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Abstract—Color information is the most commonly used prior
knowledge for depth map super-resolution (DSR), which can
provide high-frequency boundary guidance for detail restoration.
However, its role and functionality in DSR have not been
fully developed. In this paper, we rethink the utilization of
color information and propose a hierarchical color guidance
network to achieve DSR. On the one hand, the low-level detail
embedding module is designed to supplement high-frequency
color information of depth features in a residual mask man-
ner at the low-level stages. On the other hand, the high-level
abstract guidance module is proposed to maintain semantic
consistency in the reconstruction process by using a semantic
mask that encodes the global guidance information. The color
information of these two dimensions plays a role in the front
and back ends of the attention-based feature projection (AFP)
module in a more comprehensive form. Simultaneously, the AFP
module integrates the multi-scale content enhancement block
and adaptive attention projection block to make full use of
multi-scale information and adaptively project critical restoration
information in an attention manner for DSR. Compared with the
state-of-the-art methods on four benchmark datasets, our method
achieves more competitive performance both qualitatively and
quantitatively. The code and results can be found from the link
of https://rmcong.github.io/HCGNet_TIM2024,

Index Terms—Depth map, Super-resolution, Hierarchical color
guidance, Residual mask, Semantic mask, Adaptive projection.

I. INTRODUCTION

EPTH maps describe the distance relationship of the
scene including the occlusion and overlap of objects,
which is essential for the 3D understanding tasks, such as
autonomous driving [1]], 3D reconstruction [2], [3], object
recognition [4], [5], and salient object detection [6]-[15], efc.
However, due to the limitations of existing depth acquisition
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Fig. 1: Illustration of the color guidance in DSR. Mode (a) only
utilizes the low-level color information to guide the reconstruc-
tion of detail information; Mode (b) treats different levels of
color information indiscriminately; Mode (c) represents our
guidance model, which divides color information into two
parts, i.e., low-level and high-level information, and allows
them to play different roles.

devices, the resolution of the acquired depth maps is relatively
low, especially for the low-power depth sensors equipped
on smartphones. The low-resolution (LR) depth map cannot
match the high-resolution (HR) color image in resolution,
thereby hindering the further expansion of depth-oriented ap-
plications. Therefore, the super-resolution reconstruction tech-
nology for depth maps came into being, which has practical
research value and industrial application value.

Depth map super-resolution (DSR) is a challenging task
that aims to reconstruct the LR depth map into an HR depth
map. This task is inherently an ill-posed inverse problem due
to the absence of a unique mapping between LR and HR
depth maps. Furthermore, it is particularly difficult to recover
fine details, such as sharp boundaries, especially when dealing
with large upsampling factors [[16]—[18]]. Because of the struc-
tural similarity with depth maps and readily accessible, HR
color images can naturally provide comprehensive guidance
information for the DSR task, and numerous color-guided
DSR approaches have been proposed. However, what kind of
color information is to be utilized for guidance and how the
implementation is to be conducted still remain open topics
in color-guided DSR. For example, current DSR techniques
utilize the color boundary information, either explicitly or
implicitly, to enhance the reconstruction of details [[19]-[22].
But such structural congruence is not universally applicable.
The RGB image contains not only the object boundary but
also the texture boundary inside the object, while the depth
map only has the object boundary. In other words, as for the
color-guided DSR, a critical issue is the effective exploitation
of color guidance information to enhance depth details while
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mitigating the texture-copying artifacts introduced by the color
image. Furthermore, in the form of guidance, some modes
and strategies are designed, such as using low-level color
features as detailed guidance, usually directly concatenating
color features with depth features [23], [24] (as shown in Fig.
[I()), or treating different levels of color features equally as
guidance [25], [26] (as shown in Fig. b)), etc. However,
these methods do not fully consider the roles and diversity of
different color information in the guidance phase, indicating
a necessity for more in-depth and comprehensive exploration
to leverage the full spectrum of color guidance information
effectively.

Motivated by the above analysis, the core theoretical con-
tribution of our work lies in rethinking the utilization of
color information in the DSR task and distinguishing the
roles of low-level and high-level color information, thereby
making them guide the depth branch in a divide-and-conquer
manner, as shown in Fig. c). On the one hand, the low-
level color features contain fine-grained detailed information
(e.g., boundaries) [24], [27] that DSR needs to pay attention
to, which is helpful for the detail recovery of the depth map.
However, the representation of these features is too specific,
with a lot of interference. And simply transferring color
features may introduce unnecessary interfering boundaries,
resulting in texture replication. To address this, we learn a
residual mask in the designed low-level detail embedding
(LDE) module to highlight the spatial locations of color
features that are most consistent with depth features, thereby
adaptively guiding the information transmission from color
features to depth features. On the other hand, the high-
level color features contain global abstract information, which
describes scene content more comprehensively and preserves
semantic outlines. The existing approaches do not specifically
consider high-level color abstract information, but discard it
[28] or treat it the same as low-level detail information [25]).
Considering that the semantic consistency of the scene may be
shifted or blurred during the depth reconstruction, we design
a high-level abstract guidance (HAG) module to modify the
initial reconstruction features by using a semantic mask that
encodes the global abstract guidance information. It is worth
mentioning that the LDE and HAG modules we designed also
have good portability, which can be transplanted into existing
color-guided DSR methods to improve their performance (see
the validation experiments in Section [[V-C).

In addition, to achieve better recovery, we need to map the
low-resolution features to the desired high-resolution recon-
struction features. The existing methods, such as DBPN [25]],
directly map features between LR and HR domains instead
of selecting the reconstruction region, which greatly increases
the complexity of the model and introduces additional errors.
In fact, the focus of the DSR task is not to generate content
from scratch but to supplement, refine, and enhance the details
such as boundaries. From this point of view, blindly and
indiscriminately performing super-resolution reconstruction on
all regions is a sub-optimal way, which also difficult to achieve
the purpose of optimizing important regions with more severe
degradation. To this end, we design the attention-based feature
projection (AFP) module, including a multi-scale content

enhancement (MCE) block and multiple adaptive attention
projection (AAP) blocks. The core contribution of the AFP
module lies in the designed AAP block, which reinforces the
important restoration regions in an attention manner, thereby
suppressing interference and improving the reconstruction
performance. The whole reconstruction process is a restoration
pipeline from coarse to fine, focusing on using different levels
of color information for guided reconstruction. All modules
cooperate with each other to hierarchically reconstruct the
depth features, thereby obtaining the final depth map at the
target resolution.

