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Abstract—Real-time monitoring of distribution grids is es-
sential to handle the complex operation of modern electric
systems. One of the main challenges for the deployment of
reliable monitoring solutions at distribution level is the scarcity
of measurement instrumentation in the field. Despite the proposal
of some approaches to deal with the under-determined system
caused by the low number of meters, existing solutions are not
yet able to guarantee a level of simplicity and trustworthiness
similar to the one of conventional Weighted Least Squares
(WLS) estimators adopted in transmission systems. This paper
aims at filling this gap by presenting a WLS-based estimator
able to work with only very few meters, in scenarios typically
considered as unobservable, and without the need to employ
pseudo-measurements. The proposed method relies on the use of
allocation factors and requires only minor modifications with
respect to the conventional WLS, thus offering the benefits
associated to the use of a well-known and mature state estimation
formulation. Simulations performed on an unbalanced IEEE test-
grid highlight the performance and advantages of the proposed
estimator, proving its suitability for the monitoring of poorly
instrumented distribution grids.

Index Terms—Power distribution networks, Power system mea-
surements, Observability, State Estimation, System Awareness,
Weighted Least Squares, Voltage measurement, Power measure-
ment.

I. INTRODUCTION

Distribution System Operators (DSOs) are currently digi-
talizing their Medium and Low Voltage (MV and LV) grids
and equipping their control rooms with the software func-
tionalities needed for the smart management and automation
of the network [1]. Among these functionalities, monitoring
the distribution system (DS) via ad hoc State Estimation
(SE) methods is an impelling requirement [2]. SE unlocks
awareness about the real-time operating conditions, which is
crucial to enable contingency analysis and to ensure optimal
control of flexible resources, such as new types of loads (e.g.,
electric vehicles) and Distributed Generation (DG).

The design of reliable SE algorithms for DS monitoring is
not a trivial task. Several challenges hinder the easy deploy-
ment of SE at distribution level and prevent the adoption of
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SE solutions commonly used in transmission [3]. The most
critical issue is the scarcity of measurement devices in the
field. Also due to their very large size (in topological terms,
i.e., number of nodes and branches), distribution grids are
generally non-observable, namely the SE model results into an
under-determined system where only few measurement inputs
are available to estimate a large number of unknown state
variables (in contrast to transmission systems, where the higher
measurement coverage leads to over-determined systems).
Even if meter placement techniques tailored to DSs have been
proposed (see for example [4], [5]), it is unlikely to foresee
a thorough coverage of the grid with meters in short times.
Therefore, specific SE approaches have to be conceived, which
must work relying on very sparse measurement information.

In the literature, pseudo-measurements are often used to deal
with this problem. Pseudo-measurements may be created to
model the power consumption or generation at the buses using
statistical information accessible to the DSO. Their availability
(at each non-measured load or generation bus) allows to solve
the problem of observability and to obtain a slightly over-
determined system that can be processed with conventional SE
techniques, like the Weighted Least Squares (WLS) method.
As an example, [6] shows how to use standard profiles of dif-
ferent customers’ categories to create pseudo-measurements.
Nevertheless, such approach may not be always easy to im-
plement in practice, above all when considering new categories
of loads (for which no statistical information is yet available)
or DG (which highly depends on the weather conditions).
Alternative approaches for creating pseudo-measurements via
Artificial Neural Networks (ANNs) are proposed in [7] and
[8]. These require the design of customized ANN models for
each grid and they carry some of the drawbacks associated to
neural networks, such as dependency on a black box model and
need for re-training at every change in the grid or measurement
configuration.

As a matter of fact, creating pseudo-measurements is not
always feasible or it may be a tedious task for which DSOs do
not have well-established procedures in place. For this reason,
alternative SE techniques able to deal with the low number
of measurement inputs present in distribution grids, without
requiring the definition of additional pseudo-measurements,
have been recently proposed. Some of these proposals rely
on the use of ANNs [9]–[15]. The underlying idea is to
train an ANN via a large set of power flow simulations that
samples the space of possible operating conditions of the grid.
The trained ANN can then estimate the operating state of
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the grid using just the few available measurements in input
[9], [10]. A problem related to such approach is again that
the model has to be updated for any change in the grid,
which may be time-demanding and not suitable for real-time
operation. In [11], two deep neural networks are used for SE
and topology identification, and transfer learning is adopted
to try to speed-up the re-training of the ANN model when
the topology changes. In [12], the status of the switches is
directly embedded in the ANN model, which however leads
to a more complex training and design of the neural network.
Another issue is the lack of transparency in the operation of
the ANN. In [13], Graph Neural Networks are adopted to
take into account the structure of the grid model and physical
constraints are added to comply with the power flow equations.
Other attempts to integrate power system physical laws in
the ANN design have been proposed in [14] and [15], but in
general ANN-based estimators still lack explainability which
may bring some implications in terms of reproducibility and,
sometimes, of trustworthiness.

Close to data driven approaches, some model-based solu-
tions have been also proposed. The use of tracking estimators
based on Kalman filters or regularized least squares models
is one of the options [16], [17]. Here predictions or previous
SE results can help reaching the observability, but a starting
SE solution is usually needed to initialize the model and
arbitrary assumptions may exist for the modelling of the
grid dynamics. Another option gaining popularity is the use
of matrix completion methods, whose aim is to determine
missing values in low-rank matrices. SE proposals relying on
this approach can be found in [18], [19]. The main issue with
this technique is that it may still need a relatively high number
of measurements to work well and that it involves a complex
optimization process, which may be not always suitable for
large grids and real-time operation. In [20], an optimization
based on an interior-point solver is built for SE purposes, but
a priori information on the load and generation values is still
used to define inequality constraints for the power injections.

This paper offers an alternative solution for the monitoring
of unobservable distribution grids, which has the advantage
to be simple and to rely on the physical measurement model
and the well-known WLS theory. A first idea was presented
in [21], but there a simplified SE model was used, which was
not able to deal with the heterogeneity of customers present
in typical DS scenarios. In this paper, the WLS-model has
changed and improved to allow a much more generalized
application of the method, taking into account that different
types of loads and generation may coexist behind each node of
the grid. The main contribution of this paper thus concerns the
design of a new WLS estimator for distribution grids able to
work with very few measurements in grid scenarios typically
considered as unobservable. To this purpose, a new SE idea is
introduced, where the concepts of allocation factors and WLS
are merged leading to an innovative approach for performing
SE in unobservable distribution grids. It is worth noting that
the idea of using allocation factors has been adopted also
in [22], but in that proposal they are rather used to tune
the standard load profiles for creating pseudo-measurements,
which, conceptually, is a completely different solution from

the method that will be illustrated here. In the following, the
proposed SE method is described by presenting:

• The mathematical details of the newly proposed SE
formulation, underlining the modifications with respect
to the classical WLS model and thereby guaranteeing the
replicability of the proposed method.

