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Abstract—Distribution system operators are progressively ex-
panding the measurement infrastructure in their grids in order to
enhance the real-time monitoring capabilities. Meter placement
algorithms allow identifying the best type and location for
new measurements, thus being a key tool in support of meter
installation decisions and planning. Existing meter placement
solutions aim at reducing the monitoring uncertainties below an
arbitrary accuracy threshold, but typically they are not explicitly
linked to some tangible benefits achievable by the grid operator
via the measurement infrastructure upgrade. This paper aims at
filling this gap by presenting an overall meter placement strategy
that takes into account how the monitoring uncertainties translate
into costs for avoiding contingencies and then drives the meter
placement process according to the economic benefit resulting
from the reduction of those uncertainties. An exemplary imple-
mentation is presented to describe the underlying concepts and
the role and functionalities of the different software components
involved in the meter placement cost-benefit analysis. Simulations
performed on a sample grid show the application of the proposed
meter placement strategy in a realistic scenario and highlight how
this may be used to determine not only type and location of the
new meters but also the number of measurements that makes
sense to install according to cost-benefit criteria.

Index Terms—Cost-Benefit Analysis, Distribution Grids,
Global Sensitivity Analysis, Meter placement, State Estimation,
Uncertainty, Voltage Control.

I. INTRODUCTION

Distribution grids are rapidly evolving into highly complex
systems due to, among other reasons, the growing penetration
of small-scale generation based on renewable sources, the
ongoing electrification of the heating and mobility sector, and
the interconnection of power electronics-based components to
the grid. As a result of this transition, the operation of distri-
bution systems is facing new challenges and is pushed closer
to its boundaries, which calls for the adoption of advanced
management and control to guarantee system reliability and
security. In turn, the effective deployment of smart control
applications strictly depends on the availability of an accurate
monitoring of the system and on the associated capability
to closely track the real-time operating conditions of the
grid. As a consequence, having an accurate monitoring of
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the distribution grid is one of the key factors to enable the
transition towards the so-called smart grid.

State estimation techniques focus on the processing of
measurement data considering their uncertainty characteristics
and are the basis behind the tools adopted for the monitoring of
electrical grids [1]. In the last years, several approaches have
been proposed to deal with the problem of Distribution System
State Estimation (DSSE). These approaches offer possible
solutions to different challenges associated with the monitor-
ing of distribution grids, such as, for example, multi-phase
modelling of unbalanced grids [2]–[4], efficient implementa-
tion for large networks [5]–[7], integration of heterogeneous
and asynchronous measurements [8], [9], modelling of non-
Gaussian uncertainties [10]–[12], etc. Among them, the most
important issue for the practical implementation of DSSE
is however the scarcity of measurement devices available
in the field. Several solutions have been identified to deal
with the minimal amount of real-time measurements, such
as augmentation of the measurement set through pseudo-
measurements derived from statistical information of power
generation and consumption [13], [14], or use of Artificial
Neural Networks to run the DSSE in unobservable scenarios
[15]. Nonetheless, it is commonly recognized that strength-
ening the measurement infrastructure through the progressive
deployment of additional meters is an impelling requirement
for Distribution System Operators (DSOs).

To this purpose, meter placement solutions are proposed in
the literature, which help identifying the best measurement
installation plan in terms of type and location of the meters.
While in transmission systems different objectives may exist,
at distribution level the main target is usually to enhance the
accuracy of the DSSE results. In [16], it was proposed to
incrementally place voltage measurements in the nodes with
the worst accuracy of the voltage magnitude estimation. This
method was extended in [17] to improve also the accuracy of
voltage angle estimations through the installation of power
measurements. In [18], the placement of load power mea-
surements was proposed to achieve a target uncertainty in
the power flow estimation. In [19], recommendations were
provided on critical points of the network where the placement
of measurements should be prioritized. More sophisticated
options exploring the solution space via heuristic methods are
presented in [20], where a genetic algorithm is used, and in
[21] and [22], which adopt dynamic programming. Rigorous
optimization models can also be formulated when using the
Weighted Least Squares (WLS) method as core algorithm for
the DSSE, as shown in [23], which presents a Mixed-Integer
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Linear Programming solution, and in [24] and [25], which
propose semi-definite programming formulations derived from
the use of the Fisher information matrix. More recently, [26]
proposed an alternative meter placement approach based on
Global Sensitivity Analysis (GSA), which allows avoiding the
use of complex optimization routines and flexibly integrating
the effects of various uncertainty sources.

The above methods offer valid solutions to the meter
placement problem, but they all aim at bringing the uncertainty
of the DSSE results below a threshold that is arbitrarily
chosen. A still-open question is therefore which target makes
sense to pursue from a technical or economical perspective
for the DSOs. This paper makes a step forward in this
direction, defining an overall meter placement strategy where
a Cost-Benefit Analysis (CBA) subtends the meter placement
process and drives the decision on whether additional meters
are needed or not. The cost-benefit evaluation relies upon
the quantification of how the monitoring uncertainties can
translate into actual costs for the DSOs. To this purpose, the
proposed CBA-based meter placement strategy involves an
uncertainty-inclusive voltage control application, which uses
the output uncertainties of the DSSE to define voltage safety
margins. In this scenario, the monitoring uncertainties directly
affect the amount of power flexibility needed to keep the
voltage within the accepted boundaries, hence translating into
measurable costs. Through this approach, the cost savings
achievable by reinforcing the measurement infrastructure can
then be compared to the costs associated with the measurement
installations and it is possible to infer how many meters are
beneficial to install from an economic perspective.

