
CTL Model Checking for Processing Simple XPath Queries

Loredana Afanasiev1 Massimo Franceschet1,2 Maarten Marx1 Maarten de Rijke1
1Informatics Institute, University of Amsterdam

lafanasi,francesc,marx,mdr@science.uva.nl
2Department of Sciences, University “G. d’Annunzio” of Chieti-Pescara

m.franceschet@unich.it

Abstract

The Extensible Markup Language (XML) was
designed to describe the content of a document
and its hierarchical structure, and the XML Path
language (XPath) is a language for selecting ele-
ments from XML documents. There is a close con-
nection between the query processing problem for
XPath and the model checking problem for tem-
poral logics. Both boil down to checking which
nodes of a graph satisfy a property. We investigate
thepotentialof a technique based on Computation
Tree Logic (CTL) model checking for evaluating
queries expressed in (a subset of) XPath. To this
aim, we isolate a simple fragment of XPath that
is naturally embeddable into CTL. We report on
experiments based on the model checker NuSMV,
and compare our results with alternative academic
XPath processors. We comment on the advantages
and drawbacks of the application of our model
checking-based approach to XPath processing.

1. Introduction

Much of the data on the Web is unstructured
and unorganized, and regular schemas underly-
ing conventional databases are simply inappropri-
ate for this type of data. The Extensible Markup
Language (XML) [26] is a textual representation
of information that was designed by the World
Wide Web Consortium. It is able to represent miss-
ing or duplicated data as well as nested informa-
tion [1], and, hence, provides a suitable data model
for semistructured data.

The XML Path Language (XPath) is a query
language for selecting elements from XML doc-
uments [27]. XPath and its query evaluation prob-
lem have become an active research area that has
proved particularly appealing for computational

logicians. Query evaluation and containment prob-
lems have been recast in terms of reasoning prob-
lems in suitable logical languages (cf. Section 2
for details). Our objective is to investigate thepo-
tential of a technique for processing queries ex-
pressed in XPath that is based on model check-
ing Computation Tree Logic formulas. To this end,
we focus on a simple fragment of Core XPath, the
logical core of XPath defined in [16]. This frag-
ment, calledSimple XPath, allows queries in which
only child and descendant axes are admitted and
such that the root of the tree is selected if, and
only if, the query is successful. Such queries have
been investigated in the context of XML data dis-
semination, where they are referred to astree pat-
tern queries[11]. In this context, consumers spec-
ify their subscriptions, indicating the type of XML
content that is of interest, using some XML pat-
tern specification language like XPath. For each in-
coming XML document, a router matches the doc-
ument contents against the set of subscriptions to
identify the interested consumers, and then routes
the document to them. Thus, the result of match-
ing a document with respect to a subscription is ei-
ther ‘yes’ (the document matches the subscription
and should be posted to the interested consumer)
or ‘no’ (the document does not match the subscrip-
tion and hence is not interesting for the consumer).

We provide an embedding of Simple XPath
into Computation Tree Logic (CTL) [13], a spec-
ification language in the model checking frame-
work [14]. The existential fragment of CTL fea-
turing temporal operatorsEX and EF turns out
to be sufficient to embed Simple XPath. A CTL
model checker, such as NuSMV [12], can then be
exploited to check a Simple XPath query against
an XML document. The model checker answers
‘yes’ (the formula representing the query matches
the model representing the document) or ‘no’ (the
formula does not match the model). In the nega-

tive case, NuSMV provides an explanation for the
failure of the matching.

Our main contributions are the following:

1. We devise a linear translation of the query
evaluation problem for Simple XPath into the
model checking problem for CTL. The trans-
lation is sound: a query matches an XML doc-
ument if, and only if, the translated formula
matches the translated model.

2. We describe an implementation of a Sim-
ple XPath processor that captures the above
translation and invokes the NuSMV model
checker to check whether the XPath query
matches the XML file.