• The minimum requirements to ensure the applicability
of the proposed estimator, considering both equivalent
single-phase and three-phase unbalanced grids.

• A critical analysis of the performance of the SE method,
using different settings and measurement configurations,
proving the strengths of the proposed approach.

The remainder of the paper is organized as follows. Sec-
tion II provides background information about SE. Section
III dives into the idea and the mathematical formulation
behind the proposed SE solution and discusses the minimum
requirements to successfully employ the proposed SE method.
Section IV validates it via tests carried out in different
scenarios and conditions. Finally, Section V summarizes the
achievements of this work and concludes the paper.

II. DISTRIBUTION SYSTEM STATE ESTIMATION

This Section provides some background information about
the two Distribution System State Estimation (DSSE) concepts
at the basis of the proposed SE formulation, namely the WLS
and the load allocation method.

A. Weighted Least Squares Estimation

The WLS method is a well-known technique for estimating
unknown variables given a set of inputs that leads to an
over-determined system of equations. In the power system
context, bus voltages are often adopted as state variables
of the system, while the field measurements are the inputs
[23]. Despite being a relatively old method, the WLS is
still the most used technique to perform SE in the control
centers of grid operators. The main reasons are its accuracy
(under Gaussian conditions, the WLS is a maximum likelihood
estimator), its computational efficiency (the WLS solution
can be found algebraically without the need of sophisticated
optimization procedures), its simplicity and explainability,
which allow understanding how measurements contribute to
the final estimation results [24] and deriving the uncertainty
characteristics of the SE output.

The WLS relies on the following measurement model:

z = h(x) + e (1)

where z is the vector of measurement inputs, x is the vector
of state variables, h(·) is the vector of measurement functions
relating the input measurements to the state variables in x, and
e is the vector of errors in the input measurements, which is
considered a zero-mean random vector in the following.

Given such measurement model, the objective of the WLS
method is to minimize the following cost function:

fobj,WLS(x) = [z− h(x)]T ·W · [z− h(x)] (2)

where W is a weighting matrix chosen as the inverse of the
covariance matrix of the measurement inputs and T indicates
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the transpose operator. In (2), the goal is to minimize the
Mahalanobis distance between measurements and estimated
measurements exploiting the existing measurement redun-
dancy. To this purpose, the weights in W are tuned to give
larger importance to the more accurate measurements, so that
their better accuracy is reflected into the estimation process
and they have more influence on the SE results.

The minimum of the cost function in (2) can be found
forcing its gradient to be equal to zero. Since the measurement
functions are typically non-linear, an iterative Gauss-Newton
process is needed, which eventually leads to solving the
following equation system at each generic iteration k [23]:

G ·∆x = HT ·W · [z− h(xk−1)] (3)

In (3), H is the Jacobian of the measurement functions in h,
G = HTWH is a Gain matrix, and ∆x = xk − xk−1 is the
vector used to update the estimated state variables x between
the generic iterations k − 1 and k. This iterative process is
carried out until a certain convergence criterion is satisfied.
Usually, this is given by the maximum change (in absolute
value) of the state variables, which must fall below a given
threshold ϵ, namely ∥∆x∥∞ < ϵ

In DSs, several WLS-based DSSE formulations adapted to
the peculiarities of these grids have been proposed. These
include, among others, the three-phase modelling of the
electrical grid (e.g., [25], [26]), the use of different state
variables like branch currents (e.g., [27], [28]) and, above
all, the integration of pseudo-measurements to achieve system
observability [29], which is essential for the application of the
WLS-based formulation in its original form.

B. Load Allocation Concept

Until some decades ago, distribution grids were mostly
operated as passive networks and hence did not require a
particularly complex management. From a monitoring per-
spective, often a measurement point was available only at
the main substation and the operating conditions of the entire
grid were estimated starting from it. As discussed in [30],
a common approach was to estimate a load allocation factor
Kload as follows:

Kload =
Smeas∑N
i=1 S̄i

(4)

where Smeas is the apparent power measured at the main
substation, S̄i is the rated power of the i-th bus, and N is
the total number of buses in the grid. Such allocation factor
basically is the per unit level of power (with respect to the
rated one) assigned to each load depending on the overall
power seen at the main substation. Following this idea, the
power consumption at the i-th bus could be computed as:

Si = Kload · S̄i (5)

Typical power factors could be used to split the apparent
power in its active and reactive power components. Having
the estimated power at each node, and using the voltage
measurement at the main substation, it was then possible to

derive the complete voltage profile of the grid performing a
standard power flow calculation.

Such an approach is clearly not suitable for modern DSs,
as the presence of DG prevents assuming that all nodes of
the grid behave in a similar way (i.e., that they work at
the same per unit level). Nevertheless, the idea behind the
use of allocation factors is adapted in this paper to fit a
scenario where heterogeneous loads and DG are connected to
the distribution grid. As shown in the next Section, combining
allocation factors with the WLS method eventually allows the
monitoring of unobservable distribution grids.

III. PROPOSED DSSE MODEL

A. General Concept

The underlying idea behind the load allocation method
presented in Section II was that a single power measurement
may be used (together with the voltage at the main substation)
to derive a rough estimation of the operating conditions of the
entire grid. The only unknown in such a problem was the load
allocation factor and, hence, a single power measurement was
sufficient to determine its value.

In the current DS scenario, heterogeneous types of loads
and DG are present. However, it is still possible to imagine
each bus of the grid as the aggregation of a limited number
of load and generation clusters, each one associated with a
specific allocation factor. As an example, let us assume that
the i-th bus of the grid is a medium to low voltage (MV/LV)
substation and that the mix of downstream users connected
to the LV grid includes Qi different clusters of loads and/or
generators. Generalizing (5), the apparent power injection at
this node can be expressed as:

Si =

Qi∑
h=1

Kh · S̄i|h (6)

where Kh is the allocation factor associated with the h-th
cluster and S̄i|h is the total rated power of the customers
connected downstream the considered node i and belonging
to such a cluster h.

