
1
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Virtual PLC in industrial edge platform: performance
evaluation of supervision and control communication

Massimiliano Gaffurini, Member, IEEE, Paolo Bellagente, Member, IEEE, Alessandro. Depari, Member, IEEE,

 Alessandra Flammini, Fellow, Member, IEEE, Emiliano Sisinni, Member, IEEE, Paolo Ferrari, Member, IEEE

Abstract— Edge computing allows for data processing at reduced
latency since the computational power is moved close to the data
sources. Traditionally, edge computing has been often used in
industrial scenarios for implementing gateways between the OT
(operational technology) worlds and the IT (cloud) world. Recently,
big manufacturers of industrial PLC (programmable logic
controller) started promoting the use of containerized virtual PLC
hosted inside edge computing platforms. They foresee an innovative
integration of container based applications, including automation
control, with all the data centric services and application already
available for edge ecosystems. Even if a clear advantage from the
scalability and maintainability could be expected, would virtual
PLCs meet the stringent requirements of industrial automation?
This paper is part of a multistage research work, and, as a first step,
it is focused on the evaluation of the performance of virtual PLC
when exchanging data with other machines, controllers, supervisors,
and data acquisition systems in a machine-to-machine scenario.
After a brief overview of the involved technology, the design of a
methodology for comparing real PLC and virtual PLC is described.
Then, performance metrics, and an experimental setup for the
evaluation of existing devices are defined taking care of the sources
of uncertainty. The effectiveness of the proposed methodology is
demonstrated considering a real use case. Through the use of the
suggested methodology, important insights of the use case are
revealed: for instance, the considered virtual PLC could work as fast
as a real PLC with minimum communication latency in the order of
3 ms but, currently, there is a random delay with an average of 50ms
whose source has been identified to be the IP stack implementation
of the virtual PLC. Finally, the proposed methodology allows for the
creation and the validation of analytical models of the use case.

Index Terms—PLC, C2C, SCADA, container-based
virtualization, M2M.

I. INTRODUCTION

The edge computing paradigm is rapidly evolving and it has
been adopted in many scenarios, since edge computing can
reduce latency compared to cloud computing [1].

This paragraph of the first footnote will contain the date on which you submitted
your paper for review, which is populated by IEEE.
This study is within the MICS (Made in Italy – Circular and Sustainable)
Extended Partnership and received funding from Next-GenerationEU (Italian
PNRR – M4 C2, Invest 1.3 – D.D. 1551.11-10-2022, PE00000004).
(Corresponding author: Massimiliano Gaffurini)
Massimiliano Gaffurini, Paolo Bellagente, Member, IEEE, Alessandro. Depari,
Member, IEEE, Alessandra Flammini, Senior Member, IEEE, Emiliano Sisinni,
Member, IEEE, Paolo Ferrari, Member, IEEE are with the Dept. of Information
Engineering, University of Brescia, 25123 Brescia, Italy. (e-mail:
{massimiliano.gaffurini; paolo.bellagente; alessandro.depari;
alessandra.flammini; emiliano.sisinni; paolo.ferrari}@unibs.it).

The industrial automation is now following this trend. The
first version of virtualized Programmable Logic Controller
(PLC) are appearing [2]. Traditional PLCs have custom
firmware running on proprietary hardware, with the aim of
ensuring real-time and availability. More recently SoftPLCs
have control software running on standard PC hardware and
RTOS (Real-Time Operating System), with the aim to reduce
cost, assure portability, and provide multiple vendor sources.
The newest approach proposes virtual PLCs that are the
containerized version of PLC firmware: they can be executed
on any platform that support containers, assuring easy
maintainable, lightly-virtualized, solutions with full
independency from both the hardware and the operating system.
Moreover, the container based automation approach allows for
microservice architectures, enabling new features like
scalability, observability, traceability, accountability. In other
words, the industrial machine can (independently from
hardware) run exactly the required/licensed/verified services
needed to produce the desired product together with its up-to-
date/certified metadata (necessary for accounting the service).
Maintenance and update of applications is centrally managed
assuring the security and integrity of the whole system
[3],[4],[5].

All the previously listed advantages are clear to machine
builders that currently use traditional PLC, but an underlined
question remains: what is the performance of virtual PLCs
compared to real PLCs? As a matter of facts, the automation
experts from operation technology (OT) field are obsessed by
real-time constraints and they perfectly know that a new fancy
controller that fails control deadlines would result in a useless
solution (i.e. usually industrial applications cannot tolerate jitter
and high latency [6]).

A. Objectives

Considering the described situation, the goal of the project
this work belongs to is to provide: a methodology, an
experimental procedure, and a set of metrics to evaluate
performance of the communication and data exchange of PLC
and virtual PLC.

Since the PLCs are placed at the center of the automation
stack (also known as CIM automation pyramid [7]), they have
two types of data exchange: i) they are connected to other
machines, Supervisory Control and Data Acquisition Systems
(SCADA) [8], and controllers for the supervision and
coordination of the production line; ii) and they are connected

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

to sensors and actuators in order to perform their own control
actions. Both aspects have been well investigated in literature
[9] with respect to traditional PLCs, but a general lack of
research works on containerized virtual PLCs has been noted.

In order to clearly present and discuss results, the project has
been organized with two parts, and this first paper will deal only
with the evaluation of the Machine-to-Machine (M2M) data
exchange between PLCs or between PLC and SCADA.

The main contributions of this paper are:
 The definition of a methodology to compare performance

of PLC and virtual PLC from the point of view of the flow
of data between machines (or supervisors).

 The definition of an experimental setup with associate
experimental procedure.

 The definition of metrics to compare performance.
 The application of the proposed methodology to a real

industrial use case, demonstrating its usefulness for
modeling the system, drawing conclusions, and suggesting
improvements to real-time behavior.

In the following, after the overview of the involved
technologies and of the existing literature, the proposed
methodology is introduced and the use case is discussed.
Finally, conclusions are reported.

II. OVERVIEW OF TECHNOLOGY

It is important to point out the context of this work and the
involved technologies that are used in the rest of the paper.

