where the range
extends from 365 nm to 940 nm. It is made sure to have
enough illumination on a specimen by using eight LEDs per
color band per light panel. LEDs are distributed in a radial
manner which ensures the uniformity of the light on the
specimen. Finally, to establish ease of operation for the user
and to maintain control over the system, the controller software
is developed including a Graphical User Interface (GUI) which
provides the user with a preview of the captured image and a
lot of options in handling the system.

A. Multispectral light panels

The LED panels are designed to have four identical seg-
ments as depicted in Fig. 1. Each segment has LEDs of 13
color bands with the spectral range spanning from 365nm to
940nm. The relative intensities of LEDs are shown in Fig. 2.
The device is designed in such a modular architecture to enable
intensity control of each segment. This way, it permits the
user to control each quarter of the light panel individually. The
LEDs in each segment are placed symmetrically and radially in
order to obtain a uniformly dispersed light onto the specimen.
The segments are connected to each other using connectors. In
addition, in case of a malfunction in one of the four segments,
other segments continue to function independently. The whole
system does not have to be taken down for maintenance.
Other segments can function normally while the malfunctioned
segment is being repaired. Malfunction identification of these
light panels is also made significantly easier by deploying this
modular architecture. The PCB layout of a light segment is
shown in Fig. 3.

B. Image capture environment (specimen illumination cham-
ber)

A dark chamber is used as the image capture environment
for the specimens. It blocks out all the unwanted external
interference. One light panel is mounted on top of the chamber
for reflectance imaging purposes while the other light panel
is mounted at the bottom of the chamber for transmittance

Fig. 2: Relative intensity vs wavelength of LEDs.

Fig. 3: PCB of one light segment in the LED panel.

imaging purposes. Each light panel is covered by a reflecting
hemisphere to ensure light dispersion and to direct the light
in the intended path. A cross section of the whole system is
presented in Fig. 4

The camera is directly placed above the transmittance light
panel. Therefore it can capture the light directly coming
through the specimen. Similarly, the light reflected from the
specimen in the reflectance mode is also captured by the
same camera. The platform which holds the specimen can
be switched between a transparent glass sheet or an opaque
wooden panel depending on the mode of illumination used
( transmittance or reflectance). The main controller board is
mounted on the top outer surface of the chamber, closer to the
camera.

C. Control Board

The control board is used for three main purposes.
1) Turning on/off the corresponding color band in the light

panel.
2) Controlling the intensity of each segment of the light

panel.
3) Communicating with the controller software.
Fig. 5 shows the circuit of a single color band. The LEDs are

connected to the power supply through two MOSFETS. One
BJT is used to block the back current into the microcontroller.
In addition to these components, biasing resistors and current
controlling resistors are used as necessary. The microcontroller
is used to provide the switching and PWM signals into the
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Fig. 4: Cross section of the system.

Fig. 5: Circuit diagram of a single color band.

MOSFETS. The controller board is designed as a shield for
the Arduino Due board, so it can be attached directly to the
microcontroller board. The PCB layout of the control board is
illustrated in Fig. 6.

Turning on/off the corresponding color band in the light
panel.: Switching on/off of a specific color band is handled by
the Q2 MOSFET. It is an N-MOSFET. When a digital HIGH
signal is fed into the gate terminal (VGS = 5V) of the Q2
MOSFET, the MOSFET goes to the saturation region, closing
the circuit. The MOSFET acts as an electronic switch.

Fig. 6: PCB of the control board.

Controlling the intensity of each segment of the light
panel.: Intensity control of each segment is handled by the
Q3 MOSFET. It is a P-MOSFET. The Q1 BJT is used to
isolate the microcontroller from the rest of the circuit. This
also acts as a signal amplifier. The PWM signal is fed into
the base of the BJT. With the PWM signal at the base of
the BJT, the collector voltage follows the PWM signal which
is then fed into the gate of the MOSFET. Which results in
a varying intensity of the LED according to the PWM value.
Here both the MOSFET and the BJT work in the linear region.
The MOSFET was selected due to its ability to operate in
higher frequency ranges than other power transistors.

Communicating with the controller software.: The sys-
tem is handled via the software running on the computer,
the user can control the device from the graphical user
interface. The user commands are sent through the controller
software and executed using the microcontroller. Therefore,
the communication between the microcontroller board and the
software should be maintained.

