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Abstract— Gesture recognition using low-resolution 

instantaneous high-density surface electromyography (HD-

sEMG) images opens up new avenues for the development of more 

fluid and natural muscle-computer interfaces. However, the data 

variability between inter-session and inter-subject scenarios 

presents a great challenge. The existing approaches employed very 

large and complex deep ConvNet or 2SRNN-based domain 

adaptation methods to approximate the distribution shift caused 

by these inter-session and inter-subject data variability. Hence, 

these methods also require learning over millions of training 

parameters and a large pre-trained and target domain dataset in 

both the pre-training and adaptation stages. As a result, it makes 

high-end resource-bounded and computationally very expensive 

for deployment in real-time applications. To overcome this 

problem, we propose a lightweight All-ConvNet+TL model that 

leverages lightweight All-ConvNet and transfer learning (TL) for 

the enhancement of inter-session and inter-subject gesture 

recognition performance. The All-ConvNet+TL model consists 

solely of convolutional layers, a simple yet efficient framework for 

learning invariant and discriminative representations to address 

the distribution shifts caused by inter-session and inter-subject 

data variability. Experiments on four datasets demonstrate that 

our proposed methods outperform the most complex existing 

approaches by a large margin and achieve state-of-the-art results 

on inter-session and inter-subject scenarios and perform on par or 

competitively on intra-session gesture recognition. These 

performance gaps increase even more when a tiny amount (e.g., a 

single trial) of data is available on the target domain for 

adaptation. These outstanding experimental results provide 

evidence that the current state-of-the-art models may be 

overparameterized for sEMG-based inter-session and inter-

subject gesture recognition tasks.  

Index Terms— Transfer learning, domain adaptation, 

convolutional neural network, recurrent neural network, feature 

extraction, muscle-computer interface, surface electromyography, 

EMG, gesture recognition 

I. INTRODUCTION 

ESTURE recognition based on surface electromyography 

(sEMG) signals has been a core technology for developing 

next-generation muscle-computer interfaces (MCIs). The major 

application domains of sEMG-based MCIs are non-intrusive 

control of active prosthesis [1], wheelchairs [2], exoskeletons 
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[3] or neurorehabilitation [4], neuromuscular diagnosis [5] and 

providing interaction methods for video games [6], [7]. The 

existing approaches for gesture recognition using sparse multi-

channel sEMG sensors and classical machine learning methods 

– such as linear discriminant analysis (LDA) [8], support vector 

machines (SVM) [9], hidden Markov model (HMM) [10] – on 

windowed descriptive and discriminative time-domain, 

frequency-domain and/or time-frequency-domain sEMG 

feature space [11], [12-16]. However, these sparse multi-

channel sEMG-based methods are not suitable for real-world 

applications due to their lack of robustness to electrode shift and 

positioning [17], [18]. In addition, malfunction to any of these 

sparse-channel electrodes leads to retraining the entire MCI 

system. Deep learning-based methods have recently been 

exploited for gesture recognition using sparse multi-channel 

sEMG [19-20], [31-32], [61], [68] but their performance is still 

far from optimum [64].  

To address this problem, designing and developing more 

flexible, convenient, and comfortable high-density sEMG 

(HD-sEMG) based myoelectric sensors and efficient pattern 

recognition algorithms have been major research directions in 

recent years [17-18], [21-30], [36]. However, the existing HD-

sEMG-based gesture recognition methods [17-18], [28], [30] 

still rely on the windowed sEMG (e.g., range between 100 ms 

and 300 ms [33], [34]), which demands finding an optimal 

window length. The determination of an optimal window length 

represents a strong trade-off between classification accuracy 

and controller delay, both of which increase with an increase in 

window size.    

To further address this problem, distinctive patterns within 

instantaneous sEMG images were first discovered by Geng et 

al. [21] and M.R. Islam et al. [22] to develop more fluid and 

natural muscle-computer interfaces (MCIs). The instantaneous 

values of HD-sEMG signals at each sampling instant were 

arranged in a 2D grid in accordance with the electrode 

positioning. Subsequently, this 2D grid was transformed into a 

grayscale sEMG image. Therefore, an instantaneous sEMG 

image represents a relative global measure of the physiological 
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processes underlying neuromuscular activities at a given time. 

Consequently, gesture recognition is performed solely with the 

sEMG images spatially composed from HD-sEMG signals 

recorded at a specific instant.  

Motivated by these prior works, further studies have been 

conducted on this promising new research direction over the 

years [23-27], [29], [36]. However, the state-of-the-art methods 

[21], [23], [24] for sEMG-based gesture recognition either 

employed very complex deep and wide CNN or an ensemble of 

these complex networks for improved gesture recognition 

performance. Despite the significant performance boost 

achieved by these state-of-the-art models [21], [23], [24], the 

heavy computational and intensive memory cost hinders 

deploying them on resource-constrained embedded and mobile 

devices for real-time applications.  

In addition, the sEMG-based gesture recognition problem 

becomes more challenging in the operational conditions or an 

inter-session scenario, where the trained model is used to 

recognize muscular activities in a new recording session 

because sEMG signals are highly subject-specific. The 

distributions of the sEMG signals vary considerably even 

between recording sessions of the same subject within the same 

experimental setup. The acquired sEMG signals in a new 

recording session (target domain or task) differ from those 

obtained during the training session (source domain or task) 

because of electrode shifts, changes in arm posture, and slow 

time-dependent changes such as fatigue and electrode-skin 

contact impedance [1][26]. Inter-session is often referred to as 

inter-subject when the training and test data are acquired from 

different subjects. Moreover, it is always challenging to force 

the users to maintain a certain level of muscular contraction 

force in real-time applications. Therefore, the developed 

methods must also cope with the distribution shift occurred by 

this voluntary muscular contraction force level.  

To attenuate these distribution shifts between different sEMG 

recording sessions, the pre-trained models have been pre-

dominantly adopted by the existing approaches [26], [31], [32], 

and [57] to reduce the distribution shift by fine-tuning the 

sEMG data recorded in the different session (target domain or 

task). Fine-tuning updates the parameters of the pre-trained 

models to train to newly recorded sEMG data. Generally, the 

output layer of the pre-trained models is extended with 

randomly initialized weights. A small learning rate is used to 

fine-tune all the parameters from their original values to 

minimize the loss on the newly recorded sEMG data. Using 

appropriate hyper-parameters for training, the resulting fine-

tuned model often outperforms learning from a randomly 

initialized network [40].  

Generally, this pre-training and fine-tuning process can be 

considered a special case of domain adaptation when the source 

task and the target task are the same or transfer learning when 

the tasks are different. However, for sEMG-based gesture 

recognition scenarios, we reframed this problem as transfer 

learning when the sEMG data for training and inference are 

recorded at a different session. Fig. 1 illustrates the conceptual 

diagram of our proposed transfer-learning methods for 

sEMG-based gesture recognition.  

Transfer learning is typically performed by taking a standard 

architecture along with its pre-trained weights and then fine-

tuning the target task. However, the state-of-the-art methods 

[21], [23], [26], and [61] for sEMG-based gesture recognition 

employed very large and deep pre-trained models, therefore, 

containing millions of parameters which are designed to be 

trained with large-scale labeled sEMG datasets. The 

requirement of high-end computing resources and large-scale 

pre-trained datasets are also bounded by large and deep 

network structures [25]. As far as we are aware, there has been 

no research for sEMG-based gesture recognition studying the 

effects of transfer learning on the smaller, simpler, and 

lightweight CNN. This line of investigation is especially crucial 

in the sEMG-based gesture recognition because the pre-trained 

model is often deployed in real-time MCI applications such as 

assistive technology and physical rehabilitation where fine-

tuning in the target domain must be conducted in the data-

a) 

b) 

 
c) 

Fig. 1. A general conceptual diagram of the transfer learning method 

(a) Pre-trained model (b) Fine-tuned model and (c) Feature extraction 

process. sEMG images and labels used for adaptation are shown. 
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starved condition because of the difficulty of acquiring data 

from the amputees, elderly peoples, and patients, etc. Also, the 

large computationally expensive models might significantly 

impede mobile and on-device applications, where power 

consumption, data memory, and computational speed are 

constraints. To investigate the effects of transfer learning for 

sEMG-based gesture recognition, our research is motivated by 

the following research questions- does feature reuse takes place 

during fine-tuning or transfer learning? And if yes, where 

exactly is it in the network? 

Investigating feature reuse, we find out that some of the 

differences from transfer learning are due to the over-

parametrization of the state-of-the-art, more complex pre-

trained models rather than sophisticated feature reuse. 

Additionally, we discovered that a simple, lightweight model 

can outperform the more complex and computationally 

demanding state-of-the-art network architectures. We isolate 

where useful feature reuse occurs and outline the implications 

for more efficient lightweight model exploration. 

