
1 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
 

Virtual PLC in industrial edge platform: performance 
evaluation of supervision and control communication 

 

Massimiliano Gaffurini, Member, IEEE, Paolo Bellagente, Member, IEEE, Alessandro. Depari, Member, IEEE, 

 Alessandra Flammini, Fellow, Member, IEEE, Emiliano Sisinni, Member, IEEE, Paolo Ferrari, Member, IEEE  

Abstract— Edge computing allows for data processing at reduced 
latency since the computational power is moved close to the data 
sources. Traditionally, edge computing has been often used in 
industrial scenarios for implementing gateways between the OT 
(operational technology) worlds and the IT (cloud) world. Recently, 
big manufacturers of industrial PLC (programmable logic 
controller) started promoting the use of containerized virtual PLC 
hosted inside edge computing platforms. They foresee an innovative 
integration of container based applications, including automation 
control, with all the data centric services and application already 
available for edge ecosystems. Even if a clear advantage from the 
scalability and maintainability could be expected, would virtual 
PLCs meet the stringent requirements of industrial automation? 
This paper is part of a multistage research work, and, as a first step, 
it is focused on the evaluation of the performance of virtual PLC 
when exchanging data with other machines, controllers, supervisors, 
and data acquisition systems in a machine-to-machine scenario. 
After a brief overview of the involved technology, the design of a 
methodology for comparing real PLC and virtual PLC is described. 
Then, performance metrics, and an experimental setup for the 
evaluation of existing devices are defined taking care of the sources 
of uncertainty. The effectiveness of the proposed methodology is 
demonstrated considering a real use case. Through the use of the 
suggested methodology, important insights of the use case are 
revealed: for instance, the considered virtual PLC could work as fast 
as a real PLC with minimum communication latency in the order of 
3 ms but, currently, there is a random delay with an average of 50ms 
whose source has been identified to be the IP stack implementation 
of the virtual PLC. Finally, the proposed methodology allows for the 
creation and the validation of analytical models of the use case. 
 

Index Terms—PLC, C2C, SCADA, container-based 
virtualization, M2M. 

I.  INTRODUCTION 

The edge computing paradigm is rapidly evolving and it has 
been adopted in many scenarios, since edge computing can 
reduce latency compared to cloud computing [1]. 
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The industrial automation is now following this trend. The 
first version of virtualized Programmable Logic Controller 
(PLC) are appearing [2]. Traditional PLCs have custom 
firmware running on proprietary hardware, with the aim of 
ensuring real-time and availability. More recently SoftPLCs 
have control software running on standard PC hardware and 
RTOS (Real-Time Operating System), with the aim to reduce 
cost, assure portability, and provide multiple vendor sources.  
The newest approach proposes virtual PLCs that are the 
containerized version of PLC firmware: they can be executed 
on any platform that support containers, assuring easy 
maintainable, lightly-virtualized, solutions with full 
independency from both the hardware and the operating system. 
Moreover, the container based automation approach allows for 
microservice architectures, enabling new features like 
scalability, observability, traceability, accountability. In other 
words, the industrial machine can (independently from 
hardware) run exactly the required/licensed/verified services 
needed to produce the desired product together with its up-to-
date/certified metadata (necessary for accounting the service). 
Maintenance and update of applications is centrally managed 
assuring the security and integrity of the whole system 
[3],[4],[5].  

All the previously listed advantages are clear to machine 
builders that currently use traditional PLC, but an underlined 
question remains: what is the performance of virtual PLCs 
compared to real PLCs? As a matter of facts, the automation 
experts from operation technology (OT) field are obsessed by 
real-time constraints and they perfectly know that a new fancy 
controller that fails control deadlines would result in a useless 
solution (i.e. usually industrial applications cannot tolerate jitter 
and high latency [6]). 

A. Objectives 

Considering the described situation, the goal of the project 
this work belongs to is to provide: a methodology, an 
experimental procedure, and a set of metrics to evaluate 
performance of the communication and data exchange of PLC 
and virtual PLC.  

Since the PLCs are placed at the center of the automation 
stack (also known as CIM automation pyramid [7]), they have 
two types of data exchange: i) they are connected to other 
machines, Supervisory Control and Data Acquisition Systems 
(SCADA) [8], and controllers for the supervision and 
coordination of the production line; ii) and they are connected 
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to sensors and actuators in order to perform their own control 
actions. Both aspects have been well investigated in literature 
[9] with respect to traditional PLCs, but a general lack of 
research works on containerized virtual PLCs has been noted. 

In order to clearly present and discuss results, the project has 
been organized with two parts, and this first paper will deal only 
with the evaluation of the Machine-to-Machine (M2M) data 
exchange between PLCs or between PLC and SCADA. 

The main contributions of this paper are: 
 The definition of a methodology to compare performance 

of PLC and virtual PLC from the point of view of the flow 
of data between machines (or supervisors). 

 The definition of an experimental setup with associate 
experimental procedure. 

 The definition of metrics to compare performance. 
 The application of the proposed methodology to a real 

industrial use case, demonstrating its usefulness for 
modeling the system, drawing conclusions, and suggesting 
improvements to real-time behavior. 

In the following, after the overview of the involved 
technologies and of the existing literature, the proposed 
methodology is introduced and the use case is discussed. 
Finally, conclusions are reported. 

II.  OVERVIEW OF TECHNOLOGY 

It is important to point out the context of this work and the 
involved technologies that are used in the rest of the paper. 

