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Reasoning about generalized intervals:
Horn representability and tractability

Philippe Balbiani�, Jean-François Condottay, Gérard Ligozatz
Abstract

This paper organizes the topologic forms of the possible relations between gen-
eralized intervals. Working out generalized interval algebra on the pattern of point
algebra and interval algebra, it introduces the concept of Horn representability just
as the one of convexity. It gives the class of Horn representable relations a simple
characterization based on the concept of strong preconvexity. Adapting the propa-
gation techniques designed to solve the networks of constraints between points or
between intervals, it shows that the issue of consistency ofa Horn representable
generalized interval network can be solved in polynomial time by means of the
weak path-consistency algorithm, a new incomplete algorithm for computing a
minimal set of temporal constraints.

1 INTRODUCTION

It is hard to overemphasize the importance for computer science and artificial intelli-
gence of the development of reasoning systems that are concerned with temporal infor-
mation. The thing is that the nature of time raises grave difficulties for those who take
on the matter of its representation. Without doubt, the model of the points designed
by Vilain and Kautz [13] and the model of the intervals elaborated by Allen [1] are
the better known models for reasoning about time. In these models, temporal informa-
tion is represented by a network of constraints between a finite number of variables.
An important matter is deciding consistency of a network. Concerning points, Ladkin
and Maddux [6] prove that the issue of consistency of a point network can be solved
in polynomial time by means of the path-consistency algorithm. Relating to intervals,
Vilain and Kautz [13] demonstrate that deciding consistency of an interval network
becomes NP-complete.�Laboratoire d’informatique de Paris-Nord, 99 avenue Jean-Baptiste Clément, F-93430 VilletaneuseyInstitut de recherche en informatique de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 4zLaboratoire d’informatique pour la mécanique et les sciences de l’ingénieur, BP 133, F-91403 Orsay



Therefore, the question of characterizing tractable subclasses of interval algebra has
been considered. Nebel and Bürckert [10] give a definitive answer to the question of
which subclasses among those which contain base relations are tractable. To be more
precise, the subclass of Horn representable relations is the unique maximal tractable
subclass having this property. Moreover, deciding consistency can be accomplished by
using the path-consistency algorithm. Horn representability is a syntactic concept, in
view of the fact that Horn representable relations can be described by Horn clauses in
a suitable language. Ligozat [8] produces a simple characterization of the same class
in terms of preconvex relations. Preconvexity is a geometric concept, for the simple
reason that preconvex relations can be roughly described asconvex relations with some
lower dimensional base relations taken out.

Working out generalized interval algebra on the pattern of point algebra and inter-
val algebra, Ligozat [7] organizes the topologic forms of the possible relations between
generalized intervals. A problem is that the coincidence between the syntactic concept
of Horn representability and the geometric concept of preconvexity does not hold any
longer, as Ligozat [8] notices in the context of generalizedinterval algebra, because
the subclass of Horn representable relations is a proper subset of the set of all precon-
vex relations. A further complication is that, as Balbiani,Condotta and Fariñas del
Cerro [3] remark in the context of rectangle algebra, the setof all preconvex relations
is not a subclass in the usual sense, given that it is not closed for intersection. This
leads them to define a restricted geometric notion, the concept of strong preconvexity,
which has this closure property.

In the context of generalized interval algebra as well, it isinteresting to consider
the tractability issues both from the syntactic point of view and the geometric one. A
primary goal of this paper is to give the class of Horn representable relations between
generalized intervals a simple characterization in terms of strongly preconvex rela-
tions. An outcome of this characterization is that it allowsto demonstrate that the issue
of consistency of a Horn representable generalized interval network can be solved in
polynomial time by means of the weak path-consistency algorithm, a new incomplete
algorithm for computing a minimal set of temporal constraints. Successive sections
are arranged along the following lines. Section 2 introduces the relational algebra of
generalized intervals. We devote the whole section 3 to the syntactic concept of Horn
representability. In sections 4, 5 and 6, we identify the geometric concepts of con-
vexity, weak preconvexity and strong preconvexity. Section 7 focuses on the issue of
consistency of a generalized interval network.