In this paper, we perform a fine-grained study on fine-tuning 

and transfer learning for sEMG-based gesture recognition. Our 

main contributions are: 

(1) We introduce All-ConvNet+TL model, which leverages the 

lightweight All-ConvNet and transfer learning to address 

the distribution shift in inter-session and inter-subject 

sEMG-based gesture recognition and evaluate it against the 

more complex state-of-the-art network architectures. Our 

proposed method leveraging lightweight All-ConvNet and 

transfer learning outperforms the state-of-the-art methods 

by a large margin, both when the data from a single trial or 

multiple trials are available for fine-tuning/adaptation. The 

outstanding inter-session and inter-subject gesture 

recognition performance achieved by the proposed 

lightweight models raises the question of whether the 

current state-of-the-art models are overparameterized for 

the sEMG-based gesture recognition problem.     

(2) Using further analysis and weight transfusion experiments, 

where we partially reuse pre-trained weights, we identify 

locations where meaningful feature reuse occurs and 

explore hybrid approaches to transfer learning. These 

approaches involve using a subset of pre-trained weights 

and redesigning other parts of the network to make them 

more lightweight.  

(3) We conducted more extensive experiments. A performance 

evaluation on CapgMyo and its four (4) publicly available 

HD-sEMG sub-datasets was performed on three different 

sEMG-based gesture recognition tasks: intra-session, inter-

session, and inter-subject scenarios. The results showed that 

our lightweight models outperformed the more complex 

state-of-the-art models on various tasks and datasets.   

The rest of the paper is structured as follows: Section II reviews 

current state-of-the-art methods for sEMG-based gesture 

recognition, Section III presents the proposed transfer learning 

framework, while Section IV presents the lightweight All-

ConvNet model architecture and its design principles. 

Section V introduces the proposed transfer learning design 

methodology by leveraging lightweight All-ConvNet (All-

ConvNet+TL). Section VI describes the experimental 

framework, and Section VII demonstrates the state-of-the-art 

results for inter-session and inter-subject gesture recognition 

and very competitive results for intra-session gesture 

recognition, obtained from experiments conducted on 

CapgMyo and its four (4) sub-datasets. Section VIII highlights 

the state-of-the-art performance achieved by the proposed All-

ConvNet+TL and discusses some important findings. Finally, 

Section IX provides some conclusive remarks. 

II. RELATED WORK 

In this section, we present an overview of current state-of-the 

art methods for sEMG-based gesture recognition. Many efforts 

have been devoted to proposing novel deep learning methods to 

enhance the accuracy of sEMG-based gesture recognition. 

Geng et al. [21] employed a deep convolutional neural network 

(CNN or ConvNet) to recognize hand gestures from the sEMG 

images and showed high recognition accuracy on publicly 

available benchmark HD-sEMG datasets [15], [17], [26]. M. R.  

Islam et al. [22] proposed to use Histogram of Oriented 

Gradients (HoG) as discriminative features and an SVM-based 

feature classification algorithm for high-density EMG images, 

achieving accurate classification of 8 gestures [11]. Motivated 

by [21] and [22], further studies have been conducted in recent 

years [23-27], [29], [36]. Wei et al. [23] proposed a two-stage 

convolutional neural network (CNN) with a multi-stream 

decomposition stage and a fusion stage to learn the correlation 

between certain muscles and specific gestures. The sEMG 

image is decomposed into different equally sized image patches 

based on the layout of the electrode arrays on muscles (e.g., 

each of eight 8×2 electrode arrays in the CapgMyo database 

[26] individually produces 8×2 equal-sized sEMG image 

patches). Then, each of these sEMG image patches is 

independently and in parallel passed through the convolution 

layers of a single-stream CNN [21], thereby forming a multi-

stream CNN. The learned features from all the single-stream 

CNNs that form a multi-stream CNN are aggregated and fed to 

a fusion network for gesture recognition. The reported results 

showed that multi-stream CNN outperformed single-stream 

CNN by a small margin. Hu et al. [24] proposed a combined 

CNN-RNN module to capture both spatial and temporal 

information of sEMG signals for gesture recognition. The 

recorded sEMG signals were decomposed into small 

subsegments using a sliding and overlapping windowing 

strategy. Each of these sEMG subsegments was converted into 

an sEMG image and simultaneously passed through a multi-

stream CNN built upon [21] for feature extraction. Given the 

input sequence of the extracted features corresponding to each 

of the sEMG subsegments, a long short-term memory (LSTM) 

network was learned individually for gesture recognition. Then, 

the features learned by each of these LSTMs corresponding to 

each of these sEMG subsegments were concatenated before 

being fed to a fully connected and SoftMax layer for gesture 

recognition. Experimental results indicate that a combined 

CNN-RNN module outperforms the stand-alone CNN and 
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RNN frameworks, respectively. Encouraged by [38], Chen et 

al. proposed to use of 3D convolution in the convolutional 

layers of CNNs for spatial and temporal representation of 

sEMG images [36]. The 3D convolution is attained by 

convolving a 3D kernel to the cube formed by stacking multiple 

adjacent sEMG image frames. The feature maps in the 

convolution layers of a 3D CNN are connected to multiple 

adjacent sEMG image frames in the previous layer. Hence, the 

spatiotemporal information is captured. However, multiple 3D 

convolutions with distinct kernels are required to apply at the 

same location of the input to learn representative features, 

which makes 3D CNN computationally expensive. For 

example, the exploited 3D CNN in [36] requires learning over 

˃30M (million) parameters when the length of the input cube is 

set to 10 (i.e., the cube is formed by stacking 10 consecutive 

sEMG image frames).  

However, current state-of-the-art methods [21], [23], [24] 

employed complex deep and wide CNNs or network ensembles 

for enhanced gesture recognition performance. For example, 

Geng et al. [21] exploited a DeepFace [35] like very large and 

deep CNN (dubbed as GengNet), which requires learning 

>5.63M (million) training parameters only during fine-tuning 

and pre-trained on a very large-scale labeled sEMG training 

datasets. The complexity of this model grows linearly as the 

input size is increased due to the use of an unshared weight 

strategy [27]. Wei et al. [23] used an ensemble of eight (8) 

single-stream GengNet at the decomposition stage only. Hu et 

al. [24], used a two-stage ensemble network in which an 

ensemble of multiple single-stream GengNet was used for 

spatial feature learning, resulting in multiple sequences of 1-D 

feature representation. Then, these 1-D feature sequences were 

passed to an ensemble of LSTM networks before a SoftMax 

layer recognized the targeted gesture. Hence, deploying these 

state-of-the-art models [21], [23], and [24] on embedded and 

mobile devices for real-time applications becomes 

cumbersome, despite achieving significant performance gains. 

Therefore, the demand for designing low-cost, lightweight 

networks is highly increasing for low-end resource-limited 

embedded and mobile devices. 

To overcome these problems, more recently, low-latency and 

parameter-efficient S-ConvNet [25] and All-ConvNet [27] have 

been introduced, targeting sEMG-based gesture recognition on 

low-end devices. S-ConvNet [25] was designed to learn sEMG 

image representation from scratch through random 

initialization. S-ConvNet consists of a network with 

convolution layers with the shared kernel, a fully connected 

layer with a small number of neurons, and an occasional 

dimensionality reduction performed by stridden CNN, 

demonstrating very competitive gesture recognition accuracy 

while needing to be learnt ≈  1/4𝑡ℎ learning parameters using 

a ≈  12 ×  𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 compared to the more complex 

and high-end resource-bounded state-of-the-art [21]. A similar 

CNN architecture to that of S-ConvNet is used by Tam et al. 

[29] for a fully embedded adaptive real-time sEMG-based 

gesture recognition. Striving to find a simpler and more 

efficient lightweight network, in our recent work [27], a new 

architecture called All-ConvNet was introduced that consists 

solely of convolutional layers and is designed to be more 

efficient and less computationally intensive than the existing 

state-of-the-art models for sEMG-based gesture recognition. 

Comparing the performance of All-ConvNet to other state-of-

the-art models shows that it achieves competitive or state-of-

the-art performance on a current benchmark HD-sEMG dataset 

[26], while being significantly lighter, more efficient, and faster 

to train and evaluate. All-ConvNet was designed based on the 

finding of fact that if the sEMG image area covered by units in 

the topmost convolutional layer covers a portion of the image 

large enough to recognize its content (i.e., gesture class we 

want to recognize). This leads to predictions of sEMG image 

classes at different positions which can then simply be averaged 

over the whole image. Hence, the All-ConvNet becomes robust 

to translations and geometric distortions, which can be very 

effective in addressing the electrode shift and positioning 

problem in sEMG-based gesture recognition. 

Moreover, pre-trained models have been employed by [26], 

[31], [32], and [57] to mitigate distribution shifts by fine-tuning 

on the target domain or task for sEMG-based gesture 

recognition in inter-session and inter-subject scenarios. 

