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Abstract—In the era of 5G communication, removing interfer-
ence sources that affect communication is a resource-intensive
task. The rapid development of computer vision has enabled
unmanned aerial vehicles to perform various high-altitude de-
tection tasks. Because the field of object detection for antenna
interference sources has not been fully explored, this industry
lacks dedicated learning samples and detection models for this
specific task. In this article, an antenna dataset is created to
address important antenna interference source detection issues
and serves as the basis for subsequent research. We introduce
YOLO-Ant, a lightweight CNN and transformer hybrid detector
specifically designed for antenna interference source detection.
Specifically, we initially formulated a lightweight design for
the network depth and width, ensuring that subsequent in-
vestigations were conducted within a lightweight framework.
Then, we propose a DSLK-Block module based on depthwise
separable convolution and large convolution kernels to enhance
the network’s feature extraction ability, effectively improving
small object detection. To address challenges such as complex
backgrounds and large interclass differences in antenna detec-
tion, we construct DSLKVit-Block, a powerful feature extraction
module that combines DSLK-Block and transformer structures.
Considering both its lightweight design and accuracy, our method
not only achieves optimal performance on the antenna dataset
but also yields competitive results on public datasets.
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I. INTRODUCTION

TO ensure high-quality communication in people’s work
and daily lives, various wireless devices operate in differ-

ent frequency bands. 5G communication is of particular note
due to its introduction of new frequency bands into everyday
communication. However, due to the presence of numerous
private wireless signals that have not undergone spectrum al-
location by communication regulatory authorities, the 5G com-
munication network has accumulated a considerable number of
sources of interference. If individuals operate in the same geo-
graphical areas and occupy similar or adjacent frequency bands
as these interference signals in their everyday communication,
this will result in a significant deterioration in communication
quality, as shown in Fig. 1. Regular remediation of radio
interference sources is vital for communication departments to
alleviate this situation. The identification of signal interference
sources necessitates monitoring personnel to visually inspect
areas where communication quality is compromised due to
the presence of suspicious antennas elevated at high altitudes,
constituting a time-consuming and labor-intensive task. In
light of the mature advancements in unmanned aerial vehicle
(UAV) cruising technology and object detection techniques
within computer vision, unmanned drones have become viable
alternatives for handling complex and challenging detection
tasks previously performed by humans. For example, [1] [2]
[3] noted that object detection tasks in deep learning combined
with UAVs have been useful in production and other areas. The
success of these approaches has demonstrated the feasibility of
utilizing UAVs for object detection tasks aimed at interference
source antennas. However, due to the nascent stage of this
detection task within the current domain of object detection,
the creation of a suitable antenna dataset and the exploration of
appropriate object detection methodologies are of paramount
importance.

Convolutional architectures are the basis for most object
detection frameworks in industrial scenarios and rely on the
development of efficient convolutional neural networks in
deep learning. When addressing various tasks and technical
challenges, corresponding enhancements to these architectures
are necessary. The antenna interference source object detection
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task presents three main challenges. The first issue pertains
to the lightweight nature and low computational complexity
of a detection model; consequently, object detectors can be
deployed on lightweight computing devices, enabling real-
time object detection via UAVs. Previous research, exempli-
fied by GhostNet [4] and EfficientNet [5], has focused on
designing lightweight networks as potential backbones for
different detection models to achieve an overall lightweight
solution. However, these networks are susceptible to infor-
mation feature loss. The second difficulty in the antenna
interference source object detection task lies in the differences
arising from the different angles and heights from which
the UAV captures the antennas. These variations result in a
nonuniform distribution of target sizes within the images, most
of which are extremely small in size. Additionally, there is
a significant interclass dissimilarity issue, wherein antennas
of the same type exhibit markedly different morphologies in
different images. To address these issues, researchers have
explored two aspects: multiscale feature learning and attention
mechanisms [6] [7] [8] [9]. However, despite improvements
in small object detection accuracy, these methods encounter
challenges related to the model’s weak generalizability and
robustness. As a result, the overall detection accuracy for
the targets was compromised. Moreover, the computational
complexity of such models is higher. The third difficulty is
complex target backgrounds, which cause serious false and
missed detections. Given that antennas are commonly installed
on tall buildings or fenced balconies in practical scenarios,
the resulting complex and mutually obscuring environment
between the target and the background significantly hinders
detection. Researchers have suggested using attention or self-
attention mechanisms to address this difficulty. In [10] [11]
[12], a squeeze-and-excitation(SE) attention module was pro-
posed, or a self-attention structure was used to build the
whole network for object detection. The advantage of these
models lies in their ability to effectively capture the spatial
relationship between the target and the background. This
capability significantly enhances object detection performance
on complex backgrounds. However, these mechanisms tend to
consume considerable computational resources and memory,
which is not consistent with the original lightweight design
intention. Additionally, networks built solely on self-attention
mechanisms also suffer from long training times and poor
detection accuracy for small objects.

In response to the aforementioned limitations, we propose
YOLO-Ant, a lightweight one-stage detector designed for
detecting antenna interference sources with small targets and
complex backgrounds. Initially, we analyze the scale and
number of channels in each feature layer of the model;
subsequently, we design the network’s width and depth to
ensure that the entire detection process is performed within
a lightweight framework. Our design considerations aim to
balance detection accuracy with the reduction of model param-
eters and computational complexity. To address the issues of
small target size and large interclass variation, we implement
an efficient feature extraction module based on depthwise
separable convolution, DSLK-Block, which is applied to each
feature layer in the model. This method effectively enhances

Fig. 1: The process of 5G communication in the CBN-U-H5H-
0713 area is shown in the figure. Two antenna interference
source signals appear in it. The gNB (gNodeB) denotes a 5G
base station. The UE (User Equipment) denotes the terminal
equipment that users use to access the wireless network.

the network’s feature learning and fusion capabilities, leading
to a significant improvement in detection accuracy for all
types of targets, particularly small targets. Additionally, this
approach contributes to reducing the model’s overall weight.
Finally, to address the problem of complex backgrounds,
YOLO-Ant uses an innovative CNN and transformer hybrid
structure to act on the neck of the model. This process enables
us to fully utilize both local and global feature learning to
address the challenges posed by complex backgrounds while
still accounting for small object detection. This approach sig-
nificantly improves all the detection accuracy indicators while
only slightly increasing the model’s number of parameters
and computational complexity. To demonstrate the model’s
generalizability and robustness, we also tested YOLO-Ant on
public datasets and achieved highly competitive results. In
conclusion, the main contributions of this paper are as follows:

1) In response to the lack of learning samples for antenna
object detection schemes, we conducted image acquisi-
tion and manual annotation of the three most common
types of antennas encountered in real-world interference
source investigation tasks. This dataset is pioneering and
establishes the foundation for subsequent work.

2) We initially pruned YOLOv5-s [13], obtaining a
lightweight detection framework. Within this framework,
(i) a lightweight plug-and-play module based on depth-
wise separable convolution combined with large con-
volutional kernels was proposed to effectively improve
the feature extraction and detection capabilities of the
network for small targets; (ii) the innovative use of a
transformer module to construct the neck structure of
the detection model improved the detection capability of
the network without increasing the model’s parameter
count or computational complexity, effectively solving
the problem of dealing with complex backgrounds.

