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Abstract—Change detection in remote sensing aims to con-
sistently track alterations in specific regions over time. While
current methods employ hierarchical architectures to analyze se-
mantic details, they often miss crucial changes across different se-
mantic levels, resulting in partial representations of environmen-
tal shifts. Addressing this, we propose AdaptFormer, uniquely
designed to adaptively interpret hierarchical semantics. Instead
of a one-size-fits-all approach, it strategizes differently across
three semantic depths: employing straightforward operations for
shallow semantics, assimilating spatial data for medium semantics
to emphasize detailed interregional changes, and integrating
cascaded depthwise attention for in-depth semantics, focusing on
high-level representations. The experimental evaluations reveal
that AdaptFormer surpasses many leading benchmarks, showcas-
ing exceptional accuracy on LEVIR-CD and DSIFN-CD datasets.
AdaptFormer showcases impressive performance with F1 and
IoU scores of 92.65% and 86.31% on the LEVIR-CD dataset,
and 97.59% and 95.29% on the DSIFN-CD dataset, respectively.
https://github.com/aigzhusmart/AdaptFormer

Index Terms—Change Detection, Hierarchical Representation
Learning, Remote Sensing, Representation Fusion, Deep Learn-
ing

I. INTRODUCTION

Change detection (CD) has emerged as a crucial field of
remote sensing (RS), primarily focusing on the systematic
identification of alterations within a region [1], [2]. This identi-
fication is realized through the comparative analysis of images
captured at distinct temporal intervals [3]. By leveraging the
concept of binary labeling for each pixel, CD techniques
facilitate the automated extraction of pertinent information [4].
The strength of contemporary CDs largely stems from their
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ability to extract and compare semantic information [5]. This
process empowers the techniques to identify, characterize, and
comprehend changes within remote sensing data. The insights
gleaned from this process are invaluable, driving informed
decision-making across a plethora of applications, including
urban development [6], disaster management [7], deforestation
[8], environmental surveillance [9], [10], et al.

The CD in remote sensing represents a significant challenge
due to the need for meticulous analysis and comparison of
coregistered images obtained at different time points. Exist-
ing methodologies [11], [12] employ complex hierarchical
architectures, where semantic information is dissected and
compared across various levels. A common category of CD
techniques emphasizes detecting changes predominantly at the
deepest levels [13], [14]. Although this approach yields a
detailed understanding of advanced-level changes, it may over-
look critical alterations at more rudimentary layers, potentially
resulting in an incomplete depiction of overall environmental
transformations.

An alternative set of CD techniques involves a systematic
and repeated extraction of semantic information at each hier-
archical level, followed by an exhaustive comparison of this
data [15], [16]. However, this method tends to lack nuanced
interpretation across the levels and may result in inaccuracies.
Specifically, the simplistic and repeated comparison process
might fail to detect intricate inter-level relationships, or it
might disproportionately emphasize certain changes, thereby
affecting the overall quality and accuracy of change detec-
tion. The existing challenges highlight the urgent need for
an efficient investigative manner for ensuring accurate and
comprehensive analysis across all semantic levels in remote
sensing applications.

The hierarchical structure of remote sensing image analysis
allows for the extraction of semantic information at various
depths, each possessing distinct characteristics and challenges
[17]–[19]. Shallow semantic information, gleaned from the ini-
tial layers of the hierarchy, is adept at identifying rudimentary
features such as edges and basic shapes but may struggle with
intricate details, particularly when considering the tiny objects
frequently found in remote sensing images [20], [21]. Medium
semantic information, sourced from intermediate layers, recog-
nizes complex shapes and patterns with increased accuracy but
can overlook subtler details or minor objects. Conversely, deep
semantic information from advanced layers can comprehend
broader contextual relationships and substantial structures but
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can neglect smaller objects or nuanced changes [22], [23].
Given the unique challenges presented by the numerous small
objects common in remote sensing images, it is crucial to
develop an adaptive method that efficiently extracts semantic
information at different levels based on their inherent prop-
erties. Such an approach to change detection would improve
accuracy and efficiency and would be of particular value in
remote sensing applications.

In order to solve the above challenges, we present Adapt-
Former, a novel framework that probes into hierarchical se-
mantic interpretations. The AdaptFormer deviates from the
conventional method by systematically and repetitively in-
vestigating semantic information at each hierarchical level.
Instead, it adopts an adaptive technique for interpreting hi-
erarchical representations at three distinct semantic stages:
shallow, medium, and deep, as illustrated in Fig. 1. This
framework progressively captures salient semantic representa-
tions, aligning with the idiosyncrasies of different hierarchical
architecture states in remote sensing imagery. For shallow se-
mantics associated with small objects, AdaptFormer employs
straightforward operations to identify local representations. In
contrast, for medium semantics, it assimilates spatial informa-
tion to accentuate finer interregional details across different
temporal intervals. Furthermore, it introduces cascaded depth-
wise attention for deep semantics, thereby enabling the ef-
fective learning of high-level representations. Rigorous testing
against eleven established benchmarks on popular CD datasets,
including LEVIR-CD and DSIFN-CD, attests to the superior
performance of AdaptFormer, marking it as a trailblazer in
the realm of change detection. In addition, AdaptFormer
holds significant potential value in the industrial domain, with
applications extending to areas such as agricultural change
detection [24], land use change analysis [25], deforestation
monitoring [8], flood monitoring [26], climate change impact
assessment [27], and water body change detection [28].