Currently, Du et al. [26] and Ketyko et al. [57] present state-of-

the-art solutions for sEMG-based gesture recognition in inter-

session and inter-subject scenarios. Du et al. [26] propose a 

multi-source extension to the classical adaptive batch 

normalization (AdaBN) technique [37], combined with their 

most complex deep and large CNN architecture [21]. They 

employ AdaBN with the hypothesis that the layer weights 

contain discriminative knowledge related to different hand 

gestures, while the statistics of the BatchNorm layer [55] 

represent discriminative knowledge from different recording 

sessions in inter-session or inter-subject scenarios [37]. The 

parameters of the pre-trained model's AdaBN [21] are updated 

using an unsupervised approach for adaptation in the target 

domain. However, a drawback of this solution arises when 

dealing with multiple sources (i.e., multiple subjects), as 

specific constraints and considerations must be imposed for 

each source during the pre-training phase of the model [57]. 

Ketyko et al. [57] proposed a 2-Stage recurrent neural networks 

(2SRNN), where a deep stacked RNN sequence classifier was 

used for pre-training on the source dataset. Then, the weights of 

the pre-trained deep-stacked RNN classifier were frozen. At the 

same time, a fully connected layer without a non-linear 

activation function was trained in a supervised manner on the 

target dataset for domain adaptation. More explicitly, the deep-

stacked RNN classifier was used as a feature extractor by 

freezing its weight in the domain adaptation stage. However, 

ConvNet is computationally more efficient and powerful in 

extracting discriminative features than RNN, even for 

classification tasks involving long sequences [58], [59]. Unlike 

these works, the proposed All-ConvNet+TL model capitalizes 

the inherent invariant properties of translations and geometric 

distortions in All-ConvNet and investigates the feasibility of 

applying transfer learning (TL) on the smaller, simpler, and 

lightweight All-ConvNet to address the distribution shift and 



5 

                     

 

 

learn invariant, discriminative representations for efficient 

sEMG-based gesture recognition in inter-session and inter-

subject scenarios. 

III. THE PROPOSED TRANSFER LEARNING FRAMEWORK 

The proposed transfer learning framework for sEMG-based 

gesture recognition using instantaneous HD-sEMG images 

includes the following three major computational components: 

(i) a lightweight model development (ii) pre-training, and (iii) 

fine-tuning. A schematic diagram of the proposed transfer 

learning framework for sEMG-based gesture recognition is 

shown in Fig. 1. Firstly, we devised a lightweight All-ConvNet 

model. Secondly, the proposed lightweight All-ConvNet was 

pre-trained (e.g., Fig. 1a) using a large amount of gesture data 

acquired by HD-sEMG in a single session or over multiple 

sessions, which may also involve multiple gestures, trials, and 

subjects, respectively. Then, the pre-trained model was saved 

and deployed for subject-specific/personalized classifier 

development, as sEMG-based wearable devices are usually 

worn by a single user while executing a target task. Typically, 

input-side layers that play the role of feature extraction are 

copied from a pre-trained network and kept frozen or fine-tuned 

(e.g., Fig. 1b and 1c), in contrast, a top classifier for the target 

task is randomly initialized and then trained at a slow learning 

rate. Fine-tuning often outperforms training from scratch 

because the pre-trained model already has a great deal of 

muscular activity information. Potentially, the pre-trained 

network could be duplicated and fine-tuned for each new target 

task [40]. 

IV. MODEL DESCRIPTION – THE ALL-CONVOLUTIONAL 

NEURAL NETWORK (ALL-CONVNET) 

The current state-of-the-art methods [21], [23], [26], and [61] 

for sEMG-based gesture recognition use a large, deep ConvNet 

architecture similar to the one used in DeepFace [35]. This 

architecture is designed to be pre-trained on a large-scale 

labeled HD-sEMG training dataset and requires learning >5.63 

million (M) parameters only during fine-tuning. As a result, this 

large-scale pre-trained model becomes a high-end resource-

bounded and computationally very expensive to be practical for 

real-world MCI applications. Moreover, in their pre-trained 

ConvNet includes two locally connected (LCN) and three fully 

connected layers among the other convolutions and a G-way 

fully connected layer. However, the LCN layers used an 

unshared weight scheme [45] that makes their pre-trained 

ConvNet even computationally more demanding and very 

difficult to scale on the target domain task. For example, the 

learning parameters of [21] increase from ≈ 5.63M to ≈ 11M 

with a small enhancement of input HD-sEMG image size from 

16×8 to 16×16 due to the use of this unshared weight scheme 

[27]. Hence, a very large-scale labeled training dataset is 

required for learning these growing numbers of training 

parameters [35]. However, the LCN can be beneficial in the 

application domains where the feature’s precise location is 

dependent on the class labels. 

 Considering the above-mentioned fact, we investigated the 

following research questions in [27] : (i) Do we expect the 

devised networks model to produce a location/translation 

invariant feature representation? and (ii) Do we need a location-

dependent feature representation? Following our findings and 

building on other recent works that aim to find a simple network 

architecture, we proposed a lightweight All-ConvNet. This new 

architecture consists solely of convolutional layers. This simple 

yet effective framework could learn neuromuscular activity 

from scratch and yield competitive or even state-of-the-art 

performance using a ≈12×smaller dataset while reducing the 

learning parameters from ≈5.63M to only ≈460k than the more 

complex state-of-the-art for sEMG-based gesture recognition.  

The All-ConvNet architectural design was adopted based on the 

following principles and observations:  

(i) We hypothesized that different hand gestures produce 

distinct spatial intensity distributions that remain consistent 

across multiple trials of the same gesture and 

distinguishable among different gestures. However, we 

observed that the spatial intensity distributions for the same 

gesture are not locally invariant, and the precise feature’s 

location are independent of the class labels. Fig. 2 

demonstrates a sequence of HD-sEMG images derived from 

the same class, along with a correlation heatmap of HD-

sEMG distributions (images) sampled equidistantly in time 

(e.g., each 20 ms) which demonstrates that the distributions 

are independent of the class labels. CNN alone has a 

remarkable capability to exploit locally translational 

invariance features by utilizing local connectivity and 

weight-sharing strategies [45]. On the other hand, the LCN 

layer fails to model the relations of parameters in different 

locations. Hence, the LCN layers are ablated in designing 

      
a) 

 
b) 

Fig. 2 HD-sEMGs derived from the same muscular activity class 

(a) and correlation heatmap of HD-sEMG distributions (b) which 

demonstrates that the distributions are independent to the class 

labels.  
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our All-ConvNet models as the location of the features is 

not dependent on the class labels.  

(ii) Inspired by previous work [46], we leverage the fact that if 

the part of the instantaneous HD-sEMG image is covered by 

the units in the topmost convolution layers could be large 

enough to recognize its content (i.e., the gesture class, we 

want to recognize). Consequently, the fully connected 

layers can also be replaced by simple 1-by-1 convolutions. 

This allows us to predict HD-sEMG image classes at 

different positions, and we can then average these 

predictions across the entire image. Hence, the proposed 

All-ConvNet can be very effective in addressing the 

electrode shift and positioning problem for sEMG-based 

gesture recognition, where the entire sEMG data stream for 

a particular gesture may not necessarily be required for 

recognition. Lin et al. [47], initially introduced this 

approach, which acts as an additional regularization 

technique due to the significantly fewer parameters of a 1-

by-1 convolution in comparison to a fully connected and 

LCN layers. Overall, our architecture is thus reduced to 

consist only of convolutional layers with ELU non-

linearities [48], [63] and a global average pooling (GAP) + 

SoftMax layer to produce predictions over the entire 

instantaneous HD-sEMG image. A conceptual diagram of 

our proposed pre-trained All-ConvNet is shown in Fig. 1(a). 

Table I describes our proposed All-ConvNet architecture. 

The feature maps learned by the proposed All-ConvNet are 

presented in Fig. 3.  

We train our proposed All-ConvNet for a multi-class sEMG-

based gesture recognition task, which involves recognizing a 

specific muscular activity class using an instantaneous HD-

sEMG image. As described in Table I, in the proposed All-

ConvNet network, we consider using 1-by-1 convolution at the 

top to produce 8 or 12 outputs (depending on the number of 

distinct movements performed). These outputs were then 

averaged across all positions and fed into a G-way SoftMax 

layer (where G is the number of distinct hand gesture classes) 

which produces a distribution over the class labels. In order to 

estimate the class probabilities, we use the SoftMax function 

𝜎(∙) with  𝑦̂(𝑗) representing the 𝑗th element of the 𝐺 dimensional 

output vector of the layer preceding the SoftMax layer, defined 

as below: 

 𝜎(𝑦̂(𝑗)) =
exp ( 𝑦̂(𝑗))

∑ exp ( 𝑦̂(𝐺))𝐺
 (1) 

The objective of this training is to maximize the probability of 

the correct gesture class. This is accomplished by minimizing 

the cross-entropy loss [49] for each training sample. When 𝑦 

represents the true label for a given input, the loss is computed 

as: 

 𝐿 =  − ∑ 𝑦(𝑗)ln (σ(𝑗 𝑦̂(𝑗)) (2) 

The loss is minimized over the parameters by computing the 

gradient of 𝐿 with respect to the parameters. These parameters 

are then updated using the state-of-the-art Adam (adaptive 

moment estimation) gradient descent-based optimization 

algorithm [50]. This algorithm provides fast and reliable 

learning convergence, unlike the stochastic gradient descent 

(SGD) optimization algorithm used in state-of-the-art pre-

trained networks for gesture recognition using instantaneous 

HD-sEMG image recognition. 