To summarize, the contributions of this work are as follows:

« We reexplore the role of the color information in DSR and
propose a hierarchical color guidance network (HCGNet).
Comprehensive experiments on four benchmark datasets
show that the proposed method achieves more competi-
tive performance both qualitatively and quantitatively.

e« The LDE and HAG modules work together to achieve
hierarchical color guidance in DSR task. Concretely, the
LDE module distinguishes between similar as well as
interfering regions in the form of residual masks, thereby
effectively utilizing high-frequency complementary guid-
ance of color features. And the HAG module extracts
complete semantic outlines from high-level abstract fea-
tures in the form of semantic masks, thereby alleviating
semantic shifts and ambiguities for global reconstruction.

« We design an AAP block to reinforce the key restoration
regions in the attention domain, thereby suppressing the
valueless redundancy and improving the reconstruction
performance with optimized computation.

II. RELATED WORK
A. Non Color-Guided DSR

Non color-guided DSR directly reconstructs a HR depth
map from a LR depth map without any external guidance
information. Earlier works proposed some local filtering-based
methods, which mostly use high-pass filters to recover the
boundary information of the depth map. For example, Yang
et al. [29] proposed a post-processing method to improve the
spatial resolution and accuracy of depth images by iterative
bilateral filtering. The filtering-based method has lower op-
erational complexity, but its ability to recover depth details
is unsatisfactory, and the over-smooth and blurred boundaries
are prone to appear in the reconstructed depth map. In recent
years, the research focus has gradually shifted to deep learning
solutions for SR, and many high-performance algorithms have
emerged, such as DBPN [30], DEWRN [31], SRN [32],
SADN [33]], DTSR [34], [35[, [36], etc. Taking into account
the particularity of the depth map, deep learning-based DSR
methods usually needs to design a specific network structure
to improve the reconstruction performance. Riegler et al. [37]]
incorporated the total generalized variational constraint at the
back-end of DCNN to form an end-to-end ATGV-Net. Song
et al. [|38]] proposed to reconstruct the depth map in a way that
a series of view synthesis sub-tasks can be learned in parallel.
Sun et al. [39] proposed a depth-controlled slicing network
that learns a set of slicing branches in a divide-and-conquer
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manner and is parameterized by a distance-aware weighting
scheme to adaptively integrate the different depths in the set.

B. Color-Guided DSR

As mentioned earlier, it is effortless for some depth cameras
(such as Kinect) to acquire HR color images while acquiring
depth maps. Therefore, the color-guided DSR model has
received widespread attention in recent years and has become
the mainstream model. The color-guided DSR is based on the
similar structural information between the depth map and the
aligned color image, i.e., the depth boundaries have a strong
symbiotic relationship with the luminance boundaries. Filter-
based approaches consider coeval structural relationships in
addition to depth-neighborhood relationships when designing
filters. For example, Kopf et al. [40] proposed a joint bilateral
upsampling filter model by combining a Gaussian function
based on the depth image neighborhood position relationship.
He et al. [41] developed a local linear model of the filtered
image and the bootstrap image model, and then proposed a
bootstrap filter. Wang et al. [42] proposed a dual normal-depth
regularization term to constrain the edge consistency between
the normal map and the depth map. Recently, learning-based
approaches have successfully applied DCNN to the field of
color-guided DSR. Wen et al. [28]] used a coarse-to-fine DCNN
network to learn different filters with different kernel sizes,
thus enabling data-driven training to replace the manually de-
signed filters. Huang et al. [43]] proposed a deep dense residual
network with a pyramidal structure that leverages multi-scale
features to predict high-frequency residuals through dense
connectivity and residual learning. Guo et al. [25] designed a
residual U-Net structure for the deep reconstruction task and
introduced hierarchical feature-driven residual learning. Zuo
et al. [21] proposed a data-driven super-resolution network
based on global and local residual learning. Sun er al. [24]
proposed a progressive multi-branch aggregation network that
utilizes multi-scale information and high-frequency features
to fully reconstruct the depth map in a progressive way. They
also demonstrate that the low-level color information is only
suitable for early feature fusion and does not help much for
DSR at x2 and x4 cases.

III. METHODOLOGY
A. Overview

The overview of the proposed network is shown in Fig. 2
which is a dual-stream hierarchical reconstruction architecture.
Given a LR depth map D € R"*®*1 and the corresponding
HR color image Iyr € RTXWX3 a5 inputs, the goal of our
task is to reconstruct and generate a SR version of depth
map Dgr € R¥XWX1 with the same resolution of the color
image. To be concise, we first extract the multi-level features
of RGB and depth features via five progressive convolution
blocks (green blocks in Fig. [2), where each block includes
two 3 x 3 convolution layers and a 1 X 1 convolution layer.
The obtained RGB and depth features are denoted as F* and
Fi (i = {1,2,3,4,5}), respectively.

Then, we achieve color-guided depth feature learning and
detail restoration under the cooperation of the AFP, LDE, and

HAG modules. It is worth noting that there are three inputs
(if any) are sent to the AFP module: (1) The depth backbone
features F?, in the corresponding level; (2) The low-level detail
features F? ,,, generated by the LDE module, which is used
for detailed restoration in the low-level reconstruction stage;
(3) The dense transfer features (% Fif2 ... F2 ) from all
the completed reconstruction levels. At different reconstruction
levels, the input features of the AFP module are different,

which are specifically formulated as:
i i=5

Concat(Fi, FE ), i={3,4}, (1)
COnCGt(FiDE, Ffr)v i = {17 2}

where C'oncat denotes the concatenation operation along the
channel dimension, FY, represent the depth backbone features
of the i-th level, F% . are the low-level detail features
generated by the i-th LDE module, and F¥, denote the transfer

features from the k-th completed reconstruction level, which
can be calculated by:

k _
Ftr_

i
Fin_

(Firac) L +F5, 2

where F¥ , . represent the output features of the k-th HAG
module, | denotes the downsampling operation, and k = {i +
1,9+2,---,5}. It should be noted that the inputs of the LDE
module include the depth features F?, and color features F? of
the corresponding layer.