Inspired by the load allocation method, the key assumption
in the proposed DSSE algorithm is that different buses of the
grid share the same allocation factors when referring to the
same type of load (or generation) cluster. This is equivalent to
say that the power consumed (or generated) within each cluster
would be always at the same per unit level (with respect to
the rated one) for each node of the grid. This is essentially
the same assumption existing in the load allocation method,
which is here extended to consider the possible presence of
multiple clusters or categories of loads and generators. In
case of clusters associated to DG based on renewable energy
sources (for example, PV or wind plants), this assumption
sounds realistic, as it is reasonable to assume that plants
scattered over a relatively small geographical area are subject
to similar weather conditions and, consequently, that they
may have a quite similar generation behavior. In the case
of loads, different clusters can be created to aggregate loads
with statistically similar consumption patterns. This is similar
to what done when tuning pseudo-measurement according to
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different standard load profiles, considering the category of
the end-users [6]. Conceptually similar assumptions have been
already used also in other DSSE proposals, like [31] and [32],
where different types of loads or generators were considered
to have very high correlations.

Using the above assumption, the DSSE problem can even-
tually be seen as the estimation of a limited number of
allocation factors associated to different clusters of loads and
generators. In this way, a small number of measurements
would be sufficient to estimate these allocation factors. In
the proposed DSSE algorithm, this idea is integrated into
a WLS formulation, which gives the possibility to estimate
simultaneously the discussed allocation factors as well as the
bus voltages.

B. Proposed WLS Formulation

As mentioned above, the proposed WLS aims at estimating
simultaneously bus voltages and allocation factors. To this
purpose, the state vector x is augmented to include both
allocation factors and voltage variables as follows:

x = [VTr,A,V
T
x,A,V

T
r,B ,V

T
x,B ,V

T
r,C ,V

T
x,C ,K1, · · · ,KQ]

T

(7)
where Vr,ϕ and Vx,ϕ are the vectors of the real and imaginary
voltages at phase ϕ (with ϕ ∈ {A,B,C}), Kh is the allocation
factor of the h-th cluster, and Q is the total number of clusters
identified in the grid. Note that the proposed state vector refers
to a three-phase representation, but it can be easily adapted to
the single-phase case. Also, as shown in [28], note that the
imaginary voltage of a reference bus can be removed from
the state vector if no Phasor Measurement Units (PMUs) or,
more in general, no absolute phase-angle measurements are
available in the input measurement set.

The inputs considered in the measurement vector z include:
i) the measurements collected from the field, for which the
same measurement functions as in the conventional WLS
estimators can be used (see the Appendix for more details); ii)
zero values, which result from the following balance equations
defined for the current injection of each bus of the grid
(including also zero-injections) and each phase of the system:

−
∑
h∈Πi

Kh · Īri,ϕ|h+
∑
ψ∈Ψ

∑
k∈Γi

[gik,ϕψ(Vri,ψ − Vrk,ψ)

− bik,ϕψ(Vxi,ψ − Vxk,ψ)] = 0

(8)

−
∑
h∈Πi

Kh · Īxi,ϕ|h+
∑
ψ∈Ψ

∑
k∈Γ

[bik,ϕψ(Vri,ψ − Vrk,ψ)

+ gik,ϕψ(Vxi,ψ − Vxk,ψ)] = 0

(9)

where Πi is the set of indexes of the clusters composing the
i-th node power mix (and |Πi| = Qi) and Ψ = {A,B,C}; Γi
is the set of nodes adjacent to node i; gik,ϕψ and bik,ϕψ are
the real and imaginary components of the series admittance of
the branch between nodes i and k (self admittance if ψ = ϕ or
mutual admittance between different phases if ψ ̸= ϕ); Vri,ψ
and Vxi,ψ are the real and imaginary voltage at bus i and phase
ψ; Īri,ϕ|h and Īxi,ϕ|h are the real and imaginary components

of the rated current for the h-th cluster available at node i,
which are obtained as follows:

Īri,ϕ|h + jĪxi,ϕ|h =
P̄i,ϕ|h − jQ̄i,ϕ|h

Vri,ϕ − jVxi,ϕ
(10)

In (10), the considered voltages are temporary estimates
obtained during the WLS procedure, while P̄i,ϕ|h and Q̄i,ϕ|h
are, respectively, the sum of the rated active and reactive
powers for the users belonging to cluster h connected behind
bus i at phase ϕ. The active and reactive components of rated
power can be extracted from the apparent power using typical
power factors associated to the considered category of load or
generation.

The relationships in (8) and (9) essentially give constraints
to the power injection computed through the voltage variables
which should be equal to the power injection given in (6).
Here, it is worth noting that the associated zero values inserted
in the measurement vector z are the result of such balance
equations and, thus, they should not be misinterpreted as
representing in general an assumption of zero current injection.
For load/generation buses, the equality constraint assumed
in the balance equations (8) and (9) will not be perfect as,
in practice, the assumption that all loads (or generators) of
the grid belonging to the same cluster behave in the same
way (namely, that they work at the same per unit level of
power with respect to their rated value) is just a statistical
approximation. However, (8) and (9) become loose constraints
when used as equivalent measurements in the vector z. In-
deed, the lack of exactness in the assumption behind each
of these relationships can be modelled as the uncertainty of
the corresponding equivalent measurement and, therefore, be
mapped into the WLS through the weighting matrix. The
ideal procedure to define the needed weights would first
require a statistical characterization of the variability of loads
(or generators) belonging to the same cluster. This statistical
information could be used to describe the a-priori uncertainty
associated with the allocation factors in terms of their variance
σ2
Kh

. The law of propagation of the uncertainty [33] can be
then applied to (8) and (9) to find the resulting variances
σ2
eqri,ϕ

and σ2
eqxi,ϕ

for the equivalent measurements expressing
the balance of real and imaginary current injection at node i
and phase ϕ. Neglecting in first approximation the uncertainty
contributions associated with the power factor used to convert
the apparent power into its active and reactive components, and
possible correlations between allocation factors1, the following
holds:

σ2
eqri,ϕ

=
∑
h∈Πi

Ī2ri,ϕ|h · σ
2
Kh

(11)

σ2
eqxi,ϕ

=
∑
h∈Πi

Ī2xi,ϕ|h · σ
2
Kh

(12)

As done also for the actual measurements, the weights
introduced in the weighting matrix must be then chosen as the
inverse of the variances in (11) and (12). Since in practical
scenarios it may be difficult to have accurate definitions of
the a priori uncertainties associated to the allocation factors,

1This assumption is realistic since the prior variability is mainly tied to the
cluster type.
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in Section IV, some tests are presented to show the impact of
an inaccurate choice of such weights.