3. We report on tests on different XML files and
queries, and on comparisons between our out-
comes and those of alternative implementa-
tions of XPath. Our experiments use XML
files generated with XMark [23], an XML
document generator.

4. We extend the translation torelative Sim-
ple XPath queries. These are Simple XPath
queries that need to be checked ateachnode
of the XML tree, selecting a node if, and only
if, the query is successful at that node. Hence,
the result of a relative query is an arbitrary
set of nodes, not just the root as for absolute
queries. We extend the implementation on top
of NuSMV and run experiments on relative
queries as well.

Our approach to XPath query processing is of in-
terest both to researchers in semistructured data
and to researchers in temporal logic, yield-
ing many new questions and challenges, some of
which we point out below.

The rest of the paper is organized as follows.
Section 2 discusses related work. In Section 3
we introduce background knowledge about XPath,
and we give the embedding of Simple XPath into
CTL. We test the feasibility of the method in Sec-
tion 4 and conclude in Section 5.

2. Related Work

Since the mid-1990s there has been a lot of
work on the interface of computational logic and
semistructured data, making use of a wide variety
of logical tools and techniques. For instance, simu-
lations and morphisms [7], regular expressions [2],
and connections with description logic [10] have
all been used. Early work in the area was (neces-
sarily) mostly concerned with proposals for data
models and query languages for semistructured

data. After the introduction of XML and XPath,
this is where much of the research converged.

The relation between model checking and
query processing has been extensively ex-
plored in the setting ofstructureddata. We refer
to [17] as a good entry-point to the area. The re-
lation between model checking and query pro-
cessing forsemistructureddata goes back at least
to [3], where it was formulated in terms of suit-
able modal-like logics. Quintarelli [22] em-
beds a fragment of the graphical query lan-
guage G-Log into CTL, and sketches a mapping
for subsets of other semistructured query lan-
guages, like Lorel, GraphLog and UnQL. De
Alfaro [5] proposes the use of model check-
ing for detecting errors in the structure and
connectivity of web pages. Alechina et al. [4] dis-
cuss the use of Propositional Dynamic Logic
(rather than CTL) to obtain decidability and com-
plexity results for checking path constraints on
semistructured data (rather than query evalua-
tion). Calvanese et al. [10] use description logics
for similar purposes. Finally, Miklau and Su-
ciu [20] and Gottlob et al. [15] sketch an embed-
ding of the forward looking fragment of XPath
into CTL, but they do not test the practical effec-
tiveness of this approach.

As noticed by Gottlob et al. [16], many com-
mercial engines implement XPath processing by
adopting a naive exponential-time strategy even
though the query processing problem for XPath
admits a polynomial-time algorithm, and it can
be solved in linear time in case of Core XPath,
the navigational fragment of XPath. A number
of Core XPath processors have so far been im-
plemented. In [16] the authors propose an algo-
rithm that embeds a Core XPath query into an al-
gebraic expression over sets of nodes of the tree
representing an XML document, and then evalu-
ates the algebraic expression in order to process
the query. Buneman et al. [8] propose an algo-
rithm for Core XPath processing on compressed
XML files; the idea is to compress XML trees into
directed acyclic graphs sharing common subtrees,
and to evaluate the query directly on compressed
XML documents. Koch [18] embeds a query into
a tree automaton and runs the resulting tree au-
tomaton in order to process the query. A alternative
approach is to embed XML documents intorela-
tional databases, to rewrite XPath queries as SQL
ones, and to run an SQL engine to retrieve the an-
swer set of the original XPath query [24]); the ad-
vantage of this approach is clear: it taps into so-
phisticated relational database technology.

Tree pattern queries, similar to the ones we use
in this paper, have already been investigated in [6],
where the authors propose query minimization al-
gorithms, in [11], where the authors devise algo-
rithms to aggregate an input set of queries into a
smaller set such that a given space constraint is met
and the loss of precision is minimal, and in [20],
where the authors study the corresponding con-
tainment and equivalence problems.