After that, the high-level abstract features F2 and the depth
backbone features Y, are fed into the HAG module to modify
the output features FY ., of AFP module and generate the
reconstruction features F?; , . Finally, the pixel-shuffle and
convolution operations are performed on the features F and
Fl; 4o to obtain the final upsampled depth map Dgp.

Note that, our model is trained by minimizing L; loss,
which can be formulated as:

Loss = ||Dsg — Durl|; €)

where Dgg and Dy denote the predicted depth SR result and
ground truth, respectively, and ||-||; is the L; norm function.
In the following subsections, we will provide the technical
details of the AFP, LDE, and HAG modules one by one.

B. Attention-based Feature Projection Module

In order to achieve the depth map super-resolution, we
need to map the low-resolution features to the desired high-
resolution reconstruction features. Specifically, there are two
issues that need to be paid attention to: (1) In order to
recover more severely degenerated local details (such as depth
boundaries and fine objects), simply increasing the depth of
the network is insufficient and unwise. Therefore, we introduce
a Multi-scale Content Enhancement (MCE) block to enhance
the depth features before projection, using different receptive
fields to recover detailed features at different scales as much
as possible. (2) The information between the LR and HR
domains is not absolutely one-to-one correspondence in the
projection process, and the interference of excessive interfering
information is likely to introduce additional errors, thereby
impairing the reconstruction accuracy. To this end, we propose
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Fig. 2: The architecture of HCGNet. The LR depth map and HR color image are first embedded into the feature extraction unit
to extract multi-level features. Then, the Attention-based Feature Projection (AFP) module, Low-level Detail Embedding (LDE)
module, and High-level Abstract Guidance (HAG) module work together to gradually recover details in LR depth features
and generate the HR depth map. The use of color information is manifested in two aspects. On the one hand, the low-level
color features are used in the low-level reconstruction stage to restore details through the LDE module. On the other hand, the
high-level abstract features are used at the end of the AFP module to provide semantic guidance through the HAG module.

an Adaptive Attention Projection (AAP) block to project
valid information in the attention domain, guaranteeing the
effectiveness and compactness of the projected features. Note
that, four cascaded AAP blocks are used in the AFP module
to achieve better performance. In summary, as shown in Fig.
Bl the MCE block and AAP blocks together form the AFP
module to achieve depth feature reconstruction.

1) Multi-scale Content Enhancement block: Multi-scale in-
formation can effectively perceive and model different details,
which is of great significance for detail restoration in DSR. As
shown in the lower left of Fig. [3] the MCE block contains a
stack of four dilated convolution layers with different dilation
rates, which are applied to capture more details with different
scales of receptive fields [44], [45]. Moreover, we employ
dense connections to obtain full information from all previous
layers, which are formulated as:

|

where M D denotes the multi-scale dilated convolution oper-
ation with different dilation rates of 1, 2, 3, and 4, and Fﬁn is
the output of each multi-scale dilated convolution. Finally, all
the multi-scale dilation features are concatenated and fused by

MD(F;,),
MD(Concat(F!

in

m=1
m = {2,3,4}
“)

m

Flia Ty ;Ln—l))v

a 1 x 1 convolution layer:

t1op = DeConv(Convyxi(Concat (F:, F, -

wm?

’ 7F§L)))7

4)
where C'onvyx1 denotes the convolution layer with the kernel
size of 1 x 1, F?\/ICE is the output of MCE block, which
perceives content information of different scales, and DeConv
denotes the upsampling operation implemented by the decon-
volution layer.

2) Adaptive Attention Projection block: The super-
resolution process of depth maps needs to bridge the huge
gap between the LR domain and the HR domain. In fact,
the focus of the DSR task is not to generate content from
scratch but to supplement, refine, and enhance the details such
as boundaries. From the perspective of the frequency domain,
low-frequency information is usually included in the smooth
regions while high-frequency regions contain more boundary
information. Therefore, to extract clear color boundaries and
suppress their interfering textures, we need to correct the error
information progressively while extracting the high-frequency
features of the image. Moreover, blindly and indiscriminately
performing super-resolution reconstruction on all regions is a
sub-optimal way, which is also difficult to achieve the purpose
of optimizing important regions with more severe degradation.
In other words, in the process of restoring information from
the LR domain to the HR domain (which is also called the
projection process), interference may be introduced without
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Fig. 3: The whole architecture of AFP module and details of sub-blocks, i.e., MCE block and AAP block.

filtering, thereby introducing additional errors and affecting
the reconstruction accuracy. Hence, we design the AAP block
to reinforce the key restoration regions in an attention manner,
thereby suppressing the interference and improving the recon-
struction performance, as shown in the bottom flowchart of
Fig. [3

For the AAP blocks, the input of the first AAP block is the
output features of the MCE block, while the input of the other
blocks is the output of the previous AAP block. As such, the
input of the AAP block can be uniformly formulated as:

Fycp, 7=0

F?,j-‘rl = { .
in—aap FLJR, ] _ {17 2’ 3}
where F%/, is the HR output of j-th AAP block in the i-th
level (will be formulated further below).

For the algorithm of AAP, we simulate the DSR process by
using both down-projection and up-projection, thereby obtain-
ing the reconstructed HR feature map under worse conditions.
These projection blocks can be interpreted as self-correcting
processes that provide projection errors to the sampling layer,
and thus progressively generate better solutions:

(6)

F i R )
where Conv is a convlution layer for down-projection, and
DeConv is a deconvolution layer for up-projection.

Then, we subtract the reconstructed HR features from the
original HR features to generate the residual features and
extract the high-frequency features of the image, which encode
the content information that needs to be recovered during
reconstruction. The projected attention map is calculated by:

Acty/ ™ = ReLU(F3l 25, —Filp. . )s ®
where ReLU denotes the rectified linear unit. The projected
attention map will correct errors in reconstruction and avoid
the degradation caused by feature projection between the LR
and HR domains.

Finally, the residual map is activated as a projected attention
map and used to adaptively refine the original HR features:
=Acty/ T @FT 4+ FT 9)

m—aap m—aap’

= DeConv(C'OnU(F%t;ap))’

ij+1
FHR

where @ denotes the element-wise multiplication. With four
serial AAP blocks, four HR reconstruction features from
coarse to fine are generated. Combining them, we can obtain
the final output of the AFP module:

Fipp = C’om;lxl(Concat(FiI;,lR,FZI‘L’IQRJ13‘2,3]{7 Fi}’fR))7 (10)

where F% . denote the initial reconstruction depth features.