A. Classical SCADA and PLCs-based architecture

A classic industrial system based on SCADA and PLC
devices is shown in Fig. 1 (a), it combines software and
hardware components to supervise, coordinate, and control
industrial processes.

The SCADA system serves as a centralized control system
that collects, monitors, and analyzes data from multiple remote
locations within the industrial environment. It consists of a
supervisory computer, human-machine interface (HMI), and
communication infrastructure. The PLC, on the other hand, is a
specialized computer-based controller that performs strict real-
time control functions within the industrial processes; it talks
with field devices, sensors and actuators. SCADA retrieves soft
real-time data from the PLCs, providing centralized view of the
whole production line.

Communication between SCADA and PLCs relies on M2M
or on C2C (Controller to Controller [10]) protocols for sending
commands and configuration parameters (to PLCs), and
production related information (to the SCADA).

B. Virtualization-based architecture

As described in [11], virtualization and containerization
systems are speeding up the digital transformation of
manufacturing. The rapid growth of virtualization technologies
has opened new possibilities for industrial applications. Real
devices often require specialized and costly hardware, making
them less flexible and scalable. In contrast, virtual devices can
leverage general purpose hardware, which is more affordable,

easily scalable and there is also an environmental aspect [12].
With the advent of virtualization techniques in the industry,

the traditional architecture shown in Fig. 1 (a) is still valid at
the topological and communication level, but the single
components implementation can be different.

In Fig. 1 (b), it is shown an example of an architecture based
on virtual environments. The components are the same of the
traditional approach but there are virtual environments where
PLCs, sensors and SCADA can be virtualized. The protocols
for M2M communication and sensor communication remain the
same; they can be implemented directly in the virtual SCADA,
in the virtual PLC, and also separately (as a microservice).

However, the adoption of virtual devices necessitates a
thorough evaluation and comparison to determine their
suitability for specific industrial use cases (e.g. real-time
constraints). While real devices are bare-metal, so the
performance are related to the hardware characteristics, the
performance of virtual devices depends on many aspects such
as: i) virtualization technique, ii) operating system, iii)
hypervisor.

It’s possible to define several virtualization techniques, the
main are:
 Full virtualization: this technique provides a high level of

isolation and allows running multiple operating systems
simultaneously on a single physical machine.

 Containerization (Light Virtualization): containers offer a
lightweight form of virtualization where the host
operating system kernel is shared among multiple
containers [13].

Each technique offers different levels of isolation, resource
allocation, deployment systems and flexibility. For this reason,
it is necessary to pay special attention to the implementation of
the virtual device.

Fig. 1. (a) Classical automation architecture based on PLC and

SCADA devices. (b) Virtualization applied to automation:
old hardware devices are mapped to software services
running inside virtual environments.

III. RELATED WORKS AND RESEARCH OBJECTIVES

In literature several works on the evaluation of custom virtual

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

PLCs and microservices-based architectures can be found.
Software-defined Automation solutions are analyzed by D.
Javier Perez et al. in [14], where they compared virtualized
SoftPLC to a SoftPLC without hypervisor concluding that the
virtual PLC can deliver similar performance in terms of
switching time while having an increased period jitter.

J. Mellado et al in [15] proposed a containerized IoT-PLC
(not fully IEC 61131 compliant) running in a Raspberry Pi 4B
board, they evaluated a four tanks control system scenario with
a wireless communication systems, obtaining latencies suitable
for control applications if process variables change slowly.

T. Cruz et al in [16] proposed a virtual PLC (vPLC) that
presents a convergent approach by virtualizing and co-hosting
isolated PLC devices on the same physical equipment. This
convergence consolidates distributed I/O on a networked I/O
fabric, resembling the integration seen in datacenter
architectures. Evaluation results indicate the feasibility of vPLC
from a systems virtualization perspective, especially on ×86
platforms with room for improvement.

W. Dai et al in [17] designed an orchestration method and
deployment procedures, IEC 61499 compliant, based on
microservice for industrial edge applications. A combined
cloud and edge approach is described in [18].

M. Sollfrank et al [19] evaluated lightweight virtualization
system for distributed and time-sensitive applications in
industrial automation; they conclude that Docker containers can
meet soft-real-time constraints of automation applications.

L. Catuogno et al. in [20] proposed a methodology for the
measurements of the computational resources used by a specific
container.

However, differently to the works discussed above, the goal
of this research work is not to (propose and then) evaluate
“custom” container based automation architectures. On the
contrary, it is to design a methodology for the evaluation of
existing architectures, with special focus on the data exchange
performance of commercially available solutions.

L. Rosa et al in [21] developed a framework comprising a
basic virtual PLC running in a Docker container, equipped with
an OPC-UA middleware for IT and OT communications. For
OT communications, a custom TSN-based OPC-UA
configuration was utilised. The framework was evaluated on a
practical testbed, which consisted of two edge nodes and an
industrial network switch. The researchers concluded that the
test environment demonstrated that the framework has low
overhead, enhances determinism, and still maintains all of the
benefits of virtualization.

 In details, the scope of this first paper is to propose a method
for evaluating communication performance at supervision level
(M2M, C2C, SCADA). Operatively, this paper includes also
the discussion of a use case, where the M2M data exchange
between virtual PLCs (virtualized with different light
virtualization techniques) will be compared with the reference
performance of their “equivalent” real PLCs.

IV. THE PROPOSED METHODOLOGY

The proposed setup for testing is illustrated in Fig. 2 (a).

Inside the architecture under test, the first step is to identify the
two partners, referred to as C (Client PLC) and E (Edge PLC),
that connect to each other using the M2M (or C2C or SCADA)
protocol. The second step is to identify the physical network
they use to exchange data. As a matter of fact, in order to assess
the network latencies, as well as the communication stack
delays of C and E, a physical network access, called T, is
needed. By means of T, all the relevant data packets can be
captured and analyzed.

The third step is to isolate, in the M2M communication
between C and E, the transaction type to be evaluated. For
instance, in Fig. 2 (b), it is shown the case of a transaction of
type “Request and Response”. This case is very common in
many supervision protocols. The method requires that for the
two partners (E and C), and for T, a timestamp is taken and
permanently saved for every event related to the identified
transaction.