Once the network has been trained, an instantaneous HD-sEMG 

image is recognized as in the gesture class 𝐶 by simply 

propagating the input image forward and computing: 

 𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(𝑦̂(𝑗)) (3) 

V. TRANSFER LEARNING BY LEVERAGING LIGHTWEIGHT 

ALL-CONVNET (ALL-CONVNET+TL) 

In this section, we introduce some notations and definitions 

used in our transfer learning framework as in [51]. We denote 

the source domain data as 𝐷𝑠 = {(𝑥𝑠1 , 𝑦𝑠1), … , (𝑥𝑠𝑛𝑆
, 𝑦𝑠𝑛𝑆

 )}, 

where 𝑥𝑠𝑖 ∈ Χ𝑆 is the data instance and 𝑦𝑠𝑖 ∈ 𝑌𝑆 is the 

corresponding class label. In our sEMG-based gesture 

recognition example, 𝐷𝑠 can be a set of sEMG data of different 

gestures and their corresponding gesture class labels acquired 

by a single or multiple participants in a designated session. An 

objective function 𝑓𝑠(. ) can be learned using 𝐷𝑠 for the source 

task such that, 𝒯𝑠 = {𝑌𝑠, 𝑓𝑠(∑ 𝑤𝑆𝑖
𝑋𝑆 + 𝑏𝑖 )}. Similarly, we 

denote the target domain data as 𝐷𝑇 =

{(𝑥𝑇1, 𝑦𝑇1), … , (𝑥𝑇𝑛𝑇
, 𝑦𝑇𝑛𝑇

 )} and 𝒯𝑇 = {𝑌𝑇 , 𝑓𝑇(∑ 𝑤𝑇𝑖
𝑋𝑇 +𝑖

𝑏)}, where, 𝑥𝑇𝑖 ∈ Χ𝑇  and 𝑦𝑇𝑖 ∈ 𝑌𝑇 are the sEMG data of 

different gestures and their corresponding class labels 

respectively acquired by a distinct subject/participant at a  

different session than 𝐷𝑠. In most cases, the target domain data 

for a distinct participant acquired at another session is much 

lower quantities than that of a source domain data, i.e.  0 ≤
𝑛𝑇 ≪ 𝑛𝑠. 

 
(a) 

(b) 

Fig. 3. A schematic illustration of feature maps obtained by 

All-ConvNet before and after dimensionality reduction. (a) Feature 

maps and b) Feature maps after dimensionality reduction. 

TABLE I THE ALL-CONVNET NETWORK MODEL FOR 

NEUROMUSCULAR ACTIVITY RECOGNITION. 
All-ConvNet 

Input 16×16 Gray-level Image 

3 × 3 Conv.64 ELU 

3 × 3 Conv.64 ELU 

3 × 3 Conv. 64 ELU with stride r =2 

3× 3 Conv. 128 ELU 

3× 3 Conv. 128 ELU 

3× 3 Conv. 128 ELU with stride r =2 

1×1 Conv. 128 ELU 

1×1 Conv. 8 ELU 

global averaging over 4×4 spatial dimensions 

G-way SoftMax 
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Now we define our proposed transfer learning problem as 

follows– Given a source domain 𝐷𝑠 and a learning task 𝒯𝑠 as 

well as a target domain 𝐷𝑇  and learning task 𝒯𝑇, the transfer 

learning aims to help improve the learning of the target 

predictive function 𝑓𝑇(. ) in 𝐷𝑇  using the knowledge in 𝐷𝑠 and 

𝒯𝑠 , where, 𝐷𝑠 ≠  𝐷𝑇  , and 𝒯𝑠 = 𝒯𝑇. In our sEMG-based gesture 

recognition problem, the source and target task are the same. 

However, the data distribution between the source and the 

target domain might be different i.e., 𝐷𝑠 ≠  𝐷𝑇  due to factors 

described in section I. 

To mitigate these distribution shifts on the sEMG-based gesture 

recognition problem, we apply the transfer learning to our 

proposed lightweight All-ConvNet [27] and termed it as 

All-ConvNet+TL. In our setting, All-ConvNet+TL has a set of 

shared parameters 𝜃𝑠 (e.g., all the convolutional layers in 

All-ConvNet) and task-specific parameters for previously 

learned gesture recognition tasks 𝜃0 (e.g., the output layer of 

All-ConvNet for gesture recognition and its corresponding 

weights), and the task-specific parameters are randomly 

initialized for new target tasks 𝜃𝑛 (e.g., gesture recognition in a 

new session). Considering 𝜃0 and 𝜃𝑛 as classifiers that operate 

on features parameterized by 𝜃𝑠. Drawing motivation from [40], 

[65-66], in this work, we adopt the following approaches to 

learning 𝜃𝑛 while taking advantage of previously learned 𝜃𝑠, 

which is illustrated in Fig. 1: 

(i) Fine-tuning – involves optimizing 𝜃𝑠 and 𝜃𝑛 for the new 

target task, while keeping 𝜃0 fixed (as shown in Fig.1b). To 

prevent large drift in 𝜃𝑠, a low learning rate is usually used. 

It is possible to duplicate the original network and fine-tune 

it for each new target task to create a set of specialized 

networks. 

(ii) Feature Extraction – 𝜃𝑠 and 𝜃0 remain fixed and 

unchanged, while the outputs of one or more layers are used 

as features for the new target task in training 𝜃𝑛 (as shown 

in Fig. 1c). 

The most popular methodology for transfer learning is to 

duplicate the pre-trained network (i.e., initialize from pre-

trained weights) and fine-tune (train) the entire network for 

each new target task [62]. However, fine-tuning degrades 

performance on previously learned tasks from the source 

dataset because the shared parameters change without receiving 

new guidance for the source-task-specific prediction 

parameters. In addition, duplicating and fine-tuning all the 

parameters of a pre-trained model may also require a 

substantial amount of target task dataset. On the other hand, 

feature extraction usually underperforms on the target dataset 

because the shared parameters often fail to effectively capture 

some discriminative information that is crucial for the target 

task. To address this problem and find out a good trade-off 

between fine-tuning and feature extraction, we focus on 

answering the following research questions – Does feature 

reuse take place during fine-tuning or transfer learning? And if 

yes, where exactly is it in the network? We first conducted a 

preliminary weight (or feature) transfusion experiment, where 

we partially reused pre-trained weights to determine and isolate 

the locations where meaningful feature reuse occurs. We 

 
1 The dataset is made publicly accessible from the following website: http://zju-

capg.org/research_en_electro_capgmyo.html). 

perform this via a weight transfusion experiment by transferring 

a contiguous set of some of the pre-trained weights, randomly 

initializing the rest of the network, and training on the target 

task. We have found out that meaningful feature reuse is 

restricted to the lowest few layers of the network and is 

supported by gesture recognition accuracy and convergence 

speed (see Appendix A for details). Following the results of 

these weight (or feature) transfusion experiments, the part of the 

𝜃𝑠 (i.e., the first three convolutional layers of All-ConvNet) 

were frozen and used as a feature extractor and only 𝜃𝑠 in the 

top convolutional layers were fine-tuned. Hence, the proposed 

network model allows the target task to leverage complex 

features learned from the source dataset and make these features 

more discriminative for the target task by fine-tuning the top 

convolutional layers. These transfusion results suggest we 

propose hybrid and more flexible approaches to transfer 

learning (see Appendix B).  

VI. EXPERIMENTAL SETUP 

We evaluated our proposed approach on CapgMyo1 dataset [26] 

for studying and quantifying the effects of transfer learning on 

the smaller, simpler, and lightweight CNN. The CapgMyo 

dataset was developed to provide a standard benchmark 

database (DB) to explore new possibilities for studying and the 

development of cutting-edge muscle-computer interfaces 

(MCIs). The CapgMyo dataset includes HD-sEMG data for 128 

channels (electrodes) acquired from 23 able-bodied subjects 

ranging in age from 23 to 26 years, which encompasses the 

majority of the gestures (finger movements) encountered in 

activities of daily living (see in Appendix C). The sampling rate 

is 1000 Hz. It comprised 3 sub-databases as follows: 

(a) DB-a: contains 8 isometric and isotonic hand gestures 

obtained from 18 of the 23 subjects. Each gesture was 

performed and held for 3 to 10 s. 

(b) DB-b: contains the same gesture set as in DB-a but was 

obtained from 10 of the 23 subjects. Each gesture in DB-b 

was performed and held for approximately 3 seconds. In 

addition, every subject in DB-b contributed to two separate 

recording sessions (DB-b Session 1 and DB-b Session 2), 

with an inter-recording interval greater than 7 (seven) days. 

Inevitably, the electrodes of the array were attached at 

slightly different positions at subsequent recording sessions.  

(c) DB-c: contains 12 hand gestures (basic movements of the 

fingers) obtained from 10 of the 23 subjects. Each gesture 

in DB-c was performed and held for approximately 3 s as in 

DB-b.   