3) Our proposed method achieves state-of-the-art (SOTA)
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performance on the antenna dataset, striking a bal-
ance between lightweight design and detection accu-
racy. Moreover, YOLO-Ant yields competitive results on
public datasets such as COCO, validating its robustness
and superior performance. Source code is released in
https://github.com/SCNU-RISLAB/YOLO-Ant.

The remainder of this paper is structured as follows. Section
II presents related work, briefly introducing the improvement
points of the model proposed in this paper and the related work
involved, including CNN network development, the emergence
of the transformer detection model and the crossover devel-
opment between the CNN and transformer. Section III dis-
cusses the proposed lightweight detection framework based on
the YOLOv5-s improvement, including pruning the baseline
model, the design of the DSLK-Block module, and the neck
structure built based on DSLKVit-Block. The experimental
results are given in Section IV, and Section V concludes the
paper.

II. RELATED WORK

A. CNN (convolutional neural network)-based object detec-
tion

The development of object detection in the computer vision
field has been greatly influenced by CNN-based methods.
Traditional approaches using hand-designed features and clas-
sifiers have been shown to be inadequate, leading to the
dominance of CNN-based methods. The initial CNN model,
LeNet-5 [14], was limited by computational resources and
model size. However, with advancements in computational
power and larger datasets, deeper and more complex CNN
models, such as AlexNet [15], VGGNet [16], GoogLeNet [17],
and ResNet [18], have emerged. These models have improved
network accuracy, reduced parameters, and addressed network
degradation issues, laying a solid foundation for 2D object
detection.

Two distinct methods have emerged from the convoluted
development of 2D object detection: two-stage and one-stage
detectors. Two-stage detectors, such as R-CNN [19] and Fast
R-CNN [20], generate candidate frames using algorithms and
perform classification and regression on each candidate frame.
Faster R-CNN [21] introduces the region proposal network
(RPN) for candidate frame generation. In contrast, one-stage
detectors, such as YOLO [22] and SSD [23], perform classi-
fication and regression directly on each location in the input
image. YOLOv2 [24] and YOLOv3 [25] improved detection
accuracy through methods such as multiscale prediction, batch
normalization, and feature pyramid networks (FPNs). SSD
introduces multiscale detection using multiple-scale feature
maps, while RetinaNet [26] focuses on addressing the category
imbalance problem. For the aforementioned model, one-stage
detectors are more suitable for real-time detection tasks on
UAVs than two-stage detectors are because they do not require
additional networks or algorithms for fine-tuning. However,
to compensate for the deficiency in accuracy resulting from
the pursuit of detection speed, improvements need to be
made to the backbone and neck of the one-stage detector
by developing various efficient feature extraction modules or

structures. The backbone and neck are the basic components
of object detection models. The backbone is a CNN trained on
image classification datasets such as ImageNet [27], in which
the input image is transformed into a high-dimensional feature
representation. The neck module further processes the feature
map, changing the scale and resolution to extract different lev-
els of feature information. Numerous object detection models,
such as NAS-FPN [28], EfficientDet [29], YOLOv4 [30], and
YOLOv7 [31], have been developed based on these concepts,
incorporating various improvements and techniques to enhance
accuracy and performance. However, these general models are
often designed with modules that consider various common
tasks, exhibiting generalizability but not effectively addressing
specific challenges in particular scenarios. For instance, there
are several challenges, such as small object detection and
complex backgrounds, in our task. Therefore, making task-
specific modifications is crucial when contemplating different
tasks.

B. Developing an attention mechanism in the CV domain

Attention mechanisms, initially utilized in natural language
processing, have gained significant traction in computer vi-
sion [32], [33], particularly in the field of object detection.
Attention mechanisms such as channel attention, spatial atten-
tion, and their combinations have been introduced [34] [35]
[36]. They effectively utilize global and local information in
feature maps, improving feature representation and attention
weighting, thereby enhancing model accuracy and efficiency.
However, for these conventional attention mechanisms, a fixed
window size or other constraints are typically employed to
regulate the correlation between each position and others. In
contrast, self-attention mechanisms can extract information
from different positions in the information sequence more
flexibly, enabling the extraction of global information. This
flexibility has contributed to the widespread application of
transformer [37] models based on self-attention mechanisms,
including in various domains such as computer vision. For
example, the Vision Transformer (ViT) [38] splits images
into patches for self-attention computations. The swin trans-
former [39] improves local information processing by using
a window-based partitioning approach. Detection with trans-
formers (DETR) [11] adopts a global self-attention mecha-
nism, allowing each position to obtain contextual information
from the entire image. Naturally, transformers incur substantial
computational costs and training time, posing challenges for
model convergence. To address these challenges, researchers
have introduced lightweight transformer object detectors, in-
cluding MobileViT [40] and EdgeViT [41]. Moreover, inno-
vative approaches such as conditional DETR [42] and DN-
DETR [43] have been developed to address the crucial issue
of slow training convergence. However, due to their simpli-
fied design, the majority of current lightweight transformer
structures are applicable only to classification tasks involving
small-sized image inputs and are not suitable for detection
tasks. The proposed detection methods aimed at addressing
slow convergence have made transformer models more com-
plex. Therefore, achieving a balance between the lightweight

 https://github.com/SCNU-RISLAB/YOLO-Ant
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nature of transformer models and detection accuracy remains a
crucial research scope in the current field of computer vision.

C. Combination of CNN and Transformer

In object detection, CNNs and transformers have distinct
applications and advantages. CNNs are known for their strong
image feature extraction abilities, ability to perform multi-
channel processing, and ability to learn spatial correlations.
However, CNN-based models have limitations in handling
objects of different sizes and proportions due to fixed window
sizes and strides. On the other hand, transformers exhibit
excellent performance in capturing long-range dependencies
within input sequences without prior knowledge, albeit at a
slower speed and requiring substantial amounts of training
data. Evidently, the amalgamation of CNNs and transform-
ers offers complementarity across various dimensions, and
researchers have already delved into numerous methodologies
to explore this synergy.

The pioneering DETR model replaces fully connected and
convolutional layers with transformers while using ResNet
as the feature extractor, improving accuracy and efficiency.
Huawei’s CMTBlock combines depthwise separable convolu-
tion and the transformer’s multihead self-attention module for
local and global information fusion. The CMT model [44]
stacks the CMTBlock in a hybrid CNN-transformer structure.
The Conformer [45] adopts a dual-network structure, where
the CNN branch enhances local perception of the transformer
branch. The mobile-former [46] features parallel CNN and
transformer modules with bidirectional bridges, leveraging
MobileNet [47] for local processing and the transformer for
global interaction. However, networks or models employing
such hybrid structures face challenges in effectively balancing
accuracy and lightweight design. For instance, detectors such
as DETR, lacking FPN structures, exhibit suboptimal perfor-
mance in small object detection. While the CMT and Con-
former networks have proven effective in classification tasks,
their application to downstream tasks such as object detection
deviates from the realm of lightweight design. In contrast
to the aforementioned models, which concatenate both struc-
tures, an alternative approach involves making transformer-
style improvements directly on the CNN network. ConvNeXt
[48] implements novel architectures and optimization strate-
gies similar to those of transformers, achieving competitive
results without attention structures. RepLKNet [49] employs
large convolutional kernels to widen the receptive field, thus
emulating the transformer-like capability for global feature
extraction. By investigating the computational principles of
transformers, ACMix [50] maps their operation process onto
convolutional operators, thereby combining them with tra-
ditional convolution operations to construct a novel CNN
architecture. Parc-Net [51] introduces circular convolution
for global information extraction within a pure convolutional
structure. Although these innovative networks may not achieve
SOTA performance, their greater significance lies in exploring
the factors contributing to the success of transformers from
a CNN perspective, providing inspiration for subsequent re-
search endeavors. The fusion of transformers and CNNs offers

a flexible and diverse range of integration methods. Future
research should strive to deepen the understanding of their
interactions to improve design and optimization.