The last step of the method is to assure that transactions are
not time correlated. For this reason, a suitable randomization of
the Request must be introduced.

Fig. 2. Proposed methodology: (a) measurement setup, (b)
exchange data diagram.

A. The metrics

The metrics of the proposed methodology are defined,
without lack of generality, in the case of transaction of type
“Request and Response”. As a matter of fact, the other type of
transaction is the “Publish” where one partner emits a message
without being asked for. In practical systems “Publish with
Acknowledge” and “Publish without Acknowledge” styles are
possible, and the approach proposed here can deal also with
them, as described after the metrics definitions.

The interaction between C and E is shown in Fig. 2 (b): i) at
time T1 is generated the Request; ii) at time T2 the Request is
seen on the network via T; iii) at time T3 the Request is read
from E; iv) at time T4 the Response is visible on the network;
v) at time T5 the Response is read by C.

The following latencies are defined and evaluated:
 𝐿஼஼ = 𝑇ହ − 𝑇ଵ, the Request-Response round trip time;
 𝐿்் = 𝑇ସ − 𝑇ଶ, latency introduced by the elaboration of the

request from the communication stack of E and the
subsequent step of sending the Response;

 𝐿ா஼ = 𝑇ଷ − 𝑇ଵ, the latency from the generation of the
Request to the reception of the Request;

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

 𝐿஼ா = 𝑇ହ − 𝑇ଷ, the latency from the generation of the

Response to its reading;
 𝐿்஼ = 𝑇ଶ − 𝑇ଵ, the Request traverse latency from C to the

bus;
 𝐿ா் = 𝑇ଷ − 𝑇ଶ, the Request traverse latency from the

network to E, including the communication stack of E;
 𝐿்ா = 𝑇ସ − 𝑇ଷ, the Response traverse latency from E to the

network;
 𝐿஼் = 𝑇ହ − 𝑇ସ, the Response traverse latency from E to the

network, including the communication stack of C.
For systems that use “Publish with Acknowledge”

transaction the metrics are the same since the publish message
coincides with the request and the acknowledge message is
equivalent to the response.

For systems that use “Publish without Acknowledge”
transaction the subset of metrics valid for C to E directions is
(𝐿ா஼ , 𝐿்஼, 𝐿ா்), while the subset of metrics valid for C to E
direction is (𝐿஼ா , 𝐿்ா, 𝐿஼்). 𝐿஼஼ and 𝐿்் do not apply.

B. Synchronization

The proposed setup of Fig. 2 is a distributed measurement
system. The measurement of traverse latency is affected by the
drift and the offset between the time references of the devices
that take the source and destination timestamps. In this work, as
proposed in [21], all the devices must be time synchronized to
compensate for the effect of drift and offset. For the
synchronization a specialized time transfer protocols called
Network Time Protocol (NTP) is used. The NTP
synchronization protocol is based on exchanging packets
between clients and servers, through the determination of: i)
offset of the client’s local clock respect to the server’s clock, ii)
latency of the network connection. Observing the clock offset,
the client can correct its local clock to match the server’s time.

Still referring to [21] it's possible to evaluate the
synchronization standard uncertainty as follows in (1):

 𝑢௦௠ = ඥ𝜇௦௠
ଶ + 𝜎௦௠

ଶ (1)

Where 𝜎௦௠ represents the standard deviation of the device m
that takes the timestamp, and 𝜇௦௠ is the systematic error that it
is necessary to consider because in the experimental setup no
calibration is performed.

The standard uncertainty 𝑢୫୬ of any latencies evaluated
between two devices (m and n), introduced in Section IV. , is
calculated as in (2):

 𝑢୫୬ = ඥ𝑢ୱ୫
ଶ + 𝑢ୱ୬

ଶ (2)

When the evaluated latency is calculated between the same

device (2) becomes equal to 𝑢௠௠ = ඥ2𝑢௦௠
ଶ .

V. THE USE CASE

The goal of the use case is to demonstrate the effectiveness
of the proposed methodology. Currently, most virtual PLC
solutions available on the market are built upon open-source
Soft PLC IEC61131-3 compliant platforms and are executed on
vendor-dependent Automation Platforms and/or Hardware. For
example: i) PLCNext by Phoenix Contact, featuring the

PLCNext Control PLC based on the Linux kernel [23]; ii) ctrlX
by Bosch Rexroth, offering a PLC App that supports target
platforms based on ARM64 or x64, and Linux Ubuntu Core
with real-time extension (called ctrlX OS [24]); iii) Software-
defined Automation solutions, previously introduced in [14].

The aforementioned solutions do not allow for a direct
comparison between virtual PLCs and their real counterparts;
thus, they are not the best choice for evaluating the proposed
methodology.

A. The industrial system used in the use case

In this use case, the Siemens virtual PLC CPU1582v is
specifically addressed as an “equivalent” to real PLCs of the
S7-1500 product family. This virtual PLC runs within a Docker
container on the Siemens Industrial Edge (SIE) Platform. The
main components of the SIE platform are as follows: i) the
Industrial Edge Hub (IEH), located in the Cloud, which serves
as a repository for documentation and containerized
applications available on the marketplace; ii) the Industrial
Edge Management (IEM), which runs locally and oversees the
configuration and setup of edge devices and applications; iii)
The Industrial Edge Devices (IEDs), which refer to the actual
machines running the containerized applications.

B. Experimental setup for the use case

In this use case, the PLC models S7-1512C-1 PN (v2.6) and
CPU1582v (v0.30) assume the role of C and E in to Fig. 2.
Three types of devices have been used/implemented:
 PLC S7-1512C-1 PN (called R) is a compact and powerful

PLC from Siemens SIMATIC S7-1500 series. It features a
fast CPU, expandable I/O modules, 250 Kbyte program
memory, 1 Mbyte data memory and support for real-time
protocols (e.g. Profibus, Profinet, and Ethernet/IP).

 CPU1582V hosted by Simatic IPC227E (called VIPC,
shown in Fig. 3 (b)), a compact industrial PC boasting a
quadcore Intel Celeron N2930 processor running at 1.83
GHz (burst frequency 2.16 GHz), 8GB of main memory
and a 240 GB SATA SSD. It executes the “IED OS”
(version ied-os-1.9.0-27-amd64), which includes the
Mentor Industrial OS (based on Debian Linux real-time)
and the additional middleware for containerization.