From the viewpoint of MCI application scenarios, the sEMG-

based gesture recognition can be categorized into three (3) 

scenarios:  

A. intra-session, in which a classifier is trained on the part of 

the data recorded from the subjects during one session and 

evaluated on another part of the data recorded from the 

same session,  

B. inter-session, in which a classifier is trained on the data 

recorded from the subjects in one session and tested on the 

data recorded in another session, and  
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C. inter-subject, when a classifier is trained on the data from 

a group of subjects and tested on the data from an unseen 

subject. 

 

All three sub-databases (DB-a, DB-b, and DB-c) were used for 

intra-session performance evaluation. Inter-session recognition 

of hand gestures based on sEMG typically suffers from 

electrode shift and positioning. Therefore, DB-b was used for 

inter-session performance evaluation. Finally, both DB-b 

Session 2 and DB-c were used for inter-subject performance 

evaluation.  

For CapgMyo database, first, the power-line interferences were 

removed from the acquired HD-sEMG signals using a 2nd order 

Butterworth filter with a band-stop range between 45 and 

55 Hz. Then, the HD-sEMG signals were arranged in a 2-D grid 

according to their electrode positioning at each sampling 

instant. Afterward, this grid was transformed into an 

instantaneous sEMG image by linearly converting the values of 

sEMG signals from 𝑚𝑉 to color intensity as [−2.5𝑚𝑉, 2.5𝑚𝑉] 
to [0 255]. As a result, instantaneous grayscale sEMG images 

with a size of 16 × 8 matrices were obtained. To facilitate GAP, 

we enhance the input HD-sEMG image size from 16×8 to 

16×16 using horizontal mirroring. Unlike [21], this 

enhancement does not increase the learning parameters in the 

proposed All-ConvNet.   

For pre-training our proposed original model All-ConvNet, the 

following configurations were adopted as in [27], the 

connection weights for All-ConvNet network architecture were 

randomly initialized using Xavier initialization scheme [52], 

[53] and the network was trained using Adam optimization 

algorithm [50]. The momentum decay and scaling decay were 

initialized to 0.9 and 0.999, respectively. In contrast to SGD 

employed in [21], [23], and [26], Adam is an adaptive learning 

rate algorithm, therefore it requires less tuning of the learning 

rate hyperparameter. For all our experiments, the learning rate 

of 0.001 was initialized, and smaller batches of 256 randomly 

chosen samples from the training dataset were fed to the 

network during consecutive learning iterations. We set a 

maximum of 100 epochs for training our All-ConvNet model. 

However, to prevent overfitting, we applied early stopping [54], 

which interrupts the training process if no improvements in 

validation loss are observed for 5 consecutive epochs. Batch 

normalization [55] was applied after the input and before each 

non-linearity. To further regularize the network, Dropout [56] 

was applied to all layers with a probability of 25%. The 

All-ConvNet model was trained on a workstation with an 

Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz processor, 

32 GB RAM, and an NVIDIA RTX 2080 Ti GPU. Each epoch 

was completed in approximately 6 s for a test on intra-session 

gesture recognition. The average inference time per HD-sEMG 

sample is ≈0.0929 ms on the above-mentioned computational 

set up. We have also implemented the state-of-the-art network 

architecture [21] for a fair comparison with our proposed 

lightweight sEMG-based gesture recognition algorithm. 

However, we have adopted the same network initialization 

method, optimization algorithm, and training paradigm as 

illustrated in [21]. 

 

VII. EXPERIMENTAL RESULTS 

The sEMG-based gesture recognition methods in the literature 

have usually been investigated in intra-session scenarios [21], 

[23], [24], [36] and [61]. However, in this work, we evaluated 

the performance of our proposed sEMG-based gesture 

recognition algorithm by leveraging lightweight All-ConvNet 

and transfer learning in inter-session and inter-subject scenarios 

in addition to intra-session gesture recognition. In the following 

subsections, we evaluated the performance of our proposed 

lightweight gesture recognition algorithms. We compared them 

with the state-of-the-art, more complex methods in the above-

mentioned three different scenarios. 

A. Intra-Session Performance Evaluation 

 In this section, we evaluated the performance of sEMG-based 

gesture recognition in the intra-session scenario. In this 

scenario, usually, the data variation comes from the difference 

between the trials and repetitions of the hand/finger gestures 

performed by an individual. To mitigate this data variations or 

distribution time shift caused by the repetitions of the gestures 

in multiple trials in the same session, the state-of-the-art 

methods performed pre-training their proposed CNN using half 

of the training data from all the participated subjects (e.g., 18 in 

DB-a) in the data collection process. Then, the pre-trained 

model was fine-tuned using the training data from the target 

subject for the subject-specific classifier development. The 

major drawback of this approach [21] is that the same training 

data used for fine-tuning was also seen during pre-training. 

However, in [27], we argued that the proposed lightweight 

All-ConvNet trained from scratch using random initialization 

has the great ability to model these distribution shifts caused by 

the repetitions of hand gestures across multiple trials within the 

same session. In that setting, we proposed designing and 

developing a subject-specific individualized classifier using 

only the sEMG data available for an individual subject while 

executing a target task without pre-training. For example, in 

CapgMyo DB-a and DB-b, eight (8) isotonic and isometric 

hand gestures were performed by an individual subject. Each 

gesture was also trialed and recorded 10 times with a 1000 Hz 

sampling rate. Thus, an individual subject generates 

(8×10×1000 = 80,000) instantaneous sEMG images. In 

CapgMyo DB-c, an individual performed twelve (12) basic 

movements of the fingers, and hence it generates 

(12×10×1000 = 120,000) instantaneous sEMG images. For 

performance evaluation of the proposed subject-specific 

lightweight All-ConvNet, a leave-one-trial-out cross-validation 

was performed, in which each of the 10 trials was used in turn 

as the test set, and the proposed lightweight All-ConvNet was 

trained and validated using the remaining 9 trials. This entire 

paradigm of training and testing process is illustrated in Fig. 1a, 

which shows that only the trained model (without any feature 

reuse from the pre-trained model) is used for gesture 

recognition. It is noteworthy that, in [27], we conducted 

experiments only on the CapgMyo DB-a and reported and 

compared the results with the state-of-the-art for sEMG-based 

gesture recognition because the maximum number of subjects 

(18) participated in DB-a. However, in this work, we extended 

our experiments on the CapgMyo DB-b and DB-c, respectively. 

Table II presents the gesture recognition results for the 



9 

                     

 

 

proposed lightweight All-ConvNet and compares them with the 

state-of-the-art methods.  

As can be seen in Table II, the proposed lightweight All-

ConvNet (with around 0.46 million learning parameters) 

consists of a stack of 3×3 convolutional layers with occasional 

subsampling by a stride of 2. It is trained from random 

initialization and outperformed the state-of-the-art, more 

complex GengNet [21], [23], [24], [26] and [61] on the 

CapgMyo DB-b Session 1 and Session 2 datasets, respectively, 

and performs comparably to the S-ConvNet [25]. Additionally, 

the lightweight All-ConvNet performs very competitively or on 

par with the GengNet [21] and S-ConvNet [25] on the 

CapgMyo DB-a and CapgMyo DB-c datasets, respectively. 

Fig. 4 (a)-(d) presents the sEMG-based instantaneous (or per-

frame) gesture recognition accuracies and their statistical 

significance obtained through leave-one-trial-out cross-

validation for ten different test trials for each of the participating 

subjects in CapgMyo DB-a, DB-b, and DB-c, respectively. The 

highest instantaneous (or per-frame) gesture recognition 

accuracies were 86.73% for DB-a, 81.95% and 83.36% for 

DB-b (Session 1 and Session 2, respectively), and 80.91% for 

DB-c. Which were obtained with the proposed lightweight 

All-ConvNet. The high per-frame gesture recognition 

accuracies and low standard deviation over multiple test trials 

and subjects in each of the four HD-sEMG datasets mentioned 

above reflect the high stability of the proposed lightweight 

All-ConvNet.  

In addition, based on a simple majority voting algorithm, we 

have obtained very good gesture recognition accuracies. Fig. 5 

(a)-(d) presents gesture recognition accuracy with different 

voting windows using lightweight All-ConvNet. The average 

gesture recognition accuracy of 94.56% and 95.99% were 

achieved by a simple majority voting with 32 and 64 

instantaneous images (or frames) for the above four (4) HD-

sEMG datasets.  

The higher gesture recognition accuracies of 98.02%, 97.52%, 

96.80%, and 95.76% (as shown in Table II and Fig. 5) can be 

obtained by the proposed lightweight All-ConvNet and a simple 

majority voting over the recognition result of 160 frames for 

DB-a, DB-b (Session 1 and Session 2) and DB-c, respectively.  

These outstanding results confirm that the proposed lightweight 

All-ConvNet is highly effective for learning all the invariances 

for low-resolution instantaneous HD-sEMG image recognition 

and hence seem to be enough to address the problem of 

employing high-end resource-bounded fine-tuned pre-trained 

networks for low-resolution instantaneous HD-sEMG image 

recognition. 

