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Abstract

In this work we combine logic programming and temporal constraint
processing techniques. We propose TCLP, which augments logic programs
with temporal constraints. Known algorithms for processing disjunctions
in Temporal Constraint Networks are applied. We identify a decidable
fragment called, Simple TCLP, which can be viewed as extending Dat-
alog with limited functions to accommodate intervals of occurrence and
temporal constraints between them. Some of the restrictions introduced
by Simple TCLP are overcome by a syntactic structure which provides
with the benefits of reihcation. The latter allows quantification on tem
poral occurrences and relation symbols.
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1 Introduction

Representing time is central to both the databases and AI communities. In both
the information includes temporal attributes which indicate at what time the
assertions are true.

In AI, the goal of temporal languages is to describe and reason about a chang
ing world. Most of current research is focused on either general theories of time
or restricted computational models which involve temporal constraints. Many
temporal theories were proposed, among which [11, 1, 15, 10, 5, 2, 17, 9]. As
these languages are based on first order logic, they are sufficiently expressive for
representing general knowledge however answering queries is in general undecid-
able. This motivated identifying many decidable subclasses and analizing their
complexity [9]. Independently, the computational model of Temporal Constraint
Satisfaction Problems, abbreviated TCSP, W2is investigated by [7, 16,8, 13, 12].
Although it is supported by efficient algorithms, it cannot process combinations
of temporal and non-temporal sentences.

In the database community, the classical approach is representing relations
explicitly, that is, by listing their tuples. Clearly, relations which have infinite
sets of tuples cannot be represented explicitly. As an implicit representation of
finite relations, it is common to use function free logic programs called Datalog.
To provide with a finite implicit representation of infinite relations, Datalogns
was proposed [3], which is an extension of datalog with a restricted class of
functions. Unfortunately, Datalog„5 is not applicable to AI because it does not
support indefinite temporal information, namely disjunctive relations between
temporal occurrences.

We propose TCLP, which supports a new constraint class based on Temporal
Constraint Satisfaction Problems. The performance benefits can be obtained
whenever the temporal constraints are disjunctive. In that case, constraint
propagation results in prunning the search space and reduces the number of
dead-ends encountered.

Our proposal differs from traditional extensions of logic with temporal data
in that we introduce, in addition to the usual temporal sort, a new sort called
tokens. The latter was shown to allow obtaining the benefits of reification while
avoiding the technical complications of reification [6].

We identify a decidable fragment called Simple TCLP which allows non-
constraint predicates to specify at most a single argument of the token sort.
Based on results obtained for Datalog„s, we show that the least Herbrand model
of Simple TCLP programs admits a finite representation on which queries can
be answered efficiently.

To overcome the syntactic restriction posed by Simple TCLP, we propose a
syntactic structure which provides with the benefits of reification as it allows
quantification over temporal occurrences and relation symbols. We propose to
model the world as a relational database. This requires two additional sorts:
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relation, attribute sorts. Each relations describe classes of objects, events and
actions. Instances of these classes are tuples in these relation. Tuples may
specify null (or unknown) values and are associated with either time points or
time intervals. Simple TCLP programs are used as an implicit representation
of this possibly infinite relational database.

The paper is organized as follows: Section 2 presents the basic language. Sec
tion 3 presents the conputational benefits of introducing temporal constriants.
Section 4 presents a decidable fragment which admits a finite representation.
Section 5 presents the syntactic structure that provides with the benefits of
reification.

2 The Language

We use the following set of distinguished temporal sorts 5 = {F, 7, FT, /T, D):
F is a set of time points, 7 is a set of time intervals, FT is a set of point time
tokens and IT interval time tokens and D is the temporal domain assumed
to be the set of natural numbers. We use two distinguished function symbols:
point : PT ^ P and interval : PI 7. The set of constraint predicates is
composed of the metric Point relations (F x F), qualitative Point-Interval te-
lations (F x 7) and the qualitative 7nfcrt)a/relations (7 x 7).