3. Embedding Simple XPath Queries
into CTL

We start by providing background on XML,
XPath, and Simple XPath. After that we define an
embedding from Simple XPath into CTL. We as-
sume that the reader is familiar with the syntax
and semantics of Computation Tree Logic (CTL)
(see, e.g., [14]). We will only need the fragment of
CTL that contains the temporal operatorsEX and
EF. Given a CTL modelM and formulaα, the
truth setof formulaα with respect to modelM is
{s ∈ M | M, s |=CTL α}.

An XML document can be easily represented
as a tree with tag labels attached to the nodes [1].
We define the tree representation of an XML doc-
ument as follows. LetΣ be a set of labels cor-
responding to the XML tags containing the spe-
cial label ∗. An XML tree is a node-labeled tree
T = (N,R↓, L), whereN is the finite set of nodes
containing the root noder, R↓ ⊆ N ×N is the set
of tree edges, andL : Σ → 2N is a node-labeling
function associating to each label a set of nodes
such thatL(∗) = N .

TheXML path language(XPath) [27] is a lan-
guage proposed by the World Wide Web Consor-
tium (W3C) for selecting elements (or nodes) from
XML documents.Core XPath[16] is the logical
core of XPath, often referred to as thenavigational
fragmentof XPath, since it maintains its naviga-
tional power in the four directions of the tree (for-
ward, backward, right, and left), while omitting the
arithmetical and string operations. Simple XPath is
the following fragment of Core XPath. Letl be a
label inΣ. Predicatesp are defined by:

p = p and p | p or p | not p | path
path = step | step/path
step = axis :: l | axis :: l[p]
axis = self | child | descendant |

descendant or self

A Simple XPath query is either anabsolutequery
of the form/[p] , or arelativeXPath query of the

form //[p] . Intuitively, absolute queries are eval-
uated at the root of the tree, while relative ones are
evaluated at each node of the tree.

We give the semantics of Simple XPath queries.
The semantics is as in [16], which is in line with
the standard XPath semantics from [25]. The se-
mantics of a predicatep is specified by a function
[[·]], that, given an XML treeT = (N,R↓, L) and
a noden ∈ N , returns the set of nodes[[p]]T,n re-
cursively defined as follows, where(R↓)+ denotes
the transitive closure ofR↓ and(R↓)∗ is the reflex-
ive and transitive closure ofR↓:

[[axis :: l]]T,n = {m | (n, m) ∈ [〈axis〉]T
and m ∈ L(l)}
[[axis :: l[p]]]T,n = {m | (n, m) ∈ [〈axis〉]T
and m ∈ L(l) and [[p]]T,m 6= ∅}
[[step/path]]T,n = {m | ∃k. k ∈ [[step]]T,n

and m ∈ [[path]]T,k}
[[p1 and p2]]T,n = [[p1]]T,n ∩ [[p2]]T,n

[[p1 or p2]]T,n = [[p1]]T,n ∪ [[p2]]T,n

[[not p]]T,n = N \ [[p]]T,n

[〈self〉]T = {(n, n) | n ∈ N}
[〈child〉]T = R↓
[〈descendant〉]T = (R↓)+

[〈descendant or self〉]T = (R↓)∗

Define theanswer setof the absolute query/[p]
with respect to a treeT to be the singleton{r} con-
taining the tree root if[[p]]T,r 6= ∅, and the empty
set otherwise. The query/[p] is successfulif its
answer set is non-empty. The answer set of the
relative query//[p] with respect to a treeT is
{n ∈ N | [[p]]T,n 6= ∅}.