2 GENERALIZED ALGEBRA

Given a model of time consisting of the totally ordered set ofall rational numbers, a
generalized interval is a list ofp rational numbers, with the first number less than the
second, the second less than the third, etc. We will usex, y, z, etc, for these, assuming
for any listx of p rational numbers, the first number is denoted byx1, the second byx2,
etc. Such lists ofp rational numbers are also sometimes calledp-intervals. We want



to formalize the notion of binary relation between ap-interval and aq-interval for anyp; q � 1. To keep things concrete, we will confine ourselves to results about the notion
of binary relation between twop-intervals for somep � 1. Extending these to the
remaining cases is a simple matter. In order to formalize theposition ofx with respect
to y we have to decompose the set of all rational numbers into subsets. If we definey0
as�1 andyp+1 as+1 then the numbersy1, : : :, yp clearly define a partition of this
set into2� p + 1 zones numbered from0 to 2� p such that:

- For all i 2 f0; : : : ; pg, zone2� i is ]yi; yi+1[;
- For all i 2 f1; : : : ; pg, zone2� i � 1 is fyig.

x1 x2 x3

Figure 1: A3-intervalx = (x1; x2; x3).
Obviously, each rational number belongs to exactly one zone. This shows that the
position ofx with respect toy is a sequence ofp zones which specifies for eachi 2f1; : : : ; pg which zone the numberxi belongs to. LetQ be the set of all sequences ofp zones. We will usea, b, c, etc, for these, assuming for any sequencea of p zones,
the first zone is denoted bya1, the second bya2, etc. If we definea0 as0 andap+1 as2� p then:

- a is a position between generalized intervals iff, for alli 2 f1; : : : ; pg, ai 2[[ai�1; ai+1]], assuming for any paira; b of integers,[[a; b]] is the largest integer
interval with even endpoints and contained in[a; b].

zone 0

zone 1

zone 2

zone 3

zone 4

zone 5

zone 6

y1 y2 y3

Figure 2: The7 zones defined by a3-intervaly = (y1; y2; y3).
Let P be the set of all positions. Positions are also called basic relations. They con-
stitute the exhaustive list of the possible relations between generalized intervals. For
example, ifx1 2]y0; y1[, x2 2]y0; y1[ andx3 2]y2; y3[ then the position ofx with re-
spect toy is the sequence(0; 0; 4) and ifx1 2]y0; y1[, x2 = y1 andx3 2]y2; y3[ then
the position ofx with respect toy is the sequence(0; 1; 4). In order to represent indef-
inite information, we allow the binary relation between twogeneralized intervals to be
any subset of the set of all basic relations. We will use�, �, 
, etc, for these. In the
relational approach to temporal reasoning, the operationsof inverse and composition
play an important role. The inverse ofa, denoted bya�1, is the positionb such that,
for all i 2 f1; : : : ; pg:



- For all j 2 f0; : : : ; pg, if 2� i � 1 2 [[aj; aj+1]] thenbi = 2� j;
- For all j 2 f1; : : : ; pg, if 2� i � 1 = aj thenbi = 2� j � 1.

The composition ofa andb, denoted bya; b, is the set of all positionsc such that, for
all i 2 f1; : : : ; pg:

- For all j 2 f0; : : : ; pg, if ai = 2� j thenci 2 [[bj; bj+1]];
- For all j 2 f1; : : : ; pg, if ai = 2� j � 1 thenci = bj.

For instance, the inverses of(0; 0; 4) and(0; 1; 4) are the positions(4; 4; 6) and(3; 4; 6)
whereas the composition of(0; 0; 4) and(0; 1; 4) is the setf(0; 0; 2); (0; 0;3); (0; 0;4)g
of positions. Since binary relations between generalized intervals are sets of basic re-
lations, the operations of inverse and composition are extended as follows. The inverse
of �, denoted by��1, is fa�1 : a 2 �g. The composition of� and�, denoted by�; �, is

Sfa; b : a 2 �&b 2 �g. This brings us to the question of whether these defini-
tions capture the intended meaning of the operations involved. Letx�y mean that the
position ofx with respect toy belongs to�. Ligozat [7] shows that the operations of
inverse and composition have the following important properties:

- x��1y iff y�x;

- x�; �y iff there is a generalized intervalz such thatx�z andz�y.