D. Object Detection of Antenna Interference Sources

Regularly monitoring and mitigating antenna interference
sources has become one of the most critical tasks in the
wireless communication field. In the past, detecting antenna
interference sources mainly relied on traditional techniques
such as spectrum analysis, signal recognition and positioning.
However, these methods have many limitations. For example,
when detection personnel identify a radio interference signal
through a spectrum analyzer, they can determine only the
approximate direction of the interference source based on the
strength of the received signal and cannot accurately determine
its position.

The rapid advancement of deep learning and computer
vision has facilitated the successful application of object
detection-assisted tasks in various industries. Examples in-
clude defect detection in industrial settings, pest/weed de-
tection in agriculture, and vehicle and pedestrian detection
in transportation [52] [53] [54] [55] [56]. These solutions
provide effective ideas for our antenna interference source
detection task. When investigators confirm the approximate
direction of the interference source antenna through a signal
receiver and spectrum analyzer, they can use drones with
cameras and related object detection algorithms to replace
manual accurate positioning work. Unfortunately, the field of
antenna interference source detection based on object detection
tasks has largely not been explored. Due to the lack of
learning samples and models for related antenna interference
source detection, existing detection methods are not suitable
for antenna detection. Therefore, it is urgent and meaningful
to create a professional dataset and train a model suitable for
this detection task to address the difficulty of locating antenna
interference sources in the wireless communication field.

III. PROPOSED DETECTION FRAMEWORK

A. Overall model structure

The overall idea for the network(Fig. 2) lies in the com-
bination of a CNN and transformer, both the inductive bias
ability of the convolutional operation and the ability of the
transformer to extract global information, while also meeting
the needs of a lightweight model with low computational
complexity. YOLO-Ant adopts DSLKNet, which is composed
of DSLK-Blocks, as the backbone for downsampling and
feature extraction in images. In DSLKNet, four DSLK-Layers
employ convolutional kernels of varying sizes to sequentially
extract rich features from different receptive fields of the
image. To address the challenge of detecting small objects, we
incorporate the neck structures of the FPN and PAN for multi-
scale feature learning. On the neck component, we conducted
pruning based on YOLOv5-s (detailed data provided in Section
IV. EXPERIMENT). In comparison to the baseline model, the
pruned neck model features an increased number of module
stacks and a reduced number of channels in each module.
This structural modification effectively alleviates redundancy
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Fig. 2: The YOLO-Ant model can be roughly divided into three parts: the backbone consisting of DSLKNet, the FPN+PAN
structure consisting of DSLK-Layer and DSLKVit-Block forming the neck.

in feature extraction, resulting in an overall model that is
not only more lightweight but also attains higher detection
accuracy. In this lightweight framework, we introduce the
DSLKVit-Block, which is a combination of transformer and
convolutional modules. Even though the transformer module
has a larger parameter count and computational complexity
than does the convolutional module, the final YOLO-Ant
model remains lighter than the baseline model. Overall, the
integration of CNN and transformer in the model is mani-
fested as follows: (i) a transformer-like pure CNN structure is
proposed using depthwise separable convolution and a large
convolution kernel, effectively expanding the perceptual field
of the convolution operation and extracting the target context
information; (ii) the FPN structure of the pure CNN and
the PAN structure designed with the transformer module are
combined in a parallel structure to complement each other and
thus improve the feature processing capability of the model.
The following two subsections provide a detailed description
of the working principles of the DSLK-Block and DSLKVit-
Block within the YOLO-Ant.

B. More efficient feature extraction module, DSLK-Block

The DSLK-Block structure built with depthwise separable
convolution was introduced using large convolutional kernels.
The design of this structure is based on several starting points.
(1) Depthwise separable convolution is used instead of conven-
tional convolution operations to achieve model lightweighting.
(2) Large convolutional kernels are used to increase the
receptive fields to extract a greater amount of contextual
information. Models such as RepLKNet have shown that pure
convolutional networks can achieve performance comparable
to that of transformer-style networks in this way. (3) Inspired
by the ConvNeXt approach, DSLKBlock uses fewer normal-

ization and activation functions, replacing the rectified linear
unit (ReLU) with a Gaussian error linear unit (GELU).

However, unlike other feature extraction blocks, DSLK-
Block has three places that change correspondingly with the
network location of the DSLK-Layer to balance the relation-
ships between parameter volume, computational complexity,
and accuracy. (1) The size of the large convolutional kernel
in the backbone changes according to the location of the
DSLKBlock. The rationale behind this design primarily stems
from several considerations. First, if all DSLK-Layers adopt
excessively large convolutional kernels, the model will be
greatly burdened in terms of parameters and detection speed.
Second, small objects typically have pixels in the range of
32 × 32, roughly equivalent to 1/40 of the original image
size. When the network input size is set to 640 × 640,
the corresponding size of the small objects is approximately
16 × 16. To ensure that the early layers of the network
can sufficiently extract feature information from small objects
and prevent the loss of small object details caused by large
convolutions, we employ 5 × 5 and 9 × 9 convolutional
kernels in the first two layers. Finally, as the downsampling
rate increases, the feature map sizes decrease. We employ
larger convolutional kernels to handle larger-sized objects,
while these larger kernels also provide more comprehensive
contextual information for small feature maps (derived from
the relationships between adequately extracted small objects
and their surrounding environments). In the final model back-
bone, the sizes of the large convolutional kernels are set to
5 × 5, 9 × 9, 13 × 13, and 27 × 27, thereby achieving
efficient detection, particularly for objects of different sizes,
especially small objects. (2) For the DSLK-Layer within the
model backbone, to prevent the potential loss of important
information as the convolutional kernel size increases, we
incorporated a parallel pathway using 3 × 3 convolutional
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kernels within the DSLK-Block. The output from the small
kernel pathway is fused with that of the large kernel pathway
using an addition operation. To ensure model lightweightness
and expedite model convergence, within the neck structure, all
the large convolutional kernels within the DSLK-Block were
resized to 3 × 3 dimensions, while the small convolutional
kernel pathway was modified to follow a conventional shortcut
form. (3) Depthwise separable convolution first uses depthwise
convolution to convolve each feature point within the same
channel and then extracts information between different chan-
nels of the same feature point through pointwise convolution.
After decomposing conventional convolution operations into
these two steps, the computational cost of the convolution
operation is effectively reduced. The pointwise convolution of
the DSLK-Block adopts a variable factor to control the number
of channels. To further balance the relationships between the
model parameters, computational complexity, and accuracy,
the DSLK-Block uses different pointwise convolution depths
at different positions in the network and achieves good results.
The final structures of DSLK-Block and DSLK-Layer are
shown in Fig. 3. The DSLK-Block is part of the DSLK-Layer,
as illustrated on the right-hand side of Fig. 3, and forms each
CNN feature processing layer within the backbone and neck
of the model. Assuming that the input feature map is denoted
as Xi ∈ RCi×Hi×Wi (where C, H and W denote the number of
channels, spatial height and width, respectively), its workflow
can be represented as follows:

FDSLK−Layer(Xi) = fCBS(1, Ci, fCBS(1, Ci/2, Xi))

⊗FDSLK−Block(fCBS(1, Ci/2, Xi))
(1)

where ⊗ represents the Concat operation and fCBS represents
a module that sequentially undergoes convolution, normaliza-
tion, and activation functions, which can be expressed using

the following formula:

fCBS(k, c,Xi) = ρ(σ(fconv(k, c, 1, Xi))) (2)

where ρ(x) represents batch normalization and σ(x) repre-
sents the SiLU activation function. where fconv(k, c, g,Xi)
represents the convolution operation, k is the kernel size, c is
the output channel number, and g represents the number of
groups (g=1 in regular convolution, and g = Ci in depthwise
separable convolution).

We represent the workflow of the DSLK-Block using for-
mula FDSLK−Block:

FDSLK−Block(Xi) = Xi + fpw(e,

fdw(KL, Xi) + fdw(KS , Xi))
(3)

where KL and KS represent the large and small convolu-
tion kernels used in the two depthwise convolution paths
respectively (KL takes values of 3, 5, 9, 13, and 27 in the
model. KS takes a value of 0 or 3. If KL=0, then the path
becomes a normal shortcut operation). where fdw represents
the substitution of conventional convolutions with depthwise
convolution in fCBS , as expressed by the following formula:

fdw(K,Xi) = ρ (σ (fconv(K,Ci, Ci, Xi))) (4)

while fpw represents the pointwise convolution block, as
expressed by the following formula:

fpw(e,Xi) = ρ(fconv(1, 1, Ci, σ(

fconv(1, 1, e× Ci, Xi))))
(5)

where e represents the variable expansion coefficient, which
is used to control the channel expansion and scaling factor in
the pointwise convolution process.

C. DSLKVit-Neck structure for efficient feature fusion

The efficiency of transformer models relies heavily on their
global attention mechanism, which differs from convolution
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operations in that information between feature points is calcu-
lated only within the size of the convolution kernel. Instead,
transformer models consider the interactions between each
feature point and all other points in the feature map. Using
the transformer’s self-attention mechanism to enhance the
contextual information extraction of feature points is useful for
dealing with problems such as target shape differences caused
by multiangle shots from UAVs and interference from complex
environmental backgrounds in antenna detection tasks. How-
ever, this design comes at the cost of consuming a significant
amount of computational resources, making it unacceptable for
lightweight models. Therefore, finding methods to efficiently
utilize transformer structures while conserving resources re-
mains a significant challenge.

In MobileViT, the transformer calculates information only
between feature points at the same position in each patch of
the feature map. In EdgeViT, a convolution operation is used to
aggregate all the information within a local window of size k
× k. Then, the transformer calculates the information between
all the feature points that contain the aggregated information.
Due to the large amount of data redundancy inherent in
image data, the difference in information between adjacent
pixels is often not significant, allowing this computational
savings to occur. Motivated by models such as MobileViT and
EdgeViT, we introduce an innovative DSLKVit-Block module,
which incorporates both CNN and transformer architectures,
as shown in Fig. 4. To reduce the computational complexity of
the entire model, DSLKVit-Block calculates information only
between “representative feature point” within small regions of
the feature map instead of computing the mutual information
between every feature point.

The DSLKVit-Block initially conducts feature extraction
on localized regions of the feature map through convolution
operations within the DSLK-Block, resulting in a set of “rep-
resentative feature points”. Each of these feature points rep-
resents the aggregated features from their respective regions.

The new feature map, composed of all these “representative
feature points”, has reduced dimensions, conserving resources
for subsequent self-attention computations. Assuming that the
input feature map is denoted as Xi ∈ RCi×Hi×Wi (where
C, H and W denote the number of channels, spatial height
and width, respectively), we denote the process of aggregating
local information in the DSLKViT-Block as follows using the
formula fLocal:

fLocal(Xi) = fLA(sr, ρ(fPE(Xi)

+FDSLK−Block(Xi)))
(6)

where ρ(x) represents the NormLayer operation, fPE repre-
sents the positional encoding achieved through convolution
operations and fLA(sr, x) represents the operation of aggre-
gating local information, which can be achieved using pooling
layers. The sr parameter indicates the local range covered by
the “representative feature points” and is equal to sr × sr.

Subsequently, the feature map undergoes multihead atten-
tion calculations, enabling the interactions among the “rep-
resentative feature points” that aggregate information within
each region, thereby acquiring rich contextual information
between various regions on the original feature map. Fi-
nally, the model employs deconvolution operations to map
the “representative feature points” back to their respective
corresponding regions and enhances the network’s expressive
capabilities through a feed-forward network (FFN). The pro-
cess of obtaining global information can be expressed using
the following formula:

fGlobal(sr,Xi) = Xi + ρ(fLD(sr,

MHSA(fLocal(Xi)))
(7)

where fLD(sr, x) represents the operation of mapping repre-
sentative feature points back to their original regions, which
can be accomplished via deconvolution. MHSA represents
the multihead self-attention computation:

MHSA(X) = MultiHead(Q,K, V )

= Concat(head1, head2, ..., headh)W
O

(8)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ), WQ

i ∈
Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , and

WO ∈ Rhdv×dmodel . In this work we employ h = 4 parallel
attention heads. For each of these we use dk = dv =
dmodel/4 = C. For single headed attention, we compute the
attention function on a set of queries simultaneously, packed
together into a marix Q. The keys and values are also packed
together into matrices K and V . We compute the matrix of
outputs as follows:

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V (9)

where dk is a scaling factor. We can obtain Q ∈ RN×C ,K ∈
RN×C ,and V ∈ RN×C through a linear layer by input feature
X ∈ RC×H×W respectively, where N = H ×W .

Ultimately, the entire workflow of DSLKVit-Block can be
represented as follows:

FDSLKV it(sr,Xi) = FFN(fGlobal(sr, (fLocal(Xi)))) (10)
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FFN(Xi) = Xi + ρ(MLP (Xi)) (11)

where the MLP function can be implemented using two fully
connected layers.

After finalizing the foundational DSLKVit-Block module,
we proceeded to modify the model’s neck structure at the
macro level, aiming to harness the complementary advantages
of transformers and CNNs to their fullest extent. We observed
that the neck structure of YOLOv5-s adopts an FPN with
a PAN architecture. In this configuration, the FPN’s top-
down structure merges high-level feature maps with low-level
feature maps to propagate semantic information from higher
levels, enhancing the representational capacity of the lower-
level feature maps. Subsequently, the connection of the PAN,
a bottom-up structure, aims to assist high-level feature maps
in acquiring richer positional information from shallow-level
feature maps. The PAN and FPN also engage in lateral connec-
tions to fuse feature maps of the same dimensions, enriching
the information content. Therefore, the use of the transformer
to construct PAN is logically sound. During the bottom-up
process, the DSLKVit-Block gradually extracts finer features
from large-sized feature maps to small-sized feature maps.
Moreover, lateral connections are leveraged to incorporate the
convolution results of the DSLK-Block to compensate for the
insensitivity of the transformer structure to positional informa-
tion. Furthermore, due to the computational complexity of the
transformer being O(N2), applying it to feature maps of size
80 × 80 would results in a prohibitively high computational
cost. Therefore, we deployed the DSLKVit-Block only in the
smallest two feature layers (40 × 40 and 20 × 20).