A. Classical SCADA and PLCs-based architecture 

A classic industrial system based on SCADA and PLC 
devices is shown in Fig. 1 (a), it combines software and 
hardware components to supervise, coordinate, and control 
industrial processes. 

The SCADA system serves as a centralized control system 
that collects, monitors, and analyzes data from multiple remote 
locations within the industrial environment. It consists of a 
supervisory computer, human-machine interface (HMI), and 
communication infrastructure. The PLC, on the other hand, is a 
specialized computer-based controller that performs strict real-
time control functions within the industrial processes; it talks 
with field devices, sensors and actuators. SCADA retrieves soft 
real-time data from the PLCs, providing centralized view of the 
whole production line. 

Communication between SCADA and PLCs relies on M2M 
or on C2C (Controller to Controller [10]) protocols for sending 
commands and configuration parameters (to PLCs), and 
production related information (to the SCADA). 

B. Virtualization-based architecture 

As described in [11], virtualization and containerization 
systems are speeding up the digital transformation of 
manufacturing. The rapid growth of virtualization technologies 
has opened new possibilities for industrial applications. Real 
devices often require specialized and costly hardware, making 
them less flexible and scalable. In contrast, virtual devices can 
leverage general purpose hardware, which is more affordable, 

easily scalable and there is also an environmental aspect [12]. 
With the advent of virtualization techniques in the industry, 

the traditional architecture shown in Fig. 1 (a) is still valid at 
the topological and communication level, but the single 
components implementation can be different. 

In Fig. 1 (b), it is shown an example of an architecture based 
on virtual environments. The components are the same of the 
traditional approach but there are virtual environments where 
PLCs, sensors and SCADA can be virtualized. The protocols 
for M2M communication and sensor communication remain the 
same; they can be implemented directly in the virtual SCADA, 
in the virtual PLC, and also separately (as a microservice).  

However, the adoption of virtual devices necessitates a 
thorough evaluation and comparison to determine their 
suitability for specific industrial use cases (e.g. real-time 
constraints). While real devices are bare-metal, so the 
performance are related to the hardware characteristics, the 
performance of virtual devices depends on many aspects such 
as: i) virtualization technique, ii) operating system, iii) 
hypervisor. 

It’s possible to define several virtualization techniques, the 
main are: 
 Full virtualization: this technique provides a high level of 

isolation and allows running multiple operating systems 
simultaneously on a single physical machine. 

 Containerization (Light Virtualization): containers offer a 
lightweight form of virtualization where the host 
operating system kernel is shared among multiple 
containers [13]. 

Each technique offers different levels of isolation, resource 
allocation, deployment systems and flexibility. For this reason, 
it is necessary to pay special attention to the implementation of 
the virtual device. 

 
Fig. 1.  (a) Classical automation architecture based on PLC and 

SCADA devices. (b) Virtualization applied to automation: 
old hardware devices are mapped to software services 
running inside virtual environments. 

III.  RELATED WORKS AND RESEARCH OBJECTIVES 

In literature several works on the evaluation of custom virtual 
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PLCs and microservices-based architectures can be found. 
Software-defined Automation solutions are analyzed by D. 
Javier Perez et al. in [14], where they compared virtualized 
SoftPLC to a SoftPLC without hypervisor concluding that the 
virtual PLC can deliver similar performance in terms of 
switching time while having an increased period jitter. 

J. Mellado et al in [15] proposed a containerized IoT-PLC 
(not fully IEC 61131 compliant) running in a Raspberry Pi 4B 
board, they evaluated a four tanks control system scenario with 
a wireless communication systems, obtaining latencies suitable 
for control applications if process variables change slowly. 

T. Cruz et al in [16] proposed a virtual PLC (vPLC) that 
presents a convergent approach by virtualizing and co-hosting 
isolated PLC devices on the same physical equipment. This 
convergence consolidates distributed I/O on a networked I/O 
fabric, resembling the integration seen in datacenter 
architectures. Evaluation results indicate the feasibility of vPLC 
from a systems virtualization perspective, especially on ×86 
platforms with room for improvement. 

W. Dai et al in [17] designed an orchestration method and 
deployment procedures, IEC 61499 compliant, based on 
microservice for industrial edge applications. A combined 
cloud and edge approach is described in [18].  

M. Sollfrank et al [19] evaluated lightweight virtualization 
system for distributed and time-sensitive applications in 
industrial automation; they conclude that Docker containers can 
meet soft-real-time constraints of automation applications. 

L. Catuogno et al. in  [20] proposed a methodology for the 
measurements of the computational resources used by a specific 
container. 

However, differently to the works discussed above, the goal 
of this research work is not to (propose and then) evaluate 
“custom” container based automation architectures. On the 
contrary, it is to design a methodology for the evaluation of 
existing architectures, with special focus on the data exchange 
performance of commercially available solutions. 

L. Rosa et al in [21] developed a framework comprising a 
basic virtual PLC running in a Docker container, equipped with 
an OPC-UA middleware for IT and OT communications. For 
OT communications, a custom TSN-based OPC-UA 
configuration was utilised. The framework was evaluated on a 
practical testbed, which consisted of two edge nodes and an 
industrial network switch. The researchers concluded that the 
test environment demonstrated that the framework has low 
overhead, enhances determinism, and still maintains all of the 
benefits of virtualization. 