This proves a simple but fundamental result:

- The algebra(2P ;[;\;�; ;;P;�1 ; ; ; f(1; : : : ; 2�p�1)g) is a relational algebra.

3 HORN REPRESENTABILITY

Horn representable relations correspond to particular sets of clauses. Clauses are built
up fromp variablesu1, : : :, up andp variablesv1, : : :, vp using the arithmetical symbols<, =, >, �, 6= and�. A literal is any expression of the formui<vj , wherei; j 2f1; : : : ; pg and< is an arithmetical symbol. A set of literals is a Horn clause iff it
contains zero or exactly one positive literal, assuming forany i; j 2 f1; : : : ; pg, the
literals ui < vj, ui = vj, ui > vj , ui � vj and ui � vj are positive and the
literal ui 6= vj is negative. For example, the clausesfu2 = v1; u3 6= v2g andfu2 =v1; u3 6= v3g are Horn clauses whereas the clausesfu2 < v1; u3 6= v2; u3 = v3g
andfu2 > v1; u3 = v2; u3 6= v3g are not Horn clauses. A definite clause contains
exactly one positive literal and zero or more negative literals. A positive unit clause is
a definite clause containing no negative literal. Nebel and Bürckert [10] consider only
Horn clauses using the arithmetical symbols=, �, 6= and�. It is straightforward to
prove that every Horn clause using the arithmetical symbols<, =, >, �, 6= and� is
equivalent to a couple of Horn clauses using the arithmetical symbols=, �, 6= and�.
To define Horn representable relations we need to evaluate variables occurring in the



given literals of a clause. We shall say thata validates the literalui<vj iff ai<(2 �j � 1). For instance,(0; 1; 3) and (0; 1; 5) validate the literalu2 = v1, seeing that1 = (2� 1� 1). In this spirit, a basic relation validates a clause iff it validates at least
one literal of the clause. For example,(0; 1; 3) and(0; 1; 5) validate the clausesfu2 =v1; u3 6= v2g andfu2 = v1; u3 6= v3g. Then we can define the Horn representable
relations as follows:

- � is Horn representable iff there is a setS of Horn clauses such that exactly the
basic relations of� validate every clause ofS.

One says thatS is a Horn representation of�. To illustrate the truth of this, the binary
relationsf(0; 0; 4); (0; 1; 3); (0; 1; 4); (0;1; 5)g and f(0; 1; 3); (0; 1; 4); (0;1; 5); (0;2;4)g are Horn representable or to be more precise, the Horn clauses fu1 < v1g, fu2 �v1g, fu3 � v2g, fu3 � v3g, fu2 = v1; u3 6= v2g andfu2 = v1; u3 6= v3g constitute a
Horn representation of the former binary relation whereas the Horn clausesfu1 < v1g,fu2 � v1g, fu2 < v2g, fu3 � v2g, fu3 � v3g, fu2 = v1; u3 6= v2g, fu2 = v1; u3 6=v3g constitute a Horn representation of the latter binary relation. It is not necessarily
the case that the line of reasoning suggested by Nebel and Bürckert [10] within the
context of Horn representable relations between intervalsapplies to Horn representable
relations between generalized intervals whenp � 3. In particular, although the reader
may easily verify that the set of all Horn representable relations between generalized
intervals is closed for intersection and inverse, there is no evidence that the set of all
Horn representable relations between generalized intervals is closed for composition
whenp � 3. Therefore, we are not in a position to give any sort of proof that the set of
all Horn representable relations between generalized intervals constitutes a subclass of
the generalized interval algebra whenp � 3.