The main contributions in this paper are summarized as
follows:

• We present an innovative, end-to-end approach called
AdaptFormer enables the adaptive interpretation of hi-
erarchical representations for change detection on remote
sensing imagery.

• Designed for precise and differentiated semantic inter-
pretation at multiple hierarchical levels, AdaptFormer
implements unique strategies across shallow, medium,
and deep semantic layers, showcasing its versatility and
specificity.

• The AdaptFormer outperforms various established change
detection baselines, setting new records on two bench-
mark datasets, LEVIR-CD and DSIFN-CD.

II. RELATED WORK

In the field of change detection, techniques have emerged in
tandem with the rise of aerial imagery technology, increasingly
gaining importance in managing large-scale image data [1],
[29]. The FC series approaches, encompassing FC-EF, FC-
Siam-DI, and FC-Siam-Conc, first incorporates the fully con-
volutional neural network architecture into change detection

tasks [30]. These methodologies are remarkable for their
ability to be applied to any remote sensing change detection
dataset. However, their performance is often compromised by
disruptive elements like shadows and backgrounds, leading to
misinterpretation of image features. Responding to these chal-
lenges, newer techniques such as DTCDSCN, STANet, and
DASNet [6], [31], [32] integrate attention modules into their
frameworks, leveraging interdependencies between channels
and spatial positions to enhance feature perception.

As we transition into a newer era of change detection, the
robust representational capabilities of the Transformer model
have received increased attention, showcasing comparable
performance to convolutional models in various visual tasks.
In fact, BiT [33] integrates the Transformer model with con-
volution layers. The ChangeFormer [15] supports the idea that
the Transformer encoder on its own is capable of extracting
fundamental features, analyzing intricate details from dual-
temporal images, and integrating feature differences at various
scales. Then, Changer [34] introduces feature interaction to
allow the sharing of feature information between two branches
of a network, thereby improving the perception of contextual
semantic information differences. Despite these advancements,
both ChangeFormer and Changer fall short in differentiating
cross-level feature information due to their uniform module
usage for semantic extraction at varying levels. Addressing
these limitations, our proposed AdaptFormer emphasizes the
differences in semantic information between different lev-
els and adaptively employs selective modules for shallow,
medium, and deep semantic layers, thereby demonstrating its
versatility and specificity.

III. METHOD

In this section, we introduce the architecture of a pioneer-
ing framework designated as AdaptFormer, devised for the
purpose of change detection. This framework harnesses the
power of an adaptive, transformer-based model arranged in a
hierarchical fashion, which is described in detail in Subsection
III-A.

A. Hierarchical Adaptive Mechanism

AdaptFormer is a cutting-edge architecture that prioritizes
adaptive feature learning and comparative analysis. Designed
to cater to the intrinsic hierarchical semantic features, it
delves into various representation levels: shallow, medium, and
deep. This methodical approach to feature learning unfolds
across three distinct stages, with the pivotal Difference Module
bolstering each stage’s unique operations. The intricate details
of its structure, inclusive of the operational nuances and the
integral role of the Difference Module, are depicted in Fig. 1.

AdaptFormer’s operational flow begins with the intake of
two sets of images, which represent the same geographical
region captured at different time intervals, referred to as pre-
change and post-change images. These images are processed
through a sequence of three differentiated stages. Each stage
involves the essential tasks of downsampling and feature
selection, applied in a manner that respects the semantic
depth associated with each stage. As a culmination of these
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Fig. 1. A schematic representation of the AdaptFormer architecture. The proposed AdaptFormer employs distinct strategies from straightforward operations
for shallow levels, spatial data assimilation for medium levels, to cascaded depthwise attention for deeper semantics.

stages, the differences in the resulting outputs are fused by the
Difference Module. This module computes the dissimilarities
between the stage outputs and then undergoes an upsampling
process to match the size of the original input images. This
systematic approach ensures a comprehensive analysis and
comparison of changes at various semantic levels, reinforcing
the accuracy of the change detection process.

Our proposed AdaptFormer implements an ingenious de-
sign to facilitate adaptive feature learning and comparison,
effectively catering to the varied levels of representation, i.e.,
shallow, medium, and deep, inherent in hierarchical semantic
features. In essence, the system integrates a Local Merge
module at each stage, enhancing the model’s feature extrac-
tion capabilities, and thus optimizing the utility of semantic
information across different levels in remote sensing images.
These stages also encompass the introduction of stage-specific
modules, such as the Spatial Exchange module in stage 2,
designed to augment the model’s performance by bolstering
precise semantic interpretations.