Overall, this paper brings the following novel contributions:

• it extends the GSA-based incremental placement pro-
cedure presented in [26] by showing how to integrate
multiple operating conditions of the grid;

• it analyses how measurement uncertainties propagate over
the monitoring and control chain and how they eventually
affect the operation of the voltage control application;

• it shows how the monitoring uncertainties would translate
into economic costs associated with the redispatch power
required to keep the voltage within the allowed limits;

• it presents a comprehensive CBA-based meter placement
strategy, where the meter placement decisions are ulti-
mately taken on the basis of a cost-benefit evaluation, thus
considering the concrete benefits arising for the DSOs.

• leveraging on the previous points, it proposes an innova-
tive approach to identify the measurement requirements
and define the measurement infrastructure needed for
future smart grids.

The remainder of the paper is organized as follows. Section
II provides the overview of the software modules needed to im-
plement the conceived CBA-based meter placement strategy.
Section III presents costs considerations and the overall CBA
framework used for the meter placement as well as the analysis
of how monitoring uncertainties eventually translate into costs.
Section IV shows the simulations performed to demonstrate
the proposed idea and discusses the obtained results. Finally,
Section V provides the final remarks and concludes the paper.

II. SOFTWARE COMPONENTS FOR THE CBA

The proposed CBA-based meter placement strategy builds
upon the use of three main components to perform the CBA,
namely a DSSE, a meter placement routine and a voltage
control algorithm. The algorithms used in the paper for these
three modules are shortly described hereafter. However, it
should be noted that the CBA-based meter placement strategy
presented in Section III is not bounded to the use of these
specific algorithms. Indeed, the presented algorithms may be
replaced with other ones, provided that their inputs and outputs
fulfil the following basic requirements:

• State estimation: the adopted algorithm must be able to
integrate any type of measurement in input and provide
not only the estimated voltages, but also information on
the associated uncertainty as output.

• Meter placement: the incremental placement procedure
should aim at reducing the DSSE uncertainty and provide
the indication of both type and location of the next best
meter to be installed as output.

• Voltage control: the used algorithm must consider the
uncertainties of the voltage estimates given by the DSSE
and provide the set points of active and reactive power
adjustment requested to the flexibility sources as output.

A. WLS DSSE

The first module of the CBA-based meter placement strategy
is the DSSE, i.e., the mathematical process used to estimate the
operating conditions of the distribution grid from the measure-
ments gathered from the field. While different approaches exist
to perform DSSE, the WLS method is still the most common
one, due to its accuracy performance as well as its simplicity
and explainability. Consider the measurement model:

z = h(x) + e (1)

where z is the vector of input measurements (which may in-
clude voltage, power and current measurements, coming from
conventional meters or last generation phasor measurement
units), x is the vector of the state variables used to represent
the electric grid operating conditions, h(x) is the vector of
measurement functions expressing the measurements in terms
of the state variables, and e is the vector of measurement
errors. The goal of the WLS method is to minimize the
following objective function:

min{[z− h(x)]TW[z− h(x)]} (2)

where T indicates the transpose operator and W is a weighting
matrix equal to the inverse of the measurement error covari-
ance matrix.

Due to the non-linearity of the measurement functions h(x),
the solution of (2) is typically found through the iterative
Gauss-Newton approach, where the estimated state vector is
updated by means of the following equation system:

G ·∆x = HTW[z− h(x)] (3)

where G = HTWH is a gain matrix, H is the Jacobian of
the measurement functions h(x), and ∆x = xk − xk−1 is
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the updating vector of the state variables at iteration k. The
iterative procedure continues until the largest term (in absolute
value) of ∆x is lower than a chosen threshold.

From a meter placement perspective, it is important to
highlight that the estimated values will be still affected by
uncertainties, due to the propagation of the uncertainties from
the measurements to the DSSE results. In the WLS, the
covariance matrix of the estimated state variables can be found
through the inverse of the gain matrix G.

In the proposed CBA-based meter placement strategy, DSSE
solutions different from the WLS could also be implemented.
The only requirement existing for the DSSE algorithm is to
be capable of providing the estimated voltages together with
a reliable indication of their associated uncertainty as output.

B. Meter placement via GSA

The second module of the CBA-based meter placement
strategy is a placement procedure, whose goal is to indicate the
next best meter that can be added to the existing measurement
configuration. In this paper, a GSA-based procedure derived
from the incremental meter placement algorithm presented
in [26] is employed. This algorithm builds upon the Variance-
based Sensitivity Analysis (VBSA) theory [27] to identify the
best location and type of meter (e.g., voltage, power or current)
to be considered for upgrading the measurement infrastructure.

Consider a generic model y = f(u), where y is the vector
of the N model outputs {yn}n∈{1,...,N} and u is the vector
of the d model inputs {ui}i∈{1,...,d}. In a meter placement
perspective, the DSSE module can be seen as the model
f(·): the voltage estimates represent the outputs y, whereas
measurements, pseudo-measurements and other possible un-
certainty sources (e.g., network parameters) constitute the
inputs u. The VBSA apportions the variability of each output
to its uncertain inputs, based on the normalized equation of the
decomposition of the variance Var(yn) of the output yn [27]:

1 =
∑
i

S
(n)
i +

∑
i

∑
i<j

S
(n)
ij + · · ·+ S

(n)
1...d (4)

where S
(n)
i is the first order Sobol’ Sensitivity Index (SI),

which quantifies the individual effect of the input ui on
Var(yn), S

(n)
ij is the second order Sobol’ SI, which quantifies

the interactive effect of the inputs ui and uj on Var(yn), and
so on up to the d-th order Sobol’ index S

(n)
1...d. The first and

second order Sobol’ SIs are formally defined as:

S
(n)
i =

Varui
(Eu∼i

[yn|ui])

Var(yn)
(5)

S
(n)
ij =

Varui,uj (Eu∼ij [yn|ui, uj ])

Var(yn)
− S

(n)
i − S

(n)
j (6)

where E indicates the expected value, the subscripts of E and
Var define the inputs over which the operators are taken, and
u∼i and u∼ij indicate the removal of the input ui and the
inputs pair {ui, uj} from u, respectively. Similar definitions
hold for higher-order Sobol’ SIs [27].