Table II also includes average run-time for training, validation 

and inference for an intra-subject test. For a fair run-time 

comparison, each of the compared models was trained for 100 

epochs on the same size of the input HD-sEMG image and early 

stopping [56] was applied while training all the compared 

models. The proposed lightweight All-ConvNet exhibits 

TABLE II. THE AVERAGE RECOGNITION ACCURACIES (%) OF 8 HAND 

GESTURES FOR CAPGMYO DB-A AND DB-B FOR 18 AND 10 

DIFFERENT SUBJECTS RESPECTIVELY AND 12 GESTURES FOR 10 

DIFFERENT SUBJECTS IN DB-C. THE NUMBERS ARE MAJORITY VOTED 

RESULTS USING 160 MS WINDOW (I.E., 160 FRAMES). PER-FRAME 

ACCURACIES ARE SHOWN IN PARENTHESIS. 

Model 
S-ConvNet 

[25] 

W.Geng et. 

al., [21] 

All-ConvNet 

(proposed) 

CapgMyo DB-a 98.36 (87.95) 98.48 (86.92) 98.02 (86.73) 

CapgMyo DB-b Session 1 97.87 (83.57) 97.04 (81.26) 97.52 (81.95) 

CapgMyo DB-b Session 2 97.05 (84.73) 96.26 (83.21) 96.80 (83.36) 

CapgMyo DB-c 95.80 (81.63) 96.36 (82.23) 95.76 (80.91) 

#Learning Parameters ≈ 2.09 𝑀 ≈ 5.63 𝑀 ≈ 𝟎. 𝟒𝟔 𝑴 

Avg-run time (s) 191.29 804.66 224.33 

 

 
(a) CapgMyo DB-a. 

 

 
(b) CapgMyo DB-b (Session 1). 

 

 
(c) CapgMyo DB-b (Session 2). 

 

 
 (d) CapgMyo DB-c. 

Fig 4 The per-frame gesture recognition accuracy with our 

proposed lightweight All-ConvNet, a) the recognition accuracy of 

8 hand gestures for 18 different subjects on CapgMyo DB-a, b) and 

c) The gesture recognition accuracy of 8 hand gestures for 10 

different subjects on CapgMyo DB-b (Session 1) and DB-b 

(Session 2), respectively, and d) the gesture recognition accuracy 

of 12 hand gestures for 10 different subjects on CapgMyo DB-c. 
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superior run-time performance compared to the state-of-the-art 

methods. 

B. Inter-Session Performance Evaluation  

In this section, we evaluated the performance of sEMG-based 

gesture recognition in the inter-session scenario. In this 

scenario, there is still the intra-session variability discussed in 

the previous section, in addition to the extent of data variability, 

which comes from the differences between the recording 

sessions. The sensor placement may have some spatial shifts 

and/or rotations at each recording session. These differences in 

sensor placement and/or rotations may cause spatial shifts in the 

distributions of the sEMG sensor data. To address this spatial 

shift problem, currently [26] and [57] provide a state-of-the-art 

solution in the CapgMyo dataset. Du et al. [26] proposed a 

multi-source extension to classical AdaBN [37] for domain 

adaptation. However, when dealing with multiple sources (i.e., 

multiple subjects), specific constraints and considerations must 

be imposed for each source during the model's pre-training 

phase [57]. Ketyko et al. [57] introduced a 2-Stage recurrent 

neural network (2SRNN) involving pre-training a deep stacked 

RNN sequence classifier on the source dataset, freezing its 

weights, and simultaneously training a supervised fully 

connected layer without a non-linear activation function on the 

target dataset for domain adaptation. However, ConvNet is 

more powerful at extracting discriminative features than RNN, 

even for classification tasks of long sequences [58], [59]. 

In addition, it is noteworthy that the domain adaptation was 

conducted in unsupervised and semi-supervised settings [26]. 

However, very low gesture recognition accuracies were 

reported in [26] in both inter-session and inter-subject 

scenarios. On the other hand, [57] performed domain adaptation 

in supervised settings and demonstrated state-of-the-art results 

on the CapgMyo dataset. Therefore, for a fair comparison with 

the state-of-the-art, we performed domain adaptation in a 

supervised manner in all the compared methods. Moreover, it 

might be an interesting question why we chose to compare the 

performance of our proposed lightweight All-ConvNet+TL 

with the CNN models, proposed in [21] and [26]. To the best of 

our knowledge, the base CNN models proposed in [21] and [26] 

were also adapted in [23], [24], and [61], respectively, and 

reported state-of-the-art results on various sEMG-based gesture 

recognition tasks and datasets. 

Experiments conducted on inter-session and inter-subject 

settings; we have shown that our proposed lightweight 

All-ConvNet+TL leveraging transfer learning (illustrated in 

Section V) outperformed these above-mentioned state-of-the-

art solutions. We evaluated inter-session gesture recognition for 

CapgMyo DBb, in which the model was trained using data 

recorded from the first session and evaluated using data 

recorded from the second session. It is worth mentioning that 

without transfer learning or domain adaptation, the state-of-the-

art models, as well as our proposed models achieved less than 

or approximately 50% average gesture recognition accuracy on 

CapgMyo datasets in both inter-session and inter-subject 

scenarios. This level of recognition accuracy is not enough for 

a usable system (defined as <10% error [60]). Therefore, 

domain adaptation or transfer learning must be introduced to 

these (inter-session and inter-subject) settings for acceptable 

 
a) 

 
b) 

 
c) 

 
d) 

Fig 5 Surface EMG gesture recognition accuracy with different 

voting windows using the proposed lightweight All-ConvNet and 

compared with the state-of-the-art methods: a) the recognition 

accuracy of 8 hand gestures for 18 different subjects on CapgMyo 

DB-a, and the gesture recognition accuracy of 8 hand gestures for 

10 different subjects on CapgMyo for b) DB-b Session 1 and c) 

DB-b Session 2, and d) the recognition accuracy of 12 hand 

gestures for 10 different subjects on DB-c. 
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performance. However, the most significant question is how 

much training data is required for adaptation on the target 

domain to obtain a stable gesture recognition accuracy. To  

address this question, we limited the available training data to 

20% (T1), 40% (T2), 60% (T3), 80% (T4), and 100% (T5) of 

the total 5 trials used for domain adaptation (the remaining 5 

trials are kept for validation). For fair comparison and 

complying with the state-of-the-art, we ran our domain 

adaptation for 100 epochs. Table III presents the inter-session 

average gesture recognition accuracies (%) of 8 hand gestures 

for 10 different subjects respectively for CapgMyo DB-b and 

compared with the state-of-the-art methods.  

Our proposed lightweight All-ConvNet+TL leverages transfer 

learning to enhance inter-session gesture recognition, achieving 

an 11.11% improvement compared to 2SRNN [57] and a 6.43% 

improvement compared to GengNet [21][26] when all available 

5 trials are used for adaptation (as shown in Table III, column-

T5). We also compared our proposed lightweight All-

ConvNet+TL with the state-of-the-art GengNet [21][26] in a 

data-starved condition. The proposed lightweight All-

ConvNet+TL shows even more significant improvement over 

the state-of-the-art when a limited number of trials are available 

for adaptation, as seen in Table III, Columns- T1, T2, T3, and 

T4, respectively. For example, the proposed lightweight All-

ConvNet+TL achieved a 7.94% improvement over GengNet 

[21][26] when only 20% of the data (i.e., 1 trial) was available 

for adaptation (Table III, Column- T1). 

C. Inter-Subject Performance Evaluation 

In this section, we evaluated the performance of sEMG-based 

gesture recognition in the inter-subject scenario. In this 

scenario, the data variability comes from the variation in muscle 

physiology between different subjects. In this experiment, we 

evaluated the inter-subject recognition of 8 gestures using the 

second recording session of CapgMyo DB-b and the 

recognition of 12 gestures using CapgMyo DB-c. We 

performed a leave-one-subject-out cross-validation, in which 

each of the subjects was used in turn as the test subject, and a 

lightweight All-ConvNet was pre-trained using the data of the 

remaining subjects. Then, this pre-trained All-ConvNet model 

was deployed, and adaptation was made on the data from the 

odd numbers of trials of the test subjects by leveraging transfer 

learning or domain adaptation. Finally, the adapted model was 

evaluated and tested using the data from the even number of 

trials of the test subject. We limited the available training data 

to 20%, 40%, 60%, 80%, and 100% of the total 5 trials used for 

domain adaptation (the remaining 5 trials are kept for 

validation). Table IV presents the average recognition 

accuracies (%) of 8 and 12 hand gestures for CapgMyo DB-b 

and DB-c for 10 subjects, respectively. 