We propose Temporal Constraint Logic Programs, TCLP, that are Logic
Programs augmented by the following set of temporal constraints:

• disjunction of metric point relations (namely Xi —Xj 6 [a>b]) [13, 12]

• disjunction of point interval relations (table 1 a) [12]



• disjunction of interval relations relations (namely the Interval Algebra in
table lb) [1]

The semantics is dehned as follows: For the satisfaction relation of the tem
poral constraints we use the usual evaluation rules given in [1, 13, 12). For the
non-constraint atoms we use the standard evaluation rules of logic programs.
The program characterized is by its unique least Herbrand model.

3 Performance Benefits

The goalof combining logic programmingand temporal constraints is to improve
the performance of resolution algorithms by augmenting them with specialized
constraint propagation algorithms. In the presence of disjunctive constraints,
existing search mechanism requires testing consistencyof every possible selection
of a single disjunct from each constraint. A more effective technique performs
temporal constraint propagation which reduces the number of disjuncts (14).

We consider metric constraint of the form Xj - Xi € /i U ••• U /j. where
•fi> •••) ffc is a set of disjoint intervals. The corresponding logic program for this
constraint consists of the rules:

(Ci; - A; - Ai G /i)...., {Cij ^ Xi - Ai € h)

For this class of constraints, algorithm LPC, briefly described below, is ca
pable of removing redundant disjunctions [14].

3.1 Temporal Constraint Networks

A Temporal Constraint Satisfaction Problem (TCSP) consists of a set of vari
ables Xi,..., Xn, having rational domains, each representing a time point. Each
constraint C is a set of intervals

c = {/i /„} = {[ai,ii] [a„,6„]}.

A unary constraint C< restricts the domain of the variable Xi to the given
set of intervals

Ci = (ai < A, <6i)U...U(a„ <X,-<6„).

A binary constraint Cij over Xi,Xj restricts the permissible values for the
distance Xj —Xi; it represents the disjunction

Cij =' (oi <Xj-Xi<di)U...U (an <Xj - Xi < bn).
All intervals are assumed to be open and pairwise disjoint.



Algorithm Loose Path'Consistency (LPC)
1. input: N
2. N" ^ N

3. repeat

4. N ^ N"

5. Compute N' by assigning T-j = nv*(Cijc ® Ckj), for all ij.
6. Compute N" by loosely intersecting = Cij cTYj, for all i,j.
7. until aijji (Ti'j —<i) ; inconsistency, or

or Vi, ji [T^jl = \Ciy\ ; no interval removed.
8. if 3t,jf then output ^inconsistent."

else output: N".

Figure 1: The Loose Path-Consistency (LPC) algorithm.

A tuple X = (ri,... jin) is called a soluixon if the assignment Xi =
xi,... ,Xn — Xfi satisfies all the constraints. The network is consistent iff at
least one solution exists.

Definition 1 (composition & loose intersection)
Let T = {/i, /2,..., /r} and S = {Ji, J2} •••i Js] two constraints. The com
position of T and S, denoted by T ^ S, admits only values r for which there
exists t and s E S such that r = f -j- s. The loose intersection, T<S consists
of the intervals such thai Vi // — where [Li,Ui] are the
lower and upper bounds of the intersection /,• H 5.

The number of intervals in Cij is not increased by the operation Cij *—
Cij <{Cik ®Ckj)- In addition, Vfc Cij 3 Cij <{Cik ®Ckj) 3 Cij D(Qt ®Ckj)
and T < S ^ S <T.

Example 1 Let T = {[1,4],[10,15]} and S = {[3,11], [14.19]}. ThenT<S =
{[3,4], [10,15]}, S<T = {[3,11], [14,15]} while SnT = {[3,4], [ID, 11], [14,15]}.

Algorithm LPC is presented in Figure 1. The network N' is a relaxation of
N and therefore loosely intersecting it with N results in an equivalent network.
At every iteration if LPC (except the first and the last) at least one interval is
removed. This allows us to conclude that:

Theorem 1 Algorithm LPC computes an equivalent network m polynomial
time.