Overall, it can be noted that, in the proposed formulation,
the use of pseudo-measurements can be completely avoided
as the additional equations needed to make the WLS model
over-determined are given by the balance equations (8) and
(9). The definition of such balance equations requires only the
knowledge of the rated powers installed behind each node,
without any a priori forecast or guess of the allocation factors
or of the power injections. In addition, it is also worth noting
that the balance equations and the associated uncertainties hold
also for the case of zero injections (ZIs). In fact, in case of
ZIs, the terms in (8) and (9) associated with the allocations
factors would disappear (due to the null value of the rated
currents associated to each customer cluster) thus leading
to the classic ZI equation. Similarly, in (11) and (12), the
resulting variances would be equal to zero, as it is appropriate
to expect, given that no uncertainty exists about the knowledge
of the ZI. In the algorithm tested in the following, the weight
for the ZIs is simply replaced with a large but limited value,
keeping ill-conditioning under control. It is however worth
mentioning that, to further improve the conditioning of the
WLS algorithm, the ZIs could also be modelled as constraints
and integrated in the WLS via a Lagrangian approach, which
was not needed in the tests reported in Section IV.

To complete the design of the proposed WLS estimator,
the partial derivatives appearing in the Jacobian matrix must
be defined. Regarding the derivatives with respect to the
voltage variables, it is worth noting that no modifications are
required with respect to the original version of the WLS. This
holds also true for the equivalent measurements associated
with the current injection balance, which keep exactly the
same derivatives used in the original WLS for the pseudo-
measurements of power injections (which, when using a
formulation with rectangular voltages as state variables, are
converted into equivalent currents). Regarding the derivatives
with respect to the allocation factor state variables, the only
derivatives differing from zero are those associated with the
equivalent measurements associated with the current injection
balance. As it can be easily derived from (8) and (9), these
derivatives are:

∂heqri,ϕ

∂Kh
= −Īri,ϕ|h

∂heqxi,ϕ

∂Kh
= −Īxi,ϕ|h (13)

thus showing that the only additional non-zero entries in this
Jacobian sub-matrix are those associated with the clusters
actually present in the power mix of node i.

C. Considerations on Observability

Starting from the assumption that the monitoring stations
are few and thus the base system of equations linked to real
measurements is under-determined, observability needs to be
guaranteed by the above-described equivalent measurements
derived from the balance equations in (8) and (9). First of
all, like in the WLS with pseudo-measurements, at least
one voltage measurement is needed also in the proposed
DSSE. Since the equivalent measurements are defined for
N −1 buses, the combination of a voltage measurement point

with these equivalent measurements allows having as many
measurements as the number of voltage state variables. The
number of additional state variables linked to the allocation
factors then determines the number of other real measurements
needed in the field. With Q = 1, i.e. a single allocation factor,
any additional measurement guarantees observability. With
more allocation factors involved, Q additional measurements
providing further information about the voltage profile and/or
power flows are necessary (and sufficient).

In addition to the requirement above, since additional un-
knowns associated with the allocation factors are present in
the proposed DSSE model, it is important also to analyze the
corresponding columns in the augmented Jacobian matrix H.
In particular, the following condition must hold true:

rankHK = Q (14)

where HK represents the submatrix of the Jacobian composed
of the columns associated with the derivatives with respect to
the allocation factors Kh. Since all the derivatives of the real
measurement functions with respect to Kh are null because, in
the proposed formulation, there is no dependency on allocation
factors, the submatrix of HK associated with them is a zero
matrix, and thus the analysis of the rank can be limited to
the rows corresponding to equivalent measurements. More
specifically, the condition in (14) indicates that the power mix
of the network buses needs to be linearly independent. For
instance, having exactly the same mix for all the buses in
terms of both involved clusters and rated powers would lead
to linear dependence among the columns of HK and, thus,
to indistinguishable allocation factors. The criterion in (14)
is straightforwardly met when Q = 1 and, generally, it is
easily met also when Q > 1 if the nature of the node powers
is composite (i.e., if the nodes have different rated powers
associated to the different clusters).

Finally, it is interesting to note that that the conditions above
lead to different measurement installation requirements in
balanced (single-phase) and unbalanced (three-phase) grids. In
particular, in the three-phase scenario observability may be met
more easily, because each measurement point provides three
independent measurement values (one for each phase) that
would allow estimating up to three different allocation factors.
In the equivalent single-phase scenario, instead, only a single
measurement value is available per measurement point (the
positive sequence), which would then allow estimating only
a single cluster. Consequently, in an unbalanced scenario, the
number of installed measurement points required to achieve
the observability can be reduced by a factor of 3.

IV. TESTS AND RESULTS

A. Simulation Set-up

The proposed WLS method for SE in unobservable distri-
bution grids has been tested in different scenarios and with
different measurement configurations using the three-phase
unbalanced IEEE 123-bus grid shown in Fig. 1. The grid
has been modified to introduce four categories of connected
customers: residential and commercial loads, and PV and wind
generation. In particular, each bus of the grid that has a
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Fig. 1. IEEE 123-bus test distribution grid.

load in the default data [34] has been replaced with a mix
of connected loads and generators, each one with different
rated powers for each node. In general, different clusters are
connected to each bus, with most of the nodes subtending
at least two clusters of customers and several having all four
clusters simultaneously. Overall, the grid has a total connected
power of around 3.8 MW for residential loads, 2.9 MW for
commercial loads, and 3.9 MW and 2.2 MW for PV and wind
generation, respectively. The used network parameters are the
same given in [34], whereas voltage regulators and a few buses
connected to open switches have been omitted for the sake of
simplicity.

