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Reasoning about generalized intervals:
Horn representability and tractability

Philippe Balbianj Jean-Frangois Condott@érard Ligozat

Abstract

This paper organizes the topologic forms of the possibégiogis between gen-
eralized intervals. Working out generalized interval &igeon the pattern of point
algebra and interval algebra, it introduces the concepbofitiepresentability just
as the one of convexity. It gives the class of Horn repreddatalations a simple
characterization based on the concept of strong precdyvéxapting the propa-
gation techniques designed to solve the networks of canttraetween points or
between intervals, it shows that the issue of consisteneylébrn representable
generalized interval network can be solved in polynomiaktiby means of the
weak path-consistency algorithm, a new incomplete algarifor computing a
minimal set of temporal constraints.

1 INTRODUCTION

It is hard to overemphasize the importance for computensei@and artificial intelli-

gence of the development of reasoning systems that arercauceith temporal infor-

mation. The thing is that the nature of time raises graveatlitiies for those who take
on the matter of its representation. Without doubt, the rhoéi¢he points designed
by Vilain and Kautz [13] and the model of the intervals elaied by Allen [1] are

the better known models for reasoning about time. In thesgetsptemporal informa-
tion is represented by a network of constraints between e finimber of variables.
An important matter is deciding consistency of a networkn€ning points, Ladkin
and Maddux [6] prove that the issue of consistency of a pagtwark can be solved
in polynomial time by means of the path-consistency alpanit Relating to intervals,
Vilain and Kautz [13] demonstrate that deciding consisfesican interval network
becomes NP-complete.
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Therefore, the question of characterizing tractable sgsels of interval algebra has
been considered. Nebel and Burckert [10] give a definithanger to the question of
which subclasses among those which contain base relatierisaatable. To be more
precise, the subclass of Horn representable relation®isrtigue maximal tractable
subclass having this property. Moreover, deciding coesist can be accomplished by
using the path-consistency algorithm. Horn representglisl a syntactic concept, in
view of the fact that Horn representable relations can bertesi by Horn clauses in
a suitable language. Ligozat [8] produces a simple chaiaaten of the same class
in terms of preconvex relations. Preconvexity is a geomewncept, for the simple
reason that preconvex relations can be roughly describeaiaex relations with some
lower dimensional base relations taken out.

Working out generalized interval algebra on the patternadfifpalgebra and inter-
val algebra, Ligozat [7] organizes the topologic forms &f plossible relations between
generalized intervals. A problem is that the coincidende/een the syntactic concept
of Horn representability and the geometric concept of pmeegity does not hold any
longer, as Ligozat [8] notices in the context of generalizedrval algebra, because
the subclass of Horn representable relations is a propsesobthe set of all precon-
vex relations. A further complication is that, as Balbiag@gndotta and Farifias del
Cerro [3] remark in the context of rectangle algebra, theofatl preconvex relations
is not a subclass in the usual sense, given that it is notalfigeintersection. This
leads them to define a restricted geometric notion, the girufestrong preconvexity,
which has this closure property.

In the context of generalized interval algebra as well, ihteresting to consider
the tractability issues both from the syntactic point ofwind the geometric one. A
primary goal of this paper is to give the class of Horn repnesiale relations between
generalized intervals a simple characterization in terfstmngly preconvex rela-
tions. An outcome of this characterization is that it alldavsemonstrate that the issue
of consistency of a Horn representable generalized inteatavork can be solved in
polynomial time by means of the weak path-consistency #lyor a new incomplete
algorithm for computing a minimal set of temporal consttainSuccessive sections
are arranged along the following lines. Section 2 introdube relational algebra of
generalized intervals. We devote the whole section 3 toythtastic concept of Horn
representability. In sections 4, 5 and 6, we identify thengetic concepts of con-
vexity, weak preconvexity and strong preconvexity. Secidocuses on the issue of
consistency of a generalized interval network.