Exeunple 2 Consider the constraints:

Xi~Xq € [10,20] U[100,110)
Xi-'Xi e [20,40] U [100,130]
X3-X0 € [80,100] U[150,160] U[180,190]
X3-X1 € [30, 40] U [130,150]
X3-X2 € [50, 70] U[110,120] U[130,140] U[160,190]

After S iterations, algorithm LPC terminates with the network:

Xi —Xo € [10,20]
X2 —^0 € [30,50]
X2"Xi € [20,30]
X3-X0 e [150,160]
Xa-Xi € [130,140]
X3-X2 € [110,120]

4 A Simple Fragment

We investigate a restricted class, called Simple TCLP, in which there are no free-
variables (i.e. only token and data variables) and restricted such that functions
and atoms specify at most a single token argument. This section applies results
obtained by [3, 4] to Simple TCLP which accept binary temporal constraints
on token terms.

4.1 Token Succession

The central notion that enables us to obtain our results is the token succession.

Intuitively, instead of indexing facts with time points which are linearly ordered
we index facts by tokens which need not have any temporal ordering. Unary
functions (used in Datalog„s as successor functions) are used here to obtain
successors of tokens. These functions define the succession ordering of tokens
which is orthogonal to their temporal ordering.

Definition 2 Given a set of unary functions fi,.. .,fk mapping token symbols
to token symbols, the domain i^(/i,...,/t) of token terms is as follows:

G K{fi,...,fk) and

k time*

€ K{fi,...,fk)
fli^^H 'k) = ''il,—.•>+! ifc € X{fi,...,fk)

In other words, tti^ is obtained by applying, for all j € [I, k], fj on tto,...,o,
ij times.

For Simple TCLP the set of ground token terms is K{f\,.. .,/fc).



4.2 Restrictions

We make a number of restrictions and assumptions which originate in
Datalogns. A TCLP is said to be simple if it complies with the following
restrictions:

• The domains of non-token variables are finite.

• Rules do not contain ground terms. Such terms can be eliminated by
introducing additional predicates.

• Rule bodies are not empty.

• Equalities are eliminated by replacing variables in a class of equated vari
ables with a single representative.

• Rules are range restricted. After elimination of equalities, a variable is
limited if it appears in a literal in the body of the rule.

• Rules are normal. A TCLP rule r is semi-normal if every atom
in r contains at most 1 token variable, namely every predicate
P{tti,... yttm,di,... ,dk) is such that m = 1. A semi-normal rule r is
normal if every non-ground functional term in r is of depth at most 1.
This restriction can be lifted by the syntactic structure described below.

• Functions must specify a single argument which is a token variable, but
the number of variables of other sorts is not restricted.

4.3 Finite Representation

The general notion of finite representation of infinite relations relies on the
notion of komomorpkic mapping H. A finite representation of a logic program
P is a homomorphism from the least Herbrand Mp onto a finite structure Mp.
The existence of such an homomorphism guarantees that the finite structure is
equivalent to the least Herbrand model.

Theorem 2 For every Simple TCLP P there exists a homomorphism mapping
Mp to a finite structure, namely Us least model Mp is finitely representable.

We illustrate this feature by presenting instances from two seemingly simi
lar classes of programs: One is a class of CLP programs which have no finite
representation. The other is a class of TCLP programs which admits a finite
representation.

Consider the following simple program, given in [4], for which there is no
finite representation:

eg(0,0).
eq{T-\-\,T+l) eq(T,T)



The reason no finite representation exists is that no homomorphism exists. As
sume the contrary, then as shown in [4] the existence of a homomorphism im
plies the existence of a period I such that for every predicate P{Ti, T2) ^
P{Ti + 1,T2) P{Ti,T2 -f /) «• P{Ti + /,T2 + /) . Thus the truth value of
eq{T, T) and of eq{T + /, T) must be the same for every grounding of T, which
is a contradiction.