C. Low-level Detail Embedding Module

As is well-known, high-resolution color images are read-
ily available and contain much useful information, such as
boundaries, textures, and semantic information, etc. Therefore,
introducing color guidance into the DSR model has become
the mainstream idea in this field. However, there is no com-
plete consensus on which color information to use and how
to use it. Considering the different roles of color features
at different levels, we provide a differentiated solution of
color guidance strategy in this paper. Concretely, we design a
Low-level Detail Embedding (LDE) module at the low-level
reconstruction stage to leverage low-level color features for
enhancing the high-frequency details of depth features, such
as boundaries. In addition, we design a High-level Abstract
Guidance (HAG) module, where the high-level abstract color
features are used to perform content correction on the original
reconstruction features, preventing content shifts during the
depth reconstruction. We will introduce the LDE module in
this subsection, and provide the details of the HAG module in
the next subsection.

For depth map super-resolution, accurate and sharp bound-
ary reconstruction has always been the focus of researchers’
unremitting efforts. It just so happens that what the low-
level layer of the color branch learns is detailed information
such as texture, boundary, etc. Therefore, we introduce the
color features at lower levels (i.e., the first two layers) of
the HR color branch through the LDE module and take the
output as one of the inputs of the AFP module. However,
the depth boundaries are not absolutely consistent with the
RGB boundaries. In fact, the boundaries in the depth map
are mainly the object boundaries, while the color image
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Fig. 4: The architecture of Low-level Detail Embedding Mod-
ule.

includes rich texture boundaries inside the object in addition
to the object boundaries. Obviously, the texture boundaries are
interferences for DSR. However, it is difficult to determine the
delineation of texture and boundaries very clearly in network
reconstruction, so completely discarding texture details is not
the best option. Therefore, instead of removing all texture
information with absolute gradient boundaries, our proposed
LDE module suppresses the interfering information of RGB
by learning residual masks, which is shown in Fig.

Concretely, we first make a domain mapping of the RGB-
D features using point-wise convolution and depth-wise con-
volution. The subsequent key step of subtraction actually
serves to distinguish between similar as well as interfering
regions in the RGB-D features. Since explicitly filtering out
the appropriate complementary regions is difficult, we obtain
the regions with large variances in the RGB-D modality, i.e.,
the redundant regions, by subtractive operations. The reverse
residual mask, unlike the binarized mask, will increase the
weight of complementary information and reduce the weight
of information in redundant regions, thus differentiating the
guiding role of low-level color features:

RM' = 1 — Sigmoid(Convyx1 (W, - FL — Wy - F2)), (11)

where RM’ denotes the residual mask, W, and W, represent
the mapping matrix for the color features and depth features,
Sigmoid is the normalization operation, and ¢ indexes the
lower level here, which is equal to 1 or 2.

In this way, the residual mask highlights the most relevant
part of the color and depth information, so we multiply it
with the initial color features to obtain the effective color
features that can be used for depth reconstruction guidance.
Moreover, we believe that the feature representation of the
color information filtered by the residual mask in the lower
levels is in the same domain as the depth information, so the
final fusion adopts a direct summation scheme, which is also
consistent with objective rules. Therefore, the final output of

the LDE module can be formulated as:
Fipp = RM @ F, +F}, (12)

where ® denotes the element-wise multiplication.

D. High-level Abstract Guidance Module

As analyzed earlier, the existing methods mainly focus on
extracting color features to supplement the details for depth
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Fig. 5: The architecture of High-level Abstract Guidance
Module.

reconstruction, just like the functions implemented by our
LDE module. However, let us rethink the role of color-guided
features: Is this detailed guidance strategy sufficient? In fact,
high-level color features are very important for many tasks,
which contains abstract global information and preserves se-
mantic outlines. In the DSR task, the existing methods ignore
one issue, i.e., the global abstract information preserving abil-
ity of the reconstructed features. As the reconstruction process
progresses, there is a possibility that semantic consistency may
be shifted or blurred, which is very unfavorable for the subse-
quent depth-oriented application tasks. This is mainly caused
by the lack of global guidance in the reconstruction. Fittingly,
our color branch can provide high-resolution, offset-free color
guidance information. This also benefits from the fact that the
semantic information extraction for the color branch does not
rely on the process of depth reconstruction, but extracts shal-
low texture features and high-level abstract features through
multi-layer convolution deepening. Since no resolution change
is involved, the high-resolution color information is not shifted
during the extraction process. Inspired by these, we design a
HAG module to maintain the content attribute during the depth
reconstruction, which is equipped after each AFP module.
Specifically, the high-level color information at the top layer
of the color branch is utilized to generate a mask that encodes
the global content guidance information, and is further used
to modify the initial reconstruction features F% .5 (i.e., the
output of the AFP module).

As shown in Fig. [5] we first enhance the top-layer color
features F5 at the spatial level [46], thereby generating the
reweighted color features F% that highlight the important
locations:

Actly; = Sigmoid(FC(Concat(Maz(F2), Avg(F2)))),
13)

2 =F2® Actyy, (14)
where F'C denotes the fully connected layers, Max and Avg
are the max-pooling operation along channel dimension and
global average pooling, respectively, and Actfg 1, 1s the spatial-
level attention.

Considering the auxiliary role of semantic features, we still
take the depth reconstruction features as the dominant one
in the guiding process. Thus, we concatenate the enhanced
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color features with the original reconstruction features, and
then generate a semantic mask:

SM" = Conwyx1(PReLU (Convsyxs(Concat(Fypp, F)))),
15)
where PReLU is the parametric rectified linear unit, and
Conv, x,, denotes the convolution layer with the kernel size
of n X n.
With the semantic mask, the original depth reconstruction
features can be refined by:

Firag =SM' @ Fypp + Fapp, (16)
where F?%; , . are the output of the corresponding HAG mod-
ule. It should be noted that F%; ,, are the final reconstruction
feature at each stage, where the features of the last layer F}; 4
will be directly used to generate the upsampled depth map,
and the reconstruction features of other layers will be sent to
the AFP module through the dense transmission to realize the
progressive learning of the entire network.