2 GENERALIZED ALGEBRA

Given a model of time consisting of the totally ordered setlbfational numbers, a
generalized interval is a list of rational numbers, with the first number less than the
second, the second less than the third, etc. We willise z, etc, for these, assuming
for any listx of p rational numbers, the first number is denoted:bythe second by,

etc. Such lists op rational numbers are also sometimes callddtervals. We want



to formalize the notion of binary relation betweep-interval and a-interval for any
p,q > 1. To keep things concrete, we will confine ourselves to resaabibut the notion
of binary relation between twp-intervals for some > 1. Extending these to the
remaining cases is a simple matter. In order to formalizeptigition ofz with respect
to y we have to decompose the set of all rational numbers intaessibé we defingyy
as—oo andy,4+1 as+oo then the numberg, . . ., y, clearly define a partition of this
setinto2 x p + 1 zones numbered fromto 2 x p such that:

- Forallie {0,...,p}, zone2 x iis]y;, yi+1[;

- Foralli e {1,...,p},zone2 x i — 1is{y;}.

Xy X, X3

Py ° Py L.

Figure 1: A3-intervale = (21, z2, 23).

Obviously, each rational number belongs to exactly one .zof@s shows that the
position ofz with respect tay is a sequence qf zones which specifies for ea¢he
{1, ..., p} which zone the number; belongs to. LetQ be the set of all sequences of
p zones. We will use, b, ¢, etc, for these, assuming for any sequeaad p zones,
the first zone is denoted hy , the second by, etc. If we definer, as0 anda, 41 as

2 x p then:

- a is a position between generalized intervals iff, forak {1,...,p}, a; €
[[ai—1, a;+1]], assuming for any pair, b of integers][«, b]] is the largest integer
interval with even endpoints and containeddnb].

Y1 Yo Y3
zone OT zone 2 T zone 4 T zone 6
zone 1 zone 3 zone 5

Figure 2: Ther zones defined by aintervaly = (y1, y2, ys).

Let P be the set of all positions. Positions are also called basations. They con-
stitute the exhaustive list of the possible relations betwgeneralized intervals. For
example, ifry €]y, v1[, T2 €Jyo, y1[ andzs €]ys, ys[ then the position of with re-
spect toy is the sequencf), 0,4) and ifz; €]yo, y1[, z2 = y1 andxs €]yz, ys[ then
the position ofz with respect tq is the sequenc@), 1, 4). In order to represent indef-
inite information, we allow the binary relation between tgeneralized intervals to be
any subset of the set of all basic relations. We will use3, ~, etc, for these. In the
relational approach to temporal reasoning, the operatbirsrerse and composition
play an important role. The inverse of denoted by:~!, is the positiort such that,
foralli € {1,...,p}:



- Forallj €{0,...,p},if 2xi—1 € [[aj,a;11]] thenb; = 2 x j;
- Forallj e {l,...,p},if2xi—1=a;thenb; =2 x j — L.

The composition of: andb, denoted by:; b, is the set of all positions such that, for
allz e {1,...,p}:

- Forallj € {0,...,p},if a; = 2 x jthene; € [[b;,b;41]];
- FOI’a”jE{l,...,p},ifaiIQXj—lthenCiij.

Forinstance, the inverses (¥, 0, 4) and(0, 1, 4) are the positiongt, 4, 6) and(3, 4, 6)
whereas the composition ¢, 0, 4) and(0, 1, 4) isthe sef (0, 0, 2), (0,0, 3),(0,0,4) }

of positions. Since binary relations between generalingetvals are sets of basic re-
lations, the operations of inverse and composition arenebeti@ as follows. The inverse
of «, denoted byr~1, is {a~! : @ € «}. The composition ofv and 3, denoted by

a; B,is|{a; b : a € a&b € 3}. This brings us to the question of whether these defini-
tions capture the intended meaning of the operations iedblizetzay mean that the
position ofz with respect tqy belongs tav. Ligozat [7] shows that the operations of
inverse and composition have the following important préps:

- za” lyiff you;
- xw; Py iff there is a generalized intervalsuch thatcaz andz5y.
This proves a simple but fundamental result:

- The algebrd2” u,n, —, 06, P,~1 ; {(1,...,2xp—1)}) isarelational algebra.