Algorithm 1 GSA-based incremental placement procedure
1: Run a load flow for the considered scenario(s) to obtain

the reference operating conditions of the grid.
2: Define the input u, which includes both the already

existing measurements and those that may be potentially
added, and assign the associated uncertainties.

3: Extract Nu different samples of the inputs in u from the
space spanned by their PDFs.

4: Run the DSSE for the Nu extracted samples of u to obtain
the corresponding voltage estimates V̂ at all the nodes.

5: Perform the VBSA and compute the Ti’s of all the
elements in u for each of the voltage estimates in V̂.

6: Compute the ranking scores m for each element of the
input vector u according to the chosen ranking metric.

7: Sort the elements of u in descendent order according to
the obtained values of the ranking scores.

8: Select the first element of u that does not belong to the set
of already existing measurements as the best next meter
to install in the grid.

Additionally to the Sobol’ SIs, it is possible to define the
total effect SI of the input ui as:

T
(n)
i = S

(n)
i +

d∑
j=1,j ̸=i

S
(n)
ij + ...+ S

(n)
1...d =

Eu∼i
(Varui

(yn|u∼i))

Var(yn)

(7)
which quantifies the amount of Var(yn) due to all the contribu-
tions of ui, including its interactive effects with other inputs of
u∼i. For example, if d = 3, T (n)

2 = S
(n)
2 +S

(n)
12 +S

(n)
23 +S

(n)
123.

By employing the VBSA for the meter placement, the total ef-
fect SIs quantify the overall effect that each of the uncertainty
sources has on the final uncertainties of the state estimates,
to ultimately identify those having the highest impact on the
progressive reduction of the state estimates’ variability.

A step-wise description of the adopted GSA-based incre-
mental placement procedure is given in Algorithm 1. After
computing the reference operating conditions for the con-
sidered scenario(s), a crucial step is the definition of the
input vector u (step 2). Here, it should be noted that the
input vector has to include not only the measurements already
existing in the grid, but also those that could be potentially
installed, which are subject to the meter placement selection
and integrated as pseudo-measurements. As presented in [26],
this is needed to ensure that their potential impact on the
DSSE results’ accuracy may be evaluated through the VBSA.
Moreover, all inputs have to be described with their associated
Probability Density Function (PDF). For the already existing
measurements, their PDF should reflect the uncertainty char-
acteristics of the measurement device and of the used sensors.
For the pseudo-measurements used to represent the installable
meters, a higher uncertainty should be instead considered, and
chosen as a trade-off between the need to avoid affecting the
DSSE results and the necessity to have the effects of the
installable meter visible from the VBSA. The defined PDFs are
considered in step 3 for the random extraction of measurement
samples, which are used as input in step 4 to run the DSSE Nu

times. The voltage magnitude estimation results obtained from
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the DSSE runs are then employed in step 5 for the computation
of the total effect SIs. As discussed in [26], the T

(n)
i indexes of

each element in u provide node-level sensitivity information
in a meter placement perspective, namely each T

(n)
i indicates

the impact of the i-th measurement on the voltage magnitude
estimation of the n-th node. To derive a grid-level criterion
for the meter placement, the T

(n)
i indexes for the estimated

voltage magnitude of the n-th node are hence aggregated
over all the grid nodes to yield specific ranking scores m
for each element in u according to a given ranking metric.
In [26], it was shown that different user-defined metrics can be
potentially conceived, which may also depend on the specific
target pursued via the meter placement (e.g., reduction of the
peak uncertainties, or of the average one, etc.).

In this paper, the metric considered to score the effect of
the i-th installable meter on the DSSE accuracy is defined as:

mi =

Nbus∑
n=1

T
(n)
i · Σ2

V̂n
(8)

where Nbus is the number of nodes in the grid and ΣV̂n
is

the expanded uncertainty (with coverage factor equal to 3)
of the voltage magnitude estimation at node n. The goal of
such a ranking metric is to prioritize the installation of meters
having a larger impact (quantified by T

(n)
i ) on improving the

voltage estimation V̂n at the nodes with higher uncertainties.
Unlike [26], where only one single operating condition is
considered for (8), this metric can be further extended to
encompass different operating conditions potentially occurring
in the grid. In this case, indicating with τ the total number
of operating conditions relevant for the meter placement, the
metric in (8) can be expanded as follows:

mi =

τ∑
t

βt ·

[
Nbus∑
n=1

T
(n)
i,t · Σ2

V̂n,t

]
(9)

where the terms T
(n)
i,t and Σ2

V̂n,t
have been adapted to include

their dependency from the particular operating condition t and
the βt’s are coefficients introduced to give the flexibility to
weigh the τ operating conditions differently (e.g., according
to their frequency of occurrence). In the proposed incremental
placement procedure, eventually, the installable meter with the
highest score for the defined ranking metric will be the one
selected as next best measurement installation.