The translation from Simple XPath queries to
CTL formulas is as follows. Forl ∈ Σ, let l̂ =
true if l = ∗ andl̂ = l otherwise. We define a lin-
ear embeddingω of predicates into CTL formulas
as follows, whereε is the empty string:

ω(axis :: l) = 〈axis〉l̂
ω(axis :: l[p]) = 〈axis〉(l̂ ∧ ω(p))

ω(axis :: l/path) = 〈axis〉(l̂ ∧
ω(path))

ω(axis :: l[p]/path) = 〈axis〉(l̂ ∧
ω(p) ∧ ω(path))

ω(p1 and p2) = ω(p1) ∧ ω(p2)
ω(p1 or p2) = ω(p1) ∨ ω(p2)

ω(not p) = ¬ω(p)

〈self〉 = ε

〈child〉 = EX
〈descendant〉 = EXEF

〈descendant or self〉 = EF

The following result links XPath query processing
to CTL model checking. The proof is by a straight-
forward induction.

Theorem 1 Let T = (N,R↓, L) be an XML tree
with root noder andp a predicate. Then,

1. the absolute query/[p] is successful if, and
only if, T, r |=CTL ω(p);

2. the answer set of the relative query//[p] with
respect toT equals the truth set of theCTL
formulaω(p) with respect toT .

Given the link between XPath query processing
and CTL model checking provided by Theorem 1,
many questions arise, both regarding the CTL side
of the link and regarding the XPath side. For in-
stance, whatexactly is the CTL fragment deter-
mined by the range of the translationω? What is
its expressive power? Its complexity? Because of
space limitations, we have to leave these questions
for future research. Instead, we want to devote
much of the rest of the paper to the following ques-
tion: how feasible is it to use CTL model checking
for evaluating Simple XPath queries? More con-
cretely, given Theorem 1 we can solve the Simple
XPath query evaluation problem by taking an ex-
isting model checker for CTL, feeding it (the trans-
lations of) an XML document and a Simple XPath
query to be evaluated against the document, and
obtaining the answer set by computing the truth
set for the corresponding model checking problem.
How effective is this strategy in practice?

4. Evaluation

To address the question of how feasible it is in
practice to deploy a CTL model checker as a query
evaluation engine for Simple XPath, we carried
out a number of experiments. The specific ques-
tions that we aimed to address with our experi-
ments were:

1. What are the time requirements for translat-
ing XML documents into CTL models, suit-
able for processing by a model checker?

2. Does XMChecker perform similarly on abso-
lute and relative queries? Note that, strictly
speaking, relative queries are outside standard
(local) CTL model checking.

3. How does model checking-based processing
of translated Simple XPath queries compare
to other tools for XPath query evaluation?

In this section we report on experiments carried
out to address these questions. We describe our im-
plementation, the test set used, and the results.

4.1. The Implementation

We implement our approach to Simple XPath
query evaluation by using an existing CTL model
checker, thus reducing our task to implement-
ing the document and query translations presented
in Section 3 and the translation from the model
checker output back to the world of XML. The re-
sulting tool, called XMChecker (XML Model
Checker), uses NuSMV [12] as the CTL model
checker. Besides the above translations, XM-
Checker implements a subroutine that runs
NuSMV, and one that interprets the truth set of a
CTL formula, returned by NuSMV, as a set of ele-
ments of the original XML file.

We used NuSMV because it is a state-of-the-art
tool implementing many optimization techniques,
including symbolic model checking, cone of in-
fluence reduction, and conjunctive partitioning of
the transition relation [14]. Moreover, NuSMV is
open source, structured modularly, and well doc-
umented [21]. However, designed for the ver-
ification of computer hardware and software,
NuSMV only allows for local model check-
ing, i.e., it checks whether a given formula holds
at all initial states of a given model. For our pur-
poses, we need to solve a slightly more general
task, viz. global model checking: given a for-
mula and a model, retrieve all states of the
model that satisfy the formula. This functional-
ity was easily implemented by making a small
modification to NuSMV’s source code.

The source code for XMChecker and for
NuSMV, modified to perform global model check-
ing, can be found at the XMChecker website [28].