D. Controller software and the graphical user interface

Control Architecture: The central control element of the
system is the desktop application running on a computer.
Where it receives user inputs and then communicates to the
camera and the control panel. The control panel turns the
relevant LEDs on and immediately after, the camera captures
the image. When the capturing ends, the LEDs are turned off
instantly. A three-way handshake method is implemented to
ensure the synchronization between the camera and the LEDs.
The desktop app stores the captured images in the local disk of
the computer in which the app is running. The communication
structure is depicted in Fig. 7.

Control board firmware: Arduino Due is utilized as
the microcontroller board of the system. The microcontroller
board communicates with the desktop app via Universal Serial
Bus (USB) interfaces using Universal Asynchronous Receiver-
Transmitter (UART). Microcontroller board firmware works in
three states,

1) Waiting.
2) turning on all the LEDs sequentially.
3) Turning on a given LED

Initially, the program is in the waiting state. Control char-
acters are sent by the desktop app as a mechanism to switch
the state. If a match is recognized, the state will switch from
the waiting state to the corresponding state. At the end of each
state, the program returns to the waiting state.

The light intensity of each light segment can be adjusted
using 8 potentiometers on the board. Four potentiometers
are dedicated to the top LED panel while the other four
are dedicated to the bottom LED panel. The intensity of
each LED panel varies with the input signals taken from
the potentiometers. The program takes the reading of each
potentiometer before proceeding to the state two or three. Then
the PWM signals are generated by the program according to
the potentiometer readings. Once the program is in state 1 or
2 (on/off stage of LEDs) the intensity cannot be changed.
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Fig. 7: Communication structure of the system.

Fig. 8: A set of captured images of a sample.

Desktop application and camera control: The desktop
app controls the microcontroller board as well as the camera.
Also, it interacts with the local disk of the computer. The cam-
era installed in the system is a FLIR monochrome industrial
machine vision camera. To access the camera, the Spinnaker
SDK is used.

There are six indicators on the interface to show the
intensity level of LEDs. As mentioned above, these levels
change with the inputs of the eight potentiometers. The user
can either capture all the color bands with one press of a button
or they may select only the required color bands and capture
them exclusively. While the image acquisition procedure is
underway, each captured image is previewed on the GUI.

E. Calibration and image acquisition

To image a specimen using the proposed system, a certain
procedure must be followed. This includes the mode selection
and calibration. First, the prepared sample must be placed
inside the image capture environment. After that, the required
mode of imaging ( reflectance or transmittance) must be
selected using the control board. A key thing to consider here
is that the platform which holds the sample must also be
changed according to the operation mode. It must be opaque
for the reflectance mode and it must be transparent for the
transmittance mode. Then, the aperture of the camera must be
adjusted. This setting controls the amount of light entering
through the lens of the camera. For a sample that might
saturate the sensor of the camera, a lower aperture is suitable.
This will prevent the loss of information when imaging. After
that, the focus of the camera must be set. This ensures the
best resolution and sharpness of details in the image. Next, the
required color bands must be selected via the GUI. Finally, all
the selected color bands of the specimen will be captured and
stored in the computer as presented in Fig. 8.

III. MATERIALS AND METHODS

The reliability of the device as a measurement system was
assessed by considering several metrics such as spatial con-
sistency (reflectance intensity, spectral signature distortion),

repeatability and variance of sample measurements. A single
uniform piece of white paper was imaged using the device and
the above metrics were observed.

In order to validate and evaluate the proposed imaging
system, two methods were used. One was standard color
testing and the other was validation by real experimental
procedures and results.

For the standard color testing, a color chart with 24 distinct
colors was used. Different algorithmic techniques were used
to differentiate between colors using the spectral information
captured using the system.

As real experimental testing, two case studies were created
to cover the full capability of the system.

1) Estimation of adulteration level of turmeric powder with
wheat flour [37] (solid powdery specimen).

2) Estimation of adulteration level of coconut oil with palm
oil (liquid specimen).

As per the case study 1, turmeric powder is a solid specimen
which can be imaged in the reflectance mode while also being
a type of sample which can then be dissolved in water and
again imaged in transmittance mode. This case study provides
the ground to validate both our reflectance and transmittance
mode while enabling it to create a dataset with one sample hav-
ing both reflectance and transmittance data bundled together in
the feature space increasing the dimensionality of the dataset.
Thus, validates the proposed merged mode.

As per the case study 2, coconut oil is a liquid specimen
which can be imaged in the transmittance mode. From this
case study, the performance of the transmittance mode of the
system can be thoroughly analyzed and compared with other
modes. The main objective is to build a functional mapping
between the adulteration level and the transmittance spectral
data.