 CPU1582V hosted by desktop PC (called VPC, shown in
Fig. 3 (a)), boasting a CPU Intel Core i7-7700b running at
3.60GHz, 16GB of main memory and 500 GB SATA SSD
and Windows 10 pro as Host OS. VMware Workstation pro
17.1 hypervisor is installed on the SSD it executes the “IED
OS” (version 1.9.0-5-a-rc2). At the virtual machine are
assigned 4GB of memory, 2 processors and two network
bridge adapters (one for the connection with supervision
IEM and the other for connection to the field level).

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 3. Architectures of different virtualization solutions for
CPU1582v : (a) commercial PC, (b) IPC227E.

For the use case experiment, two devices of each type are
used, to evaluate all the combinations in TABLE I. At each
experiment is assigned a reference number # used in the
following.

TABLE I
EXPERIMENT MATRIX FOR THE COMPARISON (R: REAL PLC,

VIPC: VPLC ON IPC, VPC: VPLC ON DESKTOP PC)

Ref. # Client (C) Edge (E)
1 R R
2 R VIPC
3 R VPC
4 VIPC R
5 VIPC VIPC
6 VIPC VPC
7 VPC R
8 VPC VIPC
9 VPC VPC

Referring again to Fig. 2 the network of the use case is

Ethernet, and the network access is obtained using a Ethernet
Tap (Profitap C1AP-100). The T duplicates all Ethernet traffic
on the link and forwards it to an embedded system
(Siemens IOT2050), which assigns timestamps and store each
packets.

C. The M2M protocol used in the use case (S7comm)

To enable seamless communication between PLCs and
supervisory systems, specific communication protocols are
often employed. Siemens developed S7comm, that is the
primary communication protocol for M2M, C2C, and SCADA.
It is used by Siemens S7-300, S7-400, S7-1200 and S7-1500
families and external devices [25]. The protocol runs on ISO
transport services on top of the TCP (TPKT) and all the
communications occur on the port 102. S7comm data are
encapsulated in a COTP (Connection oriented Transport
Protocol) packets. The protocol incorporates security
mechanisms such as authentication, integrity checks, and

confidentiality using encryption algorithms. However,
S7comm has faced vulnerabilities and attacks ([26][27][28]).

There are 3 steps to establish a S7 connection with the PLCs
[29]: i) establish a COTP connection by sending a request and
receiving the corresponding ACK, ii) S7 communication setup
and iii) exchange of S7 function code related to the transaction.
In Fig. 4 it’s shown an example of GET_DB instruction, it gets
data from the desired data area of the server PLC and assigns
them to the data area in the client PLC.

The S7 request is handled by the PLC operating system and
it allows access to the specified memory area without disturbing
the normal behavior of the PLC program.

Fig. 4. Sequence diagram of S7comm GET Request.

D. Synchronization for the use case

In the proposed measurement setup, the connection with NTP
Server (ntp1.inrim.it) is implemented as follows: i) R via
IOT2040; ii) VIPC and VPC via settings in SIE device
management; iii) Tap analyzer via IOT2050.

The performance statistics are taken through the NTP
daemon, as shown in TABLE II:

TABLE II
NTP STATISTICS

From the values reported in TABLE II, the synchronization

standard uncertainty is evaluated following Section IV.
The resulting standard uncertainty and the corresponding

expanded uncertainty, U, for this use case, calculated with a
coverage factor of 𝑘 = 2 are reported in TABLE IV. The
obtained resolution ranges from 0.1 ms to 1.7 ms, depending on
the experiment. These values align with round-trip time
latencies for industrial applications, as reported in [30].

In this paper, the timestamping uncertainty, 𝑢௧௠, is not taken
into account because, with the considered hardware, it has a
negligible impact (Note that in previous work [21] the
timestamping uncertainty has been estimated on the order of
0.01 ms).

E. Data validation and pre-processing

In this use case, the data exchange is implemented using S7

Poll time (s)

𝑨𝒗𝒆𝒓𝒂𝒈𝒆
𝑶𝒇𝒇𝒔𝒆𝒕

(𝒎𝒔)

𝑺𝒕𝒅. 𝒅𝒆𝒗.
𝑶𝒇𝒇𝒔𝒆𝒕

(𝒎𝒔)
R 32 0.001 0.02

VIPC 256 -0.258 0.52

VPC 1024 -0.051 0.14

Tap 32 -0.016 0.56

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

communication between C and E. The transaction type is
“Request and Response”; specifically, C generates a GET
Request to E for reading a variable (T3) inside one of its internal
DataBlock (DB). The transaction is repeated every 10 seconds
plus a random time between 0 and 999 ms.

In TABLE III statistics relative to S7 protocol are listed for
all evaluated experiments. In details, TABLE III shows that in
the different experiments the rates of S7 packets are similar,
while the number of the total packets may change between the
experiments.

TABLE III
S7 PROTOCOL PACKETS ANALYSIS

During the data analysis, it is observed that:

 when the two partner C and E are both a real PLC, the
transaction is very fast and the variability is extremely low.
Such a situation suggests that the real PLC handles the IP
stack (on which the S7 protocol lays) on interrupt.

 when one of the communication partners is a virtual PLC
(either VIPC or VPC), a large variability of the latency
metrics is found. Such a situation triggered a deeper
analysis about the reason of this behavior.

The analysis of the sequences of network packets, captured
by the Ethernet Tap T, revealed that the implementation of the
containerized CPU1582V (v0.30) seems to have an IP stack
with a polling cycle equal to 100 ms (𝐿ୱ୲ୟୡ୩_ୣ 𝑖𝑛 Fig. 5 (a)).

For sake of clarity, Fig. 5 illustrates a temporal diagram that
represents an example of data exchange in experiment #2
(TABLE I). During normal operation (see Fig. 5 (a)), C
generates the GET Request at time T1. The request received
from E is then processed at the end of the cycle introducing, at
every request, a delay equal to the time required to reach the
end of the IP stack cycle.