IV. EXPERIMENTS

A. Datasets and Implementation Details

To demonstrate the effectiveness of the proposed method,
we conduct comprehensive experiments on the Middlebury
dataset, NYU v2 dataset [57], real-world RGB-D-D dataset
[58], and Lu dataset [59]. All these datasets are produced
with the alignment of color and depth images, and all the
ground-truth values of the upsampled depth map are owned
by the dataset. From the perspective of dataset construction,
for depth cameras such as Kinect, most of the scenes are RGB-
D aligned with default parameters. With tools such as Matlab,
the accuracy can be further improved by co-calibration. In
addition, the device usually includes an SDK that enables users
to interpolate the depth output to match the resolution of RGB
images. However, the quality of the interpolated depth map
can not be guaranteed. Thus, the NYU v2 dataset undergoes
additional processing such as depth completion and calibration
for improved quality and accuracy.

« We collect 36 RGB-D images from Middlebury dataset
(6, 21, 9 images from 2001 [60]], 2006 [[61]], and 2014 [62]
datasets, respectively) for training, and 6 standard depth
maps from Middlebury 2005 dataset [[63] for testing. The
resolution of the image is mostly around 1000 x 1000.

o As for the NYU v2 dataset, it is a real-scene dataset
captured by the Kinect camera. We use the first 1000
pairs with the resolution of 640 x 480 for training and
the remaining 449 pairs for testing. The model trained
on the NYU v2 dataset is also directly used to test on
the Lu dataset and RGB-D-D dataset for generalization
evaluation.

o« The RGB-D-D dataset is a real-world indoor dataset
captured by a Huawei P30 pro cellphone equipped with
the color camera and time of flight (TOF) camera, also
with a resolution of 640 x 480. Following the setting in
[58], 2215 pairs are used for training and 405 pairs for
evaluation.

o The Lu dataset only consists of 6 RGB-D pairs acquired
by the ASUS Xtion Pro camera, all of which are used
for testing.

For quantitative evaluation, the metrics of Mean Absolute
Difference (MAD) and Root Mean Square Error (RMSE)
are introduced [22]], [69], [70]. Following PMBANet [24],
we augment our training samples by cropping the HR pairs
into around 15000 HR patches with the squared size of 64,
128, and 256 according to the upsampling factors of x4,
x 8, and x16. Meanwhile, we perform horizontal and vertical
flipping of the training samples with a probability of 0.5.
The LR depth patches are downsampled into a fixed size of
16 x 16 from HR depth patches via Bicubic interpolation. With
respect to the structural details of our HCPNet, in the feature
extraction phase, the network maps the RGB-D features to
each of the 64-channel dimensions and maintains the number
of channels constant throughout the feature extraction phase.
For the LDE, HAG, and MCE modules, the input channel
dimension changes depending on the number of input features,
and the output is uniformly 64 channels. Our HCGNet is
implemented by PyTorch with an NVIDIA 3090 GPU. As a
hyperparameter, the batch size is set to 8 at x8 and x4 factor
cases and set to 4 for the x 16 factor case. During training, we
use Adam optimizer with momentum of 0.9, and the network
optimization parameters of (31, 32, and ¢ are set to 0.9, 0.99,
and 1e~8, respectively. The initial learning rate is set to le ™%,
and it is decreased by multiplying by 0.1 for the first 100
epochs and the next 50 epochs.

B. Performance Comparison

1) Middlebury Dataset: We compare our method with
some state-of-the-art DSR methods under different upsampling
factors (x4, x8, and x16), including four traditional depth
SR methods (i.e., TGV [47], EG [48]l, JGF [49], and CDLLC
[50]) and nine deep-learning based methods (i.e., GSRPT [51]],
MDDL [52]], DEIN [53], DJF [54], CCFEN [28], CTKT [55],
BridgeNet [22], PMBANet [24] and MIGNet [56]).

The quantitative comparisons of the MAD score are reported
in Table [l We can observe that the traditional DSR mod-
els often fail to achieve satisfactory performance, especially
when dealing with more complex scenes (e.g., Art) or larger
upsampling factors (e.g., x16). In contrast, the deep-learning
based DSR models show more competitive performance, in
which the proposed HCGNet outperforms other SOTA meth-
ods among different scenarios and achieves the best overall
average MAD performance under different upsampling factors.
Moreover, our method achieves obvious performance improve-
ment under a challenging large sampling factor (such as x16).
Compared with the second best method, the MAD value of
the Mobius scene is decreased from 0.54 to 0.45, with a
percentage gain of 16.7%, and the MAD percentage gain of
the Books scene reaches 13.7%. Fig. [6] demonstrates the visual
comparisons of different methods under the factor of x8. As
visible, our method can recover more complete and accurate
depth details. In the first image, compared with the results
of other methods, the boundaries around sticks are sharper
and smoother with less jagged noise, and the structure of the
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TABLE I. Quantitative DSR results (in MAD |) on the Middlebury 2005 dataset. The best performance is marked in bold,

and the second-best performance is underlined.

Art Books Dolls

Methods

Laundry Mobius Reindeer Average

x4 X8 x16| x4 X8 x8 x16

x4 X8 x4 X8 x16| x4 x8 x16|| x4 x8 x16

0.27
0.15
0.24
0.19

0.42
0.36
0.43
0.46

0.70
0.49
0.59
0.53

2.20
0.74
1.06
0.79

0.65
0.48
0.47
0.53

1.17
0.71
0.78
0.76

2.30
1.35
1.54
1.41

0.55
0.28
0.36
0.30

1.22
0.45
0.64
0.48

1.03 3.05
0.51 0.95
0.64 1.09
0.55 0.98

0.43
0.30
0.34
0.34

0.84
0.49
0.59
0.54

2.11
0.90
1.08
0.95

0.29
0.23
0.25
0.27

0.49 0.90
0.42 0.75
0.46 0.80
0.46 0.79

0.49
0.36
0.38
0.43

048
0.46
0.40
0.40
0.43
0.25
0.30
0.26
0.21
0.21

0.74
0.62
0.64
1.07
0.72
0.56
0.58
0.51
0.47
0.41

148
1.87
1.34
2.05
1.50
1.44
1.49
1.22
1.08
1.38

021
0.24
0.22
0.16
0.17
0.12
0.14
0.15
0.15
0.13

0.38
0.37
0.37
0.45
0.36
0.28
0.24
0.26
0.25
0.23

0.48
0.51
0.38
0.49
0.46
0.18 0.39
0.34
0.32
0.35
0.31

0.79
0.79
0.73
0.99
0.75
0.65
0.64
0.59
071
0.57

CTKT [55
BridgeNet \I
PMBANet [24]
MIGNet [56]
HCGNet (Ours)