In the proposed CBA-based meter placement strategy, alter-
native meter placement procedures may be adopted instead
of the one just presented. No stringent requirements exist
neither for the type of measurements to include (both those
already existing and those potentially integrated in the grid)
nor for the targets or metrics used for the placement. The
only requirement is related to the desired output, which must
be the indication of the type and location of the next best
measurement to be installed in the grid.

C. Uncertainty-inclusive voltage control

The third module of the CBA-based meter placement strat-
egy is a voltage control algorithm.

In particular, the goal of the control algorithm presented
here is to tune the active and reactive power of the controllable
sources available in the grid to keep the voltage magnitude
profile within the accepted limits. This is done via an opti-
mization model, whose formulation is derived from the control
algorithm of [28].

The optimization model builds upon the following relation-
ship, which approximates the effects of active and reactive
power changes on the voltage profile of the grid:

Vc = Vu +R∆P+X∆Q (10)

where Vu and Vc are the vectors of voltage magnitudes
before and after the application of the control actions, ∆P
and ∆Q are the vectors of active and reactive power injection
changes requested by the control algorithm, and R and X
are the real and imaginary part of the impedance matrix Z of
the grid. Henceforth, powers are considered as positive when
injected in the grid (generation) and as negative when absorbed
(loads). It is worth noting that (10) may look incorrect from a
dimensional point of view. The reason for this is that such
relationship is derived under the assumption that, in first
approximation, voltage magnitudes can be considered equal
to 1 pu. With such an assumption, the quadratic relationship
between voltages and powers can be linearized, thus leading to
(10). More details on the derivation of the so-called linearized
branch-flow model behind (10) can be found in [29].

The goal of the optimization model is to minimize the
following objective function:

min

{∑
i∈Γ

wP,i[∆PT
i ·R ·∆Pi] + wQ,i[∆QT

i ·X ·∆Qi]

}
(11)

In (11), the aim is to minimize the flexibility contributions
(namely the power changes) requested to the controllable
sources. To this purpose, the impedance terms R and X are
used to consider the effects that different nodes may have
on the overall change of the voltage profile. Moreover, in
the adopted formulation, the sources of power flexibility are
differentiated depending on their nature (e.g., storage systems,
loads, PV plants, etc.) and included in different clusters within
the set Γ. Each cluster i can be weighted differently with the
weights wP,i and wQ,i (for the active and reactive power,
respectively) to foster (or disadvantage) the use of specific
flexibility sources. As an example, through these weights, it
would be possible to assign higher priority to the charging of
storage systems rather than to the curtailment of the active
power from renewable energy sources.

The optimization model also needs to integrate different
sets of constraints. The first set of constraints is related to the
final goal of the control algorithm, namely keeping the voltage
within the allowed upper and lower boundaries. This constraint
is formally expressed through the following relationships:

∆V(t) ≤ 1Vmax −ΣV̂ (t) − V̂(t) + ∆V(t− 1) (12)

∆V(t) ≥ 1Vmin +ΣV̂ (t) − V̂(t) + ∆V(t− 1) (13)

In (12) and (13), Vmax and Vmin are the limits for the
maximum and minimum voltage allowed in the grid (given as
scalar values), 1 is a column vector of ones, V̂ is the vector
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of voltage magnitude estimations, ΣV̂ is the vector of the
associated estimation uncertainties, and ∆V is the vector of
voltage magnitude deviations determined by the activation of
the power flexibilities according to:

∆V =
∑
i∈Γ

[R∆Pi +X∆Qi] (14)

Having a closer look to the voltage constraints in (12) and
(13), it is possible to notice that the proposed formulation
provides an uncertainty-inclusive voltage control, in that the
voltage limits are always adjusted considering the uncertainty
of the voltage estimates. This ensures that the uncertainties
are duly taken into account and that the voltage limits are
always respected regardless of the possible errors present in
the voltage estimates [30]. Moreover, a term related to the
voltage deviation applied at the previous time step t − 1 is
also included in the constraint. This allows keeping memory
of the previous actions and making sure that the control action
is maintained until needed, without being relaxed due to the
improved conditions seen by the state estimator.

The additional set of constraints needed for the optimization
model concerns the physical limits or the power flexibility
offered by each controllable source. These are expressed via
the following relationships:

−P abs
k,i (t) ≤ ∆Pk,i ≤ P inj

k,i (t) ∀k = 1, . . . , N ;∀i ∈ Γ (15)

−Qabs
k,i (t) ≤ ∆Qk,i ≤ Qinj

k,i (t) ∀k = 1, . . . , N ;∀i ∈ Γ (16)

Overall, the formulation of the voltage control used in this
paper can be hence summarized as follows:

minimize
∆P,∆Q

(11)

subject to (12), (13), (15), (16)
(17)

Different voltage control formulations could be potentially
applied in the CBA-based meter placement strategy presented
in Section III. The requirements for the control application are
to integrate the voltage estimates together with the associated
uncertainties, as given by the DSSE module, and to provide
the set points of required active and reactive power adjustment
for the flexibility sources in the grid as output.

III. CBA-BASED METER PLACEMENT PROCEDURE

The CBA-based meter placement procedure builds upon the
analysis of i) the redispatch costs required to keep the voltage
within the allowed boundaries, and ii) the costs associated with
the deployment of the (new) meters. The aim is to minimize
the overall costs, which has to be achieved considering that:

• the redispatch costs decrease for an increasing number of
meters, as an effect of the reduced monitoring uncertain-
ties (see Section III-A).

• the costs for the monitoring infrastructure clearly increase
with the placement of additional meters, due to the
involved installation and operational costs.