The DSLKVit-Neck structure constructed from the above
design incorporates the complementary concepts of CNNs and
transformers at both the microlevel (within DSLKVit-Block)
and macrolevel (the entire model’s neck structure).

IV. EXPERIMENT

A. Experimental Description

Dataset:
1) Antenna interference source dataset: In the antenna in-

terference source detection task proposed in this article,
the methods and datasets in the relevant field are still
lacking. Therefore, our first priority is to create the
first dataset specifically for antenna interference source
detection. In the daily interference source investigation
and cleaning activities of the communication bureau, we
identified three common antenna interference sources
that significantly impact communication: the Yagi an-
tenna, plate log antenna, and patch antenna, as shown
in Fig. 5 a-c. The three antennas have different shapes,
bringing multiple challenges to the detection task. For
example, the Yagi antenna is easily confused with a
complex fence background when it is installed on a
balcony, as shown in Fig. 5d. The plate log antenna has a
flat and wide shape that can be recognized from the front
well. However, the angle from the side greatly reduces
the recognition rate, and different angles create problems

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: Antenna Interference Source Dataset

with significant interclass differences, as shown in Fig.
5 e. The patch antenna is the most difficult to recognize
because it is merely a monochromatic rectangular object
accompanied by a lengthy wire, resulting in a lack
of intricate features available for the model to learn
from. Additionally, when the patch antenna is wrapped
around a pole and placed high up, the object captured
by aerial photography is small and difficult to distin-
guish in the image, as shown in Fig. 5f. Moreover, we
simulate different angles, distances, and lighting effects
to enrich the dataset when drones take pictures of the
antennas. Based on the collected images of the three
types of antenna interference sources, we used common
data augmentation techniques such as rotation, flipping,
and image color space changes to expand the original
images. Finally, the dataset was divided into training
images (1777) and validation images (449) at an 8:2
ratio and labeled by professionals.

2) COCO: The Common Objects in Context (COCO)
dataset is widely used in the computer vision community
for benchmarking object detection and segmentation
algorithms. It is designed for use in object detection,
segmentation, and captioning. The dataset contains more
than 330,000 images with more than 2.5 million object
instances labeled across 80 different object categories.
Additionally, the dataset includes 91 different categories
of “stuff” or background categories, such as sky, grass,
and water. The dataset also includes annotations for
object segmentation masks, object bounding boxes, and
keypoint annotations.

3) VisDrone: The VisDrone dataset is a large-scale bench-
mark dataset for visually understanding aerial scenes.
The dataset consists of more than 6,000 video clips
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and more than 2 million images captured by various
types of drones in different locations and scenarios,
covering a wide range of aspects of aerial vision. The
dataset contains rich annotations for object detection,
tracking, counting, and image quality assessment, which
are important for both academic research and industrial
applications.

Experimental Setting: Experimental Configuration: All the
experiments were executed on the Linux operating system,
an NVIDIA GTX3060 GPU with 12 GB of memory, and
data training and object detection were performed in PyTorch
1.12.0, torchvision0.13.0, and CUDA10.2 environments. On
two public datasets, COCOtrain2017 and VisDrone2019-DET-
train, we conducted training and testing on the COCOval2017
and VisDrone2019-DET-val validation sets, respectively. In the
experiments with the COCO dataset, YOLO-Ant was trained
without the use of pretrained weights, and the model was
tested using the weights that achieved the highest mAP.5:.95
after training to full convergence. For the Antenna dataset and
the Visdrone dataset, training was more challenging due to the
smaller number of samples and the difficulty posed by small
targets. To improve the model fit and enhance the accuracy,
all the models were trained using pretrained weights (models
pretrained on the COCO dataset). To ensure a fair comparison,
all the experiments involving model training, testing, and other
evaluations are conducted using images of size 640x640 as the
input. All pretrained weights for comparative models in the
experiments, as well as settings for hyperparameters such as
learning rates and optimizers, were sourced from the official
project or MMDetection’s official documentation.
Evaluation Criteria: In the object detection field, the follow-
ing metrics are used to judge the detection accuracy of a model
[57]: accuracy (P), recall (R), average precision (AP), mean
AP (mAP), and intersection over union (IoU). The accuracy is
the proportion of positive cases predicted by the model that are
actually positive. Recall is the proportion of all true positive
cases that the model correctly predicts as positive cases. AP
is the weighted average of accuracy and recall. The mAP
is the mean AP value for different categories. The IoU is
the ratio of the intersection area of the predicted frame to
the true frame to the concatenated area and is usually used
to evaluate the localization accuracy of an object detection
model. mAP.5 indicates the mAP when the IoU threshold is
0.5; mAP.5:.95 evaluates the performance of the algorithm
over a range of IoU thresholds from 0.5 to 0.95, as the
detection model performance under different IoU thresholds
is considered, allowing a more comprehensive assessment of
the detection and localization capabilities of the model.

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

AP =

∫ 1

0

P (R)dR (14)

mAP =

∑N
i=1 AP (i)

N
(15)

In the formula, TP (true positive) is the correct detection
result, FP (false positive) is the wrong detection result, and FN
(false negative) is the wrong undetected result, which means
missed detection. N indicates the number of detection task
categories.

In addition to model accuracy, the number of parameters and
giga floating-point operations per second (GFLOPs) are crucial
considerations for determining the lightweight nature of a
model. FLOPs indicate the number of floating-point operations
performed by a model in a single forward propagation, serving
as a measure of its computational complexity. This metric
enables the comparison of computational overhead across
different models. GFLOPS represents the billion floating-
point operations per second, with 1 GFLOPs equaling 1,000
MFLOPS. In general, the more complex the model structure
is, the higher the number of FLOPs. When designing an
object detection model, a trade-off between accuracy and
computational complexity is needed to achieve better detection
performance and higher computational efficiency by making
a corresponding choice according to the specific task require-
ments.

B. Experimental Results and Analysis
Baseline Model Selection: Starting from the practical task
of antenna interference source detection, we select classic or
cutting-edge algorithms (with a focus on lightweight methods)
for comparison on our antenna dataset. The selection process
encompasses considerations from three main aspects: model
parameter count, computational complexity, and detection ac-
curacy. It is evident from Table I that with the increased popu-
larity of transformers in the computer vision domain in recent
years, most detection methods have become closely associated
with them. However, this trend has led to increasingly larger
models, rendering them unsuitable for lightweight real-world
applications. In terms of detection accuracy, several cutting-
edge transformer models such as PVT-tiny [61] and DAB-
DETR, not only fail to meet the lightweight criteria but also
exhibit detection performances inferior to those of traditional
single-stage detectors, such as FCOS [58] and YOLO. The
reason behind this phenomenon lies in the inherent limitations
of transformer mechanisms for small object detection.