Moving deeper into the system, stage 3 benefits from
the addition of the Channel Exchange module [34] and the
Hierarchical Collaborative Attention (HCA) module. These
modules are instrumental in adapting to more abstract in-
formation encapsulated within deeper-level semantics, leading
to favorable segmentation results. Remarkably, AdaptFormer’s
design provides for the relative independence of the encoders
that process pre-change and post-change images, contributing
to the system’s robustness. Each stage within an encoder
operates on a distinct set of images, employing the Difference
Module to facilitate difference detection of image processing
results across various time domains. Such a methodology,
harnessing both the independence of image processing and
the interconnectedness of module application, contributes to
AdaptFormer’s superior performance in change detection.

1) Stage 1 - Shallow Semantic: As the initiating phase
of the AdaptFormer, Stage 1 is integral for the selection
and extraction of rudimentary, or shallow, semantic features.
The image being processed, denoted as Xin with dimensions
W × H × C (representing width, height, and channels re-
spectively), is subjected to downsampling by the Downsample
module. The Downsample module, employing a 3×3 convo-
lution operation and group normalization with a stride of 2,
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Fig. 2. The structure of Local Merge.

modifies Xin to a dimensionality of W
2 × H

2 ×C. The output
tensor, consequent to the downsampling process, primarily en-
capsulates basic shallow semantic information such as shapes
and textures. To efficiently manage these features, we integrate
the Local Merge module at this juncture of the framework.

Local Merge prioritizes dual learning in spatial and channel
dimensions of the data, as shown in Fig. 2. Utilizing depthwise
separable convolution, it aggregates local features across both
domains, enriching data analysis. This approach promotes the
integration of channel-specific information into input features,
thereby elevating the predictive accuracy of the change de-
tection model. Equation 1 provide an in-depth mathematical
insight into the Local Merge module’s operations.

X1 =PW (BN(PE(Xin)))

X2 =DW (X1)

X3 =PW (BN(DW (X2))

Y =PW (φ(PW (X3)))

(1)

where BN and φ denote batch normalization and GELU
activation functions [35]. Y represent the output The Local
Merge module employs a position-wise (PW ) and a depth-
wise (DW ) convolutional layer, designed for effective local
feature aggregation. The PW convolves input data across
spatial dimensions, while DW focuses on local feature aggre-
gation. This structure is augmented by a depthwise convolution
layer, or PE, extracting relative positional information to
enhance image understanding. Through this configuration,
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the Local Merge module efficiently generates rich semantic
features, vital for precise change detection.

2) Stage 2 - Medium Semantic: In Stage 2 of our model,
the emphasis is placed on the adept extraction and process-
ing of intermediate-level semantics, characterized by their
abstract and semantically-rich attributes. This contrasts with
the more rudimentary characteristics inherent to shallow-level
semantics. In order to address the challenges associated with
extracting these complex features, we have integrated the
Spatial Exchange module into Stage 2. This module is an
enhancement over Stage 1, capitalizing on the associational
strength inherent to intermediate-level semantics by evaluating
diverse spatial perspectives present in data channels. Conse-
quently, this strategic augmentation facilitates a more robust
capability for the extraction and interpretation of abstract
features synonymous with intermediate-level semantics. The
details of Spatial Exchange are as follows:

Spatial Exchange plays a pivotal role in change detec-
tion models by adeptly integrating change region features.
These features are learned through a dual-encoder system,
highlighting the intricate interplay of correlations across varied
temporal domains. A defining characteristic of this integration
is the exchange of grayscale images stemming from the double
temporal domain processing outcomes, all while operating at
half the spatial dimension. This strategic inclusion bolsters
the change detection model’s proficiency and amplifies its
capability to forge spatial object associations [34]. Specifically,
the execution flow of Spatial Exchange is shown in Equation
2.

Mi =

{
1, if i mod α = 0

0, otherwise

Ye = Xe ⊙M + X̂e ⊙ (1−M)

Ŷe = Xe ⊙ (1−M) + X̂e ⊙M

(2)

where e represents the dimension that the input feature
needs to be exchanged, α represents the Channel Exchange
mask displacement, Mi represents the ith element of the
one-dimensional mask M , Xe, X̂e, Ye, Ŷe represents the
representation of X, X̂ , Y , Ŷ in the channel dimension.

In Stage 2, we designate e as the width (W ) dimension of
the input features and α = 2. This deliberate selection enables
the effective comparison and fusion of middle-level semantic
features across distinct temporal instances, effectively captur-
ing the relational information between diverse spatial regions.

Subsequently, the exchanged feature vectors continue to
undergo further processing through the Downsample module
and the Local Merge module. The resulting processed feature
vectors are then fed into the Difference Module and subse-
quently passed on to the next stage for subsequent analysis or
utilization.