Hereafter, Section III-A will discuss the redispatch costs
and how these are affected by the monitoring uncertainties,
Section III-B will focus on the costs for the measurement
infrastructure, and Section III-C will present the logic to
minimize the overall costs and decide the meter placement.

A. Cost of monitoring uncertainties

A first category of costs for the CBA is given by the costs
CRD associated with the redispatch actions, namely those
costs to be paid for the active and reactive power changes
requested by the grid operator to the flexibility sources for
keeping the voltage within the allowed boundaries. It should
be noted that, in general, other options may be also available to
the DSO for controlling the voltage (e.g., switching capacitor
banks, regulating the tap changers of substation transformers,
etc.). When these options exist and have priority over the
use of power flexibility, they should be taken into account.
Redispatch measures would then be adopted only to solve the
potentially still remaining voltage issues. The costs associated
with the use of resources owned by the DSO (like tap
change transformers) are disregarded in the cost analysis, as
they are assumed to have no or little impact from a cost
perspective. Hereafter, the redispatch costs are assumed to
be proportional to the amount of power variation asked to
the flexible resources. The total costs computed over the time
horizon considered for the CBA can then be expressed as:

CRD =

Tsteps∑
t=1

Nbus∑
n=1

CPt
∆Pn,t∆t+ CQt

∆Qn,t∆t (18)

where CPt
and CQt

are the unitary costs at time t associated
with the active and reactive power changes, respectively (e.g.,
expressed in C/MWh and C/Mvarh), ∆Pn,t and ∆Qn,t are
active and reactive power changes requested for the time step
t to the flexible resources connected at bus n, ∆t is the length
of the time step used in the analysis (e.g., 15 minutes), and
Tsteps is the total number of time steps included in the overall
time horizon T considered for the CBA.

In (18), the underlying assumption is that the costs for the
offered flexibility are the same for all the resources in the
grid. In principle, it is possible to integrate in the CBA also
more complex cost models, for example differentiating the
costs of the flexibility offered by each resource according to
a market-based scenario. In this case, also the used voltage
control algorithm may need to be adapted accordingly, as in a
market-based scenario the DSO may want to pursue an optimal
control not from a strictly technical perspective (as done in
the algorithm in Section II-C) but rather from an economic
point of view. Furthermore, for doing this, a prediction of the
individual costs for each flexibility resource should be created,
as the meter placement and the proposed CBA are planning
tools intended to work with forecast/planning data.

Regardless of the used model, for the CBA purposes it
is important to notice that the redispatch costs decrease for
an increasing number of meters deployed in the grid due
to the improvements achievable in terms of voltage esti-
mation accuracy. Fig. 1 allows observing more closely the
reasons behind this and how the monitoring uncertainties
affect the redispatch costs. In the figure, the vertical dashed
lines represent estimated voltages, whereas the Gaussian curve
centered around them represents the estimation uncertainty
(here assumed equal to 1%), namely the interval where the
true voltage could lie. In particular, here and in the rest of the
paper, “uncertainty” refers to the expanded uncertainty with

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3387503

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. X, FEBRUARY 2024 6

Fig. 1. Illustration of the impact of monitoring uncertainties on the voltage
control and the associated redispatch costs.

a coverage factor equal to 3, which corresponds to a level
of confidence of around 99.7% that the true value lies within
the indicated uncertainty limit. The overvoltage boundary is
chosen to be 1.05 pu. Two relevant cases are discussed next.

In Fig. 1a, the estimated voltage exceeds the allowed
boundaries. As it can be expected, the voltage control should
intervene here to bring the voltage back into the allowed lim-
its. The monitoring uncertainty brings two main degradation
effects. The first one is that, to ensure that the true voltage
after the control is not beyond the boundaries, a larger voltage
variation ∆V has to be applied. In fact, considering that the
true voltage can be anywhere within the uncertainty interval,
a larger shift has to be applied to the Gaussian curve to bring
it (or, more precisely, to bring the portion of the Gaussian
curve between ±3σ, where σ is its standard deviation) into the
normal operating voltage area. It is easy to infer that the same
voltage estimation, but with a smaller uncertainty (namely
with a narrower Gaussian curve), would instead require a
smaller voltage deviation ∆V , which automatically means less
power changes requested to the flexibility sources (see (10)).
A second degradation effect is that there could be a number
of cases where the voltage control is applied even if not
necessary. From Fig. 1a, in fact, it can be observed that, even
if the estimate is beyond the limits, its uncertainty encloses
cases where the true voltage lies in the normal operation
area. Statistically, there will be thus cases where the voltage
control is applied (and power flexibility requested) even if this
was actually not needed. Lower estimation uncertainties would
clearly reduce the number of cases where this can happen.

In Fig. 1b, the estimated voltage does not exceed the limits.
Such scenario is presented to highlight that the voltage control
still needs to intervene also in this case, if the interval of the
estimation uncertainty crosses the overvoltage limits (hence,
if the true voltage could be beyond the boundaries). The same
degradation effects brought by the monitoring uncertainties
for the scenario in Fig. 1a occur also here: a larger voltage
deviation is needed to shift the Gaussian curve (its ±3σ
portion) into the normal operating area and, statistically, the

voltage control will be performed also in many cases where
the true voltage does not actually exceed the overvoltage limit.

Overall, it is possible to derive that, the smaller the mon-
itoring uncertainties, the smaller the described degradation
effects, and, accordingly, the smaller the amount of power
flexibility necessary to control the voltage. As a consequence,
an improvement of the monitoring accuracy through an incre-
mental placement of meters eventually brings a corresponding
decrease of the redispatch costs.