4.2. Experimental Setting

Our experiments were run on a Pentium
IV, 1.60GHz, with 1.5GB RAM, running Red-
hat Linux version 2.4.21-ict1. We ran tests
using a variety of XML documents and (Sim-
ple XPath) queries. The documents and queries
are generated using the XML benchmarking pro-
gram XMark [23].

The XMark generated documents are modeled
after a database as deployed by an Internet auc-
tion site, a typical e-commerce application. They
allow for the formulation of queries that both feel
natural and present concise challenges. The gener-
ated documents make the behavior of queries pre-
dictable. XMark provides an accurate scaling of
the XML document size using a user defined scal-
ing factorf . The numbers are calibrated to match

a total XML document size of approximately100
MB whenf assumes the value1.0.

We used the following Simple XPath queries:

Q1 /[child::site/child::regions/child::africa/
child::item/ child::description/child::parlist/
child::listitem/child::text]

Q2 /[descendant::item/child::description/
child::parlist/ child::listitem/child::text]

Q3 /[descendant::item/descendant::text]
Q4 //[self::openauction and child::bidder]
Q5 //[self::item and child::payment and

child::mailbox]
Q6 //[self::person and descendant::payment]

Observe that Q1, Q2, and Q3 are absolute queries,
while Q4, Q5, and Q6 are relative. For an absolute
query we apply local model checking, which gives
us a positive answer if the query is successful and
a negative answer, otherwise. We apply the global
model checking in order to obtain the answer set
for a relative query. All the queries are designed to
have non-empty answer sets.

We measured the CPU times (in seconds)
needed to execute the following tasks: model
checking (“query evaluation”), and convert-
ing the model into NuSMV’s internal, symbolic
representation. On the data just described we com-
pared XMChecker’s query evaluation time
against the run-times of the following alternative
XPath processors:XMLTaskForce Engine ,
the first polynomial-time XPath engine, pro-
posed in [16], andMacMill [8], a fast XPath
processor that works on compressed XML docu-
ments. To the best of our knowledgeMacMill is
the fastest implemented navigational XPath pro-
cessor currently available.

4.3. Results

We first look at the model building times used
by XMChecker. The time that XMChecker takes to
translate the XML documents into NuSMV input
models can be neglected for two reasons: the trans-
lation takes little time and can be done off-line.

Figure 1 contains the time taken by NuSMV to
process the input model into its internal format.
Observe that the numbers are extremely high and
that the process takes non-linear (quadratic) time
with respect to the size of the input.

Figure 2 contains the outcomes of the compar-
ison between XMChecker, MacMill, and XML-
TaskForce. Each figure contains, for a single query,

0

5000

10000

15000

20000

25000

0 0.01 0.02 0.03 0.04 0.05 0.06

T
im

e
(s

ec
on

ds
)

Value of f

Model building time

Figure 1. Processing CTL models into
NuSMV’s internal format. The XML
document sizes corresponding to the
values of f range from 26 KB to 6.6
MB.

the CPU times for the three query evaluation en-
gines against increasing values of the scaling fac-
tor f . For these experiments, we used the tree rep-
resentation of the XML documents in the signature
of the six queries, i.e., labels that do not appear in
the given queries were ignored during the transla-
tion. This was done to obtain the smallest possible
model relative to the given queries. The same pro-
jection technique is implemented in MacMill [8].

All six queries Q1, . . . , Q6 yield the same pat-
tern: The time that XMChecker takes for query
evaluation when the model and the query are in
main memory are of the same order of magni-
tude as the time that MacMill takes to process
the queries under the same conditions, while the
XMLTaskForce engine takes one order of magni-
tude more time for the same task. Furthermore, for
each of the engines, the relative queries Q4, Q5,
Q6 are easier to process than the absolute queries
Q1, Q2, Q3; for the values off considered here,
the differences between MacMill and XMChecker
on the relative queries are very small.