Given the considered clusters, to create the loading and
generation scenario of the grid, while emulating the different
behavior of customers belonging to the same cluster, the
power at the different buses has been extracted randomly (with
uniform distribution) according to the following assumptions:

• residential loads: between 50% and 80% of rated power;
• commercial loads: between 30% and 60% of rated

power;
• PV plants: between 30% and 40% of rated power;
• wind plants: between 20% and 40% of rated power;

The power at each node hence results from the rated power
available at that node for every connected cluster and from
the above-mentioned random extractions. The overall power
consumption/injection of the node is eventually obtained as
the sum of the power contributions of each cluster. From
the resulting load and generation scenario, a power flow
calculation is used to obtain the reference operating conditions
of the grid that are assumed as “true”. For the DSSE, measure-
ments are then extracted from the associated reference values
considering 1% and 2% expanded uncertainty for the voltage
and power measurements, respectively, with Gaussian uncer-
tainty distribution (coverage factor 3). To analyze the DSSE
performance in different scenarios, the following measurement
configurations are considered:

• Case 0: voltage measurements at nodes 1 and 69 and
active and reactive power at branches 1-2 and 62-69.

• Case 1: full metering points at nodes 1 and 69.
• Case 2: full metering points at nodes 1, 15, 27 and 69.

• Case 3: full metering points at nodes 1, 15, 27, 37, 69,
78 and 111.

Case 0 is used to prove the operation of the proposed algo-
rithm with a minimal deployment of measurements needed to
reach the observability. The other cases instead allow analysing
the enhancement of the accuracy performance with a slightly
larger measurement redundancy. In this regard, full metering
points indicate the presence of a voltage measurement at the
bus, and of active and reactive power measurements in all the
branches converging to the bus.

All simulation results shown in the following are obtained
via Monte Carlo (MC) simulations, using NMC = 5000 MC tri-
als, in order to have statistically meaningful results. Each MC
iteration involves the random extraction of both the operating
points of loads and generators (within the intervals indicated
above for each cluster) and of the measurements (within their
measurement uncertainty interval) from the corresponding
reference values obtained via the power flow calculation.
Moreover, different initialization settings for the state variables
have been tested in a preliminary phase. In particular, a flat
voltage was used to initialize the voltage variables, while the
allocation factors have been initialized with different values
between 0 and 1 (e.g., including all allocation factors equal to
0 or to 1). In all performed tests, the estimator converged
exactly to the same SE results regardless of the particular
values chosen for the initialization of the allocation factors,
thus proving that no a-priori guess of these factors is needed
and that no strict rules apply for their initialization.

For the following test results, the performance index is
computed as:

uν =

√√√√ 1

NMC

NMC∑
n=1

(ν̂n − νn)2 (15)

where ν̂n indicates the estimated quantity (voltage magni-
tude or branch active power of a specific node or branch,
respectively) in the n-th MC trial, and νn is its reference
counterpart. uν is the root mean square error (RMSE), but,
as will be discussed in Section IV-B, it represents also the
standard deviation of the obtained zero mean estimation error.
For this reason, it significantly describes the uncertainty of the
algorithm. Other indices can be used, e.g., the mean absolute
estimation error, but they are not reported here for the sake
of brevity, since the conclusions presented in the comments to
the tests below would be still the same.

B. Tests with Different Measurement Configurations

First tests have been performed to prove the possibility
to run the proposed DSSE with a minimum number of
measurements, thus referring to the Case 0 scenario. In such
a measurement configuration, only two branches of the grid
are monitored by associated power meters. Exploiting the
unbalanced conditions, resulting from the different loads and
generation present in the three phases of the grid, six indepen-
dent power measurements are eventually available, which thus
allow estimating the allocation factors of all the four clusters
assumed in the grid.
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Fig. 2. Voltage magnitude estimation with minimum measurement configu-
ration (Case 0).

0 50 100 150 200

Branches

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
c
ti
v
e
 p

o
w

e
r 

[M
W

]

 Estimation uncertainty

 Average estimated active power

 Average true active power

Phase B Phase CPhase A

Fig. 3. Branch active power estimation with minimum measurement config-
uration (Case 0).

Figure 2 shows the voltage magnitude profile of the grid
averaged over the MC trials, together with the expanded uncer-
tainty (obtained from uν using a coverage factor equal to 3) of
the DSSE results2. The average estimated voltage magnitude
profile is reported only to confirm that, also with this new
formulation, the WLS keeps its unbiasedness and is capable of
correctly tracking the voltage variations along the grid. Indeed,
such profile is equal to the (average) true one, as expected.
More important, with this minimal measurement configuration,
the expanded uncertainty of the voltage magnitude estimation
ranges between 0.67% and 0.89%, which is an outstanding
result considering the very low number of measurements in
the grid.

Figure 3 shows the analogous results for the active power
estimation over the network branches. Also in this case, the
DSSE results are unbiased, namely the estimated and true
power profile averaged over the MC trials are the same.
The expanded uncertainty (coverage factor equal to 3) of the
estimated active power may highly vary for different branches,
but it is in average (when averaging over all the network

2From here on, and differently from Fig. 1, the node index in the figures
is a sequential number for all the three system phases starting from bus 1 of
phase A to the last bus of phase C. Indeed, in the network there are three-,
two- and single-phase buses.
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Fig. 4. Expanded uncertainty of the voltage magnitude estimation for different
measurement configurations.

branches) equal to 24 kW and the highest peak is equal to
60 kW. As it can be inferred from Fig. 3, for some branches
of the grid this can result in a very high percentage uncertainty,
as some of the branch powers are very close to 0 due to the
combined effects of load and generation profiles. In general,
however, these levels of uncertainty are much lower than the
largest powers flowing in the grid, which are an order of
magnitude larger. Such results show that also with a minimum
measurement configuration, the proposed estimator is able to
track quite well the power flows in the grid thanks to the
estimation of the introduced allocation factors.

The performance of the proposed estimator may signifi-
cantly improve with a larger deployment of measurements.
Figure 4 shows the enhancements achievable for the estimation
of the voltage magnitude profile. Even if Case 1 has the
same number of voltage measurements as in Case 0, it is
possible to observe that the additional power measurements
allow a better estimation of the allocation factors, which
is eventually reflected also in the accuracy of the voltage
estimation. Case 2 and Case 3 involve instead a larger number
of voltage measurements and this allows to clearly reduce the
plateau of voltage estimation uncertainty to around 0.5% and
0.38%, respectively. It is also worth noting that these levels
of expanded voltage uncertainty are compliant with the rule
of thumb derived in [24], namely they are in the order of
UVm/

√
NVm , where UVm

is the expanded uncertainty of the
voltage meters (in these tests 1%) and NVm is the number of
available voltage meters.