While investigating, another, less frequent, behavior of the
IP stack has been observed. As shown in Fig. 5 (b), C creates as
usual the S7 GET Request at time T1 but, every 60 s, this
request is queued because the IP stack of C is busy sending an
ARP request and then waiting until the ARP response arrives.
This situation, in addition to the normal data exchange, results
in a further delay on the order of hundreds of milliseconds.

Fig. 5. Example of exhange in experiment #2: (a) normal

exchange (b) with ARP activity.

In this paper, for the metrics evaluation, only data pertaining
to the normal behavior are considered and the data exchanges
involving ARP activity are filtered out with pre-processing.
This approach is justified by the sporadic nature of this
behavior, and by the possibility to increase (or even eliminate)
the ARP request configuring the IP parameters of clients. For
sake of completeness not filtered metrics are reported in
TABLE VII and TABLE VIII. In Fig. 6 is shown the
comparison between 𝐿஼஼ distribution with ARP activity
Fig. 6 (a) and filtered 𝐿஼஼ distribution Fig. 6 (b).

Fig. 6. LCC distribution for experiment #2 : (a) with ARP
activity (b) excluding ARP activity.

VI. THE EXPERIMENTAL RESULTS FOR THE USE CASE

The primary goal of the proposed methodology is to provide
useful insights of the system under test. For this use case,
TABLE V and TABLE VI report the results of the experiments.
It is possible to observe the described behaviour in Section V.E
(previous subsection): when one of the communication partners
is a virtual PLC, the round-trip time 𝐿௖௖ is on the order of 100
ms. Two examples of distributions are shown in Fig. 7 (a) and
(b).

In Fig. 7 (a) is possible to observe the evaluated latency for
the experiment #1 (i.e. only real PLCs) that works as reference.
The round-trip time (𝐿஼஼) has an average value of 3.3 ms.

In Fig. 7 (b) is shown the results of experiment #5. Two

Total S7 S7 (%) S7 Rate (packets/s)
1 3222 504 15.6 0.2
2 17592 1376 7.8 0.2
3 11037 1480 13.4 0.2
4 116687 980 0.2 0.2
5 30444 708 2.3 0.2
6 15542 1723 11.1 0.2
7 11457 1387 12.1 0.3
8 18797 1959 10.4 0.2
9 19628 1128 5.7 0.2

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

cycles of 100 ms exist in the communication, one for C and one
for E. The cycle on E is described by the 𝐿ா் latency, in
particular is characterized by: average value of 51 ms,
maximum value of 100 ms and a minimum value lower than U
(see TABLE IV). Similarly, the cycle on C is described by 𝐿஼்
latency that is characterized by: an average value of 65 ms,
maximum value of 74 ms and a minimum value of 4 ms. These
values are confirmed analyzing 𝐿஼஼ (which is the sum of 𝐿஼்
and 𝐿ா்) having an average value of 118 ms. In the latency 𝐿ா் ,
thanks to the random time added to the GET Request, all the
possible values of the delays are tested and, as shown in
Fig. 7 (b), a uniform distribution is obtained. On the contrary,
in 𝐿஼் the situation is different because there is not the
possibility to add random time to the response in the S7
protocol. Thus, the response arrives more frequently in the same
point of the cycle of C, leading to a distribution where most of
the samples are at 70 ms.

Fig. 7. Distributions of the evaluated latencies: (a) experiment

#1, (b) experiment #5.

These cycles are well described in TABLE VI. When C is a
Vx (experiments #4,5,6,7,8,9), 𝐿஼் latency has average values
that ranged from 37 to 102 ms; these values may change
depending on the synchronization status of C and E when the
experiment is started. When E is based on Vx (experiments
#2,3,5,6,8,9), 𝐿ா் latency has average values that range from 47
to 54 ms and are characterized by a uniform distribution.

Again, the validity of the setup is confirmed by observing in
TABLE V that the average value of 𝐿஼஼ is the sum of the
average value of 𝐿ா஼ and 𝐿஼ா (considering the expanded
uncertainty).

In conclusion, comparing the average performance in this use
case, the real PLC appears to be faster than the virtual PLC in
completing the S7 transaction. However, if the minimum values
of the latencies are compared, it is clear that the virtual PLC is
as fast as the real PLC; the additional delay depends only on the
implementation of the IP stack. Moreover, no noticeable
differences are visible between the two types of virtual
environments used for the virtual PLC. Hence, for this specific
use case, the main suggestion for boosting performance is to ask
developers to focus in enhancing the IP stack implementation
of the virtual PLC.

A. The derived analytical model of the use case

The proposed methodology allows for creating analytical
model of the systems under test. For instance, considering the
experimental results and referring to Fig. 5 , an analytical model
for the evaluation of the round-trip time 𝐿௖௖ can be derived:

 𝐿௖௖,௠௔௫ = 𝐿௘௟௔௕_ୡ,୫ୟ୶ + 𝐿௘௟௔௕_ୣ,୫ୟ୶ + 𝐿௖௔௕௟௘_୰ୣ୯,୫ୟ୶ +

 𝐿ୡୟୠ୪ୣ_୰ୣୱ,୫ୟ୶ + max(𝐿ୱ୲ୟୡ୩_ୡ) + max(𝐿ୱ୲ୟୡ୩_ୣ) (3)

where 𝐿௘௟௔௕_௖ and 𝐿௘௟௔௕_௘ represent the elaboration time of the
C and E, 𝐿௖௔௕௟௘_௥௘௤ and 𝐿௖௔௕௟௘_௥௘௦ the request/response
transmission time on the cable, 𝐿௦௧௔௖௞_௖ and 𝐿௦௧௔௖௞_௘ the time
taken by the IP stack of PLCs to read the request/response. The
(3) is the worst case scenario.

Considering PLCs elaboration time equal for C and E, we can
accumulate it into a single variable 𝐿௘௟௔௕. The same can be done
for the transmission time on cable 𝐿௖௔௕௟௘ .