Taking a holistic view, among this group of the lightest
models (enclosed by the red box in Fig. 7(c)), there is a
significant disparity in model accuracy, with most mAP.5
values falling below 0.4. In contrast, among some larger
models (enclosed by the green box in Fig. 7(c)), the accuracy
on the antenna dataset is higher and more consistent, with
mAP.5 values generally hovering at approximately 0.5. We
observed that lightweight models such as YOLOv4-tiny and
EfficientDet-D1 are constrained by their simplistic network
structures and computational limitations, making it challenging
for them to achieve outstanding performance on antenna
datasets characterized by small targets and complex back-
grounds. On the other hand, larger models have better feature
processing capabilities, resulting in overall superior accuracy.
However, to meet the demand for deploying models on low-
level computing platforms, lightweight models remain a cru-
cial focus. From this perspective, even though RT-DETR [66]
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TABLE I: The performance of different models on the Antenna dataset

model Year Param. GFLOPs mAP.5 mAP.5:.95 Yagi Antenna Plate Log Antenna Patch Antenna
mAP.5 mAP.5 mAP.5

RetinaNet(ResNet50) [26] ICCV’2017 37.97M 191.43 0.477 0.237 - - -
YOLOv3-tiny [25] ’2018 8.85M 13.17 0.32 0.156 0.288 0.645 0.0274

FCOS(ResNet50) [58] ICCV’2019 32.12M 60.59 0.533 0.264 - - -
YOLOv4-tiny [30] ’2020 5.88M 16.18 0.28 0.134 - - -

YOLOv5-s [13] ’2020 7.23M 16.49 0.619 0.339 - - -
YOLOx-s [59] CVPR’2021 8.94M 26.76 0.579 0.350 0.650 0.781 0.306

YOLOv7-tiny [31] CVPR’2023 6.23M 13.86 0.42 0.217 0.476 0.642 0.141
EfficientDet-D1 [29] CVPR’2020 6.56M 11.51 0.267 0.156 - - -

TOOD(ResNet50) [60] ICCV’2021 32.02M 60.79 0.499 0.265
PVT-tiny [61] ICCV’2021 23.0M 50.94 0.472 0.246 - - -

DAB-DETR(ResNet50) [62] ICLR’2022 43.70M 33.90 0.531 0.227 - - -
YOLOv8-s [63] ’2023 11.2M 28.4 0.548 0.316 - - -

DINO(ResNet50) [64] ICLR’2023 47.54M 93.77 0.595 0.331 - - -
Mask R-CNN(ConvNeXt-V2-B [65]) ’2023 110.59M 198.56 0.642 0.348 - - -

RT-DETR(ResNet18) [66] ’2023 20M 60 0.653 0.362 - - -
ours ’2023 6.13M 16.18 0.692 0.374 0.739 0.825 0.512

TABLE II: Baseline model pruning

YOLOv5-s YOLOv5s -lite

Layer Name Output size modules[in channels,out channels]×n params modules[in channels,out channels]×n params

stage 17 80×80 C3[256,128]×1 90880 C3[256,128]×3 173312

stage 18 80×80 Conv[128,128]×1 147712 Conv[128,128]×1 147712

stage 20 40×40 C3[256,256]×1 296448 C3[256,128]×3 173312

stage 21 40×40 Conv[256,256]×1 590336 Conv[256,128]×1 147712

stage 23 20×20 C3[512,512]×1 1182720 C3[256,128]×3 173312

GFLOPs 16.5 15.7

Parms(all) 7235389 5398845

mAP.5 0.619 0.640

achieves the highest accuracy among numerous comparative
models, its computational complexity remains significantly
higher than that of YOLO models when using a ResNet18
backbone. Additionally, due to its complex transformer ar-
chitecture, the model deviates from the lightweight direction.
While YOLOv7-tiny boasts lower computational complexity
and model parameter count while achieving an mAP.5 above
0.4, its detection accuracy still lags behind that of YOLOv5-s.
Therefore, YOLOv5-s is appropriately selected as the baseline
model for subsequent experiments.

Baseline Model pruning: In the neck structure of the
YOLOv5-s model, the C3 module and convolutional layers
exhibit a wide and shallow shape (deeper channel counts and
fewer convolution module stackings) as the downsampling
factor increases. Specifically, when the 640 × 640 input image
is downsampled to 80 × 80 (P3), 40 × 40 (P4), and 20 × 20
(P5) in the neck structure, the number of stacked C3 modules
is 1, and the channel numbers of the C3 modules and the
convolutional layers in the three feature maps are 128, 256, and
512, respectively. When training YOLOv5-s on the antenna
dataset, the visualization of the outputs of the P3, P4, and P5
feature layers revealed that increasing the number of channels
in the neck section did not necessarily imply the extraction
of richer features. As shown in Fig. 6(c), among the 256
channels in the P4 feature map, there were varying numbers of
highly redundant patterns, and this redundancy was even more
prevalent in the 512 channels of the P5 feature map. These

redundant feature maps impeded the model’s detection speed
and, to some extent, reduced the model’s detection accuracy,
particularly when these highly repetitive features were inef-
fective. Therefore, we conducted experiments by reducing the
output channels of the C3 modules and convolutional layers
corresponding to the P4 and P5 feature layers by half. The
results demonstrated that this pruning operation not only made
the model lighter but also improved the detection accuracy, as
shown in Fig. 6(b). We reasonably conclude that widening
the model by increasing only the number of channels is not
effective for feature extraction and fusion on the antenna
dataset; it increases the number of model parameters, reduces
the computational speed, and even brings negative gains.

Based on this discovery, we reduced the channel dimensions
of the P3, P4, and P5 to 128. While making the model
“narrower” in terms of its width, we enhanced its learning
capability and robustness by increasing the number of stacked
C3 layers. After pruning the model’s neck structure into
a “narrow and deep” configuration, the overall model not
only became more lightweight but also achieved even higher
detection accuracy, as shown in Table II.

Ablation Experiment: As shown in Table III and Fig. 7(a),
the baseline model was tested via ablation experiments on the
COCO dataset. After pruning YOLOv5-s, both the number
of parameters and the computational complexity were effec-
tively reduced. Simultaneously, all the detection indices are
comparable to or even surpass the original version, among
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(b) (c)

(a)

Fig. 6: (a) shows an example of an input antenna image and detection result, (b) compares the performance results of the
baseline model after channel pruning on the neck, and (c) shows the visualization results of the P4 feature layer of the baseline
model were presented. These visualizations unveiled the presence of a considerable degree of information redundancy among
the 256 channels. This redundancy was notably characterized by a pronounced repetition of feature maps. To illustrate this
phenomenon, we have highlighted two specific groups as exemplary instances.