3) Stage 3 - Deep Semantic: After Stage 2, Stage 3 pro-
cesses semantic features related to objects, scenes, or advanced
concepts. These features’ global information is vital for quality
change detection results. Understanding the interplay between
encoders representing the same region at different times en-
hances the model’s grasp of temporal relations between spatial
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Fig. 3. The overview of Hierarchical Collaborative Attention.

elements in a scene. Consequently, we integrated Channel
Exchange and Hierarchical Collaborative Attention (HCA)
modules in Stage 3. Details of these modules are presented
below:

Channel Exchange contrasts with Spatial Exchange by
operating in the channel dimension, where it swaps half of
the input images from both sides based on Equation 2 with
e set as the channel (C) dimension. This approach avoids the
potential spatial ambiguity that might arise from exchanging
features in the plane dimension. Exchanging along the channel
dimension enhances the capture of deep semantic interactions
across temporal instances within a specific region. Following
this exchange, the feature vectors proceed to the Local Merge
and HCA modules.

Hierarchical Collaborative Attention (HCA) is designed
to discern spatial relationships in the input image through
feature clipping and attention computations. It extracts refined
global features from a feature vector rich in temporal and ab-
stract semantic information. The HCA’s workflow is depicted
in Figure 3, with its computational details provided in Equation
3.

[X1, X2, ..., Xi−1, Xi, ..., Xn]d = Xin

Xi = X̃i−1 +Xi

X̃i = Attn(XiW
Q
i , XiW

K
i , XiW

V
i )

Y = X̃1 ∥ X̃2... ∥ X̃i−1 ∥ X̃i... ∥ X̃n

(3)

where n denotes the number of segments and Y represent
the output, with Xi as the ith segment of input Xin. After
the Attn operation, Xi yields X̃i. Here, WQ

i , WK
i , and WV

i

are projection layers mapping input features into distinct
subspaces, and the ∥ indicates the concatenation.

The HCA is designed to enhance the handling of feature
vectors. By partitioning data along the channel dimension, C,
it allows for individualized attention computations on each
segment, streamlining the computational process and boost-
ing model parallelism. The model’s understanding of local
structures in input images is further enriched by incorporating
a sequence of convolution, Batch Normalization, and the
GELU activation function after the Query phase. To preserve
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information throughout the process, a residual connection is
integrated.

A significant trait of HCA is its feedback mechanism. The
output from one attention computation serves as the input
for the subsequent one, reinforcing feature representation.
Given the depth of semantic feature analysis, the model
determines that a partition count (n) of four is optimal for
extracting global features. Within Stage 3, the combination of
three HCAs with Local Merge modules forms the backbone,
drawing out deep semantic features and enhancing the model’s
proficiency in change detection.

4) Difference Module: The Difference Module calculates
the variance between pre-change and post-change image en-
codings produced at each stage. By merging the two outputs
in the channel CC dimension, their distinctions are discerned
using convolutional operations. This computation procedure is
detailed in Equation 4.

X =DW (X1 ∥ X2)

D =DW (BN(σ(X))
(4)

where X1 and X2 respectively represent the output of two
encoders in the same stage, the σ is the RELU function [36],
and D represents the output of the difference module.

B. Loss Function

To facilitate the change detection task, we consider employ-
ing the cross-entropy loss function [37] for training the model,
which is expressed by Equation 5.

Lce(G, Y ) = − 1

N

N∑
i=1

[
Y (i) log(G(i))

+ (1− Y (i)) log(1−G(i))

] (5)

where N represents the number of pixels in the input binary
masks, G represents the real binary masks of the changed
region, and Y represents the predicted CD mask.

Since the outputs of different levels contain feature repre-
sentations with different levels of abstraction, by using the
multi-layer output to calculate the loss, these features can be
considered comprehensively, thereby improving the modeling
ability of the target task. This loss calculation can be expressed
by Equation 6.

L3 = Lce(G,Up(fuse(D3))

L2 = Lce(G,Up(fuse(D2 +D3))

L1 = Lce(G,Up(fuse(D1 +D2 +D3)))

Ltotal = λ1L1 + λ2L2 + λ3L3

(6)

where D1, D2, and D3 represent the results of each stage
after passing through the difference modules. The Up opera-
tion is to upsample the input tensor size to G size. The details
of the fuse operation are as Equation 7.

D = BN(σ(DW (Din)))

fuse(Din) = DW (D)
(7)

where Lj indicates that the output of the jth stage is cross-
entropy calculated with G, and the coefficient λj before each
layer loss (λj > 0)j ∈ {1, 2, 3}. We use the total loss Ltotal to
measure model capability.

IV. EXPERIMENTS AND DISCUSSION

A. Datasets

We evaluate the performance of the change detection task
using two large-scale remote building change detection sensing
datasets.

LEVIR-CD [6], a benchmark dataset for building change
detection, comprises 637 bitemporal image patch pairs sourced
from Google Earth, each having a very high resolution of
0.5m/pixel and dimensions of 1024 × 1024 pixels. Spanning
a time frame of 5 to 14 years, these images vividly cap-
ture significant land-use transformations, especially construc-
tion growth. The dataset encompasses a variety of building
morphologies, from villa residences and tall apartments to
small garages and large warehouses. Primarily emphasizing
building-related dynamics, it specifically categorizes changes
as building growth or decline. Expert remote sensing inter-
preters annotated these images with binary labels, denoting
change (1) or no change (0), with every annotation undergoing
a rigorous double-check process to ensure accuracy. For ex-
perimental divisions, patches of size 256 × 256 yielded 7120,
1024, and 2048 samples for training, validation, and testing
sets, respectively.