3 HORN REPRESENTABILITY

Horn representable relations correspond to particularafatlauses. Clauses are built
up fromp variablesuy, . . ., u, andp variables, . . ., v, using the arithmetical symbols
<, =, >, <, #and>. Aliteral is any expression of the form;¥tv;, wheres, j €
{1,...,p} and® is an arithmetical symbol. A set of literals is a Horn claufeti
contains zero or exactly one positive literal, assumingafoy i, j € {1,...,p}, the
literals w; < wj, u; = v, u; > v, v; < v; andwu; > v; are positive and the
literal u; # v; is negative. For example, the claudes = vq,us # vo} and{u, =
vi,us # vs} are Horn clauses whereas the clauSes < vy, us # vy, us = vs}
and{us > vi,us = ve,us # vz} are not Horn clauses. A definite clause contains
exactly one positive literal and zero or more negativediterA positive unit clause is
a definite clause containing no negative literal. Nebel aarctBert [10] consider only
Horn clauses using the arithmetical symbels<, # and>. It is straightforward to
prove that every Horn clause using the arithmetical symkols, >, <, # and> is
equivalent to a couple of Horn clauses using the arithmetigabols=, <, # and>.

To define Horn representable relations we need to evaluai@bles occurring in the



given literals of a clause. We shall say thatalidates the literal;%tv; iff a;3(2 x

J — 1). Forinstance(0,1,3) and (0, 1,5) validate the literaki» = v;, seeing that

1 = (2 x 1 —1). In this spirit, a basic relation validates a clause iff iidates at least
one literal of the clause. For exampié, 1, 3) and(0, 1, 5) validate the clausegus =
v1,us £ v2} and{us = vi,us # vs}. Then we can define the Horn representable
relations as follows:

- « is Horn representable iff there is a sebf Horn clauses such that exactly the
basic relations ofv validate every clause &.

One says tha$ is a Horn representation of. To illustrate the truth of this, the binary
relations{(0, 0,4), (0,1,3),(0,1,4),(0,1,5)} and {(0, 1, 3), (0, 1,4), (0, 1, 5), (0, 2,
4)} are Horn representable or to be more precise, the Horn dduse< v; }, {uz <
Ul}, {Ug > Uz}, {Ug < 03}, {Uz = V1, U3 ;é 02} and{U2 = V1, U3 ;é U3} constitute a
Horn representation of the former binary relation wherbasHorn clause$u; < v },
{uz > v}, {us < wva}, {uz > va}, {us < vz}, {us = vi,uz # va}, {uz = v1,uz #
vs} constitute a Horn representation of the latter binary i@hatlt is not necessarily
the case that the line of reasoning suggested by Nebel arck&ii[10] within the
context of Horn representable relations between intea@téies to Horn representable
relations between generalized intervals wipen 3. In particular, although the reader
may easily verify that the set of all Horn representabletietas between generalized
intervals is closed for intersection and inverse, thereigvidence that the set of all
Horn representable relations between generalized ingeiv&losed for composition
whenp > 3. Therefore, we are not in a position to give any sort of prbaf the set of
all Horn representable relations between generalizedvisiteconstitutes a subclass of
the generalized interval algebra whep» 3.

4 CONVEXITY

To define the set of all convex relations, it is helpful to fastange in ascending order
the sequences gf zones. Letu < b mean thai; < b; forall i € {1,...,p}. For
instance,(0,0,3) < (0,1,5) and (0,1,3) < (0,2,5). As a product of chains, it is
easily shown thatQ, <) is a distributive lattice.(P, <) is also a distributive lattice,
becauséP, <) is a sublattice of @, <). The interval bounded by andb, denoted by
[a, b], is the binary relatiof¢: @ < ¢ ande < b}. This leads us to make the following
definition:

- « is convex iff there are positions b such thatx = [a, b].