4 CONVEXITY

To define the set of all convex relations, it is helpful to firstarrange in ascending order
the sequences ofp zones. Leta � b mean thatai � bi for all i 2 f1; : : : ; pg. For
instance,(0; 0; 3) � (0; 1; 5) and (0; 1; 3) � (0; 2; 5). As a product of chains, it is
easily shown that(Q;�) is a distributive lattice.(P;�) is also a distributive lattice,
because(P;�) is a sublattice of(Q;�). The interval bounded bya andb, denoted by[a; b], is the binary relationfc: a � c andc � bg. This leads us to make the following
definition:

- � is convex iff there are positionsa; b such that� = [a; b].
To illustrate the truth of this, the binary relationf(0; 1; 3); (0; 1;4); (0; 1;5)g is con-
vex. Clearly, convex relations are Horn representable or tobe more precise, if� is
convex then there is a setS of positive unit clauses such thatS is a Horn representa-
tion of �. For instance, the positive unit clausesfu1 < v1g, fu2 � v1g, fu3 � v2g,fu3 � v3g constitute a Horn representation of the interval bounded by(0; 0; 3) and(0; 1; 5) whereas the positive unit clausesfu1 < v1g, fu2 � v1g, fu2 < v2g,
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Figure 3: The lattice(P;�) for p = 3.fu3 � v2g, fu3 � v3g constitute a Horn representation of the interval bounded by(0; 1; 3) and (0; 2; 5). In general, the converse is false, Horn representable relations
need not be convex. For a counterexample, take the case of theHorn representable rela-
tionsf(0; 0; 4); (0; 1;3); (0;1;4); (0;1;5)g andf(0; 1; 3); (0; 1; 4); (0; 1; 5); (0;2; 4)g.
Evidently, the set of all convex relations is closed for intersection. In particular, the set
of all convex relations containing� contains a least element, denoted byI(�), the con-
vex closure of�. Ligozat [7] demonstrates that the convex closure has the following
important properties:

- I(��1) = I(�)�1;
- I(�; �) = I(�); I(�).

The conclusion can be summarized as follows: the set of all convex relations is closed
for inverse and composition. Therefore, the set of all convex relations constitutes a
subclass of the generalized interval algebra: the convex class.

5 WEAK PRECONVEXITY

To define the set of all weakly preconvex relations, we have tobring in the operations
of topologic closure and dimension as follows. The topologic closure ofa, denoted
by C(a), is the set of all positionsb such that, for alli 2 f1; : : : ; pg, eitherbi = ai



or j bi � ai j = 1 andbi is odd. For instance, the topologic closure of(0; 1; 4) is the
binary relationf(0; 1; 3); (0; 1;4); (0; 1; 5)g. The dimension ofa, denoted bydim(a),
is p � �fai mod 2: i 2 f1; : : : ; pgg. For example, the dimension of(0; 1; 4) is 2.
Seeing that binary relations between generalized intervals are sets of basic relations,
we extend the operations of topologic closure and dimensionas follows. The topologic
closure of�, denoted byC(�), is

SfC(a): a 2 �g. The dimension of�, denoted bydim(�), is supfdim(a): a 2 �g. Ligozat [9] proves that the following conditions are
equivalent:

- C(�) is convex;

- I(�) � C(�);
- dim(I(�) n �) < dim(�).

This justifies the role played by topologic closure in the following definition:

- � is weakly preconvex iffC(�) is convex iffI(�) � C(�) iff dim(I(�) n �) <dim(�).
For instance, the binary relationsf(0; 0; 4); (0; 1;3); (0; 1; 5)g andf(0; 1; 3); (0; 1;5);(0; 2; 4)g are weakly preconvex or more exactly, the topologic closureof the former
binary relation is the interval bounded by(0; 0; 4) and(0; 1; 5) whereas the topologic
closure of the latter binary relation is the interval bounded by (0; 1; 3) and(1; 3; 5). It
is clear that convex relations are weakly preconvex. This brings us to the question of
whether Horn representable relations are weakly preconvex. Suppose� is Horn repre-
sentable, we show it is weakly preconvex. By our definition ofHorn representability,
we know that there is a setS of Horn clauses such thatS is a Horn representation of�.
Let S� consist of all positive unit clauses ofS. With no loss of generality, suppose, for
all i; j 2 f1; : : : ; pg, if ui 6= vj appears in some clause ofS n S� thenui = vj is not a
consequence ofS�. Let 
 be the binary relation which elements are exactly the basic
relations validating every clause ofS�. SinceS� � S, then� � 
. SinceS� is a set
of positive unit clauses, then
 is convex. It follows thatI(�) � 
. Let us show that
 � C(�). Consider the basic relationa of 
. It follows thata validates every clause
of S�. Then we can define a basic relationb of � such thata 2 C(b) as follows. Leti 2 f1; : : : ; pg. If ai is even then there isj 2 f0; : : : ; pg such thatai = 2 � j and letbi = 2� j. Otherwiseai is odd and there isj 2 f1; : : : ; pg such thatai = 2 � j � 1.
If ui = vj is a consequence ofS� then letbi = 2 � j � 1. Otherwiseui � vj is not
a consequence ofS� or ui � vj is not a consequence ofS�. In the former case letbi= 2 � j whereas in the latter case letbi = 2 � (j � 1). The reader may easily verify
thatb is a basic relation of� such thata 2 C(b). This gives us the following result:
� C(�). It follows thatI(�) � C(�), hence� is weakly preconvex. From all this it
follows that:

Theorem 1 If � is Horn representable then� is weakly preconvex.



Although Ligozat [8] shows that weakly preconvex relationsbetween intervals are
Horn representable, weakly preconvex relations between generalized intervals need not
be Horn representable whenp � 3, unfortunately. Take, for example, the case of the
weakly preconvex relationsf(0; 0; 4); (0; 1; 3); (0;1; 5)g andf(0; 1; 3); (0; 1; 5); (0;2;4)g. Ligozat [9] demonstrates that the topologic closure has the following important
properties:

- C(��1) � C(�)�1;
- C(�; �) � C(�);C(�).

The interesting result is: the set of all weakly preconvex relations is closed for inverse
and composition. Although Ligozat [8] proves that the set ofall weakly preconvex
relations between intervals is closed for intersection, the reader may easily verify that
the set of all weakly preconvex relations between generalized intervals is not closed
for intersection whenp � 3. Consider, for instance, the weakly preconvex relationsf(0; 0; 4); (0; 1; 3); (0;1; 5)g and f(0; 1; 3); (0; 1;5); (0;2;4)g. Therefore, the set of
all weakly preconvex relations between generalized intervals does not constitutes a
subclass of the generalized interval algebra whenp � 3.

6 STRONG PRECONVEXITY

Assumep � 3. The trouble with the set of all weakly preconvex relations is that it is
not closed for intersection with convex relations. One has only to consider the weakly
preconvex relationsf(0; 0; 4); (0; 1;3); (0; 1;5)g andf(0; 1; 3); (0; 1;5); (0;2;4)g and
the convex relationf(0; 1; 3); (0; 1;4); (0;1;5)g. This justifies the role played by in-
tersection with convex relations in the following definition:

- � is strongly preconvex iff, for all binary relation�, if � is convex then� \ � is
weakly preconvex.

To illustrate the truth of this, the binary relationsf(0; 0; 4); (0; 1;3); (0; 1;4); (0; 1;5)g
and f(0; 1; 3); (0; 1;4); (0;1;5); (0; 2;4)g are strongly preconvex. Clearly, strongly
preconvex relations are weakly preconvex. Let us see if there is any connection be-
tween Horn representability and strong preconvexity. Suppose� is Horn representable,
we demonstrate it is strongly preconvex. By our definition ofHorn representability, we
know that there is a setS(�) of Horn clauses such thatS(�) is a Horn representation
of �. If � is not strongly preconvex then there is a binary relation� such that� is
convex and� \ � is not weakly preconvex. Since� is convex, then it is Horn repre-
sentable. In particular, there is a setS(�) of positive unit clauses such thatS(�) is a
Horn representation of�. Furthermore, the reader may easily verify thatS(�) [ S(�)
is a Horn representation of� \ �. By theorem 1,� \ � is weakly preconvex, and this
is impossible. These considerations prove:

Theorem 2 If � is Horn representable then� is strongly preconvex.