B. Cost of the measurement infrastructure

The cost CM of each meter placement can be divided into
associated capital and operational expenditures (CAPEX and
OPEX, respectively). The CAPEX include the costs of sensors,
measurement devices, possible additional hardware needed
(e.g., modems), as well as the costs for the installation of
both the measurement equipment and the ICT infrastructure.
When considering the amortization of these costs over a
given time period, the CAPEX can be eventually expressed
into equivalent costs over time (e.g., C/year). The OPEX
include instead those costs related to the operation of the
measurement infrastructure. These comprise, among others,
possible communication and data transfer costs, the replace-
ment of faulty units as well as the maintenance of the hardware
and software components of the measurement infrastructure.
From this point of view, it is also worth noting that different
communication solutions (e.g., PLC, 4G or 5G, etc.) may
imply a different share of CAPEX and OPEX. These costs
are typically expressed as costs over time.

Even if it concerns the scenario of end-user smart meters,
[31] provides a quite comprehensive overview of the different
types of costs possibly involved in the installation of the meter-
ing infrastructure. In the proposed CBA, more or less detailed
models can be considered (e.g., including also inflation rates,
etc.). A detailed definition of all the involved costs and of the
cost model is out of the scope of this paper. For the purposes
of the proposed CBA, the existing requirement is to dispose
of a realistic estimation of the costs over time involved in the
deployment of each additional meter as input to the CBA.

C. CBA-based meter placement

The proposed CBA aims at comparing the costs associated
with the installation of new meters to the benefits resulting in
terms of reduction of the redispatch costs. For doing this, the
algorithms presented in Section II are linked together and used
sequentially to allow the estimation of the redispatch costs.

The overall framework and logic of the CBA is depicted in
Fig. 2. The main inputs required for the analysis are: i) the
model and parameters of the grid; ii) the future (expected) load
and generation data in form of time series; iii) the information
about the starting measurement configuration (namely, the
meters already available in the grid); iv) the unitary costs (CP

and CQ) for the redispatch power and those associated with
the meter installation (CM ). Additional settings necessary for
the CBA are the boundaries for the voltage magnitude, the
considered accuracy of the meters, and the limits of active and
reactive power flexibility for the flexible resources in the grid.
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Fig. 2. Overall flowchart of the proposed CBA-based meter placement strategy.

A meaningful time horizon for the CBA has also to be selected.
This can be a multi-annual time window, which would make
sense if the load and generation data are expected to evolve
over time and if also variable costs are considered (e.g., due
to inflation rates). Within the considered time horizon, load
and generation data have to be defined with a given time
resolution (e.g., hourly data) to capture the seasonality and
daily variations. In this regard, the higher the granularity, the
better the accuracy of the analysis.

The CBA-based meter placement is an iterative procedure,
where at each round the convenience (from a cost perspective)
of placing an additional meter is evaluated. At each round,
the first step is to identify the best next meter to be installed
in the grid via a meter placement algorithm. In this paper,
the GSA-based procedure presented in Section II-B is used,
which provides the advantages to be not too computationally
demanding and to flexibly integrate the effects of various
uncertainty sources [26]. The output of this first step is the
knowledge of the next meter that would be beneficial to
install in the grid. The new measurement configuration with
the identified additional meter is then provided as input to
the time series analysis block containing the SE and voltage
control algorithms. Here, a time series analysis is performed
over all the time steps of the considered time horizon. At
each time step, the load and generation data are used to
create the “true” reference operating conditions of the grid,
whereas the input measurement configuration is considered to
randomly extract measurements (affected by errors according
to the uncertainty of the meters) for each meter in the
grid. The created measurements are then used as input to
the SE process, which provides the uncertainty with which
the operating conditions would be estimated as output. This
information is used by the voltage control algorithm, which
derives the possible needs for redispatch measures. Combining
the power change requested by the voltage control with the
costs of the flexibility, it is possible to compute, for each
time step, the resulting redispatch costs. By summing them

over all the time steps, the total redispatch costs for the time
horizon of the CBA can be eventually obtained. The sum
of redispatch costs and of the costs for installing the meters
being added with the CBA-based meter placement procedure
gives the overall costs. These costs should be compared to the
lowest overall costs temporarily obtained during the iterative
procedure (in the first round, the comparison is against the
redispatch costs resulting when no meters are added to the
starting measurement configuration). If the obtained overall
costs are lower than the current best ones, then the installation
of the new meter is convenient and should be considered for
the meter placement. The lowest overall cost is then updated
for the following round, where the process is repeated again to
assess if installing one more meter is economically convenient.
When the overall costs obtained with the new meter are larger
than the available best ones, a further check routine can be
optionally activated, whose scope is to avoid stopping in a
local minimum. This is motivated by the fact that there might
be cases where installing one more meter is not economically
convenient, but installing two (or more) meters leads again
to a decrease of the overall costs and possibly to a new
best. The reasons behind this possible behaviour are multiple.
In the first place, the adopted GSA-based meter placement
procedure cannot guarantee that local minima are avoided
due to its incremental nature. Furthermore, the considered
scenario and the non-linearities of the underlying models can
determine results that do not follow a monotonic trend. Just as
an example, when using complex cost models with flexibilities
offered at different prices, it may happen that below a certain
threshold of monitoring uncertainty it is possible to avoid
the use of expensive resources, which may lead to a sudden
decrease of the overall costs. The check routine allows hence
assessing if configurations with up to N meters more than those
giving the best overall costs would lead to a new minimum.
If yes, all the meters leading to the new minimum should be
considered for the meter placement and the iterative procedure
continues. If, after doing the check of N more meters, a new
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Fig. 3. Single line diagram of the ATLANTIDE test distribution system.

best result is not found, the overall procedure is then stopped,
and only those meters that led to the best overall costs are
considered for the meter placement. It is worth noting that, due
to the incremental nature of the proposed approach, it cannot
be guaranteed that the found solution is a global optimum, i.e.
different meter placement configurations may possibly exist,
which provide better results. However, the proposed solution
should still allow to find a near-optimal solution while taking
into account the resulting cost-benefit ratio for the DSO.