TABLE III: Ablation Experiment on the COCO Dataset

model Param. GFLOPs mAP.5 mAP.5:.95 mAP.5(small) mAP.5(medium) mAP.5(large)
YOLOv5-s [13] 7.23M 16.49 0.572 0.374 0.212 0.423 0.490

YOLOv5s-pruning 5.39M 15.67 0.570 0.385 0.222 0.430 0.498
ours(DSLK-Block) 5.35M 14.97 0.584 0.395 0.236 0.441 0.508

ours(DSLK-Block+DSLKVit-Block) 6.13M 16.18 0.599 0.410 0.245 0.455 0.535

TABLE IV: Ablation Experiment on the Antenna Dataset

model Param. GFLOPs mAP.5 mAP.5:.95 Yagi Antenna Plate Log Antenna Patch Antenna
mAP.5 mAP.5 mAP.5

YOLOv5-s [13] 7.23M 16.49 0.619 0.339 0.682 0.794 0.383
YOLOv5s-pruning 5.39M 15.67 0.640 0.356 0.666 0.804 0.451
ours(DSLK-Block) 5.35M 14.97 0.663 0.363 0.727 0.793 0.468

ours(DSLK-Block+DSLKVit-Block) 6.13M 16.18 0.692 0.374 0.739 0.825 0.512

which the mAP.5:.95 improved significantly, which shows
that the structural pruning operations discussed in Chapter
III are reasonable. On this basis, the model adds the feature
processing module DSLK-Block to replace the C3 structure
of the original model, which further reduces the number of
parameters by 26% compared to the original YOLOv5-s. The
computational complexity is also reduced by 1.52 GFLOPs.
In terms of accuracy, this version of the model shows a more
significant improvement in both mAP.5 and mAP.5:.95, with
11.3% and 4.26% improvements in small and medium-sized
targets, respectively; these findings show that DSLK-Block
plays a significant role in small object detection. Furthermore,
when we constructed the PAN structure in the neck using
the transformer module based on DSLK-Block, the final
model was obtained. Due to the balanced relationship between
computing resources and accuracy improvement, DSLKVit-

Block is applied to only two feature layers of smaller sizes,
P4 and P5, corresponding to medium- and large-sized objects,
respectively, in the detection task. The final model has an
increase in the number of parameters and the complexity of
operations compared to the version using only the DSLK-
Block, but both are lower than YOLOv5-s. The experimental
results also show that, compared to YOLOv5-s, the detection
accuracy of large targets is improved by 9.2%, which leads to
a 9.6% improvement in mAP.5:.95; this is a more significant
effect, while other indicators are also improved by approxi-
mately 0.03.

Table IV shows the ablation experiments of the proposed
model on the antenna interference source dataset. The overall
performance improvement is similar to that of the ablation ex-
periments on the COCO dataset. The pruned version achieves
comparable levels of all the metrics compared to the original
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(a) (b) (c)

Fig. 7: Figure (a) shows the corresponding changes in accuracy and number of parameters during the ablation experiment
of YOLO-Ant on the COCO dataset. Figure (b) shows the performance of two modules, DSLK-Block and DSLKVit-Block,
retrofitting different models on the antenna dataset. Figure (c) shows the performance of different models on the antenna dataset
in three dimensions: accuracy, computational complexity and number of parameters. The models enclosed by the green box
generally exhibit higher accuracy compared to those enclosed by the red box but deviate from the lightweight design principle.

TABLE V: Validity of the proposed module on other models (on Antenna Dataset)

model Year Param. GFLOPs mAP.5 mAP.5:.95 Yagi Antenna Plate Log Antenna Patch Antenna
mAP.5 mAP.5 mAP.5

RetinaNet(ResNet50) [26] ICCV’2017 37.97M 191.43 0.477 0.237 - - -
+DSLK-Block 36.80M 184.92 0.487 0.241 - - -

+DSLK-Block+DSLKVit-Block 38.26M 187.85 0.492 0.243 - - -
YOLOv3-tiny [25] ’2018 8.85M 13.17 0.32 0.156 0.288 0.645 0.0274

+DSLK-Block 6.72M 8.94 0.36 0.145 0.414 0.596 0.0682
+DSLK-Block+DSLKVit-Block 7.58M 11.45 0.38 0.17 0.37 0.609 0.16

FCOS(ResNet50) [58] ICCV’2019 32.12M 60.59 0.533 0.264 - - -
+DSLK-Block 31.15M 58.49 0.549 0.268 - - -

+DSLK-Block+DSLKVit-Block 31.94M 58.49 0.561 0.268 - - -
YOLOv4-tiny [30] ’2020 5.88M 16.18 0.28 0.134 - - -

+DSLK-Block 3.34M 14.53 0.292 0.145 - - -
+DSLK-Block+DSLKVit-Block 5.06M 15.76 0.322 0.156 - - -

YOLOx-s [59] CVPR’2021 8.94M 26.76 0.579 0.350 0.650 0.781 0.306
+DSLK-Block 8.32M 26.62 0.603 0.334 0.679 0.789 0.341

+DSLK-Block+DSLKVit-Block 9.61M 27.81 0.623 0.350 0.673 0.763 0.434
YOLOv7-tiny [31] CVPR’2023 6.23M 13.86 0.42 0.217 0.476 0.642 0.141

+DSLK-Block 5.77M 12.93 0.446 0.227 0.512 0.696 0.13
+DSLK-Block+DSLKVit-Block 5.79M 12.89 0.502 0.255 0.594 0.706 0.206

version; both the version with only DSLK-Block and the final
model show significant improvements compared to YOLOv5-
s, and the final model achieves the best performance in all the
metrics. Notably, the version using only the DSLK-Block has
the most significant improvement in Yagi antenna detection
compared to the other two antennas, while the final version
using the DSLKVit-Block has a more significant improvement
in the plate log antenna and patch antenna. We believe that the
efficient feature extraction capability of DSLK-Block plays a
crucial role due to the more complex shape of the Yagi an-
tenna. The plate log antenna and patch antenna are more fixed
in shape and color, and simple local convolution cannot extract
more effective information; therefore, a transformer, a self-
attention mechanism that focuses more on global information,
can effectively extract the feature information of the target and
background and combine the target with the surrounding en-
vironment information, making the improvement of detection
accuracy more obvious.

In general, combining the ablation experiments performed

by the model on the COCO dataset and the antenna dataset, we
can conclude the following. a. Pruning on the neck structure
based on the original version can effectively reduce the model
redundancy and still ensure accuracy while effectively reduc-
ing the number of parameters and computational complexity. b.
Our proposed DSLK-Block can effectively improve the feature
extraction capability of models for small-sized targets, as well
as detect complex environments, and is lightweight. c. The
DSLKVit-Block employed in the final model offers a sig-
nificant advantage in effectively utilizing global information,
leading to improvements in accuracy across all aspects. Since
this structure acts on the output layer for larger size object
detection, it makes the model improvement for such objects
more obvious and directly leads to a significant improvement
in the mAP.5:.95 metric.
Validity of the proposed module for other models: In
our ablation experiment, we demonstrated that modifying the
model structure and adding two modules, DSLK-Block and
DSLKVit-Block, can effectively improve the baseline model
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TABLE VI: Comparative Experiments on the COCO Dataset

model Param. GFLOPs mAP.5 mAP.5:.95 mAP.5(small) mAP.5(medium) mAP.5(large)
EfficientDet-D1 [29] 6.6M 11.51 0.586 0.396 0.179 0.443 0.560

YOLOv5-s [13] 7.2M 16.5 0.568 0.374 - - -
YOLOv6-tiny [67] 15.0M 36.7 0.566 0.403 - - -

DAMO-YOLO-tiny [68] 8.5M 18.1 0.580 0.418 0.230 0.461 0.585
PPYOLOE-s [69] 7.9M 17.4 0.605 0.430 0.232 0.464 0.569
YOLOv7-tiny [31] 6.2M 13.7 0.567 0.387 0.188 0.424 0.519