 In details, the scope of this first paper is to propose a method 
for evaluating communication performance at supervision level 
(M2M, C2C, SCADA). Operatively, this paper includes also 
the discussion of a use case, where the M2M data exchange 
between virtual PLCs (virtualized with different light 
virtualization techniques) will be compared with the reference 
performance of their “equivalent” real PLCs. 

IV.  THE PROPOSED METHODOLOGY 

The proposed setup for testing is illustrated in Fig. 2 (a). 

Inside the architecture under test, the first step is to identify the 
two partners, referred to as C (Client PLC) and E (Edge PLC), 
that connect to each other using the M2M (or C2C or SCADA) 
protocol. The second step is to identify the physical network 
they use to exchange data. As a matter of fact, in order to assess 
the network latencies, as well as the communication stack 
delays of C and E, a physical network access, called T, is 
needed. By means of T, all the relevant data packets can be 
captured and analyzed. 

The third step is to isolate, in the M2M communication 
between C and E, the transaction type to be evaluated. For 
instance, in Fig. 2 (b), it is shown the case of a transaction of 
type “Request and Response”. This case is very common in 
many supervision protocols. The method requires that for the 
two partners (E and C), and for T, a timestamp is taken and 
permanently saved for every event related to the identified 
transaction.  

The last step of the method is to assure that transactions are 
not time correlated. For this reason, a suitable randomization of 
the Request must be introduced.  

 

 
 

Fig. 2. Proposed methodology: (a) measurement setup, (b) 
exchange data diagram. 

A. The metrics 

The metrics of the proposed methodology are defined, 
without lack of generality, in the case of transaction of type 
“Request and Response”. As a matter of fact, the other type of 
transaction is the “Publish” where one partner emits a message 
without being asked for. In practical systems “Publish with 
Acknowledge” and “Publish without Acknowledge” styles are 
possible, and the approach proposed here can deal also with 
them, as described after the metrics definitions. 

The interaction between C and E is shown in Fig. 2 (b): i) at 
time T1 is generated the Request; ii) at time T2 the Request is 
seen on the network via T; iii) at time T3 the Request is read 
from E; iv) at time T4 the Response is visible on the network; 
v) at time T5 the Response is read by C. 

The following latencies are defined and evaluated: 
 𝐿஼஼ = 𝑇ହ − 𝑇ଵ, the Request-Response round trip time; 
 𝐿்் = 𝑇ସ − 𝑇ଶ, latency introduced by the elaboration of the 

request from the communication stack of E and the 
subsequent step of sending the Response; 

 𝐿ா஼ = 𝑇ଷ − 𝑇ଵ, the latency from the generation of the 
Request to the reception of the Request; 
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 𝐿஼ா = 𝑇ହ − 𝑇ଷ, the latency from the generation of the 

Response to its reading;  
 𝐿்஼ = 𝑇ଶ − 𝑇ଵ, the Request traverse latency from C to the 

bus; 
 𝐿ா் = 𝑇ଷ − 𝑇ଶ, the Request traverse latency from the 

network to E, including the communication stack of E; 
 𝐿்ா = 𝑇ସ − 𝑇ଷ, the Response traverse latency from E to the 

network; 
 𝐿஼் = 𝑇ହ − 𝑇ସ, the Response traverse latency from E to the 

network, including the communication stack of C. 
For systems that use “Publish with Acknowledge” 

transaction the metrics are the same since the publish message 
coincides with the request and the acknowledge message is 
equivalent to the response. 

For systems that use “Publish without Acknowledge” 
transaction the subset of metrics valid for C to E directions is 
(𝐿ா஼ , 𝐿்஼, 𝐿ா்), while the subset of metrics valid for C to E 
direction is (𝐿஼ா , 𝐿்ா, 𝐿஼்). 𝐿஼஼  and 𝐿்் do not apply. 

B. Synchronization 

The proposed setup of Fig. 2 is a distributed measurement 
system. The measurement of traverse latency is affected by the 
drift and the offset between the time references of the devices 
that take the source and destination timestamps. In this work, as 
proposed in [21], all the devices must be time synchronized to 
compensate for the effect of drift and offset. For the 
synchronization a specialized time transfer protocols called 
Network Time Protocol (NTP) is used. The NTP 
synchronization protocol is based on exchanging packets 
between clients and servers, through the determination of: i) 
offset of the client’s local clock respect to the server’s clock, ii) 
latency of the network connection. Observing the clock offset, 
the client can correct its local clock to match the server’s time.  

Still referring to [21] it's possible to evaluate the 
synchronization standard uncertainty as follows in (1): 

 𝑢௦௠ = ඥ𝜇௦௠
ଶ + 𝜎௦௠

ଶ  (1) 

Where 𝜎௦௠ represents the standard deviation of the device m 
that takes the timestamp, and 𝜇௦௠ is the systematic error that it 
is necessary to consider because in the experimental setup no 
calibration is performed. 

The standard uncertainty 𝑢୫୬ of any latencies evaluated 
between two devices (m and n), introduced in Section IV. , is 
calculated as in (2): 

 𝑢୫୬  =  ඥ𝑢ୱ୫
ଶ + 𝑢ୱ୬

ଶ  (2) 

When the evaluated latency is calculated between the same 

device (2) becomes equal to 𝑢௠௠ = ඥ2𝑢௦௠
ଶ  . 