Now suppose� is strongly preconvex, we prove it is Horn representable. SinceI(�)
is convex, then it is Horn representable. In particular, there is a setS(I(�)) of positive
unit clauses such thatS(I(�)) is a Horn representation ofI(�). Consider the basic
relationa of I(�). Supposea 62 �. Let �a = fb: for all i 2 f1; : : : ; pg, if ai is odd
thenbi = aig. Obviously,a 2 �a. Furthermore, the reader may easily verify that�a
is convex. It follows that�a is Horn representable. What is more, there is a setS(�a)= ffui1 = vj1g; : : : ; fuiM = vjMgg of positive unit clauses using the arithmetical
symbol= such thatS(�a) is a Horn representation of�a. Let�a = �\�a. Since� is
strongly preconvex, then�a is weakly preconvex. It follows thatI(�a) � C(�a). Let
us demonstrate thata 62 I(�a). Supposea 2 I(�a), we derive a contradiction. SinceI(�a)�C(�a), thena 2C(�a) and there is a basic relationb of �a such thata 2 C(b).
Sinceb 2 �a, thenb 2 � andb 2 �a. It follows thatb 6= a and, for alli 2 f1; : : : ; pg,
if ai is odd thenbi = ai. Sincea 2 C(b), then, for alli 2 f1; : : : ; pg, eitherai = bi orj ai � bi j = 1 andai is odd, hence ifai is even thenbi = ai. It follows thatb = a,
a contradiction. This gives us the following result:a 62 I(�a). SinceI(�a) is convex,
thenI(�a) is Horn representable. To be more precise, there is a nonempty setS(I(�a))= ffuk1<l1vm1g; : : : ; fukN<lN vmN gg of positive unit clauses such thatS(I(�a)) is
a Horn representation ofI(�a). Let 
a = �a n I(�a) and�a = I(�) n 
a. It follows
that �a is Horn representable. Ultimately, then, the setS(�a) = S(I(�)) [ ffui1 6=vj1 ; : : : ; uiM 6= vjM ; u1<l1vm1g; : : : ; fui1 6= vj1 ; : : : ; uiM 6= vjM ; ukN<lN vmN gg
of definite clauses is a Horn representation of�a. All in all, let S = SfS(�a): a 2I(�) n �g. The reader may easily verify that exactly the basic relations of� validate
every clause ofS. It follows that� is Horn representable. Hence we have:

Theorem 3 If � is strongly preconvex then� is Horn representable.

7 GENERALIZED NETWORKS

Assumep � 3. A generalized interval network is a structure of the form(n;M )
wheren� 1 andM is a squaren�n matrix with entries in2P . HenceM isa function
assigning, for alli; j 2 f1; : : : ; ng, a subsetM (i; j) of P, i.e. a binary relation. A tuple(x(1); : : : ; x(n)) of generalized intervals is called a (maximal) solution of(n;M ) iff,
for all i; j 2 f1; : : : ; ng, there is a basic relationa of (maximal dimension in)M (i; j)
such thatx(i) a x(j). (n;M ) is (maximally) consistent iff it possesses a (maximal)
solution. In what follows we assume that all our generalizedinterval networks satisfy
the following conditions:

- For all i 2 f1; : : : ; ng,M (i; i) = f(1; : : : ; 2� p� 1)g;
- For all i; j 2 f1; : : : ; ng,M (i; j) =M (j; i)�1.

It is a well-known fact that by applying the followingalgorithm — the path-consistency
algorithm — we obtain in polynomial time an equivalent generalized interval network:



- Successively replace, for all pairwise distincti; j; k 2 f1; : : : ; ng, the constraintsM (i; k) andM (k; i) by the constraintsM (i; k) \ (M (i; j);M (j; k)) andM (k;i) \ (M (k; j);M (j; i)).
We make use of this in the following definition:

- (n;M ) is path-consistent iff, for all pairwise distincti; j; k 2 f1; : : : ; ng, M (i;k) �M (i; j);M (j; k) andM (k; i) �M (k; j);M (j; i).
An important matter is deciding consistency of a generalized interval network. It would
be naive to suppose that constraints between generalized intervals can be expressed in
terms of constraints between intervals, for the simple reason that although Ligozat [9]
shows that if a weakly preconvex generalized interval network is path-consistent then
either it contains the empty constraint or it is maximally consistent, the issue of con-
sistency of a weakly preconvex generalized interval network is NP-complete. The fact
of the matter is that the issue of consistency of an interval network is polynomial-time
reducible to the issue of consistency of a weakly preconvex generalized interval net-
work. Consider the interval network(n;M ). Then we can define the weakly preconvex
generalized interval network(n0;M 0) as follows. Letn0 = n � (n + 1). For all i; j 2f1; : : : ; ng, let:

- M 0(i; j) = f(a1; a2; 5; : : : ; 2� p� 1): (a1; a2) 2 I(M (i; j))g;
- M 0(i; n+ i+ (j � 1)� n) = f(a1; a2; 5; : : : ; 2� p� 1): (a1; a2) 2M (i; j)g [f(b1; b2; 6; : : : ; 2� p): b1; b2 2 f0; 2; 4g andb1 � b2g;
- M 0(n+ i+ (j � 1)� n; j) = f(1; 3; 5; : : :; 2� p� 1)g.