031
0.32
0.26
0.24
0.27
0.17
0.19
0.18
0.19
0.16

0.55
0.49
0.42
0.63
047
0.39
035
0.33
034
0.29

1.02
1.03
0.87
1.46
0.89
0.83
0.77
0.75
0.75
0.71

033
0.32
0.23
0.28
0.24
0.16
0.17
0.17
0.19
0.14

0.56
0.53
0.36
0.71
041
0.40
0.34
0.31
0.35
0.28

0.24
0.19
0.20
0.18
0.23
0.14
0.15
0.16
0.15
0.14

049 0.80
037 0.74
035 0.73
046 1.02
039 0.73
029 0.69
0.26 0.54
0.26 0.67
0.26 0.55
024 045

031
0.41
0.26
0.23
0.29
0.18
0.19
0.17
0.22
0.15

0.67 1.07
0.51 0.95
0.40 0.80
0.60 1.32
0.46 0.95
041 0.77
031 0.70
0.33 0.74
0.36 0.82
0.26 0.64

(b) LR

(a) GT and Color images (c)GT

(d) TGV

(e) CTKT  (f)GSRPT (g) Bicubic (h) PMBANet (i) Ours

Fig. 6: Visual comparisons of x8 upsampling results on the Middlebury 2005 dataset. (a) HR depth maps and color images.
(b)-(c) LR depth maps and the HR GT. (d)-(i) The reconstructed HR depth maps by the TGV, CTKT, GSRPT, Bicubic,

PMBANet, and Our method, respectively.

TABLE II: Quantitative comparisons with state-of-art methods (in RMSE |) on the NYU v2 dataset. The best performance is
marked in bold, and the second-best performance is underlined. Note that, the depth values are measured in centimeters

Bicubic TGV [47] DJFR [64] SDF [65] SVLRM [66] DKN [19] FDKN [19] FDSR (58] PMBANet [24] JIF [67] DCT [68] HCGNet (Ours)

x4 | 8.16 6.98 3.38 3.04 1.74 1.62
x8| 1422  11.23 5.86 5.67 5.59 3.26
x16| 22.32  28.13 10.11 9.97 7.23 6.51

1.86 1.61 130 1.37 1.59 1.22
3.58 3.18 275 2.76 3.16 2.53
6.96 5.86 5.48 5.27 5.84 4.85

distant object is more complete and continuous. For the Dolls
image, our method can restore the clear and sharp boundaries
of the reconstructed objects. For example, the left ear of the
doll in the third row is restored with complete contour and
the surrounding values are artifact-free, and the sleeves of the
doll (e.g., the raised part in the middle) shown in the last row
are also recovered more satisfactorily than other methods. In
general, the comparison methods can more or less introduce
additional shape distortion and noise, resulting in blurring,

discontinuities, and changed depth values in the reconstructed
images. In contrast, our method is able to recover objects more
completely while taking into account the restoration of depth
details without introducing destructive contamination.

2) NYU v2 Dataset: We evaluate our method on the NYU
v2 dataset and compare it with other SOTA methods, including
Bicubic, TGV [47]], DJFR [64], SDF [63]], SVLRM [66], DKN
[19], FDKN ([19]], FDSR [58], PMBANEet [24], JIIF and

DCT [68].
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(a) Color images  (b) SVLRM (c) SDF (d) DJFR

K=}

(e) DKN (f) FDSR (g) Ours

Fig. 7: Visual comparisons of different methods under x8 upsampling on the NYU v2 dataset. (a) Color images. (b) SVLRM.

(c) SDF. (d) DIJFR. (e) DKN. (f) FDSR. (g) Ours. (h) GT.

TABLE III: Quantitative comparisons with state-of-art methods (in RMSE |) on the RGB-D-D dataset. The best performance
is marked in bold, and the second-best performance is underlined. The depth values are measured in centimeters. FDSR™ and

HCGNet™" are the models retrained on the RGB-D-D dataset.

SDF [65] DIFR [64] FDKN [19] DKN [19] FDSR [58] FDSR* DCT [68] JIF [67] HCGNet (Ours) HCGNet* (Ours)
x4 2.00 335 1.18 1.30 1.16 L11 1.08 1.17 113 0.99
x8 3.23 5.57 1.91 1.96 1.82 171 1.74 1.80 1.77 1.49
x16 5.16 8.15 341 342 3.06 3.01 3.05 2.84 2.70 2.00

EE--MIQL-JEL‘J------Q-

(a) Color images  (b) DJFR (c) FDKN (d) DKN

() FDSR

(f) FDSR*  (g) HCGNet  (h) HCGNet* (i) GT

Fig. 8: Visual comparisons of different methods under x8 upsampling on the RGB-D-D dataset. (a) Color images. (b) DJFR.
(c) FDKN. (d) DKN. (e) FDSR. (f) FDSR™. (g) HCGNet (Ours). (h) HCGNet™ (Ours). (i) GT.

The quantitative results are provided in Table [l We can
see that our method outperforms all the SOTA methods under
different upsampling factors. In the most challenging x16
upsampling situation, compared with the second best method,
the RMSE of our method reaches 4.85, with a percentage
gain of 7.4%. Fig. E] shows some visual comparisons on
the NYU v2 dataset under the x8 factor case. It can be
seen that our method has obvious advantages in boundary
reconstruction and depth preservation. For example, in the
overlapping regions of the bed sheet and bed frame marked
in purple in the first image, the depth map reconstructed by
our method has sharper boundaries and more accurate depth
values. In the second image, our method shows a stronger
ability to portray details, such as the object above the trash
can in the left image and the oblique border area of the chair
in the right image.

3) RGB-D-D Dataset: On this dataset, we evaluate our

method (i.e., HCGNet and HCGNet ™) and other SOTA meth-
ods, including SDF [65], DJFR [64]], DKN [19], FDKN [19],
FDSR [58], FDSR*, DCT [68]], and JIIF [67]]. The superscript
‘4’ indicates the corresponding model was retrained on the
RGB-D-D dataset, and no superscript mark indicates the model
was only trained on the NYU v2 dataset without retraining
or fine-tuning.