V.  THE USE CASE 

The goal of the use case is to demonstrate the effectiveness 
of the proposed methodology. Currently, most virtual PLC 
solutions available on the market are built upon open-source 
Soft PLC IEC61131-3 compliant platforms and are executed on 
vendor-dependent Automation Platforms and/or Hardware. For 
example: i) PLCNext by Phoenix Contact, featuring the 

PLCNext Control PLC based on the Linux kernel [23]; ii) ctrlX 
by Bosch Rexroth, offering a PLC App that supports target 
platforms based on ARM64 or x64, and Linux Ubuntu Core 
with real-time extension (called ctrlX OS [24]); iii) Software-
defined Automation solutions, previously introduced in [14]. 

The aforementioned solutions do not allow for a direct 
comparison between virtual PLCs and their real counterparts; 
thus, they are not the best choice for evaluating the proposed 
methodology. 

A. The industrial system used in the use case 

In this use case, the Siemens virtual PLC CPU1582v is 
specifically addressed as an “equivalent” to real PLCs of the 
S7-1500 product family. This virtual PLC runs within a Docker 
container on the Siemens Industrial Edge (SIE) Platform. The 
main components of the SIE platform are as follows: i) the 
Industrial Edge Hub (IEH), located in the Cloud, which serves 
as a repository for documentation and containerized 
applications available on the marketplace; ii) the Industrial 
Edge Management (IEM), which runs locally and oversees the 
configuration and setup of edge devices and applications; iii) 
The Industrial Edge Devices (IEDs), which refer to the actual 
machines running the containerized applications. 

B. Experimental setup for the use case 

In this use case, the PLC models S7-1512C-1 PN (v2.6) and 
CPU1582v (v0.30) assume the role of C and E in to Fig. 2. 
Three types of devices have been used/implemented: 
 PLC S7-1512C-1 PN (called R) is a compact and powerful 

PLC from Siemens SIMATIC S7-1500 series. It features a 
fast CPU, expandable I/O modules, 250 Kbyte program 
memory, 1 Mbyte data memory and support for real-time 
protocols (e.g. Profibus, Profinet, and Ethernet/IP).  

 CPU1582V hosted by Simatic IPC227E (called VIPC, 
shown in Fig. 3 (b) ), a compact industrial PC boasting a 
quadcore Intel Celeron N2930 processor running at 1.83 
GHz (burst frequency 2.16 GHz), 8GB of main memory 
and a 240 GB SATA SSD. It executes the “IED OS” 
(version ied-os-1.9.0-27-amd64), which includes the 
Mentor Industrial OS (based on Debian Linux real-time) 
and the additional middleware for containerization. 

 CPU1582V hosted by desktop PC (called VPC, shown in 
Fig. 3 (a)), boasting a CPU Intel Core i7-7700b running at 
3.60GHz, 16GB of main memory and 500 GB SATA SSD 
and Windows 10 pro as Host OS. VMware Workstation pro 
17.1 hypervisor is installed on the SSD it executes the “IED 
OS” (version 1.9.0-5-a-rc2). At the virtual machine are 
assigned 4GB of memory, 2 processors and two network 
bridge adapters (one for the connection with supervision 
IEM and the other for connection to the field level).   
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Fig. 3. Architectures of different virtualization solutions for 
CPU1582v : (a) commercial PC, (b) IPC227E. 

For the use case experiment, two devices of each type are 
used, to evaluate all the combinations in TABLE I. At each 
experiment is assigned a reference number # used in the 
following. 

TABLE I  
EXPERIMENT MATRIX FOR THE COMPARISON (R: REAL PLC, 

VIPC: VPLC ON IPC, VPC: VPLC ON DESKTOP PC) 
 

Ref. # Client (C) Edge (E) 
1 R R 
2 R VIPC 
3 R VPC 
4 VIPC R 
5 VIPC VIPC 
6 VIPC VPC 
7 VPC R 
8 VPC VIPC 
9 VPC VPC 

 
Referring again to Fig. 2 the network of the use case is 

Ethernet, and the network access is obtained using a Ethernet 
Tap (Profitap C1AP-100). The T duplicates all Ethernet traffic 
on the link and forwards it to an embedded system 
(Siemens IOT2050), which assigns timestamps and store each 
packets. 

C.  The M2M protocol used in the use case (S7comm) 

To enable seamless communication between PLCs and 
supervisory systems, specific communication protocols are 
often employed. Siemens developed S7comm, that is the 
primary communication protocol for M2M, C2C, and SCADA. 
It is used by Siemens S7-300, S7-400, S7-1200 and S7-1500 
families and external devices [25]. The protocol runs on ISO 
transport services on top of the TCP (TPKT) and all the 
communications occur on the port 102. S7comm data are 
encapsulated in a COTP (Connection oriented Transport 
Protocol) packets. The protocol incorporates security 
mechanisms such as authentication, integrity checks, and 

confidentiality using encryption algorithms. However, 
S7comm has faced vulnerabilities and attacks ([26][27][28]). 

There are 3 steps to establish a S7 connection with the PLCs 
[29]: i) establish a COTP connection by sending a request and 
receiving the corresponding ACK, ii) S7 communication setup 
and iii) exchange of S7 function code related to the transaction. 
In Fig. 4 it’s shown an example of GET_DB instruction, it gets 
data from the desired data area of the server PLC and assigns 
them to the data area in the client PLC. 

The S7 request is handled by the PLC operating system and 
it allows access to the specified memory area without disturbing 
the normal behavior of the PLC program. 

 
Fig. 4. Sequence diagram of S7comm GET Request.  