The reader may easily verify that(n0;M 0) is consistent iff(n;M ) is consistent. All
this goes to show that:

Theorem 4 The issue of consistency of a weakly preconvex generalized interval net-
work is NP-complete.

This polynomial-time reducibility of the issue of consistency of an interval network to
the issue of consistency of a weakly preconvex generalized interval network serves to
illustrate the role played by intersection with convex relations in the following defini-
tion:

- (n;M ) is weakly path-consistent iff, for all pairwise distincti; j; k 2 f1; : : : ; ng,M (i; k) � I(M (i; j);M (j; k)) andM (k; i) � I(M (k; j);M (j; i)).
From all the evidence it is clear that by applying the following algorithm — the weak
path-consistency algorithm— we obtain in polynomial time an equivalent weakly path-
consistent network:

- Successively replace, for all pairwise distincti; j; k 2 f1; : : : ; ng, the constraintsM (i; k) andM (k; i) by the constraintsM (i; k)\I(M (i; j);M (j; k)) andM (k;i) \ I(M (k; j);M (j; i)).



We first observe that path-consistent generalized intervalnetworks are weakly path-
consistent. In general, the converse is false, weakly path-consistent generalized in-
terval networks need not be path-consistent. Let us demonstrate that the problem of
deciding consistency of a generalized interval network canbe solved in polynomial
time by means of the weak path-consistency algorithm if onlyHorn representable rela-
tions are used. Consider the Horn representable generalized interval network(n;M ).
Seeing that Horn representable relations are strongly preconvex,(n;M ) is a strongly
preconvex generalized interval network. In view of the factthat the set of all strongly
preconvex relations is closed for intersection with convexrelations, it is beyond ques-
tion that by applying the weak path-consistency algorithm,we obtain in polynomial
time an equivalent weakly path-consistent strongly preconvex generalized interval net-
work (n;M 0). Then we can define the convex generalized interval network(n;M 00) as
follows. For alli; j 2 f1; : : : ; ng, letM 00(i; j) = I(M 0(i; j)). Given that the set of all
convex relations is closed for composition,(n;M 00) is a path-consistent convex gener-
alized interval network. Seeing that convex relations are weakly preconvex,(n;M 00) is
a path-consistent weakly preconvex generalized interval network. In this respect, either
it contains the empty constraint or it is maximally consistent. The former case implies
that(n;M 0) contains the empty constraint, hence(n;M ) is not consistent. The latter
case implies that(n;M 0) is maximally consistent, hence(n;M ) is consistent. Now
tractability of the issue of consistency of a Horn representable generalized interval net-
work follows easily:

Theorem 5 The issue of consistency of a Horn representable generalized interval net-
work can be solved in polynomial time by means of the weak path-consistency algo-
rithm.

8 CONCLUSION

We would like to emphasize that so far our main concern has been the connection
between the syntactic concept of Horn representability andthe geometric concepts of
convexity, weak preconvexity and strong preconvexity. More precisely, we have given
the set of all Horn representable relations between generalized intervals a simple char-
acterization based on the concept of strong preconvexity. An advantage of this charac-
terization is that it has allowed to present a simple proof that the issue of consistency
of a Horn representable generalized interval network can besolved in polynomial time
by means of the weak path-consistency algorithm.

Much remains to be done. We wish to investigate the question whether the class
of binary relations between two generalized intervals generated by the set of all Horn
representable relations between generalized intervals isthe unique maximal tractable
subclass among those which contain base relations. Future work also includes permit-
ting the processing of metric constraints between generalized intervals, an important
matter in the development of reasoning systems that are concerned with temporal in-
formation.
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