Since communication in real PLCs works with interrupts, for
the real PLCs is considered 𝐿௦௧௔௖௞= 0 ms. Due to these
considerations it’s possible to simplify (3) in (4):

 𝐿௖௖,௠௔௫ = 2 𝐿ୣ୪ୟୠ,୫ୟ୶ + 2 𝑇ୡୟୠ୪ୣ,୫ୟ୶ + 𝑗 𝑚𝑎𝑥(𝑇ୱ୲ୟୡ୩) (4)

where j is equal to the number of virtual PLCs involved in the
scenario to be modeled.

A model of the average latency can be also obtained. As
previously described if the GET Request is not correlated to the
response of the previous transaction, a uniform distribution is
obtained for the latency. As it is possible to see in TABLE VI,
the average time spent in the stack is equal the half of 𝐿௦௧௔௖௞ .
Thus the model can be written as:

 𝐿௖௖,௔௩௚ = 2 𝐿ୣ୪ୟୠ,ୟ୴୥ + 2 𝐿ୡୟୠ୪ୣ,ୟ୴୥ + 𝑗
௅౩౪౗ౙౡ

ଶ
 (5)

From (5) it is clear that with two real PLCs involved in the
communication (𝑗 = 0), the round-trip time is due only to the
elaboration time of PLCs and the propagation time on the
cables. On the other hand, with two virtual PLCs (𝑗 = 2), 𝐿௖௖ is
mainly given by the latency introduced by the IP stack.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

TABLE IV
STANDARD UNCERTAINTY AND EXPANDED UNCERTAINTY FOR EVERY METRIC AND EXPERIMENT.

TABLE V
ROUND-TRIP LATENCIES, FORWARD AND BACKWARD LATENCIES (‘---‘ MEANS UNDER RESOLUTION).

 𝑳𝑪𝑪(ms) 𝑳𝑻𝑻(ms) 𝑳𝑬𝑪(ms) 𝑳𝑪𝑬(𝒎𝒔)

Avg max min Std Avg max min Std Avg max min Std Avg max min Std
1 3.3 4.6 2.6 0.3 --- --- --- --- 0.9 2.2 0.2 0.4 2.41 3.4 1.3 0.42
2 54.6 102.8 3.3 28.8 52 100 --- 29 51 100 --- 29 2 4 --- ---
3 50.8 103.6 3.4 28.7 48 101 --- 29 48 101 1 29 1 3 --- 0.5
4 45 102 3 32 --- 2 --- --- --- 3 --- --- 38 97 --- 30
5 118 175 10 37 52 101 1 30 51 100 --- 30 61 71 --- 22
6 134 188 82 29 52 106 1 29 52 107 --- 29 82 83 81 29
7 57 114 4 29 --- 2 --- --- 1 2 --- --- 60 116 7 29
8 151 201 95 30 53 101 --- 29 54 104 --- 30 96 98 95 ---
9 137 191 86 29 48 100 --- 29 50 106 --- 29 95 98 93 ---

TABLE VI
TRANSMISSION LATENCIES BETWEEN DEVICES (‘---‘ MEANS UNDER RESOLUTION).

 𝑳𝑻𝑪(ms) 𝑳𝑬𝑻(𝒎𝒔) 𝑳𝑻𝑬(𝒎𝒔) 𝑳𝑪𝑻(𝒎𝒔)

Avg max min Std Avg max min Std Avg max min Std Avg max min Std
1 --- 2 --- --- --- --- --- --- --- 2 --- --- --- --- --- ---
2 2 2 1 --- 50 98 --- 29 3 4 --- --- --- 2 --- ---
3 2 2 --- --- 46 99 --- 29 --- 2 --- --- --- 2 --- ---
4 --- 3 --- --- --- 2 --- --- --- 3 --- --- 37 97 --- 29
5 2 3 --- --- 51 100 --- 30 --- 2 --- --- 65 74 4 22
6 --- --- --- --- 54 109 2 29 --- 2 --- --- 79 79 77 ---
7 --- --- --- --- --- 2 --- --- 2 3 --- --- 59 116 6 29
8 --- --- --- --- 47 99 --- 30 --- 2 --- --- 102 103 101 ---
9 --- 2 --- --- 52 100 6 23 3 4 --- --- 91 94 89 ---

TABLE VII
ROUND-TRIP LATENCIES, FORWARD AND BACKWARD LATENCIES WITH ARP ACTIVITY (‘---‘ MEANS UNDER RESOLUTION).

 𝑳𝑪𝑪(ms) 𝑳𝑻𝑻(ms) 𝑳𝑬𝑪(ms) 𝑳𝑪𝑬(𝒎𝒔)

Avg max min Std Avg max min Std Avg max min Std Avg max min Std
1 3.3 4.6 2.6 0.3 --- --- --- --- 0.9 2.2 0.2 0.4 2.41 3.4 1.3 0.42
2 70.5 202.4 3.5 46.6 60 100 --- 32 68 200 1 47 2 4 --- ---
3 67.8 203.4 3.4 47.8 57 101 --- 33 64.8 200.8 0.5 47.8 1.5 2.8 0 0.5
4 58 201 3 47 8 101 --- 21 --- 3 --- --- 59 207 0 47
5 118 175 10 37 52 101 1 30 51 100 --- 30 61 71 --- 22
6 134 188 82 29 52 106 1 29 52 107 --- 29 82 83 81 29
7 71.6 208.9 4.0 45.8 9 107 --- 21 1 2 0 --- 68 207 6 46
8 151 201 95 30 53 101 --- 29 54 104 --- 30 96 98 95 ---
9 137 191 86 29 48 100 --- 29 50 106 --- 29 95 98 93 ---

 𝑳𝑪𝑪 (ms) 𝑳𝑻𝑻 (ms) 𝑳𝑻𝑪 (ms) 𝑳𝑬𝑻 (ms) 𝑳𝑻𝑬 (ms) 𝑳𝑪𝑻 (ms) 𝑳𝑬𝑪 (ms) 𝑳𝑪𝑬 (ms)