The quantitative results are reported in Table [T} Compared
to other models without retraining, our method (i.e., HCGNet)
achieves the best performance under large factor cases and
even outperforms the retrained FDSR™ method under the most
challenging case of x 16, which also demonstrates the general-
izability of our model. Concretely, compared with the second
best method without retraining, the average RMSE value drops
from 3.05 to 2.70 under x16 case with a percentage gain
of 11.5%, and the percentage gain under x8 factor reaches
5.5%. At the same time, we can see a further improvement in
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TABLE IV: Quantitative comparisons with state-of-art meth-
ods (in RMSE |) on the Lu dataset. The best performance
is marked in bold, and the second-best performance is under-
lined.

Bicubic FDKN [[19] DKN [19] FDSR [58] DCT [68|] JIIF [67] Ours
x4 | 242 0.82 0.96 1.29 0.88 0.85 1.02
x8 | 4.54 2.10 2.16 2.19 1.85 173  1.68
x16| 7.38 5.05 5.11 5.00 4.39 4.16  3.75

(a) Color image  (b) GT (c) DKN (d) JIIF (e) Ours

Fig. 9: Visual comparisons of different methods under x8
upsampling on the Lu dataset. (a) Color image. (b) GT. (c)
DKN. (d) JIIF. (e) Ours.

the performance of the model after retraining. Our retrained
version (i.e., HCGNet™) achieves the best performance under
all factor cases and the percentage gain reaches 33.6% under
%16 case compared with the retained FDSR™ method. For the
visual comparison, Fig. [§|demonstrates the details on the RGB-
D-D dataset under x8 case. In the first image, our method
restores the leaves with clear and sharp boundaries, and even
the sawtooth shape of the leaves in the lower right corner is
partially restored. In the more challenging second image, our
method recovers not only the accurate values both around and
inside the cube in the lower left corner but also the complete
boundaries of the books.

4) Lu Dataset: We also evaluate our method on the Lu
Dataset and compare it with other SOTA methods, including
Bicubic, FDKN [19], DKN [19], FDSR [58], DCT [68]
and JIIF [67]. The Lu dataset was captured in low light
and a relatively complex environment, which challenges the
generalization ability of the method. The scale of the dataset
is relatively small, so all methods are not retrained on this
dataset. As shown in Table [IV] our method achieves competi-
tive performance compared with other methods, especially at
the large factor cases (i.e., x8, x16). For example, compared
with the second best method, the average RMSE value is
decreased from 4.16 to 3.75 under x16 factor case, with a
percentage gain of 9.9%. Fig. 0] shows a visual example of
different methods on the Lu dataset. As visible, the proposed
method punches above its weight in terms of detail reconstruc-
tion, such as the sharper borders around the statue and more
accurate depth values (e.g., the ears) inside the statue.

C. Ablation Study

1) Validation of modules. Ablation studies are conducted
to verify the effectiveness of each key component designed in
the proposed HCGNet on both the Middlebury 2005 dataset
and the NYU v2 dataset. We remove the color branch and
simplify the AFP module as the baseline model. Specifically,
we replace the MCE block with a few simple convolution
layers and replace the AAP block with the residual block
accordingly. Then, we sequentially add the HAG, LDE, and

10

TABLE V: Ablation studies of our HCGNet in terms of
average MAD (]) values on the Middlebury 2005 dataset and
RMSE ({) values on the NYU v2 dataset (x8 case).

Model | Baseline HAG LDE RDB+DBPN AFP | MAD | RMSE
1 v 042 | 3.80
2 v v 036 | 2.88
3 v v v 034 | 2.74
4 v v v v 032 | 2.61
5 v v v v 029 | 2.53

TABLE VI: Quantitative evaluation in RMSE (]) with different
number of AFP and AAP modules on the NYU v2 dataset (x8
case).

Model RMSE Model RMSE
5AFPs (Ours) 2.53 4AAPs (Ours) 2.53

4AFPs 2.63 3AAPs 2.64

3AFPs 2.68 5AAPs 2.61

AFP modules to the baseline to verify the effectiveness of
each module. For the validation of MCE and AAP blocks in
AFP, we replace the MCE with the similar RDB [71] block
and the AAP module with the similar DBPN [30] block. The
quantitative results under the x8 case are reported in Table
and some visual examples are shown in Fig. [I0}

First, we verify the role of color guidance in DSR. After
introducing the HAG module into the baseline to provide
high-level abstract guidance, we can see that the MAD value
on the Middlebury dataset is improved from 0.42 to 0.36
with the percentage gain of 14.3%, and RMSE values on
the NYU v2 dataset decreased from 3.80 to 2.88 with the
percentage gain of 24.2%. As visible, compared with the
second and third columns in the first image of Fig. [I0] the
indistinguishable hole regions in the baseline model (marked
in red box) have been obviously restored. Then, we embed the
color detail information into the depth reconstruction branch
through the LDE module. As reported in model 3 of Table
[V] the performance is further improved, where the percentage
gains of the MAD value on the Middlebury 2005 dataset
and RMSE value on the NYU v2 dataset reach 5.6% and
4.9% compared with model 2, respectively. At the same time,
as shown in Fig. [I0[d), the holes in the visualization result
are also reconstructed more clearly. In summary, all these
results demonstrate that our proposed HAG and LDE modules
provide effective guidance information for depth map super-
resolution reconstruction from two perspectives, and improve
the reconstruction accuracy.

Furthermore, we verify the effectiveness of the proposed
AFP module. On the basis of our DSR framework for color
guidance, we introduce the AFP module to achieve multi-
scale content enhancement and adaptive attention projection.
Compared with model 3 in Table |V| the MAD score is further
improved from 0.34 to 0.29 with a percentage gain of 14.7%,
and the RMSE score is decreased from 2.74 to 2.53 with a
percentage gain of 7.7%. In terms of the visualization results
shown in Fig. [I0[f), the final full model (model 5) can not
only maintain the details of the holes in the red-marked area
but also effectively update the incorrectly reconstructed holes
in the lower right corner of model 3 in the first row. To
further illustrate the superiority of the AFP module design over
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Fig. 10: Visual comparisons of different ablation models (x8
case). (a) Ground truth. (b) Baseline (model 1). (c) Baseline
+ HAG (model 2). (d) Baseline + HAG + LDE (model 3).
(e) Baseline + HAG + LDE + RDB + DBPN (model 4). (f)
Baseline + HAG + LDE + AFP (model 5).

similar methods, we add the ablation experiments of model
4. Comparing model 4 and model 5, we can see that after
replacing MCE and AAP with RDB and DBPN respectively,
the model performance drops obviously. On the Middlebury
2005 dataset, the MAD score increases from 0.29 to 0.32,
with a performance drop of 10.3%. While on the NYU v2
dataset, the RMSE score increases from 2.53 to 2.61, with
a performance drop of 3.2%. The experimental results also
prove the effectiveness of our proposed AFP module in-depth
reconstruction.