Mobile-Former-508M(RetinaNet) [46] 8.4M - 0.583 0.380 0.229 0.412 0.497
EdgeViT-XXS(RetinaNet) [41] 13.1M - 0.590 0.387 0.224 0.420 0.516

PVT-tiny(RetinaNet) [61] 23.0M 50.94 0.569 0.367 0.226 0.388 0.500
ConT-m-tiny(RetinaNet) [70] 27.0M 217.2 0.581 0.379 0.230 0.406 0.504

our 6.1M 16.2 0.599 0.410 0.245 0.455 0.535

TABLE VII: Comparative Experiments on the VisDrone
Dataset

model Param. GFLOPs mAP.5 mAP.5:.95
FCOS [58] - - 0.258 0.142
VFNet [71] - - 0.288 0.168
TOOD [60] - - 0.294 0.181

RetinaNet(ResNet50) [26] 37.97M 191.43 0.214 0.118
YOLOx-s [59] 8.97M 26.93 0.254 0.133

YOLOv5-s [13] 7.23M 16.5 0.284 0.154
YOLOv7-tiny [31] 6.23M 13.86 0.298 0.153

ours 6.13M 16.18 0.295 0.163

in terms of parameter size, computational complexity, and
accuracy. To further demonstrate the effectiveness and appli-
cability of these two modules, we conducted various model
comparisons on the antenna dataset. After each model was
tested on the antenna dataset, we added the two modules in
turn to the model before further comparison; the experimental
results are shown in Table V and Fig. 7(b). The two modules
we proposed perform well on various commonly used detec-
tors, and the improvement effect they bring is consistent with
the experimental trend on the baseline. The introduction of
the DSLK-Block to replace the original convolution modules
resulted in a significant improvement in the lightweight nature
of all the models. However, due to differences in the com-
plexity of their respective neck structure designs, there were
substantial variations in the change in model parameter count
with the introduction of the DSLKVit-Block. Nevertheless,
without exception, the introduction of both modules led to
a noticeable enhancement in the model’s detection accuracy.
Fig. 8 shows a comparison of the detection performances of
our model and the baseline model on the antenna dataset. The
DSLK-Block proved instrumental in detecting numerous small
targets, particularly patch antennas, which the baseline model
failed to identify. When faced with the common background of
balcony fences, the baseline model is prone to mistaken local
regions for the Yagi antenna, resulting in many false alarms.
When encountering the problem of large interclass differences
presented by plate log antennas in multiangle shooting, the
baseline model’s detection resulted in many false positives. To
address these issues, our proposed method combines a CNN
and a transformer, introducing the DSLKVit-Block module to
effectively resolve the problem. A comparison of the detection
figures clearly reveals that our method results in fewer false
alarms and misses after the correct targets are detected. Finally,
we compare the performance of YOLO-Ant with that of many
classical and cutting-edge detectors on the antenna dataset

TABLE VIII: Model Detection Speed Test

model Param.(M) GFLOPs FPS
YOLOv5-s [13] 7.23 16.5 32.43

YOLOv7-tiny [31] 6.23 13.86 43.82
DETR(ResNet50) [11] 41.58 79.52 3.89

RT-DETR(ResNet18) [66] 20.00 60.00 10.89
ours 6.1 16.2 35.87

in three dimensions, namely, the model parameter number,
accuracy, and computational complexity, as shown in Fig. 7(c),
and YOLO-Ant achieves the best performance.
Experiments on Public Datasets: To demonstrate the gen-
eralizability, robustness, and capability of YOLO-Ant, which
can excel not only on antenna datasets but also on public
datasets, we conducted comparisons with numerous models
on two common datasets, COCO and VisDrone. As shown
in Tables VI and VII, we compare our model with sev-
eral other recent outstanding one-stage detectors and several
lightweight transformer-based detectors. The results indicate
that YOLO-Ant has the fewest parameters and relatively lower
computational complexity, outperforming other transformer-
based detection models by a significant margin. In terms
of detection accuracy, our approach slightly lags behind the
top-performing PPYOLO-s in terms of mAP.5 and slightly
lags behind PPYOLO-s and DAMO-YOLO-tiny in terms of
mAP.5:.95. However, in small object detection, our approach
achieves the highest precision among all the models. Fig.
9 shows the detection performance comparison between our
model and YOLOv5-s on the COCO dataset. On the VisDrone
dataset, YOLO-Ant also achieves competitive results. Overall,
considering the parameter count, computational complexity,
and detection accuracy, YOLO-Ant is one of the top con-
tenders among lightweight object detectors.
Model Detection Speed Test: In this experiment, we con-
ducted a speed comparison between YOLO-Ant and several
transformer models, as well as YOLO series models known for
their lightweight design. We converted all the model weights
trained on the antenna dataset into ONNX format and tested
them using the OPENVINO tool on a platform with low-
computational power(Intel CoreTM i9-11900 CPU). Testing
was performed on the validation set of the antenna dataset.
The comparative results are presented in Table VIII.

The table shows that YOLOv7-tiny achieves an FPS (frames
per second) rate exceeding 40, making it the fastest model.
However, this lightweight design comes at the cost of reduced
detection accuracy. On the other hand, while YOLO-Ant
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Ground truth Baseline Our Ground truth Baseline Our

Fig. 8: Comparison of detection performance between YOLO-Ant and baseline models on the antenna interference source
dataset.
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Fig. 9: Comparison of detection performance between YOLO Ant and baseline models in the COCO dataset. The three images
from left to right in each group represent the ground truth, the detection effect of baseline and YOLO-Ant, respectively.
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exhibits a slightly slower detection speed than YOLOv7-tiny
does, it outperforms the baseline model YOLOv5-s to a small
extent. Additionally, the lightweight design of the proposed
model is significantly superior to that of the two transformer-
based models. This demonstrates the success of our structural
design, both in terms of accuracy and lightweight efficiency.

Due to the extensive use of depthwise separable convolu-
tions in our designed modules, which require more memory
bandwidth, the I/O (input/output) read speed of the device
became the speed bottleneck of the model. We believe that in
future work, further optimizations can be made in this regard.
This approach enables YOLO-Ant to achieve not only the
highest detection accuracy in antenna detection but also further
enhance its lightweight design.

V. CONCLUSION

Taking UAV detection of antenna interference sources as
the starting point, we propose a lightweight object detector
with improved YOLOv5. Initially, to ensure the model is
lightweight and adaptable to subsequent modifications, the
new network is first pruned based on YOLOv5, which effec-
tively reduces the number of model parameters and compu-
tational complexity while ensuring accuracy. To address the
challenges posed by small target sizes and complex back-
grounds in antenna detection tasks, we propose an efficient
and lightweight convolutional module called DSLK-Block.
Furthermore, we introduce a lightweight transformer structure
integrated with DSLK-Block, which is applied to the network’s
neck. This combination significantly enhances the network’s
ability to extract and process features. The new model not
only is effective on the antenna dataset but also achieves
competitive results on public datasets such as COCO. In future
work, we will further explore the integration of our current
efforts with drone inspection technology. Simultaneously, we
will incorporate traditional equipment such as spectrum ana-
lyzers required for conventional antenna interference source
identification. The subsequent objective will be to refine
the current approach to create a comprehensive intelligent
unmanned detection system.
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