Figures 5 and 6 show one of the unique features of the
proposed DSSE formulation, namely the capability to identify
the operating point of different load or generation clusters
(according to the scenario depicted in Section IV-A, the
average allocation factors are 0.65 and 0.45 for the residential
and commercial loads, and 0.35 and 0.30 for the PV and wind
generation, respectively). In the figures, the boxes represent
the first and third quartile of the allocation factor estimates,
the line inside them is the median and the whiskers are
the maximum and minimum estimates that are identified as
non-outliers. The outliers are those estimated values beyond
150% of the interquartile range. In Case 0, since only two
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Fig. 5. Statistics of the estimated load allocation factors for different
measurement configurations.
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Fig. 6. Statistics of the estimated generation allocation factors for different
measurement configurations.

power measurements are available, the estimation of the
allocation factors is not always accurate, as the loads and
generators may be combined in multiple ways (with different
allocation factors) to give results consistent with the available
measurements. However, already with Case 1, it is possible
to observe that the allocation factors are estimated much
more accurately (e.g., 0.65 ± 0.12 for the residential loads
and 0.35 ± 0.09 for the PV generation). This improvement
continues till Case 3 where, even if only 7 out of the 118 active
nodes of the grid are monitored, the proposed formulation
allows estimating accurately all the allocation factors (e.g.,
with an uncertainty of only ±0.04 for the PV cluster). In
general, the different performance for different clusters are
associated with the number of loads/generators belonging to
each cluster. In the created scenario, for example, most of
the nodes have residential loads and PV generation connected
behind them, while less nodes have commercial loads or wind
generation. This explains why the average behavior of these
last clusters is captured slightly less accurately.

Finally, Table I shows some statistics about the convergence
properties of the proposed DSSE for the MC simulations
discussed above. As it can be seen, the algorithm typically
converges in only five iteration, except for Case 0, where
the low measurement redundancy can sometimes lead to six

TABLE I
AVERAGE NUMBER OF ITERATIONS AND COMPUTATION TIME

Case Avg number Avg execution

scenario of iterations time [ms]

Case 0 5.51 84.27

Case 1 5.00 83.49

Case 2 5.00 91.93

Case 3 5.00 109.93

TABLE II
DIFFERENT OPERATING CONDITIONS SCENARIOS: VARIABILITY RANGES

FOR ALLOCATION FACTORS

Customer cluster
Allocation range

Scenario A Scenario B

Residential load 20% - 40% 20% - 40%

Commercial load 30% - 60% 10% - 40%

PV generation 70% - 90% 0%

Wind generation 20% - 30% 20% - 80%

iterations. In all the considered scenarios, the execution time
is in the order of hundred milliseconds (the algorithm was
implemented in MATLAB and run on a 1.90 GHz processor
with 16 GB of RAM).

C. Tests with Different Operating Conditions

Previous tests considered different operating conditions,
but using predefined ranges for the extraction of the powers
of loads and generators within each cluster. In this section,
the percentage range of each cluster is modified to prove
that the considerations drawn in Section IV-B still hold also
when looking at different operating scenarios. In particular,
two further scenarios are presented, whose load/generation
percentage range (with uniform distribution) for each cluster
is given in Table II. Scenario A may represent a time step in
the afternoon, where a high generation from PV plants and
a relatively low consumption from residential loads occur.
Scenario B, instead, could be representative of a time step
in the night with no PV generation, a low consumption
from residential and commercial loads, and a highly variable
generation from wind plants. All the results discussed in this
section are created using Case 1 measurement configuration.

Figure 7 shows the expanded uncertainty (coverage factor
equal to 3) for the voltage magnitude estimation for Scenarios
A and B in comparison with the scenario of Section IV-B
(default scenario, using Case 1 too). Clearly, slightly different
profiles of uncertainty exist due to the different operating
conditions under analysis. However, it is possible to observe
that, also in these new scenarios, the voltage magnitude
estimation uncertainty ranges for most of the nodes between
0.7% and 0.8%, which is in line with results obtained for the
default scenario and coherent with the levels of uncertainty
expected according to the adopted measurement configuration
[24]. In a similar way, also the allocation factors are estimated
consistently with what shown in Figs. 5 and 6, namely the
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Fig. 7. Expanded uncertainty of the voltage magnitude estimation for different
operating scenarios.

estimates are very close to the average value of the consid-
ered ranges, with slightly more accurate estimations for the
residential load and PV clusters. A further aspect should be
highlighted concerning the estimation of the allocation factor
associated with the PV cluster in Scenario B. The presented
results refer to the case in which this allocation factor is still
treated as a completely unknown state variable to prove the
robustness of the proposed algorithm. It is however trivial to
notice that, if an allocation factor is known a priori (like for the
PV generation during the night), then this information can be
directly embedded in the algorithm and such allocation factor
can be simply removed from the set of state variables.

Similar tests have been run considering also other ranges
of variability for the allocation factors, here including also
scenarios with very high variability (e.g., 10%–80% for the
residential loads). In general, a larger variability of the power
profiles within the same cluster may slightly degrade the
accuracy performance, both in terms of voltage and allocation
factor estimation. However, obtained results, considerations
and capabilities of the estimator still remain very similar to
those discussed for the previous test cases. For this reason, and
for the sake of brevity, a detailed presentation of the results
for these additional test scenarios is here omitted.

D. Impact of State Estimation Weights

One of the peculiarities of the proposed DSSE algorithm
is the use of the equivalent measurements corresponding to
current injection balance defined in (8) and (9) as a function
of the individual contributions from each of the connected
clusters of customers. While all the other settings of the
DSSE algorithm are quite straightforward, the definition of the
weights for these equivalent current injections may be more
troublesome, as it should reflect the variability resulting due
to the different behavior of customers belonging to the same
cluster. Equations (11) and (12) assume the knowledge of the
variability of the allocation factors, but in practical scenarios
a precise information on such variability may be missing. For
this reason, additional tests have been performed to assess the
robustness of the proposed DSSE algorithm to an erroneous
choice of the equivalent current injection weights.