D. Synchronization for the use case 

In the proposed measurement setup, the connection with NTP 
Server (ntp1.inrim.it) is implemented as follows: i) R via 
IOT2040; ii) VIPC and VPC via settings in SIE device 
management; iii) Tap analyzer via IOT2050. 

The performance statistics are taken through the NTP 
daemon, as shown in TABLE II: 

TABLE II  
NTP STATISTICS 

 
From the values reported in TABLE II, the synchronization 

standard uncertainty is evaluated following Section IV.  
The resulting standard uncertainty and the corresponding 

expanded uncertainty, U, for this use case, calculated with a 
coverage factor of 𝑘 = 2 are reported in TABLE IV. The 
obtained resolution ranges from 0.1 ms to 1.7 ms, depending on 
the experiment. These values align with round-trip time 
latencies for industrial applications, as reported in [30]. 

In this paper, the timestamping uncertainty, 𝑢௧௠, is not taken 
into account because, with the considered hardware, it has a 
negligible impact (Note that in previous work [21] the 
timestamping uncertainty has been estimated on the order of 
0.01 ms).  

E. Data validation and pre-processing 

In this use case, the data exchange is implemented using S7 

 
 

Poll time (s) 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 
𝑶𝒇𝒇𝒔𝒆𝒕 

(𝒎𝒔) 

𝑺𝒕𝒅. 𝒅𝒆𝒗. 
𝑶𝒇𝒇𝒔𝒆𝒕 

(𝒎𝒔) 
R 32 0.001 0.02 

VIPC 256 -0.258 0.52 

VPC 1024 -0.051 0.14 

Tap 32 -0.016 0.56 
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communication between C and E. The transaction type is 
“Request and Response”; specifically, C generates a GET 
Request to E for reading a variable (T3) inside one of its internal 
DataBlock (DB). The transaction is repeated every 10 seconds 
plus a random time between 0 and 999 ms. 

In TABLE III statistics relative to S7 protocol are listed for 
all evaluated experiments. In details, TABLE III shows that in 
the different experiments the rates of S7 packets are similar, 
while the number of the total packets may change between the 
experiments.  

TABLE III  
S7 PROTOCOL PACKETS ANALYSIS 

 
During the data analysis, it is observed that:  

 when the two partner C and E are both a real PLC, the 
transaction is very fast and the variability is extremely low. 
Such a situation suggests that the real PLC handles the IP 
stack (on which the S7 protocol lays) on interrupt. 

 when one of the communication partners is a virtual PLC 
(either VIPC or VPC), a large variability of the latency 
metrics is found. Such a situation triggered a deeper 
analysis about the reason of this behavior. 

The analysis of the sequences of network packets, captured 
by the Ethernet Tap T, revealed that the implementation of the 
containerized CPU1582V (v0.30) seems to have an IP stack 
with a polling cycle equal to 100 ms (𝐿ୱ୲ୟୡ୩_ୣ 𝑖𝑛 Fig.  5 (a)). 

For sake of clarity, Fig. 5 illustrates a temporal diagram that 
represents an example of data exchange in experiment #2 
(TABLE I).  During normal operation (see Fig. 5 (a)), C 
generates the GET Request at time T1. The request received 
from E is then processed at the end of the cycle introducing, at 
every request, a delay equal to the time required to reach the 
end of the IP stack cycle. 

While investigating, another, less frequent, behavior of the 
IP stack has been observed. As shown in Fig. 5 (b), C creates as 
usual the S7 GET Request at time T1 but, every 60 s, this 
request is queued because the IP stack of C is busy sending an 
ARP request and then waiting until the ARP response arrives. 
This situation, in addition to the normal data exchange, results 
in a further delay on the order of hundreds of milliseconds. 
 

 
Fig. 5. Example of exhange in experiment #2: (a) normal 

exchange (b) with ARP activity. 

In this paper, for the metrics evaluation, only data pertaining 
to the normal behavior are considered and the data exchanges 
involving ARP activity are filtered out with pre-processing. 
This approach is justified by the sporadic nature of this 
behavior, and by the possibility to increase (or even eliminate) 
the ARP request configuring the IP parameters of clients. For 
sake of completeness not filtered metrics are reported in 
TABLE VII and TABLE VIII. In Fig. 6 is shown the 
comparison between 𝐿஼஼  distribution with ARP activity 
Fig. 6 (a) and filtered 𝐿஼஼  distribution Fig. 6 (b). 

 

 
 

Fig. 6. LCC distribution for experiment #2 : (a) with ARP 
activity (b) excluding ARP activity. 

VI.  THE EXPERIMENTAL RESULTS FOR THE USE CASE 

The primary goal of the proposed methodology is to provide 
useful insights of the system under test. For this use case, 
TABLE V and TABLE VI report the results of the experiments. 
It is possible to observe the described behaviour in Section V.E 
(previous subsection): when one of the communication partners 
is a virtual PLC, the round-trip time 𝐿௖௖  is on the order of 100 
ms. Two examples of distributions are shown in Fig. 7 (a) and 
(b). 

In Fig. 7 (a) is possible to observe the evaluated latency for 
the experiment #1 (i.e. only real PLCs) that works as reference. 
The round-trip time (𝐿஼஼) has an average value of 3.3 ms. 