As can be seen from Table IV, our proposed lightweight All-

ConvNet+TL, by leveraging transfer learning, outperformed 

the state-of-the-art methods in the inter-subject scenario on both 

CapgMyo DB-b and CapgMyo DB-c datasets, respectively. Our 

proposed lightweight All-ConvNet+TL demonstrates an 

improvement of 5.04% and 6.17% compared to 2SRNN [57], 

and 3.58% and 1.85% compared to GengNet [21][26] on 

CapgMyo DB-b and CapgMyo DB-c datasets, respectively 

when all available 5 trials are used for adaptation (as shown in 

Table IV, column-T5 for both CapgMyo DB-b and CapgMyo 

DB-c). 

Similar to the inter-session scenario, we also compared our 

proposed lightweight All-ConvNet+TL in the inter-subject 

scenario with the state-of-the-art GengNet [21], [26] in a data-

starved condition. The proposed lightweight All-ConvNet+TL 

exhibits improvement over the state-of-the-art on CapgMyo 

DB-b and CapgMyo DB-c datasets when a limited number of 

trials are available for adaptation, as observed in Table IV, 

specifically in Columns T1, T2, T3, and T4, respectively. For 

example, when only 20% of the data (i.e., 1 trial) was available 

for adaptation, the proposed lightweight All-ConvNet+TL 

achieved a 3.53% and 1.07% improvement over GengNet [21], 

[26] on CapgMyo DB-b and CapgMyo DB-c, respectively 

(Table IV, Column- T1). 

We summarise the inter-session and inter-subject improvement 

results in Table V over the state-of-the-art methods. As 

indicated there, the performance of the proposed lightweight 

All-ConvNet+TL is superior in all cases. The improvement 

achieved by the lightweight All-ConvNet+TL leveraging 

transfer learning in inter-session and inter-subject scenarios, 

exceeds those obtained through alternative state-of-the-art 

domain adaptation approaches. 

Finally, we evaluate the performance of our proposed 

lightweight All-ConvNet+TL while freezing its maximum 

number of layers and use them as a feature extractor, and only 

the top convolutions layers are fine-tuned in the adaptation 

stage for inter-session and inter-subject gesture recognition. 

More explicitly, the first six (6) convolutional layers of the 

lightweight All-ConvNet+TL were frozen and used as a feature 

extractor. Only the top two convolutional layers with a few 

parameters were fine-tuned in the adaptation stage. Therefore, 

TABLE III. INTER-SESSION GESTURE RECOGNITION ACCURACIES ON 

CAPGMYO DB-B.   THE AVERAGE RECOGNITION ACCURACIES (%) OF 8 

HAND GESTURES FOR 10 DIFFERENT SUBJECTS RESPECTIVELY. THE 

NUMBERS ARE THE MAJORITY VOTED RESULTS USING 150 MS WINDOW 

(I.E., 150 FRAMES). 

Methods 
Number of available trials for adaptation 

   T1   T2    T3    T4  T5 

Du et. al. [21][26] 67.97 81.77 86.02 88.10 88.48 

2SRNN [57]  -  -  -  - 83.80 

All-ConvNet+TL 

(Proposed) 
75.91 89.61 92.74 93.46 94.91 

 

TABLE IV. INTER-SUBJECT GESTURE RECOGNITION ACCURACIES. THE 

AVERAGE RECOGNITION ACCURACIES (%) OF 8 HAND GESTURES FOR 

CAPGMYO DB-B AND 12 HAND GESTURES FOR CAPGMYO DB-C FOR 10 

DIFFERENT SUBJECTS RESPECTIVELY. THE NUMBERS ARE THE MAJORITY 

VOTED RESULTS USING 150 MS WINDOW (I.E., 150 FRAMES). 

Methods 

CapgMyo DB-b 

Number of available trials for adaptation 

T1 T2 T3 T4 T5 

Du et. al. [21],[26] 71.81 86.52 88.66 90.32 91.36 

2SRNN [57] - - - - 89.90 

All-ConvNet+TL 

(Proposed) 
75.34 89.42 92.09 93.83 94.94 

 CapgMyo DB-c 

Du et. al. [21],[26] 57.40 75.98 82.51 85.98 88.02 

2SRNN [57] - - - - 85.40 

All-ConvNet+TL 
(Proposed) 

58.47 78.89 86.02 89.99 91.57 
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these experiments can be considered as a full feature extraction 

setting. The performance of these full feature extraction settings 

was compared with the more complex computationally 

expensive 2SRNN [57] method. A deep-stacked RNN classifier 

was also used as a feature extractor by freezing its weight in the 

domain adaptation stage. Table VI presents the inter-session 

and inter-subject average gesture recognition accuracies (%) of 

8 and 12 hand gestures for CapgMyo DB-b and DB-c for 10 

subjects, respectively. As can be seen from Table VI, our 

proposed lightweight All-ConvNet+TL clearly outperforms the 

2SRNN [57] in both inter-session and inter-subject gesture 

recognition accuracy. These experimental results indicate that 

the proposed lightweight All-ConvNet+TL is very effective for 

discriminative feature extraction for improved gesture 

recognition in both inter-session and inter-subject scenarios. 

VIII. DISCUSSION 

We address the problem of distribution shifts by adapting a 

lightweight model to new target domain tasks using a limited 

amount of data for sEMG-based inter-session and inter-subject 

gesture recognition. We propose All-ConvNet+TL leveraging 

lightweight All-ConvNet and transfer learning, which can be 

seen as a hybrid of feature extraction and fine-tuning, learning 

parameters that are discriminative for the new target task. We 

show the effectiveness of our method by conducting extensive 

experiments on CapgMyo and its four (4) publicly available 

HD-sEMG sub-datasets for three (3) different sEMG-based 

gesture recognition tasks, including intra-session, inter-session, 

and inter-subject scenarios. The results indicate that our 

proposed lightweight All-ConvNet and All-ConvNet+TL 

models outperform the more complex state-of-the-art models 

on various tasks and datasets.  

In intra-session scenarios, the proposed lightweight All-

ConvNet (size of only 0.46 M learning parameters), which 

consists of a network using nothing, but convolutions and 

subsampling outperformed the most complex state-of-the-art 

GengNet [21], [26] (size of 5.6M parameters) on CapgMyo 

DB-b (Session 1 and Session 2) dataset, respectively and 

performed on par with or very competitively on CapgMyo DB-

a and CapgMyo DB-c, respectively. The high intra-session 

gesture recognition accuracies of 98.02%, 97.52%, 96.80%, and 

95.76% were obtained by the proposed lightweight 

All-ConvNet using a simple majority voting over the 

recognition result of 160 instantaneous images (or frames) for 

DB-a, DB-b (Session 1 and Session 2) and DB-c, respectively. 

For gesture recognition in inter-session and inter-subject 

scenarios, we apply transfer learning to our proposed 

lightweight All-ConvNet. Our proposed method All-

ConvNet+TL leveraging the lightweight All-ConvNet and 

transfer learning outperforms the current state-of-the-art 

methods by a large margin, both when the data from single 

trials or multiple trials are available for fine-tuning and 

adaptation.  

We achieved state-of-the-art performance for inter-session and 

inter-subject scenarios. The inter-session gesture recognition 

accuracy reached 94.1% on CapgMyo DB-b, which is 

approximately 11.11% and 6.43% higher than the current state-

of-the-art [57] and [21][26], respectively.  

In addition, the inter-subject gesture recognition accuracy 

reached 94.94% and 91.57% on CapgMyo DB-b and DB-c, 

respectively, which is 5.04% and 6.17% higher than [57] and 

3.58% and 3.55% higher than the [21], [26] respectively. 

Moreover, the proposed lightweight models achieved state-of-

art performance under full feature extraction settings in both 

inter-session and inter-subject scenarios.  

These outstanding state-of-the-art inter-session and inter-

subject gesture recognition performance achieved by the 

proposed lightweight All-ConvNet+TL models by leveraging 

transfer learning validates that the proposed method is highly 

effective in learning invariant and discriminative 

representations to overcome the distribution shift caused by 

inter-session and inter-subject data variability. This potentially 

indicates that the current state-of-the-art models are 

overparameterized for the sEMG-based gesture recognition 

problem. 

Furthermore, the current most complex state-of-the-art models 

[21], [26], [57] are computationally expensive and require a 

huge memory space to store a massive number of parameters. 

Therefore, these models are usually unsuitable for deploying 

low-end, resource-constrained embedded and mobile devices 

for real-time MCI applications. Thanks to the proposed 

parameter-efficient All-ConvNet and All-ConvNet+TL, our 

model is much smaller and lightweight than these current state-

of-the-art methods for sEMG-based gesture recognition.   

Finally, the new experimental evidence of our proposed method 

about various sEMG-based gesture recognition tasks and its 

role will shed light on potential future directions for the 

community to move forward for more efficient lightweight 

model exploration. 

IX. CONCLUSION 

For real-time Muscle-Computer Interfaces, the sEMG-based 

gesture recognition must address the inter-session and inter-

subject distribution shifts. To address and overcome these 

distribution shifts, we investigate the effects of transfer learning 

and feature reuse on our proposed lightweight All-ConvNet. 