𝑢௖ U 𝑢௖ U 𝑢௖ U 𝑢௖ U 𝑢௖ U 𝑢௖ U 𝑢௖ U 𝑢௖ U
1 0.03 0.1 0.79 1.6 0.64 1.3 0.64 1.3 0.64 1.3 0.64 1.3 0.03 0.1 0.03 0.1
2 0.03 0.1 0.79 1.6 0.64 1.3 0.87 1.7 0.87 1.7 0.64 1.3 0.59 1.2 0.59 1.2
3 0.03 0.1 0.79 1.6 0.64 1.3 0.66 1.3 0.66 1.3 0.64 1.3 0.14 0.3 0.14 0.3
4 0.74 1.5 0.79 1.6 0.87 1.7 0.64 1.3 0.64 1.3 0.87 1.7 0.59 1.2 0.59 1.2
5 0.74 1.5 0.79 1.6 0.87 1.7 0.87 1.7 0.87 1.7 0.87 1.7 0.74 1.5 0.74 1.5
6 0.74 1.5 0.79 1.6 0.87 1.7 0.66 1.3 0.66 1.3 0.87 1.7 0.60 1.2 0.60 1.2
7 0.20 0.4 0.79 1.6 0.66 1.3 0.64 1.3 0.64 1.3 0.66 1.3 0.14 0.3 0.14 0.3
8 0.20 0.4 0.79 1.6 0.66 1.3 0.87 1.7 0.87 1.7 0.66 1.3 0.60 1.2 0.60 1.2
9 0.20 0.4 0.79 1.6 0.66 1.3 0.66 1.3 0.66 1.3 0.66 1.3 0.20 0.4 0.20 0.4

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

TABLE VIII
TRANSMISSION LATENCIES BETWEEN DEVICES WITH ARP ACTIVITY (‘---‘ MEANS UNDER RESOLUTION).

 𝑳𝑻𝑪(ms) 𝑳𝑬𝑻(𝒎𝒔) 𝑳𝑻𝑬(𝒎𝒔) 𝑳𝑪𝑻(𝒎𝒔)

Avg max min Std Avg max min Std Avg max min Std Avg max min Std
1 --- 2 --- --- --- --- --- --- --- 2 --- --- --- --- --- ---
2 10 101 --- 22 57 100 --- 32 3 4 --- --- --- 2 --- ---
3 10 103 --- 22 54 99 --- 32 --- 2 --- --- --- --- --- ---
4 --- 3 --- --- 1 3 --- --- 8 102 --- 21 43 100 --- 33
5 2 3 --- --- 51 100 --- 30 --- 2 --- --- 65 74 4 22
6 --- --- --- --- 54 109 2 29 --- 2 --- --- 79 79 77 ---
7 --- --- --- --- --- --- --- --- 10 108 --- 2 66 114 5 32
8 --- --- --- --- 47 99 --- 30 --- 2 --- --- 102 103 101 ---
9 --- 2 --- --- 52 100 6 23 3 4 --- --- 91 94 89 ---

VII. CONCLUSION

The new virtual PLCs can be executed on any platform that
support containers, assuring independency from both the
hardware and the operating system. They are maintainable,
scalable, traceable and open to new concepts of micro service
architectures in industrial automation. But what is the
performance of virtual PLCs compared to (proven in use) real
PLCs?

This paper, the first of a multistage research work, provides
a methodology for the evaluation of the communication
performance of virtual PLCs when exchanging data for
supervision, coordination and control with other machines. For
comparing the performance, a set of metrics has been defined
corresponding to the round trip time of the transaction, and to
the transmission latencies between the devices. The
methodology is completed by the proposal of a general
experimental setup for measuring the relevant metrics across a
distributed measurement environment. The synchronization of
the devices under test (and of ancillary devices) is discussed,
and their expanded uncertainty is taken into account.

The effectiveness of the proposed has been demonstrated by
a use case, where real and virtual PLCs are compared. In details,
Siemens virtual PLC (CPU1582V) and real PLCs of the S7-
1500 family are used in a scenario where they exchange
supervision data by means of S7comm protocol. The virtual
PLC is hosted by two different virtual environments, allowing
for a comparative assessment of the type of virtualization.

Utilizing the recommended approach, the analysis of the use
case results points out that: a virtual PLC could work as fast as
a real PLC with average data exchange latencies 𝐿஼஼ in the
order of 3 ms (and almost identical time distributions), but the
IP stack implementation introduces a higher delay up to
maximum of 100 ms and an average of 50 ms. This insight
information is useful for developer of virtual PLC that can work
on reducing such delay.

Last, the full access to the network traffic given by the
proposed setup, combined with the fully synchronized
timestamping, allows for the creation of analytical model of
latencies of the use case under test. The analytical model can be
used for simulators or worst case analysis.

In conclusion in this paper a general methodology for the
evaluation of the performance of virtual PLC is provided , when
exchanging data with other machines and SCADA in a M2M

scenario.
The second stage of the ongoing project will involve

evaluating the real-time communication performance between
the PLC and sensors/actuators. This evaluation will be
conducted using advanced time measuring devices, including
direct 1-PPS synchronization signal and GPS receivers, with a
resolution of around 50 microseconds. However, it is important
to note that this may require additional hardware and incur extra
costs, resulting in a more expensive setup for real-time
measurement.

Future evolution of virtual components (like virtual PLC, but
not limited to) can greatly benefit from measurement and test
procedures (like the ones described in this paper) of their
performance. As a matter of fact, virtual PLC implementations
(being a full software approach) can be quickly improved by
means of combined cycle of design, test and redesign.

ACKNOWLEDGMENT

The authors would thank Siemens Italy for the support during
the implementation of the use case.