DSIFN-CD [38] dataset comprises six large, bi-temporal,
high-resolution images that span six Chinese cities, namely
Beijing, Chengdu, Shenzhen, Chongqing, Wuhan, and Xian.
Initially obtained manually from Google Earth, the images
are pre-processed into default pairs with dimensions of 512
× 512 pixels. For experimental consistency, these are further
segmented into non-overlapping 256 × 256 blocks, yielding
14,400 training, 1,360 validation, and 192 test samples.

B. Evaluation Metrics

F1-score (F1) [39] is a statistical measure used in the
context of binary and multi-class classification to evaluate
a model’s accuracy. The F1 score combines recall, which
gauges correct change identification, with the minimization of
false detection, serving as an overall indicator of a model’s
accuracy in detecting remote sensing image changes [40].
Metric formulations are as Equation 8.

F1 =
2TP

2TP + FN + FP
(8)

where TP represents true positives, FP denotes false
positives, TN signifies true negatives, and FN refers to false
negatives.

Intersection over Union (IoU) [41] is a widely adopted
metric in the domain of change detection using remote sensing
imagery to gauge the agreement between predicted change
areas and ground truth annotations [40]. It quantifies the ratio
of the intersecting area to the union area of the predicted and
actual change regions, providing a value ranging from 0 (no

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3387494

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I
PERFORMANCE OF EACH MODEL IN THE LEVIR-CD DATASET AND THE DSIFN-CD DATASET. ALL VALUES ARE REPORTED IN PERCENTAGE (%).*

SYMBOL INDICATES THAT THE CHANGER MODULE UTILIZES THE EXCHANGE MODULE, AND THE BACKBONE OF THE MODEL EMPLOYS RESNEST-101.
THE PERFORMANCE OF OUR PROPOSED MODEL IS MARKED IN GRAY .

LEVIR-CD DSIFN-CDMethod
F1 IoU OA Recall F1 IoU OA Recall

FC-EF [30] 83.40 71.53 98.39 80.17 61.09 43.98 88.59 52.73
FC-Siam-Di [30] 86.31 75.92 98.67 83.31 62.54 45.50 86.63 65.71

FC-Siam-Conc [30] 83.69 71.96 98.49 76.77 59.71 42.56 87.57 54.21
DTCDSCN [31] 87.67 78.05 98.77 86.83 63.72 46.76 84.91 77.99

STANet [6] 87.26 77.40 98.66 91.00 64.56 47.66 88.49 61.68
IFNet [38] 88.13 78.77 98.87 82.93 60.10 42.96 87.83 53.94

SNUNet [47] 88.16 78.83 98.82 87.17 66.18 49.45 87.34 72.89
BIT [33] 89.31 80.68 98.92 89.37 69.26 52.97 89.41 70.18

ChangeFormer [15] 90.40 82.48 99.04 88.80 86.67 76.48 95.56 84.94
P2V-CD [48] 91.32 83.88 99.12 89.76 91.82 84.88 96.07 90.18

Changer* [34] 92.24 85.59 99.20 91.20 - - - -
AdaptFormer 92.65 86.31 99.19 92.59 97.59 95.29 99.10 97.20

overlap) to 1 (complete overlap). Metric formulations are as
Equation 9.

IoU =
Y ∩G

Y ∪G
(9)

Overall Accuracy (OA) [42] serves as a performance metric
to evaluate the proportion of correctly classified pixels relative
to the total number of pixels in remote sensing imagery. It
provides a comprehensive measure of the model’s effective-
ness in accurately detecting both changed and unchanged areas
across the entire spatial extent of the image under the change
detection task [43]. Metric formulations are as Equation 10.

OA =
TP + TN

TP + TN + FP + FN
(10)

Recall [44] evaluates the fraction of true positive changes
that were correctly identified by a model relative to the
total actual changes [45]. This metric is crucial to gauge
the model’s proficiency in capturing all pertinent alterations
within the satellite images, ensuring no significant changes
are overlooked [46]. Metric formulations are as Equation 11.

Recall =
TP

TP + FN
(11)

C. Implementation Details

AdaptFormer is trained on eight NVIDIA A100-PCIE-40G.
Each GPU has a batch size of 24 with a patch size of 256×256.
The AdamW optimizer is utilized with a cosine annealing
strategy, setting an initial learning rate of 0.0006 and a weight
decay of 0.05. The training procedure is configured for a total
of 600 epochs. Additionally, we have configured the weights
for model multi-layer output and label calculation loss in a
ratio of 5:5:5:8 during training, and our data loader utilizes
four subprocesses to load data in parallel, improving data
loading speed and efficiency.