We discovered that the proposed lightweight All-ConvNet+TL, 

which leverages transfer learning in the inter-session and inter-

subject scenarios outperforms the most complex state-of-the-art 

TABLE V. INTER-SESSION AND INTER-SUBJECT IMPROVEMENT (%) 

RESULTS OBTAINED BY THE PROPOSED LIGHTWEIGHT 

ALL-CONVNET+TL LEVERAGING TRANSFER LEARNING. 

Methods 
Inter-session improvement Inter-subject improvement 

DB-b DB-b DB-c 

Du et. al. [21][26] 6.43 3.58 3.55 

2SRNN [57] 11.11 5.04 6.17 

 
TABLE VI. INTER-SESSION AND INTER-SUBJECT GESTURE 

RECOGNITION ACCURACIES (%) UNDER FULL FEATURE EXTRACTION 

SETTING. 

Methods 
Inter-session Inter-subject  

DB-b DB-b DB-c 

2SRNN [57] 83.80 89.90 85.40 

All-ConvNet+TL 

(Proposed) 
91.93 91.56 85.56 
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domain adaptation methods by a large margin, both when the 

data from single trials or multiple trials are available for 

adaptation. The state-of-the-art performance proved that the 

proposed lightweight All-ConvNet+TL model is highly 

effective in learning invariant and discriminative 

representations for addressing distribution shifts in sEMG-

based inter-session and inter-subject gesture recognition. This 

raises the question and provides evidence of 

overparameterization of the most complex current state-of-the-

art models for sEMG-based gesture recognition tasks. We also 

find that significant feature reuse concentrated in lower layers 

and explored more flexible and hybrid transfer approaches, 

which retain transfer benefits and create new possibilities. In 

future work, we plan to deploy our proposed lightweight All-

ConvNet and All-ConvNet+TL model for sEMG-based real-

time adaptive and intuitive control of an active prosthesis. 

Appendix to “Surface EMG-Based Inter-Session/Inter-

Subject Gesture Recognition by Leveraging Lightweight 

All-ConvNet and Transfer Learning.” 

A. Weight (or Feature) Transfusion Experiments 

In this section, we investigate to identify locations where 

exactly in the network meaningful feature reuse takes place 

during transfer learning by conducting a weight (or feature) 

transfusion experiment. We initialize our proposed lightweight 

All-ConvNet+TL with a contiguous subset of the layers using 

pre-trained weights (weight transfusion), and the rest of the 

network randomly, and train on the target inter-session gesture 

recognition task. More explicitly, we initialize only up to layer 

L with pretrained lightweight All-ConvNet+TL weights, and 

layer L+1 onwards randomly; then train only layers L+1 

onwards. Since, the weight transfusion process uses pre-trained 

weights, it can accelerate the training during fine-tuning of a 

network on the target task. Therefore, the learning speed was 

measured in terms of gesture recognition performance on 

various training epochs. Table VII presents the inter-session 

gesture recognition accuracy of a subject against various 

training epochs for different number of transfused weights. We 

show the learning speed and gesture recognition accuracy when 

transfusing from Conv1 (L-7, one layer) up to Conv8 (i.e., layer 

L-7 to layers L-full transfer). From the weight transfusion 

results, our proposed lightweight All-ConvNet+TL model 

perform quite stably over the different number of transfused 

weights. However, we observed that reusing the lowest layers 

(transfusing weights) leads to the greatest gain in learning speed 

and gesture recognition accuracy. For example, transfusing 

weights from layer L-7 (Conv1) up to layer L-5 (Conv3), we 

achieve ≈ 98% recognition accuracy after just 8 (eight) 

training epochs. 

B. Lightweight All-ConvNet Network Trimming 

These weight transfusion results (Appendix A) motivate us to 

explore hybrid approaches to transfer learning, thereby, we 

introduce network trimming which further optimizes the 

proposed lightweight All-ConvNet+TL by pruning the weights 

of the network. We consider reusing pre-trained weights up to 

Conv3 (i.e., weights of layers L-7 to layers L-5 showed in 

Table VII) and the weights of the top of the lightweight 

All-ConvNet (i.e., from layers Conv4 (L-4) to Conv7 (L-1)) 

was pruned by halves to be even more lightweight and 

initializing these layers randomly. Finally, this new 

Lightweight All-ConvNet-Slim model was trained or fine-

tuned on the target inter-session gesture recognition task. 

Table VIII presents the inter-session gesture recognition 

accuracy of a subject against various training epochs, which 

compares the performance of Lightweight All-ConvNet+TL vs 

Lightweight All-ConvNet-Slim model. The experimental 

results demonstrates that the lightweight All-ConvNet-Slim 

model can maintain the same or achieve higher performance 

with much smaller number of parameters. These results with 

variants of Lightweight All-ConvNet+TL model also highlight 

many new, rich and flexible ways to use transfer learning. The 

preprint version of this paper has been made publicly available 

in [67]. 

C. Gestures and the muscles involved in CapgMyo datasets 

Tables IX and X illustrate gestures and all the muscles involved 

in CapgMyo DB-a, DB-b and DB-c respectively [26].  

TABLE VIII. LEARNING (OR CONVERGENCE) SPEED USING VARIOUS 

TRAINING EPOCHS. TABLE SHOWS INTER-SESSION GESTURE 

RECOGNITION ACCURACIES (%) ON TEST SET. THE NUMBERS ARE 

MAJORITY VOTED RESULTS USING 150 MS WINDOW (I.E., 150 

FRAMES). PER-FRAME ACCURACIES ARE SHOWN IN PARENTHESIS. 

Model 
# learning 

parameters 

Training epochs 

8 16 24 32 

Lightweight  

All-ConvNet+TL 

(Proposed) 

≈ 0.46 𝑀 
96.00 

(71.56) 

96.60 

(74.79) 

97.60 

(76.92) 

97.69 

(77.68) 

Lightweight  

All-ConvNet-Slim 

(Proposed)   

≈ 𝟎. 𝟏𝟗 𝑴 
91.92 

(68.98) 

96.90 

(73.70) 

98.28 

(75.98) 

98.50 

(77.47) 

  

 
 

TABLE VII. LEARNING (OR CONVERGENCE) SPEED USING VARIOUS 

TRAINING EPOCHS. TABLE SHOWS INTER-SESSION GESTURE 

RECOGNITION ACCURACIES (%) ON TEST SET. THE NUMBERS ARE 

MAJORITY VOTED RESULTS USING 150 MS WINDOW (I.E., 150 

FRAMES). PER-FRAME ACCURACIES ARE SHOWN IN PARENTHESIS. 

Weight 

transfusion 

(up to layers) 

Training epochs 

 8 16 32 46 64 100 

Full Transfer 

(L) 

70.90 

(64.56) 

81.74 

(67.84) 

83.20 

(68.35) 

83.08 

(68.33) 

83.21 

(68.47) 

83.60 

(68.52) 

L-1 
87.42 

(72.28) 

88.21 

(73.53) 

90.14 

(74.43) 

90.01 

(74.55) 

89.85 

(74.94) 

90.39 

(75.13) 

L-2 
90.24 

(76.35) 

93.60 

(78.17) 

93.94 

(79.62) 

94.22 

(80.08) 

94.50 

(80.47) 

94.18 

(81.36) 

L-3 
95.01 

(79.48) 

95.96 

(81.53) 

96.42 

(83.23) 

96.71 

(83.22) 

96.99 

(83.97) 

98.28 

(84.67) 

L-4 
96.10 

(81.87) 

97.71 

(82.59) 

98.21 

(85.10) 

97.92 

(86.17) 

97.96 

(86.37) 

98.59 

(87.06) 

L-5 
97.96 

(83.14) 

98.40 

(84.888) 

99.12 

(87.00) 

99.12 

(86.99) 

99.28 

(87.86) 

99.35 

(88.30) 

L-6 
98.34 

(82.93) 

97.76 

(85.48) 

99.26 

(87.24) 

98.85 

(87.56) 

99.27 

(87.79) 

99.25 

(88.68) 

L-7 
98.10 

(83.33) 

98.74 

(84.34) 

98.93 

(86.08) 

99.41 

(87.22) 

99.32 

(88.04) 

99.32 

(88.21) 
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AND ISOMETRIC HAND CONFIGURATIONS) 

 

1. Thumb up 

 

5. Abduction of all fingers 

 
2. Extension of index and 

middle, flexion of the 

others  

6. Fingers flexed together 

in fist 
 

3. Flexion of ring and little 

finger, extension of the 

others  

7. Pointing index 

 

4. Thumb opposing base of 

little finger 
 

8. Adduction of extended 

fingers 

 
 

TABLE X. GESTURES IN CAPGMYO DB-C (12 BASIC MOVEMENTS OF 

THE FINGERS) 

 

1. Index flexion 

 
5. Ring flexion 

 

9. Thumb 

adduction 
 

2 Index 

extension 
 

6. Ring 

extension 
 

10. Thumb 

abduction 
 

3. Middle 

flexion 
 

7. Little finger 

flexion 
 

11. Thumb 

flexion 
 

4. Middle 

extension 
 

8. Little finger 

extension 
 

12. Thumb 

extension 
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