To illustrate the truth of this, the binary relatidi0, 1, 3), (0, 1,4), (0, 1,5)} is con-
vex. Clearly, convex relations are Horn representable dretonore precise, ifv is
convex then there is a s8tof positive unit clauses such thétis a Horn representa-
tion of «. For instance, the positive unit clausgs, < v}, {us < v1}, {ug > val,
{us < vz} constitute a Horn representation of the interval boundedobg, 3) and
(0,1,5) whereas the positive unit claus¢s; < wv1}, {us > v}, {ua < w2},
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Figure 3: The latticéP, <) forp = 3.

{us > wva}, {us < vz} constitute a Horn representation of the interval bounded by
(0,1,3) and (0, 2,5). In general, the converse is false, Horn representabléaeta
need not be convex. For a counterexample, take the caseldbtheepresentable rela-
tions{(0,0,4), (0,1,3),(0,1,4),(0,1,5)} and{(0, 1, 3), (0, 1,4),(0,1,5), (0,2,4) }.
Evidently, the set of all convex relations is closed for isgztion. In particular, the set
of all convex relations containing contains a least element, denoted/ky), the con-

vex closure ofv. Ligozat [7] demonstrates that the convex closure has th@fimg
important properties:

- Ha™h = I(a)7 Y
- I(a; B) = I(); 1(B).

The conclusion can be summarized as follows: the set of alleorelations is closed
for inverse and composition. Therefore, the set of all cemetations constitutes a
subclass of the generalized interval algebra: the conaesscl

5 WEAK PRECONVEXITY

To define the set of all weakly preconvex relations, we havgittg in the operations
of topologic closure and dimension as follows. The topatadosure ofaz, denoted
by C(a), is the set of all positioné such that, for ali € {1,...,p}, eitherb; = a;



or| b; — a; | = 1 andb; is odd. For instance, the topologic closure(@f1,4) is the
binary relation{(0, 1, 3), (0, 1,4), (0, 1,5)}. The dimension of, denoted bylim(a),
isp —X{a;, mod2: i € {1,...,p}}. For example, the dimension ¢, 1,4) is 2.
Seeing that binary relations between generalized inteaa sets of basic relations,
we extend the operations of topologic closure and dimeressdollows. The topologic
closure ofe, denoted byC'(«), is| J{C(a): a € a}. The dimension of, denoted by
dim(«), issup{dim(a): a € «}. Ligozat [9] proves that the following conditions are
equivalent:

- C(«) is convex;
- I(a) C C(a);
- dim(I(o) \ @) < dim(a).
This justifies the role played by topologic closure in thédaing definition:

- « is weakly preconvex iff(«) is convex iffI(«) C C(«) iff dim(I(a) \ a) <
dim(«).

For instance, the binary relatiof§0, 0, 4), (0, 1,3),(0, 1,5) } and{(0, 1, 3), (0, 1, 5),
(0,2,4)} are weakly preconvex or more exactly, the topologic closirthe former
binary relation is the interval bounded k¥, 0,4) and(0, 1, 5) whereas the topologic
closure of the latter binary relation is the interval bouthtg (0, 1,3) and(1, 3, 5). It
is clear that convex relations are weakly preconvex. Thisgsrus to the question of
whether Horn representable relations are weakly precorsegposer is Horn repre-
sentable, we show it is weakly preconvex. By our definitiolofn representability,
we know that there is a sétof Horn clauses such tha&tis a Horn representation of.
Let S° consist of all positive unit clauses 8f With no loss of generality, suppose, for
alli,je{l,...,p} if u; # v; appears in some clause®f\ S° thenu; = v; isnota
consequence af°. Let~ be the binary relation which elements are exactly the basic
relations validating every clause 8f. SinceS°® C S, thena C ~. SinceS? is a set
of positive unit clauses, thenis convex. It follows that/ («) C . Let us show that
v C C(«). Consider the basic relationof +. It follows thata validates every clause
of §°. Then we can define a basic relatibof « such thatz € C'(b) as follows. Let
ie{l,...,p}. If a; is even then there is€ {0, ...,p} such thatz; = 2 x j and let
b; = 2 x j. Otherwiseu; is odd and there ig € {1,...,p} such thats; =2 x j — 1.