In Fig. 7 (b) is shown the results of experiment #5. Two 

# Total S7 S7 (%) S7 Rate (packets/s) 
1 3222 504 15.6 0.2 
2 17592 1376 7.8 0.2 
3 11037 1480 13.4 0.2 
4 116687 980 0.2 0.2 
5 30444 708 2.3 0.2 
6 15542 1723 11.1 0.2 
7 11457 1387 12.1 0.3 
8 18797 1959 10.4 0.2 
9 19628 1128 5.7 0.2 
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cycles of 100 ms exist in the communication, one for C and one 
for E. The cycle on E is described by the 𝐿ா்  latency, in 
particular is characterized by: average value of 51 ms, 
maximum value of 100 ms and a minimum value lower than U 
(see TABLE IV). Similarly, the cycle on C is described by 𝐿஼்  
latency that is characterized by: an average value of 65 ms, 
maximum value of 74 ms and a minimum value of 4 ms. These 
values are confirmed analyzing 𝐿஼஼  (which is the sum of 𝐿஼்  
and 𝐿ா்) having an average value of 118 ms. In the latency 𝐿ா் , 
thanks to the random time added to the GET Request, all the 
possible values of the delays are tested and, as shown in 
Fig. 7 (b), a uniform distribution is obtained. On the contrary, 
in 𝐿஼்  the situation is different because there is not the 
possibility to add random time to the response in the S7 
protocol. Thus, the response arrives more frequently in the same 
point of the cycle of C, leading to a distribution where most of 
the samples are at 70 ms. 

 

 
Fig. 7. Distributions of the evaluated latencies: (a) experiment 

#1, (b) experiment #5. 

These cycles are well described in TABLE VI. When C is a 
Vx (experiments #4,5,6,7,8,9), 𝐿஼் latency has average values 
that ranged from 37 to 102 ms; these values may change 
depending on the synchronization status of C and E when the 
experiment is started. When E is based on Vx (experiments 
#2,3,5,6,8,9), 𝐿ா்  latency has average values that range from 47 
to 54 ms and are characterized by a uniform distribution. 

Again, the validity of the setup is confirmed by observing in 
TABLE V that the average value of 𝐿஼஼  is the sum of the 
average value of 𝐿ா஼  and 𝐿஼ா  (considering the expanded 
uncertainty). 

In conclusion, comparing the average performance in this use 
case, the real PLC appears to be faster than the virtual PLC in 
completing the S7 transaction. However, if the minimum values 
of the latencies are compared, it is clear that the virtual PLC is 
as fast as the real PLC; the additional delay depends only on the 
implementation of the IP stack. Moreover, no noticeable 
differences are visible between the two types of virtual 
environments used for the virtual PLC. Hence, for this specific 
use case, the main suggestion for boosting performance is to ask 
developers to focus in enhancing the IP stack implementation 
of the virtual PLC. 

A. The derived analytical model of the use case 

The proposed methodology allows for creating analytical 
model of the systems under test. For instance, considering the 
experimental results and referring to Fig. 5 , an analytical model 
for the evaluation of the round-trip time 𝐿௖௖  can be derived: 

 𝐿௖௖,௠௔௫ = 𝐿௘௟௔௕_ୡ,୫ୟ୶ + 𝐿௘௟௔௕_ୣ,୫ୟ୶ + 𝐿௖௔௕௟௘_୰ୣ୯,୫ୟ୶ +

               𝐿ୡୟୠ୪ୣ_୰ୣୱ,୫ୟ୶ + max(𝐿ୱ୲ୟୡ୩_ୡ)  +  max(𝐿ୱ୲ୟୡ୩_ୣ) (3) 

where 𝐿௘௟௔௕_௖ and 𝐿௘௟௔௕_௘ represent the elaboration time of the 
C and E, 𝐿௖௔௕௟௘_௥௘௤ and 𝐿௖௔௕௟௘_௥௘௦ the request/response 
transmission time on the cable, 𝐿௦௧௔௖௞_௖ and 𝐿௦௧௔௖௞_௘ the time 
taken by the IP stack of PLCs to read the request/response. The 
(3) is the worst case scenario. 

Considering PLCs elaboration time equal for C and E, we can 
accumulate it into a single variable 𝐿௘௟௔௕. The same can be done 
for the transmission time on cable 𝐿௖௔௕௟௘ . 

Since communication in real PLCs works with interrupts, for 
the real PLCs is considered 𝐿௦௧௔௖௞= 0 ms. Due to these 
considerations it’s possible to simplify (3) in (4): 

 𝐿௖௖,௠௔௫ = 2 𝐿ୣ୪ୟୠ,୫ୟ୶ + 2 𝑇ୡୟୠ୪ୣ,୫ୟ୶ + 𝑗 𝑚𝑎𝑥(𝑇ୱ୲ୟୡ୩) (4) 

where j is equal to the number of virtual PLCs involved in the 
scenario to be modeled.  

A model of the average latency can be also obtained. As 
previously described if the GET Request is not correlated to the 
response of the previous transaction, a uniform distribution is 
obtained for the latency. As it is possible to see in TABLE VI, 
the average time spent in the stack is equal the half of 𝐿௦௧௔௖௞  . 
Thus the model can be written as: 

 𝐿௖௖,௔௩௚ = 2 𝐿ୣ୪ୟୠ,ୟ୴୥ + 2 𝐿ୡୟୠ୪ୣ,ୟ୴୥ + 𝑗 
௅౩౪౗ౙౡ

ଶ
 (5) 

From (5) it is clear that with two real PLCs involved in the 
communication (𝑗 = 0), the round-trip time is due only to the 
elaboration time of PLCs and the propagation time on the 
cables. On the other hand, with two virtual PLCs (𝑗 = 2), 𝐿௖௖  is 
mainly given by the latency introduced by the IP stack. 
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TABLE IV  
STANDARD UNCERTAINTY AND EXPANDED UNCERTAINTY FOR EVERY METRIC AND EXPERIMENT. 