D. Change Detection Performance

Our experimental evaluation benchmarked AdaptFormer’s
performance on the LEVIR-CD and DSIFN-CD datasets,

as shown in Table I. Performance was assessed using four
critical metrics: F1, IoU, OA, and Recall, and juxtaposed with
11 established change detection methods, including notable
performers such as ChangeFormer, P2V-CD, and Changer.
Each of these employed unique strategies for change detection:
ChangeFormer utilized the Difference Module to gauge the
variance in decoder output feature maps, P2V-CD resolved
the problem via temporal-spatial transformations, and Changer
integrated feature interaction strategies, achieving metrics of
92.24%, 85.59%, 99.20%, and 91.20% respectively.

AdaptFormer, however, through its innovative methodolo-
gies, presents an evident advancement in the performance
metrics across both datasets. Specifically, on the LEVIR-CD
dataset, AdaptFormer manifests scores of 92.65%, 86.31%,
99.19%, and 92.59% for the F1, IoU, OA, and Recall metrics
respectively. Despite a marginal decrement of 0.01% in the OA
metric compared to Changer, the F1, IoU, and Recall metrics
exhibit enhancements of 0.41%, 0.72%, and 1.39% respec-
tively. The superiority of AdaptFormer is further emphasized
in the DSIFN-CD dataset. Here, it significantly surpasses P2V-
CD, the runner-up, with an impressive F1 score of 97.59%—a
striking 5.77% advancement.

E. Ablation Study

1) Stage Depth Setting: This section is dedicated to assess-
ing the impact of depth at each model stage, denoted as N1,
N2, and N3, for the first, second, and third stages respectively.
As shown in Figure 4 with an initial configuration of [3, 3,
3], the F1, IoU, OA, and Recall values register at 92.65%,
86.31%, 99.19%, and 92.59%. It is notable that any decrease
in depth at each stage reflects in a consequent decrease in all
performance metrics, exemplified when N1, N2, and N3 are
set to [1, 1, 3], causing decreases of 1.31%, 2.25%, 0.12%,
and 2.31% in F1, IoU, OA, and Recall respectively. This
scenario implies a shortfall in feature extraction by shallow
models, thereby negatively affecting accuracy. Conversely,
an attempt to increase depth also instigates similar metric
decreases, such as when N1, N2, and N3 are set to [3, 3,
6], resulting in decreases of 0.62%, 1.07%, 0.12%, and 1.71%
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Fig. 4. Quantitative comparison with different stage depths of AdaptFormer
on the LEVIR-CD dataset.

in F1, IoU, OA, and Recall respectively. Interestingly, with
the configuration [4, 4, 4], the F1 value slightly elevates to
99.25%, outperforming the base by 0.06%, yet other metrics
underperform, suggesting an over-extraction of deep semantic
features due to excessive stages. After a thorough examination
of all these dynamics, the configuration of [3, 3, 3] is retained
as the optimal choice.

2) Feature Splits: Splitting input features into a specified
number affects the model performance. The goal of this section
is to evaluate the impact of feature splits on the model
performance. As shown in Figure 5a, we notice that the model
achieves the best performance when the feature splits are set to
4, with F1, IoU, OA, and Recall of 92.65%, 86.31%, 99.19%,
and 92.59% respectively. When the feature splits are less than
4, the model’s performance decreases. For example, when the
feature splits are 1, the model’s F1, IoU, OA, and Recall
decrease by 0.82%, 1.42%, 0.11%, and 1.42% respectively.
This is because fewer feature hierarchies are not conducive
to the model learning feature representations from multiple
perspectives, which leads to performance degradation. On the
other hand, when the feature splits are greater than 4, the
model’s performance also decreases. For example, when the
feature splits are set to 16, the four indicators of the model
decreased by 0.50%, 0.87%, 0.05%, and 0.73% respectively.
This is due to an excessive number of feature splits causing the
model to easily overfit the training data, leading to a decrease
in generalization performance. Considering the above factors,
we believe that setting the feature hierarchy to 4 is a reasonable
choice.

3) Spatial Exchange Setting: The objective of this section
is to evaluate the impact of spatial swapping positions on the
model’s performance for the spatial exchange module. The
experimental results are shown in Figure 5b. When performing
spatial swaps only in the h-dimension, the model’s F1 and
IoU are 92.45% and 85.97%, respectively. When swapping in
the w-dimension, the model’s performance improves, with F1
increasing by 0.20% and IoU increasing by 0.34%. However,
when both the h-dimension and w-dimension are swapped si-
multaneously, compared to swapping only in the w-dimension,
the model’s F1 and IoU decrease by 0.41% and 0.71%,
respectively. This is because the spatial exchange module’s

(a) (b)
Fig. 5. Conducting a comparative quantitative analysis involves examining
(a) various feature splits within the HCA module and (b) diverse dimensional
configurations in the Spatial Exchange module. Both aspects are evaluated
using the LEVIR-CD dataset. FS: feature split.

effectiveness lies in providing the encoder with semantic infor-
mation from another temporal aspect, while the encoder itself
plays a crucial role in extracting semantic features from the
current temporal aspect. The excessive information exchange
during swapping in both the h-dimension and w-dimension
causes the encoder to lose too much image feature information,
leading to a suboptimal extraction of semantic features for
the current temporal aspect and resulting in performance
degradation. Therefore, we choose the w-dimension as the
spatial swapping position for the spatial exchange module.