A. Sample Preparation

Case Study 1: Turmeric Adulteration: Samples of au-
thentic turmeric powder, made from freshly harvested turmeric
rhizomes, were gathered for the study. To adulterate the
turmeric, the pure turmeric powder was then mixed homoge-
neously with varying amounts of rice flour, creating different
ratios ranging from 0% to 40% by weight. For each adul-
teration level (0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%,
and 40% by weight), nine identical samples were prepared,
resulting in a total of 81 powdery samples.

In order to be used in the merged mode described above,
new dissolved samples had to be created using the same
powdery samples. For that, prepared turmeric powder samples
were dissolved by mixing them with an equal volume of
distilled water. The mixture was then stirred thoroughly until
all the solid particles had completely dissolved in the water. A
total of 81 dissolved turmeric samples were prepared as well.

Case Study 2: Coconut Oil Adulteration: This ex-
periment is carried out to assess palm oil adulteration in
coconut oil. The pure coconut oil was combined with varying
proportions of palm oil, resulting in different volume ratios
ranging from 0% to 40%. For each level of adulteration (0%,
5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40% by volume),
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eight identical samples were prepared, resulting in a total of
72 liquid samples.

B. Imaging using the system

Case Study 1: Turmeric Adulteration: During the pro-
cess of obtaining multispectral images from the adulterated
turmeric powder samples, a meticulous procedure was fol-
lowed. First, an equal amount of the powdered samples was
spread evenly across the surfaces of the petri dishes. This
meticulous distribution was essential to establish a uniform
layer, ensuring consistency across all samples. Then, the re-
flectance mode of the device was utilized to capture images of
the powder samples. First, placed turmeric powder-filled petri
dish in the image-capturing environment, ensuring consistent
placement throughout the experiment. In this process, the light
was projected onto each sample, and the reflected light was
captured using the camera.

To employ the merged mode for turmeric analysis, it was
necessary to capture the dissolved samples created from the
powdery samples. For that, the device was switched to trans-
mittance mode. Transmittance images involve passing light
through a substance and capturing the resulting information.
The dissolved powder mixture was poured carefully into
a container specifically designed with a transparent bottom
and placed in the image-capturing environment where the
transparent bottom of the container enabled the light rays to
pass through the mixture unobstructed. Then, the light was
transmitted through each sample and it was captured using
the camera.

Case Study 2: Coconut Oil Adulteration: The coconut oil
samples, after being prepared, were placed inside a container
with a transparent bottom. The mixture was then gently stirred
to ensure that no air bubbles remained in the mixture. This
careful stirring helped create a consistent and even composi-
tion. Using the transmittance mode of the device, the light was
passed through each sample and it was captured as an image.
Captured sets of images were used for further analysis.

C. Multispectral Image Preprocessing

Image preprocessing is a vital step prior to multispectral
image analysis because it extracts the useful information and
enhances it. Preprocessing can also reduce the effect of noise
which may have occurred during image acquisition.

Image Cropping: Cropping is a common image prepro-
cessing technique that removes unwanted elements to direct
the focus onto specific areas of interest. It is often performed
before further processing to eliminate distractions and to
ensure only necessary information is used for further analysis.
Therefore, every captured image was cropped into a 100×100-
pixel image which only contains the information about the
specimen to be analyzed. Since there are 14 images of a single
sample (consisting of a dark image and 13 spectral bands), an
identical region was cropped from all 14 images.

Dark Current Reduction: Multispectral imaging systems
face random noise sources like camera read-out, wire con-
nections, data transfer, electronic noise, and analog-to-digital
conversion, which can affect the outcomes of image analysis

Fig. 9: Spectral signatures of coconut oil samples.

[38]. In the preprocessing stage random noise is reduced
using dark current subtraction. Pixel recording can happen
even when any source of light is not present. Dark current
primarily emerges from currents generated during the creation
of the depletion region and irregularities on the silicon lattice
surface of the photodiode. To mitigate this effect, a dark
current image is captured at the beginning of multispectral
imaging, and then it is subtracted from all the following lighted
images. This technique reduces random noise in photodiodes
and photosensors.

Bilateral Filtering: Bilateral filtering is another noise
reduction preprocessing technique. It is utilized to reduce noise
while preserving edges and fine details. The bilateral filter
calculates the weighted average of neighboring pixels, where
the weights are determined by both spatial proximity and
intensity similarity. This weighting scheme helps to smoothen
the image while preserving edges. It achieves this by applying
a weighted average of nearby pixels, where the weights
depend on both the spatial distance and the similarity in pixel
intensities.