REFERENCES
[1] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and

Challenges," in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646,
Oct. 2016

[2] T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, S. Grüner,
"Container-based architecture for flexible industrial control applications,"
Journal of Systems Architecture, Volume 84, 2018, pp. 28-36

[3] D. Taibi, V. Lenarduzzi and C. Pahl, "Processes, Motivations, and Issues
for Migrating to Microservices Architectures: An Empirical Investigation,"
in IEEE Cloud Computing, vol. 4, no. 5, pp. 22-32, Sept./Oct. 2017

[4] S. Sarkar, G. Vashi and P. P. Abdulla, "Towards Transforming an
Industrial Automation System from Monolithic to Microservices," 2018
IEEE 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA), Turin, Italy, 2018, pp. 1256-1259

[5] P. Ferrari et al.,“On the Use of LoRaWAN and Cloud Platforms for
Diversification of Mobility-as-a-Service Infrastructure in Smart City
Scenarios ”, IEEE Trans, Instrumentation and Measurements, 2022

[6] Rui Queiroz, Tiago Cruz, Jérôme Mendes, Pedro Sousa, and Paulo
Simões. 2023. Container-based Virtualization for Real-time Industrial
Systems—A Systematic Review. ACM Comput. Surv. 56, 3, Article 59
(March 2024), 38 pages

[7] B. Scholten, The Road to Integration: A Guide to Applying the Isa-95
Standard in Manufacturing. ISA, 2007

[8] D. Pliatsios, P. Sarigiannidis, T. Lagkas, A.G. Sarigiannidis, “A Survey on
SCADA Systems: Secure Protocols, Incidents, Threats and Tactics”, IEEE
Communications Surveys and Tutorials, vol. 22, n. 3, art. no. 9066892,
2020, pp. 1942 – 1976

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[9] Ayiad M., Maggioli E., Leite H., Martins H., "Communication

Requirements for a Hybrid VSC Based HVDC/AC Transmission
Networks State Estimation," Energies 2021, 14, 1087

[10] A. Eckhardt, S. Müller, “Analysis of the Round Trip Time of OPC UA and
TSN based Peer-to-Peer Communication”, IEEE Int. Conf on Emerging
Technologies and Factory Automation, ETFA, Sept., art. no. 8869060,
2019, pp. 161 – 167

[11] T. Borangiu et al. "Digital transformation of manufacturing through cloud
services and resource virtualization.", Computers in Industry 108 (2019):
150-162

[12] N. Carvalho et al. "Manufacturing in the fourth industrial revolution: A
positive prospect in sustainable manufacturing." Procedia
Manufacturing 21 (2018): 671-678

[13] E. Sisinni et al., "Assessment of Time Performance of Lightweight
Virtualization for Edge Computing Applications," 2023 IEEE 19th
International Conference on Factory Communication Systems (WFCS),
Pavia, Italy, 2023, pp. 1-4

[14] D. Javier Perez, J. Waltl, L. Prenzel and S. Steinhorst, "How Real (Time)
Are Virtual PLCs?," 2022 IEEE 27th International Conference on
Emerging Technologies and Factory Automation (ETFA), Stuttgart,
Germany, 2022, pp. 1-8

[15] J. Mellado, F. Núñez, "Design of an IoT-PLC: A containerized
programmable logical controller for the industry 4.0,"Journal of Industrial
Information Integration,Volume 25, 2022, n. 100250

[16] T. Cruz, P. Simões and E. Monteiro, "Virtualizing Programmable Logic
Controllers: Toward a Convergent Approach," in IEEE Embedded Systems
Letters, vol. 8, no. 4, pp. 69-72, Dec. 2016

[17] W. Dai, Y. Zhang, L. Kong, J. H. Christensen and D. Huang, "Design of
Industrial Edge Applications Based on IEC 61499 Microservices and
Containers," in IEEE Transactions on Industrial Informatics, vol. 19, no. 7,
pp. 7925-7935, July 2023

[18] C. Pallasch et al., "Edge Powered Industrial Control: Concept for
Combining Cloud and Automation Technologies," 2018 IEEE
International Conference on Edge Computing (EDGE), San Francisco,
CA, 2018, pp. 130-134,

[19] M. Sollfrank, F. Loch, S. Denteneer and B. Vogel-Heuser, "Evaluating
Docker for Lightweight Virtualization of Distributed and Time-Sensitive

Applications in Industrial Automation," in IEEE Transactions on Industrial
Informatics, vol. 17, no. 5, pp. 3566-3576, May 2021

[20] L. Catuogno, C. Galdi and N. Pasquino, "An Effective Methodology for
Measuring Software Resource Usage," in IEEE Trans. on Instrumentation
and Measurement, vol. 67, no. 10, pp. 2487-2494, Oct. 2018.

[21] Lorenzo Rosa, Andrea Garbugli, Lorenzo Patera, and Luca Foschini. 2023.
Supporting vPLC Networking over TSN with Kubernetes in Industry 4.0.
In Proceedings of the 1st Workshop on Enhanced Network Techniques and
Technologies for the Industrial IoT to Cloud Continuum (IIoT-NETs '23).
Association for Computing Machinery, New York, NY, USA, 15–21

[22] P. Ferrari, A. Flammini, E. Sisinni, S. Rinaldi, D. Brandão and M. S.
Rocha, "Delay Estimation of Industrial IoT Applications Based on
Messaging Protocols," in IEEE Transactions on Instrumentation and
Measurement, vol. 67, no. 9, pp. 2188-2199, Sept. 2018

[23] https://www.plcnext-community.net/infocenter/home/
[24] https://docs.automation.boschrexroth.com/doc/1368933374/ctrlx-core-

runtime-application-manual/latest/en/
[25] S7comm (wireshark.org) (accessed on 01 July 2023) .
[26] L. Martín-Liras, M. A. Prada, J. J. Fuertes, A. Morán, S. Alonso, M.

Domínguez, "Comparative analysis of the security of configuration
protocols for industrial control devices, International Journal of Critical
Infrastructure Protection, Volume 19, 2017, Pages 4-15

[27] Beresford, Dillon. "Exploiting Siemens Simatic s7 plcs." Black Hat
USA 16.2, 2011, pp. 723-733

[28] R. Spenneberg, M. Brüggemann, and H. Schwartke. "Plc-blaster: A worm
living solely in the plc.", Black Hat Asia 16, 2016, pp. 1-16

[29] Xiao, Feng, Enhong Chen, and Qiang Xu. "S7commtrace: A high
interactive honeypot for industrial control system based on s7
protocol." Information and Communications Security: 19th International
Conference, ICICS 2017, Beijing, China, December 6-8, 2017,
Proceedings 19. Springer International Publishing, 2018

[30] Figueroa-Lorenzo S., Añorga J., Arrizabalaga S."A role-based access
control model in modbus SCADA systems. A centralized model approach,"
Sensors (Switzerland), vol. 19, art. no. 4455, 2019

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