Let us go back to the research questions for-
mulated at the start of this section. As regards the
first question, we found out that the model compi-
lation time is rather high and hence therun-time
translation of the model is not feasible in practice.
We also carried out other experiments in which the
complete tree representation of the document was
translated, with no query projection optimization.
In this case, the models grow larger since they con-
tain all the tag information carried by the XML
documents. However, as this processing is query

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

T
im

e
(s

ec
on

ds
)

Value of f

Q1

XMChecker
MacMill

 XMLTaskForce

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

T
im

e
(s

ec
on

ds
)

Value of f

Q2

XMChecker
MacMill

 XMLTaskForce

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

T
im

e
(s

ec
on

ds
)

Value of f

Q3

XMChecker
MacMill

 XMLTaskForce

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

T
im

e
(s

ec
on

ds
)

Value of f

Q4

XMChecker
MacMill

 XMLTaskForce

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

T
im

e
(s

ec
on

ds
)

Value of f

Q5

XMChecker
MacMill

 XMLTaskForce

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

T
im

e
(s

ec
on

ds
)

Value of f

Q6

XMChecker
MacMill

 XMLTaskForce

Figure 2. Run times for evaluating queries Q1, . . ., Q6 against documents with in-
creasing scaling factor f , using XMChecker, MacMill, and XMLTaskForce.

independent, it can be done off-line. We found that
the time needed by XMChecker to perform query
evaluation is in the same order of magnitude as
XMLTaskForce, that is, one order of magnitude
larger than in the query dependent translation.

As to our second question, concerning the dif-
ference in behaviour of XMChecker on absolute
and relative queries, the experiments show that our
addition to NuSMV to do global model checking
has no negative effect on performance. This is not
surprising, since the original NuSMV implemen-

tation first computes the truth set of a formula, and
then intersects it with the set of initial states. Our
modification basically avoids the intersection and
it prints the states in the truth set of the formula.

With respect to our third and final question, our
experiments show that the XMChecker query eval-
uation times (when the model is in main memory)
can compete both with the MacMill query eval-
uation engine (with document translation relative
to the given queries) and with the XMLTaskForce
query evaluation engine (with full translation of

the tree representation of XML documents).
Ignoring the model processing times, these re-

sults are very encouraging. In the next section we
discuss possible improvements of the representa-
tion of the document trees.

5. Conclusions and Future Work

We tested the potential of currently available
off-the-shelf CTL model checking technology for
processing XPath queries on XML documents. To
this aim, we implemented XMChecker, a proces-
sor for Simple XPath queries based on the NuSMV
model checker, and we compared its performance
with alternative XPath processors.

If we only consider the pure model check-
ing time, XMChecker works very well: in sev-
eral cases its performance is in the same league as
that of MacMill, one of the fastest XPath proces-
sors currently available. XMChecker’s real bottle-
neck is the long compilation time, i.e., the time
taken by NuSMV to encode the high-level de-
scription of the XML document into a low-level
OBDD-based one. The cause is not NuSMV it-
self, but the unconventional way in which we
used NuSMV. NuSMV is a model checker de-
signed to verify hardware and software systems.
Their behaviour is usually specified as the paral-
lel composition of the behaviours of components.
The costly parallel composition is never explic-
itly performed. Hence, the implicit representation
of the system is usually much smaller than the ex-
plicit one, sometimes even logarithmic in the size
of its explicit representation. This has made it pos-
sible to verify systems whose explicit represen-
tation contains up to1020 states [9]. In con-
trast, we provided NuSMV with explicit XML
trees whose size is proportional to the size of the
XML file. Encoding such trees into OBDD for-
mat takes a large amount of time, and is not man-
ageable by NuSMV for relatively large XML
documents.