4) Exchange Positions: Building on the established spa-
tial exchange settings from earlier experiments, this section
specifically investigates how spatial and channel exchanges
are positioned across stages 2 and 3, with findings outlined
in Table II. The baseline performance metrics, derived from
a model without either exchange module and serving as a
control, are as follows: 91.93% for F1, 85.02% for IoU,
99.06% for OA, and 92.01% for Recall, as indicated in the
first row of the Table II.

In the first comparative experiment (Group I), the model was
tested with only a Spatial Exchange in stage 2 or a Channel
Exchange in stage 3. Results reflected a slight increase of less
than 0.1% in F1 and IoU, while observing substantial drops in
OA and Recall by 1.19% and 0.95% respectively, hinting that
isolating feature dimension transformations might hamper the
overall model efficiency.

The second comparison (Group II) aimed to discern the
effect of utilizing identical exchange modules, either Channel
or Spatial, in both stages. Introducing the Channel Exchange
too prematurely, especially when semantics weren’t adequately
deep, led to a retention of redundant information from the
medium stage, which negatively influenced the deep-stage
feature comparison. Specifically, this resulted in a decline in
all four metrics, with Recall dropping by 1.18%. Conversely,
replacing Channel Exchange with Spatial Exchange in stage
3 revealed that simplistic exchanges at this depth adversely
affected high-level semantic representation, witnessing the
steepest metric drops, particularly with IoU and Recall plum-
meting to 83.31% and 90.53%.
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TABLE II
IMPACT OF EXCHANGE OPERATIONS ACROSS DIFFERENT STAGES ON THE LEVIR-CD DATASET. FOR EACH PERFORMANCE METRIC, PERFORMANCE

DECLINES ARE DENOTED IN GREEN, WHILE ENHANCEMENTS ARE HIGHLIGHTED IN RED. THE PERFORMANCE OF THE RECOMMENDED CHOICE IS
MARKED IN GRAY .

Setting Stage 2 Stage 3 F1 IoU OA Recall
Baseline - - 91.93 85.02 99.06 92.01

SE - 91.96 +0.03 85.12 +0.10 99.02 -0.04 90.82 -1.19Group I
- CE 92.00 +0.07 85.12 +0.10 99.02 -0.04 91.06 -0.95

SE SE 92.50 +0.57 85.98 +0.96 99.08 +0.02 91.36 -0.65Group II
CE CE 91.84 -0.09 84.91 -0.11 99.06 -0.00 90.83 -1.18
CE SE 90.89 -1.04 83.31 -1.71 98.94 -0.12 90.53 -1.48Group III
SE CE 92.65 +0.72 86.31 +1.29 99.19 +0.13 92.59 +0.58
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Fig. 6. Comparative display of change detection performance from divergent change detection frameworks applied to LEVIR-CD and DSIFN-CD datasets.

Based on these outcomes, the third comparison (Group III)
was conceptualized. The Spatial Exchange was positioned in
stage 2, showing an increase in F1, IoU, and OA by 0.57%,
0.96%, and 0.02% respectively, although Recall decreased by
0.65%. This highlighted the efficacy of the Spatial Exchange in
enhancing change detection accuracy at a mid-level semantic
layer. Furthermore, deploying the Channel Exchange in stage
3 proved most effective, registering the best performance
among the comparative groups with metrics soaring to 92.65%
for F1, 86.31% for IoU, 99.19% for OA, and 92.59% for
Recall. This underscored that the Spatial Exchange is more
potent for abstract mid-level semantics in stage 2, while the
Channel Exchange is optimal for deep-level semantics related
to objects, scenes, or advanced concepts in stage 3.

5) Evaluation of the Hierarchical Collaborative Attention
module: The HCA module stands out for its innovative design
tailored to interpret complex, deep representations. Utilizing
advanced feature clipping and attention-based computations,
it excels at distilling a more precise set of features that
are temporally coherent and semantically rich. This feature
refinement is particularly vital at stage 3, where the model is
expected to make high-level semantic interpretations.

The efficacy of the HCA module is validated through a set of
performance metrics. In the absence of the HCA module, the
model demonstrated an F1 score of 91.28%, IoU at 83.96%,
OA at 98.98%, and Recall at 91.72%. After incorporating
the HCA module, each of these metrics showed significant
improvement: F1 increased by 1.37%, IoU by 2.35%, OA

TABLE III
EFFECT OF INCORPORATING OR EXCLUDING THE HCA MODULE IN

ADAPTFORMER ON THE LEVIR-CD DATASET. IN THIS TABLE, ’W/O’
STANDS FOR ’WITHOUT’ WHILE ’W’ INDICATES ’WITH’. FOR EACH

PERFORMANCE METRIC, PERFORMANCE DECLINES ARE DENOTED IN
GREEN, WHILE ENHANCEMENTS ARE HIGHLIGHTED IN RED. THE

PERFORMANCE OF THE RECOMMENDED CHOICE IS MARKED IN GRAY .