IV. TESTS AND RESULTS

A. Simulation setup and scenarios

To illustrate the CBA-based meter placement strategy, the
industrial network from the ATLANTIDE project [32] is used.
The network is a 99-node 7-feeder distribution grid hosting
several distributed generators, including 3 wind, 22 PV and
3 CHP plants, with a mix of industrial, commercial, and
residential loads (see Fig. 3). It is given with 15-min resolution
profiles of consumption and production over multiple years.
The CBA presented in the following is performed considering
a time horizon of one year. To test the placement strategy
and the underlying algorithms under stressed conditions, the
consumption and generation profiles of 2030 have been cho-
sen, which represent the worst-case scenario in terms of over-
and under-voltages. Fig. 4 shows the corresponding voltage
profile of the grid for the time steps with the largest over- and
under-voltage when no voltage control is applied. The lower
and upper boundaries of voltage magnitude considered for the
tests are 0.95 and 1.05 pu, respectively.

The default measurement configuration considered as start-
ing point for the CBA is composed of only a voltage measure-
ment (with 1% uncertainty) at the main substation (bus 1) and
of pseudo-measurements of power injection at all the nodes
of the grid with 50% uncertainty. The installable meters can
provide voltage magnitude measurements with 1% uncertainty,
and active and reactive power measurements (either of the
node injection or of the branch flows) with 2% uncertainty.
The active and reactive power measurements are typically
provided by the same device and are hence considered jointly.
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Fig. 4. Voltage magnitude profiles at the time steps in 2030 where the worst
over-voltage and under-voltage occur (blue and red lines, respectively).

Concerning the costs, a price of 100 C/MWh has been
considered for the redispatch costs associated with active
power regulation requests [33]. Reactive power flexibility
provision has been assumed instead to be cheaper, with a
unitary cost of 20 C/Mvarh. The available flexibility in the
grid is given by the distributed generation, whose reactive
power can be regulated (within certain limits) and the active
power curtailed in case of overvoltages, and by storage systems
(installed at the PV nodes) which can be used to absorb part of
the PV generation or to inject power, e.g., during time periods
with high loading conditions leading to under-voltages. For
the sake of simplicity, the same price of power flexibility
is considered for all the flexible resources and time steps.
Moreover, no detailed modelling of the storage system and
of its energy management system have been implemented.
These assumptions, although simplistic, have been adopted
because they concern modelling details beyond the desired
goal of the simulations, which is to show the operation and
the concepts behind the proposed meter placement strategy.
Finally, regarding the costs of the meters, the total investment
associated with the installation of a meter is assumed equal
to 40 kC (same order of magnitude as in [34]), with an
amortization over 15 years.

B. Impact of the monitoring uncertainties

The first series of tests has been performed to demonstrate
the degrading effects of the voltage estimation uncertainty on
the redispatch costs. To clearly track the impact of different
uncertainty levels, in these tests the voltage control has been
run using the true voltage states and increasing levels of
voltage uncertainty (0%, 0.5%, 1% and 2%) for all the nodes
as inputs. Hence, the tests and results shown here do not
consider yet any meter placement procedure. Their aim is to
validate the analysis done in Section III-A and show how
the monitoring uncertainties affect the control performance
resulting into higher redispatch costs for the DSO.

Fig. 5 shows the results for a particular time step of the
simulation (1st July, 12:00) with some strong overvoltages
due to the high generation of the PV plants. It is possible to
observe that the flexible resources being asked to contribute to
the overvoltage mitigation are those at the end of the feeder,
since these are in general those that contribute more strongly
to the final voltage profile of the grid. As expected, higher
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levels of uncertainty determine an increase of the requested
redispatch power. A different trend seems to exist for bus 49,
but it should be noted that the smaller demand at this node (for
increasing levels of uncertainty) is widely compensated by the
higher requests at the other nodes of the same feeder (buses
50 and 55). A particular scenario can also be observed for bus
93. In fact, it is possible to notice that, when no uncertainty is
considered, no redispatch power is requested. This reflects the
fact that its feeder does not suffer of any overvoltage. However,
when taking into account the uncertainty in the knowledge
of the voltages, the existing uncertainty interval does not
allow to exclude the case that the true voltage is beyond the
overvoltage threshold. Consequently, this determines a request
of redispatch power to shift the Gaussian curve (its ±3σ
portion) within the boundaries (this scenario is similar to the
one discussed in Section III-A and depicted in Fig. 1b). This
case is hence a clear example of a scenario where redispatch
power is demanded even if actually not needed (since an
overvoltage does not actually exist in that feeder).