If uw; = v; is a consequence &F then letb; = 2 x j — 1. Otherwiseu; < v; is not
a consequence &° or u; > v; is not a consequence 6F. In the former case léf;

= 2 x j whereas in the latter case lgt= 2 x (j — 1). The reader may easily verify
thaté is a basic relation of such thats € C'(b). This gives us the following result;

C C(a). Itfollows that/(a) C C(«), hencen is weakly preconvex. From all this it
follows that:

Theorem 1 If « is Horn representable them is weakly preconvex.



Although Ligozat [8] shows that weakly preconvex relatidredween intervals are
Horn representable, weakly preconvex relations betweeargbzed intervals need not
be Horn representable when> 3, unfortunately. Take, for example, the case of the
weakly preconvex relation§0,0,4), (0,1, 3),(0,1,5)} and{(0, 1, 3), (0, 1, 5), (0, 2,
4)}. Ligozat [9] demonstrates that the topologic closure hasfeHowing important
properties:

- Cla™) 2C(a)7h

(a); C(B).

The interesting result is: the set of all weakly preconvéatiens is closed for inverse
and composition. Although Ligozat [8] proves that the setlbfweakly preconvex
relations between intervals is closed for intersectioa,rfader may easily verify that
the set of all weakly preconvex relations between genemlintervals is not closed
for intersection wherp > 3. Consider, for instance, the weakly preconvex relations
{(0,0,4),(0,1,3),(0,1,5)} and {(0, 1, 3), (0, 1,5),(0,2,4)}. Therefore, the set of
all weakly preconvex relations between generalized ilslsrdoes not constitutes a
subclass of the generalized interval algebra when3s.

C
- Cla;0)2C

6 STRONG PRECONVEXITY

Assumep > 3. The trouble with the set of all weakly preconvex relatianghat it is
not closed for intersection with convex relations. One hdg o consider the weakly
preconvex relation§(0, 0,4), (0, 1,3), (0, 1,5)} and{(0, 1, 3), (0, 1,5), (0,2,4)} and
the convex relatiod (0, 1, 3), (0, 1,4), (0,1,5)}. This justifies the role played by in-
tersection with convex relations in the following definitio

- «a is strongly preconvex iff, for all binary relatiof, if 5 is convex therv N 3 is
weakly preconvex.

To illustrate the truth of this, the binary relatiof@, 0,4), (0, 1, 3), (0, 1,4), (0, 1,5)}
and{(0,1,3),(0,1,4),(0,1,5),(0,2,4)} are strongly preconvex. Clearly, strongly
preconvex relations are weakly preconvex. Let us see iktigeany connection be-
tween Horn representability and strong preconvexity. 8pp is Horn representable,
we demonstrate it is strongly preconvex. By our definitiorlofn representability, we
know that there is a set(«) of Horn clauses such tha«) is a Horn representation
of a. If & is not strongly preconvex then there is a binary relatiosuch thatg is
convex andy N 3 is not weakly preconvex. Singgis convex, then it is Horn repre-
sentable. In particular, there is a s¥t7) of positive unit clauses such th&ts) is a
Horn representation ¢f. Furthermore, the reader may easily verify t8ét) U S(3)

is a Horn representation ef N 3. By theorem 1o N /3 is weakly preconvex, and this
is impossible. These considerations prove:

Theorem 2 If « is Horn representable themis strongly preconvex.