 

TABLE V  
ROUND-TRIP LATENCIES, FORWARD AND BACKWARD LATENCIES (‘---‘ MEANS UNDER RESOLUTION). 

 𝑳𝑪𝑪(ms) 𝑳𝑻𝑻(ms) 𝑳𝑬𝑪(ms) 𝑳𝑪𝑬(𝒎𝒔) 

# Avg max min Std Avg max min Std Avg max min Std Avg max min Std 
1 3.3 4.6 2.6 0.3 --- --- --- --- 0.9 2.2 0.2 0.4 2.41 3.4 1.3 0.42 
2 54.6 102.8 3.3 28.8 52 100 --- 29 51 100 --- 29 2 4 --- --- 
3 50.8 103.6 3.4 28.7 48 101 --- 29 48 101 1 29 1 3 --- 0.5 
4 45 102 3 32 --- 2 --- --- --- 3 --- --- 38 97 --- 30 
5 118 175 10 37 52 101 1 30 51 100 --- 30 61 71 --- 22 
6 134 188 82 29 52 106 1 29 52 107 --- 29 82 83 81 29 
7 57 114 4 29 --- 2 --- --- 1 2 --- --- 60 116 7 29 
8 151 201 95 30 53 101 --- 29 54 104 --- 30 96 98 95 --- 
9 137 191 86 29 48 100 --- 29 50 106 --- 29 95 98 93 --- 

 
 

TABLE VI  
TRANSMISSION LATENCIES BETWEEN DEVICES (‘---‘ MEANS UNDER RESOLUTION). 

 𝑳𝑻𝑪(ms) 𝑳𝑬𝑻(𝒎𝒔) 𝑳𝑻𝑬(𝒎𝒔) 𝑳𝑪𝑻(𝒎𝒔) 

# Avg max min Std Avg max min Std Avg max min Std Avg max min Std 
1 --- 2 --- ---  --- --- --- --- ---  2 ---  ---  --- --- ---  ---  
2 2 2 1 ---  50 98 --- 29 3  4 ---  ---  --- 2 ---  ---  
3 2 2 ---  ---  46 99 ---  29 ---  2 ---  ---  --- 2 ---  ---  
4 --- 3 ---  ---  --- 2 ---  --- ---  3 ---  ---  37 97 ---  29 
5 2 3 ---  ---  51 100 ---  30 ---  2 ---  ---  65 74 4 22 
6 ---  ---  ---  ---  54 109 2 29 ---  2 ---  ---  79 79 77 --- 
7 ---  ---  ---  ---  --- 2 ---  --- 2 3 ---  ---  59 116 6 29 
8 ---  ---  ---  ---  47 99 ---  30 --- 2 ---  ---  102 103 101 ---  
9 ---  2 ---  ---  52 100 6 23 3 4 ---  ---  91 94 89 ---  

 

TABLE VII  
ROUND-TRIP LATENCIES, FORWARD AND BACKWARD LATENCIES WITH ARP ACTIVITY (‘---‘ MEANS UNDER RESOLUTION). 

 𝑳𝑪𝑪(ms) 𝑳𝑻𝑻(ms) 𝑳𝑬𝑪(ms) 𝑳𝑪𝑬(𝒎𝒔) 

# Avg max min Std Avg max min Std Avg max min Std Avg max min Std 
1 3.3 4.6 2.6 0.3 --- --- --- --- 0.9 2.2 0.2 0.4 2.41 3.4 1.3 0.42 
2 70.5 202.4 3.5 46.6 60 100 --- 32 68 200 1 47 2 4 --- --- 
3 67.8 203.4 3.4 47.8 57 101 --- 33 64.8 200.8 0.5 47.8 1.5 2.8 0 0.5 
4 58 201 3 47 8 101 --- 21 --- 3 --- --- 59 207 0 47 
5 118 175 10 37 52 101 1 30 51 100 --- 30 61 71 --- 22 
6 134 188 82 29 52 106 1 29 52 107 --- 29 82 83 81 29 
7 71.6 208.9 4.0 45.8 9 107 --- 21 1 2 0 --- 68 207 6 46 
8 151 201 95 30 53 101 --- 29 54 104 --- 30 96 98 95 --- 
9 137 191 86 29 48 100 --- 29 50 106 --- 29 95 98 93 --- 

 
 
 
 

 𝑳𝑪𝑪 (ms) 𝑳𝑻𝑻 (ms) 𝑳𝑻𝑪 (ms) 𝑳𝑬𝑻 (ms) 𝑳𝑻𝑬  (ms) 𝑳𝑪𝑻 (ms) 𝑳𝑬𝑪 (ms) 𝑳𝑪𝑬 (ms) 