D. Representation of Multispectral Image Data
The Data Matrix: Multispectral data consists of

monochromatic images representing intensities at different
wavelength bands. These images contain vector pixels with
spectral and spatial information. Initially, from all the images,
10×10-pixel sections were averaged out to create superpixels
which are less noisy. This was done for cropped images with
the size of 100×100-pixels, resulting in 100 superpixels per
image. Said superpixel intensities were stored vertically in
a data matrix - X with dimensions of 100×13 (13 spectral
bands). This process was repeated for all the samples, resulting
in a vertical stack of intensity values of superpixels.

Spectral Signatures: After creating the data matrix, the
average pixel intensity of all the samples in each adulteration
level across every spectral band was obtained. Then, the
average pixel intensity vs wavelength was plotted for different
adulteration levels. The spectral signature of Coconut oil
samples is illustrated in Fig. 9.

IV. RESULTS

The classification models in the following sections were
trained on 75% training data and it was tested on 25% test
data.
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Fig. 10: Normalized reflectance intensity of 770 nm band.

Fig. 11: Spatial variation of the Euclidean distance of the
spectral signatures with respect to the center pixel of the
highest illumination region when imaging a white paper.

A. Reliability assessment of the measurement system

The images taken from the device have adequate consistency
in terms of reflectance intensity as shown in Fig. 10. Same
shape of reflectance intensity was observed for all the color
bands. Only the intensity plot of 770 nm wavelength is
displayed for brevity. In addition to that, the spectral signature
distortion with the spatial difference is depicted in Fig 11.
The best location for specimen placement in the system would
be the intersection between the highest intensity area of Fig.
10 and the lowest spectral signature distortion area of Fig.
11. The repeatability of the system was tested by imaging
the same sample with temporal gaps. As indicated in Fig.
12, multispectral image parameters across all the color bands
did not show a substantial deviation with time. The maximum
percentage deviation from the mean with time was observed to
be 1.32%. In the functional mapping development attempt in
case study 2, box plots were utilized to analyze the distribution
of data points of the same class created using Kullback-Leibler
(KL) divergence as displayed in Fig. 15. The data points of the
same class were observed to be placed without a high variance
indicating the validity of the measurements.

B. Standard Color Testing

The multispectral images of the standard color chart were
preprocessed and the dataset was created. Then, the dimen-
sionality of the dataset was reduced by using Linear Dis-
criminant Analysis (LDA) and Principal Component Analysis
(PCA). PCA is used as a dimensionality reduction technique
where it transforms the feature space into a new feature space
containing all the useful information. LDA is another dimen-
sionality reduction technique that focuses on maximizing the
separability of classes as a supervised method. Fig. 13 shows

Fig. 12: Average intensity of all color bands across multiple
samples.

TABLE I: Standard color classification accuracy.

Classifier With PCA With LDA
Decision tree 0.86 0.86
KNN 0.88 0.88
Logistic regression 0.87 0.86
Random forest 0.88 0.89
SVM 0.90 0.90

the variation of data along the first two LDA components.
Superpixel average was utilized to plot the spectral signature
and to classify between the colors. Support Vector Machines
(SVM) Classifier coupled with PCA and LDA provided the
best accuracy of around 90%. Accuracies for the standard color
test are listed in the TABLE I.

C. Case Study 1: Turmeric Adulteration

Classification of turmeric samples was done in three stages.
First, the classification was done on images taken using the
reflectance mode. The best accuracy recorded for that was 51%
given by the Support Vector Machines (SVM) classifier. In the
next stage, algorithms were applied to the same samples in
dissolved state which were imaged using transmittance mode.
Classification accuracy slightly increased with 66% being the
highest. Finally, both modes were combined as the merged
mode and it yielded the best accuracies for all the classifiers.
Decision Tree Classifier resulted in the best accuracy of around
99%, thereby establishing the validity of the newly proposed
merged mode as an effective method to analyze different

Fig. 13: LDA applied on indicated standard colors.



8

Fig. 14: Turmeric classification accuracy across modes.

TABLE II: Coconut oil adulteration classification accuracy.

Classifier Accuracy
Logistic Regression 0.89
KNN 0.95
SVM 0.95
Decision Tree 0.95

specimens. Fig. 14 depicts the accuracy comparison between
modes.