TABLE III
IMPACT OF THE WEIGHTS OF THE CURRENT INJECTION EQUIVALENT
MEASUREMENTS ON THE ESTIMATION OF THE ALLOCATION FACTORS

Cluster
Weighting Statistic

scenario Median 5th-95th percentile

Residential Case 3 0.6497 0.6081 - 0.6912

load Case 3a 0.6497 0.6079 - 0.6912

Case 3b 0.6495 0.6079 - 0.6919

Case 3c 0.6474 0.6011 - 0.6961

Commercial Case 3 0.4514 0.3872 - 0.5110

load Case 3a 0.4513 0.3864 - 0.5122

Case 3b 0.4521 0.3862 - 0.5127

Case 3c 0.4483 0.3747 - 0.5208

In the previously presented results, the values of σKh

to be used in (11) and (12) for each cluster were chosen
considering the maximum variability of the allocation factor
(from its average value) divided by

√
3 (due to the assumed

uniform distribution). For testing purposes, further simulations
have been run with the default scenario of Section IV-B
and considering three different weights configurations for the
algorithm:

• Case a: the values of σKh
used in the algorithm are

scaled up by a factor 3 with respect to the correct
ones, thus assuming less accurate equivalent current in-
jection measurements, to assess the results with a much
more conservative assumption about the variability of
allocation factor within each cluster (lack of a-priori
information);

• Case b: the adopted values of σKh
are fixed and equal to

0.3/
√
3 for all the clusters, thus assuming a 30% maximum

variability of allocation factor in each cluster, to assess the
results when the same default weight is used regardless
of the presence of less variable clusters. Also in this
case, uncertainty of constraints associated with equivalent
measurements is thus overestimated at execution time;

• Case c: values of σKh
are assumed equal to 0.01/

√
3 in

the algorithm for all the clusters, thus assuming a prior
1% maximum variability in each cluster, to assess the
results with a large mismatch in the assumption about
the variability within each cluster and, in particular, a
strong underestimation of the uncertainty of equivalent
measurements constraints.

Performed tests show that the choice of the equivalent
current injection weights has only a very small impact on the
final results, if no large mismatches exist. This impact slightly
grows when more measurements are used (Case 3), probably
because the additional power measurements bring additional
constraints for which it becomes important to correctly model
all the input weights. Table III shows the statistics for the
estimation of the load allocation factors in Case 3, including
the three additional scenarios with the incorrect modelling
of the weights. It is possible to observe that using more
conservative standard deviations (Case 3a) or a wrong pro-
portion of the weights (Case 3b) may lead to slightly larger
uncertainties with respect to the base case, but, as mentioned,
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the differences are always extremely small. However, when
gross errors exist in the definition of the weights (Case 3c), this
can lead to a clearer degradation of the results (affecting also
the median of the estimated allocation factors). Similar results
and considerations hold also for the generation allocation
factors.

Such results suggest that a rough estimation of the vari-
ability of the power consumption/generation for customers
belonging to the same cluster is still sufficient to obtain
meaningful DSSE results. Indeed, in the simulated scenarios,
the very small differences obtained for the estimation of the
allocation factors in Case 3a and 3b do not lead to any
appreciable difference in the estimation of the voltages and
currents of the grid with respect to the base case with correct
setting of the weights. At the same time, the results of Case
3c highlight that it is still important to have a realistic, non-
random definition of the weights, in order to prevent an
avoidable degradation of the DSSE results.

E. Comparison with Conventional WLS
An additional series of tests has been performed to com-

pare the proposed DSSE method (Allocation-Factor WLS,
AF-WLS) with a conventional WLS based on pseudo-
measurements [28]. The aim is to highlight some risks that
may occur when having a rough definition of the pseudo-
measurements to achieve grid observability. All the following
tests adopt the measurement configuration given in Case 1.

Figure 8 compares the accuracy performance of the pro-
posed estimator to those of a conventional WLS equipped
with different pseudo-measurements. In particular, ‘WLS 1’
defines the pseudo-measurements via (6) and using the average
value of the allocation factors for each cluster. The associated
weights are computed using (11) and (12). It is possible to
see that in this case the accuracy performance of the proposed
estimator and the conventional WLS are very similar. How-
ever, the conventional WLS requires the a priori knowledge of
the allocation factors for defining the pseudo-measurements,
whereas in the proposed method this requirement does not
exist as the allocation factors are actually estimated.

‘WLS 2’ uses the same approach of WLS 1 to create the
pseudo-measurements, but in this case the knowledge of the
allocation factors is assumed to be biased. A negative and a
positive bias of 0.15 are considered for the load and generation
clusters, respectively. The weights are again computed using
(11) and (12). This case emulates a scenario where it is not
possible to accurately determine the pseudo-measurements, but
they are anyway used to achieve observability. The results
show that in such a case an important degradation of the
accuracy performance may occur, as visible above all in Phase
A and Phase C (which are the most loaded phases). This risk
is clearly avoided with the proposed method, as there is no a
priori definition of the pseudo-measurements.

‘WLS 3’ uses the same pseudo-measurements created for
WLS 2, but it adopts a default value of pseudo-measurement
uncertainty (equal to 50% of the pseudo-measured power
consumption or generation) for the creation of the asso-
ciated weights. This case reflects a scenario where, be-
yond the pseudo-measurement values, it is also not possible
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Fig. 8. Accuracy performance comparison between proposed method and
conventional WLS with different choices of pseudo-measurements (Case 1).
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Fig. 9. Accuracy performance comparison between proposed method and
conventional WLS in case of loss of power measurement at bus 1 (Case 1).

to accurately determine the uncertainty around the pseudo-
measurements. The results prove that also the definition of the
pseudo-measurement weights is critical, as visible above all in
Phase A, where an important increase of the voltage estimation
uncertainty is obtained due to the simplistic assumption behind
the definition of the pseudo-measurement uncertainties.