# 𝑢௖ U  𝑢௖ U  𝑢௖ U  𝑢௖  U  𝑢௖ U  𝑢௖ U  𝑢௖ U  𝑢௖ U 
1 0.03 0.1 0.79 1.6 0.64 1.3 0.64 1.3 0.64 1.3 0.64 1.3 0.03 0.1 0.03 0.1 
2 0.03 0.1 0.79 1.6 0.64 1.3 0.87 1.7 0.87 1.7 0.64 1.3 0.59 1.2 0.59 1.2 
3 0.03 0.1 0.79 1.6 0.64 1.3 0.66 1.3 0.66 1.3 0.64 1.3 0.14 0.3 0.14 0.3 
4 0.74 1.5 0.79 1.6 0.87 1.7 0.64 1.3 0.64 1.3 0.87 1.7 0.59 1.2 0.59 1.2 
5 0.74 1.5 0.79 1.6 0.87 1.7 0.87 1.7 0.87 1.7 0.87 1.7 0.74 1.5 0.74 1.5 
6 0.74 1.5 0.79 1.6 0.87 1.7 0.66 1.3 0.66 1.3 0.87 1.7 0.60 1.2 0.60 1.2 
7 0.20 0.4 0.79 1.6 0.66 1.3 0.64 1.3 0.64 1.3 0.66 1.3 0.14 0.3 0.14 0.3 
8 0.20 0.4 0.79 1.6 0.66 1.3 0.87 1.7 0.87 1.7 0.66 1.3 0.60 1.2 0.60 1.2 
9 0.20 0.4 0.79 1.6 0.66 1.3 0.66 1.3 0.66 1.3 0.66 1.3 0.20 0.4 0.20 0.4 
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TABLE VIII  
TRANSMISSION LATENCIES BETWEEN DEVICES WITH ARP ACTIVITY (‘---‘ MEANS UNDER RESOLUTION). 

 𝑳𝑻𝑪(ms) 𝑳𝑬𝑻(𝒎𝒔) 𝑳𝑻𝑬(𝒎𝒔) 𝑳𝑪𝑻(𝒎𝒔) 

# Avg max min Std Avg max min Std Avg max min Std Avg max min Std 
1 --- 2 --- --- --- --- --- --- --- 2 --- --- --- --- --- --- 
2 10 101 --- 22 57 100 --- 32 3 4 --- --- --- 2 --- --- 
3 10 103 --- 22 54 99 --- 32 --- 2 --- --- --- --- --- --- 
4 --- 3 --- --- 1 3 --- --- 8 102 --- 21 43 100 --- 33 
5 2 3 --- --- 51 100 --- 30 --- 2 --- --- 65 74 4 22 
6 --- --- --- --- 54 109 2 29 --- 2 --- --- 79 79 77 --- 
7 --- --- --- --- --- --- --- --- 10 108 --- 2 66 114 5 32 
8 --- --- --- --- 47 99 --- 30 --- 2 --- --- 102 103 101 --- 
9 --- 2 --- --- 52 100 6 23 3 4 --- --- 91 94 89 --- 

VII.  CONCLUSION 

The new virtual PLCs can be executed on any platform that 
support containers, assuring independency from both the 
hardware and the operating system. They are maintainable, 
scalable, traceable and open to new concepts of micro service 
architectures in industrial automation. But what is the 
performance of virtual PLCs compared to (proven in use) real 
PLCs? 

This paper, the first of a multistage research work, provides 
a methodology for the evaluation of the communication 
performance of virtual PLCs when exchanging data for 
supervision, coordination and control with other machines. For 
comparing the performance, a set of metrics has been defined 
corresponding to the round trip time of the transaction, and to 
the transmission latencies between the devices. The 
methodology is completed by the proposal of a general 
experimental setup for measuring the relevant metrics across a 
distributed measurement environment. The synchronization of 
the devices under test (and of ancillary devices) is discussed, 
and their expanded uncertainty is taken into account. 

The effectiveness of the proposed has been demonstrated by 
a use case, where real and virtual PLCs are compared. In details, 
Siemens virtual PLC (CPU1582V) and real PLCs of the S7-
1500 family are used in a scenario where they exchange 
supervision data by means of S7comm protocol. The virtual 
PLC is hosted by two different virtual environments, allowing 
for a comparative assessment of the type of virtualization. 

Utilizing the recommended approach, the analysis of the use 
case results points out that: a virtual PLC could work as fast as 
a real PLC with average data exchange latencies 𝐿஼஼  in the 
order of 3 ms (and almost identical time distributions), but the 
IP stack implementation introduces a higher delay up to 
maximum of 100 ms and an average of 50 ms. This insight 
information is useful for developer of virtual PLC that can work 
on reducing such delay. 

Last, the full access to the network traffic given by the 
proposed setup, combined with the fully synchronized 
timestamping, allows for the creation of analytical model of 
latencies of the use case under test. The analytical model can be 
used for simulators or worst case analysis. 

In conclusion in this paper a general methodology for the 
evaluation of the performance of virtual PLC is provided , when 
exchanging data with other machines and SCADA in a M2M 

scenario. 
The second stage of the ongoing project will involve 

evaluating the real-time communication performance between 
the PLC and sensors/actuators. This evaluation will be 
conducted using advanced time measuring devices, including 
direct 1-PPS synchronization signal and GPS receivers, with a 
resolution of around 50 microseconds. However, it is important 
to note that this may require additional hardware and incur extra 
costs, resulting in a more expensive setup for real-time 
measurement. 

Future evolution of virtual components (like virtual PLC, but 
not limited to) can greatly benefit from measurement and test 
procedures (like the ones described in this paper) of their 
performance. As a matter of fact, virtual PLC implementations 
(being a full software approach) can be quickly improved by 
means of combined cycle of design, test and redesign. 
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