Now supposey is strongly preconvex, we prove it is Horn representablac&i(«)
is convex, then itis Horn representable. In particulanehiga setS(7(«)) of positive
unit clauses such tha&(I(«)) is a Horn representation df(«). Consider the basic
relationa of 7(«). Suppose: ¢ a. Leta, = {b: foralli € {1,...,p}, if a; is odd
thenb; = a;}. Obviously,a € a,. Furthermore, the reader may easily verify that
is convex. It follows thaty, is Horn representable. What is more, there is aS¢et,)
= {{u;;, = v, },...,{wi,, = v;,, +} of positive unit clauses using the arithmetical
symbol= such thatS(«,) is a Horn representation of;,. Let 3, = « N a,. Sincex is
strongly preconvex, thefi, is weakly preconvex. It follows that(5,) C C'(5,). Let
us demonstrate that¢ 7(3,). Suppose: € I(3,), we derive a contradiction. Since
I(#.) C C(B,), thena € C'(8,) and there is a basic relatiéof 3, such that: € C'(b).
Sinceb € ,, thenb € « andb € «,. It follows thatb # « and, for alli € {1, ..., p},

if a; is odd therb; = «;. Sincea € C'(b), then, foralli € {1, ..., p}, eithera; = b; or

| a; — b; | = 1 anda; is odd, hence ifi; is even therb; = ;. It follows thatb = «,
a contradiction. This gives us the following resultgZ I(3,). Sincel(f,) is convex,
then/(3,) is Horn representable. To be more precise, there is a nogesaidt (7(5,))
= {{up, R, m, |, - - -, {up Ry vmyy }} OF positive unit clauses such th&t7(5,)) is
a Horn representation df{3,). Let v, = a4 \ 1(84) @andd, = I(«) \ 4. It follows
thatd, is Horn representable. Ultimately, then, the 8€i,) = S({(a)) U {{u;, #
Ujis e ooy Uipg # Yjnr LR R T Ujis ooy Uipg # Yjnrs W Ry Uy 1}
of definite clauses is a Horn representatio of All in all, let S = [J{S(d4): a €
I{«) \ «}. The reader may easily verify that exactly the basic refatiof « validate
every clause of. It follows thata is Horn representable. Hence we have:

Theorem 3 If « is strongly preconvex themis Horn representable.

7 GENERALIZED NETWORKS

Assumep > 3. A generalized interval network is a structure of the fofm M)
wheren > 1 andM is a squarex x n matrix with entries ire”. HenceM isa function
assigning, foralf, j € {1,...,n}, asubsel/ (¢, j) of P, i.e. abinary relation. Atuple
(z(1),...,2(n)) of generalized intervals is called a (maximal) solutior{:of M ) iff,
foralli,j € {1,...,n}, thereis a basic relationof (maximal dimension in}// (¢, j)
such thatz(i) a z(j). (n, M) is (maximally) consistent iff it possesses a (maximal)
solution. In what follows we assume that all our generalizgdrval networks satisfy
the following conditions:

-Forallie{1,....n}, M(&,9) ={(1,...,2xp—1)};
- Foralli,je{1,...,n}, M(i,j) = M(j,i)~".

Itis a well-known fact that by applying the following algtitin — the path-consistency
algorithm — we obtain in polynomial time an equivalent getieed interval network:



- Successively replace, for all pairwise distingt, ¥ € {1, ..., n}, the constraints
M (%, k) and M (k, 7) by the constraintd/ (¢, k) N (M (¢, §); M (4, k)) and M (k,
i) N (M (k, j); M(j, 7).

We make use of this in the following definition:

- (n, M) is path-consistent iff, for all pairwise distinttj, &k € {1,...,n}, M (4,
k) C M(i,§); M(j, k) andM (k,i) C M (k, §); M(j, ).

An important matter is deciding consistency of a generdlinterval network. It would
be naive to suppose that constraints between generalitexgtals can be expressed in
terms of constraints between intervals, for the simpleaedlsat although Ligozat [9]
shows that if a weakly preconvex generalized interval neétispath-consistent then
either it contains the empty constraint or it is maximallysistent, the issue of con-
sistency of a weakly preconvex generalized interval ndtisoNP-complete. The fact
of the matter is that the issue of consistency of an intereddark is polynomial-time
reducible to the issue of consistency of a weakly preconenerplized interval net-
work. Consider the interval netwofk, /). Then we can define the weakly preconvex
generalized interval networle’, M') as follows. Leth’ = n x (n + 1). Foralli, j €
{1,...,n}, let:

- M'(4,j) ={(a1,a2,5,...,2x p—1): (a1,az2) € I(M(i,4))};

- M'(in+i+(j—1)xn)={(a1,as2,5,...,2xp—1): (a1,a2) € M(¢,§)} U
{(bl,b2,6,...,2><p): bl,bZ 6{0,2,4} andb1 sz},

SM'n+i+ (=1 xn)={(1,35...,2xp—1)}

The reader may easily verify théat', M) is consistent iff(n, M) is consistent. All
this goes to show that:

Theorem 4 The issue of consistency of a weakly preconvex generalized/al net-
work is NP-complete.

This polynomial-time reducibility of the issue of consisty of an interval network to
the issue of consistency of a weakly preconvex generalizievial network serves to
illustrate the role played by intersection with convex tielias in the following defini-
tion:

- (n, M) is weakly path-consistent iff, for all pairwise distiricy, k € {1,...,n},
M (i, k) C I(M (i, j); M (3, k)) andM (k,3) C I(M(k, j); M (j, )).

From all the evidence it is clear that by applying the follog/algorithm — the weak
path-consistency algorithm — we obtain in polynomial timesguivalent weakly path-
consistent network:

- Successively replace, for all pairwise distingt, ¥ € {1, ..., n}, the constraints

M (%, k) andM (k, ) by the constraintd/ (¢, k) N T(M (¢, §); M (4, k)) and M (k,
i) N I(M (K, j); M (5, 4)).



We first observe that path-consistent generalized interealorks are weakly path-
consistent. In general, the converse is false, weakly patisistent generalized in-
terval networks need not be path-consistent. Let us demaaghat the problem of
deciding consistency of a generalized interval network lzarsolved in polynomial
time by means of the weak path-consistency algorithm if tdyn representable rela-
tions are used. Consider the Horn representable genefatierval network(n, Af).
Seeing that Horn representable relations are stronghopves, (n, M) is a strongly
preconvex generalized interval network. In view of the thett the set of all strongly
preconvex relations is closed for intersection with coreadations, it is beyond ques-
tion that by applying the weak path-consistency algorithm,obtain in polynomial
time an equivalent weakly path-consistent strongly preesigeneralized interval net-
work (n, M'). Then we can define the convex generalized interval netvork/"') as
follows. For alli, j € {1,...,n}, let M (i, j) = I(M'(, j)). Given that the set of all
convex relations is closed for compositidn, M) is a path-consistent convex gener-
alized interval network. Seeing that convex relations sgakly preconvex(n, M"') is

a path-consistent weakly preconvex generalized intemtatork. In this respect, either
it contains the empty constraint or it is maximally congist&he former case implies
that(n, M’) contains the empty constraint, her(ee }) is not consistent. The latter
case implies thatn, M’) is maximally consistent, hende:, M) is consistent. Now
tractability of the issue of consistency of a Horn represlelet generalized interval net-
work follows easily:

Theorem 5 The issue of consistency of a Horn representable genedliterval net-
work can be solved in polynomial time by means of the weak gathkistency algo-
rithm.

8 CONCLUSION

We would like to emphasize that so far our main concern has bige connection
between the syntactic concept of Horn representabilitythedyeometric concepts of
convexity, weak preconvexity and strong preconvexity. &precisely, we have given
the set of all Horn representable relations between geredaintervals a simple char-
acterization based on the concept of strong preconvexityadvantage of this charac-
terization is that it has allowed to present a simple proaf the issue of consistency
of a Horn representable generalized interval network casobesd in polynomial time
by means of the weak path-consistency algorithm.

Much remains to be done. We wish to investigate the questiwetiver the class
of binary relations between two generalized intervals gged by the set of all Horn
representable relations between generalized intervaeisnique maximal tractable
subclass among those which contain base relations. Futitealso includes permit-
ting the processing of metric constraints between gerzedlintervals, an important
matter in the development of reasoning systems that aresooed with temporal in-
formation.
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