Finally, Fig. 9 shows another particular scenario where the
use of pseudo-measurements may potentially lead to mislead-
ing results. In this scenario, the measurement configuration of
Case 1 is used, but it is assumed that the power measurement
at bus 1 is temporarily unavailable and cannot be used as
input to the state estimator. The pseudo-measurements are
created with a bias, according to what previously described for
WLS 2. Figure 9 depicts the accuracy performance in terms
of voltage magnitude estimation RMSE, showing that the loss
of the power measurement at bus 1 would severely affect the
performance of the conventional WLS. The reason for this is
that, with the loss of this power measurement, a large number
of pseudo-measurements become critical measurements that
cannot be refined during the estimation process. In this case,
the bias in the pseudo-measurements is hence not compensated
and it propagates to the voltage profile, eventually leading to
a biased voltage estimation and to significantly higher RMSE
values. It is worth noting that in the proposed estimator,
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instead, the estimation of the allocation factors (which is
still possible thanks to the power measurements at bus 69)
allows an unbiased estimation of all the power injections and,
consequently, also an accurate estimation of voltage profile.

As demonstrated by the above tests, the proposed estimator
allows avoiding some important issues associated to the choice
of the pseudo-measurements and of their weights. This is of
utmost importance in future scenarios, since the diffusion of
new loads (such as electric vehicles, heat pumps, etc.) will
lead to a lack of statistical information and to a much more
complex definition of the pseudo-measurements.

F. Bad Data Detection Performance

One of the main functionalities for a state estimator is the
capability to detect and identify possible bad data appearing in
the input measurement set. Even though the low measurement
redundancy at distribution level makes it hard to recognize
some types of bad data, this section aims at investigating if the
tools adopted for bad data detection and identification in the
conventional WLS can be still successfully applied also within
the proposed WLS formulation. To this purpose, the Largest
Normalized Residual (LNR) approach was implemented in the
DSSE algorithm and MC tests were run, applying bad data
to the voltage magnitude measurements when considering the
Case 2 measurement configuration (which ensures that voltage
measurements do not form a critical pair and that bad data are
both detectable and identifiable).

Obtained results proved that the LNR test can be suc-
cessfully employed also in the proposed WLS formulation
and allows identifying voltage bad data with a very good
sensitivity. As an example, bad data with a negative offset
as low as 2% for the voltage measurement at bus 27 are
successfully identified in 58.7% of the cases, while bad data
with a 2% positive offset on the same voltage measurement
lead to a successful identification in 63.1% of the cases.
Similar results are found also when creating similar bad data
(2% offset) on the other voltage measurements of the grid
(successful identification in a range between 55% and 65%
of the cases). Larger bad data with a 3% offset are instead
always correctly identified through the LNR test. These results
thus further confirm that the proposed formulation keeps all the
strengths of the conventional WLS formulation, while enabling
the operation in theoretically unobservable scenarios.

G. Exemplary Operation during a 1-Day Time Window

As last verification of the performance of the proposed
estimator, it may be interesting to see some exemplary results
achievable when running the AF-WLS over the consecutive
time steps of a day. In this case, the presented results are hence
not derived from a MC analysis, but they are simply one-shot
estimations obtained over different time steps when emulating
a live operation of the estimator. To this purpose, typical
daily profiles for residential and commercial loads, as well
as for PV and wind generation, have been derived from the
Atlantide project [35]. These profiles have a 15-minutes time
resolution. To generate the variability of the power profiles
within each cluster, it is assumed that the power of each
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Fig. 10. Voltage magnitude estimation over the day for bus 111 (phase A).
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Fig. 11. Estimation of the allocation factor for residential loads over the day.

customer can vary in the interval between 50% and 150% of
the nominal allocation factor available at time t for residential
loads and wind generation, whereas it varies between 75%
and 125% for the commercial loads and PV generation (thus
implicitly assuming that these categories of customers have
a more uniform behavior within the cluster at a known time
point). Tests have been run using the Case 2 measurement
configuration.

Figure 10 shows, as an example, the daily profile of the
voltage magnitude estimation for bus 111 (phase A), which
is a not measured bus. It is possible to observe that the
proposed estimator allows following very closely the voltage
variations over the day, with a maximum error that, in this
specific example, is equal to 0.45%. Figure 11 shows instead,
as an example, the reference scaling factors considered for the
residential loads (with the characteristic peaks in the morning
and in the evening) together with the estimated values of the
corresponding allocation factor. In this case, it is possible
to notice that estimation errors exist (coherently with what
highlighted in the results of Fig. 5 and Fig. 6), but, again, the
proposed estimator proves to be capable of providing reliable
information also for the estimation of these parameters and to
suitably track the changes occurring over time.
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V. CONCLUSIONS

This paper presented a novel DSSE algorithm for un-
observable distribution grids based on the classical WLS
method. The proposed formulation relies on allocation factors
to deal with the scarcity of measurement devices, it does
not require the definition of any pseudo-measurements, it is
relatively simple and it requires only few modifications to
the conventional WLS SE model. Performed tests prove that
the proposed estimator can work with very few measurements
and can provide accurate and reliable SE results. Moreover,
it allows avoiding some of the risks associated to the use
of pseudo-measurements, above all in future scenarios where
their definition may be troublesome. Finally, through the
estimation of the allocation factors, the proposed estimator
allows achieving a further level of detail in the knowledge
of the operating conditions, which may be used, for example,
for the monitoring of other unobservable areas or for other
SE-related applications.

APPENDIX

In the following, the measurement functions used to express
the field measurements with respect to the rectangular voltage
state variables are given.

The voltage magnitude measurement hVi,ϕ
at a generic bus

i and phase ϕ is expressed as:

hVi,ϕ
=

√
V 2
ri,ϕ + V 2

xi,ϕ (16)

In case of PMUs, the measured voltage phasor is converted
into rectangular coordinates and it is then easy to find:

hVri,ϕ
= Vri,ϕ hVxi,ϕ

= Vxi,ϕ (17)

For the power and PMU current phasor measurements at the
branch between the generic nodes i and k, both are converted
into rectangular currents (see [28] for the conversion of power
measurements into equivalent currents). Their measurement
functions (for phase ϕ) are then expressed as:

hIri,ϕ =
∑
ψ∈Ψ

[gik,ϕψ(Vri,ψ − Vrk,ψ)− bik,ϕψ(Vxi,ψ − Vxk,ψ)]

(18)
hIxi,ϕ

=
∑
ψ∈Ψ

[bik,ϕψ(Vri,ψ − Vrk,ψ) + gik,ϕψ(Vxi,ψ − Vxk,ψ)]

(19)
where Ψ = {A,B,C}.
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