Fig. 6 provides an overview of the resulting redispatch
costs for the time series simulation over the entire year. The
redispatch costs tend to increase in the summer months due to
the higher levels of PV generation, and in particular in June,
where the grid profiles have quite large peaks of generation
(resulting in strong overvoltages). Once more, it is possible to

TABLE I
RECOMMENDED BEST METERS FROM THE GSA METER PLACEMENT

ALGORITHM

Round Type Location Feeder

1 Voltage Bus 32 7

2 Voltage Bus 84 3

3 Voltage Bus 50 6

4 Power Line 62-63 4

5 Voltage Bus 93 2

6 Voltage Bus 14 7

7 Power Line 35-44 6

8 Voltage Bus 75 4

9 Power Line 1-85 2

10 Voltage Bus 55 6

observe that increasing levels of uncertainty lead to a growth
of the redispatch costs. Moreover, it can be noticed that the
increase of the costs is not linear. This is clearly visible when
looking at the steep increase existing when moving from 1%
to 2% voltage uncertainty. Along the entire year, the scenario
with 0.5% uncertainty brings a 40% increase of the redispatch
costs, whereas the scenarios with 1% and 2% uncertainty
determine costs that are more than 2 and 5 times larger,
respectively, than the ideal scenario with no uncertainties.

C. Meter placement results

This section focuses on the results of the CBA-based meter
placement strategy. To analyse the behaviour of the CBA,
results have been created for 10 rounds of the procedure. Table
I shows the best meters to be installed at each round according
to the results given by the GSA-based placement algorithm.
The GSA has been run considering the effects of two different
time steps, namely those having the worst over- and under-
voltage. To set the two coefficients βt of (9), each of the time
steps of the year has been associated to one of those under- or
overvoltage profiles according to the highest similarity of the
voltage magnitude (measured in terms of smallest euclidean
distance). The values of the two coefficients are then decided
depending on the number of time steps being associated with
the over- or under-voltage case, respectively. Looking at the
results, the GSA recommends placing the meters alternatively
in feeders that exhibit large voltage deviations (i.e., feeders 2,
3, 4, 6 and 7). In general, voltage meters are placed close to
the end of the feeders, whereas power meters are placed either
at the beginning of the feeders or close to nodes with large
power injections from distributed generators. The selection of
the type of meter (here either voltage or power) is an outcome
of the GSA, which identifies the most effective combination
of type and location of the meter to reduce the uncertainty of
the voltage estimation in the DSSE, according to the metric
defined in Section II-B.

The results of the CBA are shown in Fig. 7. Blue bars refer
to the cost for the redispatch power and orange bars indicate
the (incremental) costs of the installed meters. Looking at the
total costs, after a constant decrease for the first three meters
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Fig. 7. Overall cost for consecutive meter placement rounds, split between
redispatch costs (blue) and meter installation costs (orange).
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Fig. 8. Overall cost for consecutive meter placement rounds with halved price
of active and reactive power flexibility.

(rounds 1-3), the installation of P62−63 (round 4) leads to a
slight increase of the total costs. The trend however returns
to decrease if two more meters are installed (round 5 and
6). After round 6, the redispatch costs decrease only slightly
and, therefore, the total costs start to monotonically increase
due to the impact of the meter installation costs. These results
show the importance of having a check routine as the one
described in Section III-C. In fact, if the procedure stops at
the first occurrence of a total cost increase, then it would not
be possible to reach the minimum overall costs, which, in the
considered scenario, are indeed found at round 6.

For the sake of comparison, Fig. 8 shows the results for
the same scenario but when considering a halved price for the
active and reactive power flexibility (active power: 50 C/MWh;
reactive power: 10 C/Mvarh). In this case, the redispatch costs
obviously exhibit the same trend but they are halved, which
leads the cost of the metering installation to have a relatively
larger impact. Consequently, it is reasonable to expect that the
installation of multiple meters is disincentivised, as confirmed
by the results, according to which the lowest overall costs are
already found at round 3. In this case, therefore, the installation
of the voltage meters at buses 32, 84 and 50 would be the
best solution from an economic perspective for the DSO.
Installing more meters would still lead to further enhancements
of the monitoring accuracy and to a reduction of the redispatch
needs, but those improvements do not determine a benefit large
enough to justify the deployment of more meters.

Overall, the test cases presented in this section highlight

the main concepts behind the design of the proposed CBA-
based procedure. In these scenarios, having the check of the
total costs for one more meter (after finding a cost that is not
the best one) would eventually allow finding the minimum.
In other scenarios, and in particular if more complex models
(e.g., for the costs) are used, using only a single check round
may not suffice and it may be advisable to foresee a check
over more meters. This would obviously determine an increase
of the computation time to find the final meter placement
recommendation, but, considering that this is a planning task
executed off-line, in most of the cases it can be considered as
an acceptable trade-off.

V. CONCLUSION

This paper presented an overall meter placement strategy
that allows identifying the reinforcement needs for the mea-
surement infrastructure based on a cost-benefit analysis. In
particular, the focus is on the redispatch costs that can be
avoided thanks to the improvement of the monitoring accuracy.
Performed analyses and test results prove that the monitor-
ing uncertainties bring detrimental effects on the operation
of control algorithms, which eventually translate into larger
redispatch costs for maintaining the operation of the system
within the allowed boundaries. The placement of additional
meters allows reducing such costs, but at the same time leads
to increasing costs for the installation and operation of the
measurement infrastructure. The proposed framework allows
identifying a trade-off among these costs, and thus to find the
number, type and location of the meters that are convenient to
install from an economic perspective. Performed simulations
showed the operation of the proposed framework in a test sce-
nario, using exemplary cost models and algorithms for meter
placement, state estimation and voltage control. The devised
framework is however flexible and can accommodate different
cost models and versions of the underlying algorithms, hence
offering the possibility to easily adapt to possibly different
DSO or simulation requirements.
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