Finally, we conduct an ablation study to compare the per-
formance of different numbers of modules within the AFP and
AAP components, the results of which are illustrated in Table
[VIl Specifically, we conduct experiments on the AFP modules
by sequentially removing them from level 5 and level 4 of the
network, while still retaining the HAG’s global guidance. The
results indicate that the removal of one AFP module (reducing
the number from five to four) leads to an increase in RMSE
from 2.53 to 2.63, corresponding to a performance decrease of
4%. Since the proposed HCGNet is a hierarchical progressive
reconstruction, the quality of the reconstruction at each layer
has an essential impact on subsequent layers. For the ablation
of AAP blocks, compared with the four AAP blocks, the
RMSE value of three blocks increases from 2.53 to 2.64,
with a performance drop of 4.3%. Meanwhile, observation
reveals that too many AAP blocks can also lead to performance
degradation. This is because, at the current stage, the quality of
the depth features is limited, and the correction capability of
the AAP module is similarly constrained. Excessively deep
stacking may, in fact, hinder the restoration of the depth
features. Based on the above experimental results, we finally
set the number of AAP to 4.

2) Portability of modules. To further validate the effec-
tiveness of the proposed LDE and HAG modules, we conduct
validation experiments by adding LDE and HAG modules to
the PMBANet [24]], which is a network considering only low-
level color information (Mode (a) in Fig. [T). Specifically, we
use the depth features of the corresponding layer, which is
modified by the LDE module, as the input of the current MBA
block, while the global HAG module is used to refine the
depth features after each reconstruction branch. As shown in
Table [VII it can be seen that after adding these two modules
to the PMBANet, the performance is improved on both two

TABLE VII: Quantitative evaluation of adding our modules to
PMBANet, including the MAD ({) on the Middlebury 2005
dataset and the RMSE (]) on the NYU v2 dataset (x8 case).
PMBANet* denotes the retrained version.

Methods MAD RMSE Running Time
PMBANet* Ilﬁl] 0.33 2.75 13.6ms
PMBANet*+LDE 0.31 2.72 18.8ms
PMBANet*+LDE+HAG 0.30 2.58 21.1ms

() (d)

Fig. 11: Visual examples of adding our modules to PM-
BANet. (a) GT. (b) PMBANet*. (c) PMBANet*+LDE. (d)
PMBANet*+LDE+HAG.

datasets. For example, on the Middlebury 2005 dataset, with
both LDE and HAG modules, compared with the original
PMBANet, the average MAD value is improved from 0.33 to
0.30. On the NYU v2 dataset, introducing both the LDE and
HAG modules reduces the RMSE of PMBANet from 2.75 to
2.58 with a percentage gain of 6.2%. Some visual examples of
adding our modules to PMBANet are shown in Fig. [TT] We can
see that, compared with the original result of PMBANet, the
PMBANet model with our LDE and HAG modules improves
the accuracy and details of the reconstruction, such as the
hole regions. These experiments all again demonstrate the
effectiveness and portability of our proposed hierarchical color
guidance mechanism.

D. Discussion

For the training time, it takes about 24 hours to obtain
the final X8 model for 200 epochs with a batch size of 8.
And our x4 model only requires about 10 hours for training
with a batch size of 8. This suggests that the training time is
correlated with both our specific task and batch size settings,
thus existing methods focus more on the running time of the
test. The running time comparisons on the NYU v2 dataset
(640 x 480) are shown in Table [VII] It can be seen that
our method processes x8 DSR task in less than 20ms per
image on the NYU v2 dataset (640 x 480) while achieving
optimal performance compared to other SOTA methods. In
other words, our model achieves a good balance in terms of
performance and efficiency.

In terms of performance, the advantages are more pro-
nounced when dealing with more complex scenes or larger
upsampling factors. But as reported in Table and Table
[[V] our method has no obvious advantages when dealing with
low-scale (x4) DSR on the Lu dataset and real-world RGB-
D-D dataset. Some failure cases under the x4 factor on the
RGB-D-D dataset are also provided in Fig. [T2] It has been
observed that our algorithm may suffer from reconstruction
errors when confronted with regions of sudden changes in
brightness inside objects in the low-depth range of the scene.
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TABLE VIII: Average running time and RMSE (]) of different
methods on the NYU v2 dataset (X8 case).

Methods RMSE Running Time
PMBANet* (TIP’20) [24] 2.75 13.6ms
DKN (IICV’21) [19] 3.26 81.1ms
JIIF (ACMMM’21) [67] 2.76 132.0ms
DCT (CVPR’22) [68] 321 46.5ms
Ours 2.53 19.5ms

(a) Color images (b) GT

(c) Ours

Fig. 12: Illustration of the failure cases under the x4 factor
on the RGB-D-D dataset.

In these regions, the brightness boundary of the color image
varies greatly, but the depth variation is small, so the inconsis-
tency between the color brightness and depth boundaries may
cause reconstruction errors in small regions. Therefore, the
robustness of the model to such challenging scenarios needs
to be further optimized in the future.

V. CONCLUSION

In this paper, we rethink the utilization of color information
in DSR and propose a novel framework HCGNet. On the one
hand, to supplement the high-frequency color information for
the depth features, we embed the low-level detail features
through the LDE module; On the other hand, to maintain
semantic consistency in the reconstruction process, we encode
the global abstract guidance information in the HAG module.
In addition, we design the AFP module to make full use of
multi-scale information while projecting effective information
for reconstruction in an attention manner. Experiments on four
benchmark datasets demonstrate that the proposed network
outperforms other state-of-the-art methods both qualitatively
and quantitatively.
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