Fortunately, TCLP programs using the predicate Eq{tti,tt2) admit finite
representations because Eq{tti,tt2) differs from eq{ttiytt2):

Eq{tti,tij) ^ G [0,0]),
{end{tti) —end{ttj) G [0,0]).

The truth value of Eq{tti, tti+i) may be false because there is no restriction in the
language that requires that begin{tti) = begin{tii+i) or end(tti) —cnd(«,-+;).
Thus, no contradiction is derived.

The following TCLP program, given in [4], uses a full fledged binary token
function and thus does not admit a finite representation;

p((io)-
p{g{tt,tt))

4.4 Decidability

In general, it is not clear whether the existence of a finite representation implies
decidability. For Simple TCLP, as for Datalogns, due to their periodic nature,
bottom up evaluation with a finite depth bound is complete.

Given a program P = {Z U D) where Z is a set of rules and D is a set
of ground facts, answering a query Q amounts to deciding consistency of the
formula which consists of Z U D U -'Q. In the following we assume that Q is
grounded. In this case, the answer to the query is 'Yes' iff the formula ZuDU-iQ
is unsatisfiable.

Define the following parameters:

• ib is the maximal arity of predicates in Z and D;

• d is the number of different data constants in D;

• c is the maximum depth of a ground token term in D (if c = 0 there is
no such term);

• h is the depth of the single functional term in Q (if h = 0 there is no such
term);

• ti is the number of token predicates of arity t.



Theorem 3 m-bounded botiom-up evaluaiion of a yes/no (closed) query is
sound and complete for m = maz{Cjh)-^2*, ®= •

5 Modeling a Changing World

Often it seems that modeling the world poses difficulties caused by limited
expressiveness of the language used. This issue was addressed implicitly in
[10]^ when discussing representation of incomplete descriptions of events. Here,
Simple TCLP appear to be too restricted. We show that Simple TCLP are
sufficiently expressive for AI applications. We propose a syntactic structure
that allows to obtain the benefits of reification.

First, we describe some general problems through an example and thereafter
we provide with a solution. Consider the statement "John and Fred were room
mates, but now, John owes Fred money, hates him and threatens to kill him.
John unloaded his gun 10 minutes ago, but later he loaded it and now the gun
is pointing at Fred". Consider the queries:

1. "What is the relationship between John and Fred now ?". The answer is
"John owes money, hates and threatens Fred".

2. "What is the status of the gun now ?". The answer is "the gun is loaded
and pointing at Fred."

3. "When did the gun get loaded ?". The answer is "John loaded the gun
between 10 minutes ago and now.

A possible way to represent (in first order logic) the above temporal infor
mation is to use the following predicates: Loaded{Gun,i), PointedAt{X,Y,t),
Owe{X,Y,t), Hate{X,Y,t) and Threaten{X,Y,t) where t is a temporal
qualification^.

Clearly, if we are to represent the queries described above in first order logic,
we need a different set of predicates. This is because in first order logic it is
not possible to quantify over predicate symbols, as seems to be required for
representing the above three queries.

5.1 Temporal Data Model

We define the token and database structures of we use to represent the world.
In the next section we show that these structure can be described by Simple
TCLPs.

^In section 8 of that paper.
^or a state, as in situation calculus.



Definition 3 (tokens) A data value is a pair (a,v}, where a is a symbol de
scribing an atiribuie and v is a symbol describing a constant which is the value
assigned to this attribute. There are two types of time tokens; instant and dura-
tive. An instant time token is a triplet (njt, t, V) where is a symbol specifying
its name, t is a rational constant specifying the time point associated with tt and
Vis the set ofdata values. Adurative time token tt is a quadruple (njj.ti, <2, V)
where is a symbol specifying its name, ti and t^ are rational constants spec
ifying the the beginning and end time points of the interval associated with tt
and V is the set of data values.