D. Case Study 2: Coconut Oil Adulteration

Classification model: Various machine learning classifiers
were employed on the generated dataset to assess the capa-
bility of the system to distinguish between different levels of
coconut oil adulteration. Before classification, dimensionality
reduction was done by applying Linear Discriminant Analysis
(LDA) to the dataset. The Decision Tree classifier provided
the best accuracy around 95%. All the algorithms yielded very
good accuracies which are presented in TABLE II. All of them
were greater than 88%. In conclusion to this case study, it
can be verified that the proposed multispectral imaging system
provides a good solution to quantify the adulteration level of
palm oil in coconut oil. This was made possible due to the
dedicated transmittance mode of the device. Furthermore, this
establishes the use of transmittance multispectral imaging to
analyze liquid samples.

Functional mapping: Kullback-Leibler (KL) divergence
was used to develop a functional mapping for adulteration
levels. A statistical measure from information theory known
as the KL divergence metric is frequently used to quantify
the deviation of one probability distribution from a reference
probability distribution. The following equation is used to
calculate KL divergence.

KL(P∥Q) =
∑
xi

P (xi) log
P (xi)

Q (xi)
(1)

Q(x) is the sample probability distribution, while P(x) is the
reference probability distribution.

A functional relationship was established between the KL
divergence metric and adulteration level as shown in Fig. 15
The statistic mentioned above was determined for each adul-
teration level’s nine replicates. The measure was calculated
using randomly chosen data points from the 0% adulteration

Fig. 15: Functional Mapping of Coconut oil adulteration.

level as the reference. The generated functional relationship
for KL divergence is

Y = 1.0497X − 1.001 (2)

with R2 = 0.9558. Where X and Y represent the percentage
adulteration level and the KL divergence respectively. As
represented in Fig. 15, the KL divergence increases with the
level of adulteration. As a result, using multispectral imaging,
the developed model can predict the palm oil adulteration level
in coconut oil with significant precision.

V. CONCLUSION

A versatile multispectral imaging device that can be used
for reliable assessment of food quality in a field setting is
proposed in this paper. This system provides the capability
of both reflectance mode MSI and transmittance mode MSI,
with the ability to easily switch between the two modes.
This enables the user to make the measurements using only
transmittance, or only reflectance, or using both modes for the
same sample preparation, or using both modes with different
preparations derived from the same sample. In the case when
both reflectance and transmittance images are acquired, it is
possible to achieve better results by merging the measurements
to obtain a higher number of features. For the instrumentation
setup, an extensive spatio-temporal variation study was per-
formed to identify the optimal area for imaging acquisition for
processing. Different machine learning algorithms are used to
classify food samples while KL divergence based signal pro-
cessing algorithms were developed to obtain a functional re-
lationship between measured samples and adulteration levels.
The measurement attributes such as repeatability, consistency,
precision, and accuracy of this device are assessed in detail via
controlled calibration tests and case studies. Design features
of this system include symmetric and modular light panels, a
centralized controller module, reflecting hemispheres, and an
intuitive GUI.

The system as a whole was validated thoroughly by standard
color palette testing as well as real experimental testing includ-
ing food specimens such as turmeric powder and coconut oil.
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The system was able to identify different colors with all the
classifiers providing more than 85% accuracy while the SVM
classifier was the best with 90%. The transmittance mode was
proved to be accurate with classifiers applied on coconut oil
samples giving more than 89% accuracy where KNN, SVM
and Decision Tree algorithms yielded an accuracy of 95%.
The effectiveness of the merged mode was affirmed by the fact
that the Decision Tree Classifier was able to provide the best
classification results under the merged mode analysis utilizing
powdered and dissolved turmeric samples. Reflectance mode
and transmittance mode individually provided 38% and 55%
accuracies respectively while merged mode was able to pro-
vide an accuracy of 99%. The linear functional map developed
in the regression model for determining the adulteration level
of coconut oil can be considered successful as the obtained
R2 value is 0.9558.

While the paper is focused on food quality estimation, the
applications of the device are not limited to food and can
be extended further. The developed system can be used for
any solid or liquid specimens if they can be placed inside
the system and if they are able to produce an observable
spectral change in the used spectral regions of the device.
The proposed merged mode strategy for higher dimensionality
in feature space construction and KL divergence type metric
utilization for obtaining functional relationships with adulter-
ation and contamination levels can be extended beyond the
recommended food quality applications.
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