HCA F1 IoU OA Recall
w/o 91.28 83.96 98.98 91.72
w 92.65 +1.37 86.31 +2.35 99.19 +0.21 92.59 +0.87

by 0.21%, and Recall by 0.87%. These measurable gains,
detailed in Table III, affirm the HCA module’s pivotal role
in enhancing the model’s capability to make accurate and
context-rich semantic judgments.

F. Visualization

1) Qualitative Performance: As illustrated in Figure 6, a
range of change detection models undergo application to the
LEVIR-CD and DSIFN-CD datasets, creating a broad canvas
for comparison. The initial columns of the figure showcase
pre-change and post-change images, offering the bedrock
for evaluation. Notably, AdaptFormer, our proposed model,
receives representation amidst an array of top-performing
models presented in columns 3 to 7. The red and yellow
boxes serve to highlight the areas of maximum variance in
the output across the various models on the two datasets.
When these results are compared with the ground truth,
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Fig. 7. A visual journey through our model’s three stages in AdaptFormer.

provided in the last column, AdaptFormer visibly outperforms
others, demonstrating superior overall quality and accuracy,
particularly within the designated regions. This juxtaposition
thus emphasizes the powerful performance and substantial
potential of AdaptFormer in executing change detection tasks.

2) Progressive Visualization through AdaptFormer’s
Change Detection Stages: Figure 7 offers a visual journey
through our model’s three stages in change detection. In
our analytical framework, the model traverses through a
hierarchical structure of semantic analysis across three stages,
each delineated by its depth of semantic processing and its
implications for change detection in remote sensing imagery.
Initially, Stage 1 lays the groundwork by leveraging shallow
semantic insights to pinpoint basic yet pivotal features like
edges and shapes, proving instrumental for the identification
of minor changes. However, this stage is limited in its ability
to unravel more intricate details. Advancing to Stage 2,
the model deepens its semantic exploration to intermediate
levels, thereby refining its detection capabilities to encompass
moderate changes through the discernment of more complex
shapes and patterns, albeit with remaining challenges in

capturing the finest nuances. The culmination occurs in Stage
3, where an intensive dive into deep semantic realms enables
the model to grasp comprehensive contextual relationships
and substantial structural shifts, thus extending its detection
acumen to substantial changes. This graduated approach
aligns closely with Ground Truth data, indicating minimal
discrepancies and highlighting the model’s adaptability and
scalability. The framework effectively addresses the diverse
requirements of change detection in remote sensing imagery,
accommodating changes across a wide range of magnitudes.

3) Error Maps: We employ error maps as a visual tech-
nique to rigorously assess the effectiveness of change detection
on remote sensing images, highlighting discrepancies between
predicted and true values. Figure 8 elucidates the confidence
visualization results for various change detection models when
applied to the LEVIR-CD dataset. Primarily, the majority of
the figure—columns 1 through 6—display error analysis from
several mainstream models on their respective test images,
whereas the concluding column distinctively represents the
outcomes of our AdaptFormer approach. A unique measure-
ment system was employed wherein the differences between
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Fig. 8. Comparison of error maps resulting from different change detection frameworks on the LEVIR dataset. The error maps are computed by subtracting
the ground truth from the change detection predictions. The lower the value at a position point, the more confident the model is about that point.

the model outputs and the Ground Truth (GT) were visualized
on a scale from 0 to 1. A shade closer to blue (indicating
a value nearer to 0) epitomizes high confidence in detection,
while a hue leaning towards red (signifying a value approach-
ing 1) designates lesser assurance.

In this visualization, AdaptFormer’s adeptness is consis-
tently evident across various test images. Particularly notable
is its proficiency in small object detection, where the near
absence of the red hue in the first row suggests its enhanced
capability to identify scattered minor entities. For medium-
sized objects, many contemporary models manifest continuous
red zones, indicating lapses in their detection confidence. In
stark contrast, AdaptFormer’s results, especially in the fourth
row, underscore its superiority by almost flawlessly identifying
these areas. This prowess extends to large object detection as
well, as observed in the fifth row, where the dearth of red
regions in our method’s visualization stands testament to its
exceptional confidence and accuracy in recognizing substantial
object changes.

V. CONCLUSION

This study presents AdaptFormer, a groundbreaking solution
to change detection in remote sensing imagery. Distinctly
adaptive, AdaptFormer systematically interprets hierarchical
semantics, tailoring its operations across three depth levels:
simple techniques for shallow semantics, spatial data assim-
ilation for medium details, and cascaded depthwise attention

for in-depth insights. Our experimental evaluations, particu-
larly on the LEVIR-CD and DSIFN-CD datasets, showcase
AdaptFormer’s superior accuracy and performance over other
models, underscore its potential in applications from urban
development to environmental surveillance. In essence, Adapt-
Former emerges as a benchmark in change detection, ushering
in new avenues for future research and development in the
domain. In future work, we aim to enhance the computational
efficiency of the AdaptFormer model to better support real-
time analysis, while maintaining its accuracy and effectiveness
in change detection tasks.
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