Example 3 To specify that 'the gun was loaded at 9:00 and unloaded at 9:10
we use two instant time tokens whose set V specifies a single data value:

tti = {Nl, 9:00, {{Loaded, true)}) ,
= (N2, 9:10, {{Loaded, false)})

We model the world using a (pc«sibly infinite) set ofTime Tokens organized
as a (possibly infinite) relational database. A class, described by a relation, is
a collection of objects, events or actions which have the same set of attributes.
A similar approach was proposed in [10].

Definition 4 (databases)
A tuple is an instant or a durative time token whose set of data values V is
finite. A token relation is a (possibly infinite) set of time tokens and has three
distinguished attributes called ID, Begin and End, that specify unique token
names and the beginning and end time points of tokens respectively. If a tuple
specifies an instant time token the values assigned to the attributes Begin and
End are equal. A token database is a finite set of relations.

Example 4 We might have a relation 'person' describing people, with the at
tributes 'name', 'sex', 'eye-color', 'hear-color' and 'salary'. In this relation,
each tuple describes a person by specifying his/her name and the values ofsome
of the attributes. To specify that John is a male and list his salary for the year
1980 we could use the relations:

Person

WM\ Begin End Name Sex SalaryPointer

1/1/80 12/31/80 John Male PI

John's 1980 Salary

ID Begin End SalaryPointer Salary

1/1/80 1/31/80
2/1/80 2/28/80

12/1/80 12/31/80

PI

PI

$2000

$2200

$3230

11



Note that the token NO specifies a time interval which is the concatenation of
the intervals specified by the tokens Nl.. .N12.

The action of loading a gun can be described by c relation which may specify
the attributes 'actor', 'motivation' and other attributes of interest. A tuple of
that relation might assign 'Acior=rJohn' and 'Moti\}ation=KilT to specify that
John performed a gun loading action »n order to kill someone rather than to
participate in a shooting range.

5.2 Relation, Member and Attribute Predicates

Using the methodology described above, the world can be modeled by a rela
tional database defined over a finite set of relation and attribute symbols. To
describe this database using Simple TCLP we need only three predicates: "Re
lation", "Member" and "Attribute", and three b.isic types of variables; rela
tion, attribute and token names. The predicate "Relation" has two arguments,
Relation{r, s) where r is a relation name and s is a variable which specifies a set
of attribute names®; this predicate evaluates to true iff the scheme of the rela
tion r subsumes s. The predicate "Member" has two arguments, Member{t,r)
where r is a relation name and f is a token name; this predicate evaluates to
true iff the tuple t is a member of the relation r. The predicate "Attribute"
has three arguments Attribute{t,a, u) where <is a token name, a is an attribute
name and t; is a constant which is the value of a; this predicate evaluates to
true iff the attribute a of tuple t evaluates to v.

The predicates Relation, Member and Attribute specify at most a single
token argument and thus can be used in Simple TCLP programs.

5.3 Sample Queries

We discuss the three queries presented above. The first query requires to com
pute the set of relations that hold now between John and Fred:

Wx I Member{ttx,rg) A
Attribute{ttx, Personl, John) A
Attribute{ttx, Person2, Fred) A
During{now,ttx) }

= { Owes, Hates, Threatens }.

^We abuse the notation: the domain of this variable(of a new sort) is the set of all the
possible subsets of attributes.



The answer to the second query is given by the set

{(Oar.fx) I Member{ttg,Gun) A
Attribute{ttg!,ax,Vx) A
During{now,ttx)}

= { (Lodedftrue), {Pointed, Fred) }

namely we quantify over attribute (or fluent) names.

Finally, the answer to the third query is given by the set
{M I Member{tt, Load)}.

6 Conclusion

General Logic Programs were augmented with a class of temporal constraints
supported by Temporal Constraint Networks. Performence benefits are obtained
in the presence of disjunctions using known constraint propagation algorithms.
A decidable fragment which admits a finite representation was identified. Some
of the restrictions introduced by the decidable fragment are overcome by a
syntactic structure which provides with the benefits of reification while avoiding
the technical complications of reification. In particular, the proposed syntactic
structure allows quantification on temporal occurrences and relation symbols.
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