We see many directions for future work, but list
only some of them. First, there are questions on is-
sues related to CTL, in particular to CTL model
checking. By adding past operators to CTL lan-
guage, that is, the backward looking analogues of
EX and EF, it is possible to captureall rela-
tive forward XPath queries. How can we extend
NuSMV with past temporal operators? For our ap-
plication, we must do model checking on Kripke
models that are given explicitly as labelled graphs.
Is it possible to turn them directly into OBDD for-
mat in a much more efficient manner than cur-

rently done by NuSMV? It seems that NuSMV
gets lost in optimizing the OBDD format for ex-
plicitly given Kripke structures. This may be be-
cause it is tuned to a very different input format.
Preliminary investigations support this conjecture,
as the OBDD format created by NuSMV is often
much too large for the given Kripke structure. A
different algorithm here could have a double pos-
itive effect: reducing the model compilation time,
and — as the models get smaller — reducing the
query evaluation times.

Next, there is a variety of questions related to
XML and model checking. For a start XML docu-
ments are often redundant; in particular, the skele-
tal information contained in XML files is often
repeated [8]. Our aim is to investigate alternative
compact representations of XML files. Next, most
of the queries only access a limited portion of the
XML file [19]. Our goal is to study a systematic
way to avoid processing XML regions that are ir-
relevant for the query, and to integrate it with XML
compression. Finally, real XML documents (like
XMark generated files) often are graphs (not trees)
because of the use of ID/IDREF attributes. Query
evaluation on graphs is not as easy to optimize as
on trees, and has, in fact, hardly been addressed so
far. Since model checkers are designed to work on
cyclic structures, this seems a good area in which
a model checking-based approach has potential.

Acknowledgments

Massimo Franceschet was supported by the
Netherlands Organization for Scientific Re-
search (NWO) under project number 612.000.207.
Maarten Marx was supported by NWO un-
der grant number 612.000.106. Maarten de Rijke
was supported by NWO under project num-
bers 365-20-005, 220-80-001, 612.069.006,
612.000.106, 612.000.207, and 612.066.302.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu.Data on
the Web: From Relations to Semistructured Data
and XML. Morgan Kaufmann Publishers, Los Al-
tos, CA 94022, USA, 2000.

[2] S. Abiteboul and V. Vianu. Regular path queries
with constraints.Journal of Computer and System
Sciences, 58(3):428–452, 1999.

[3] N. Alechina and M. de Rijke. Describing and
querying semistructured data: Some expressive-
ness results. In S. Embury, N. Fiddian, W. Gray,
and A. Jones, editors,Advances in Databases,
LNCS. Springer, 1998.

[4] N. Alechina, S. Demri, and M. de Rijke. A modal
perspective on path constraints.Journal of Logic
and Computation, 2003.

[5] L. D. Alfaro. Model checking the world wide
web. In G. Berry, H. Comon, and A. Finkel, edi-
tors,Computer Aided Verification, pages 337–349.
Springer, 2001.

[6] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan,
and D. Srivastava. Minimization of tree pattern
queries. SIGMOD Record (ACM Special Interest
Group on Management of Data), 30(2):497–508,
June 2001.

[7] P. Buneman, W. Fan, and S. Weinstein. Path con-
straints on semistructured and structured data. In
Proceedings of the Symposium on Principles of
Database Systems (PODS), pages 129–138, 1998.

[8] P. Buneman, M. Grohe, and C. Koch. Path queries
on compressed XML. InProceedings of the In-
ternational Conference on Very Large Data Bases
(VLBD), 2003.

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L.
Dill, and L. J. Hwang. Symbolic model checking:
1020 states and beyond.Information and Compu-
tation, 98(2):142–170, June 1992.

[10] D. Calvanese, G. D. Giacomo, and M. Lenzerini.
Representing and reasoning on XML documents:
A description logic approach.Journal of Logic and
Computation, 9(3):295–318, 1999.

[11] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis,
and R. Rastogi. Tree pattern aggregation for scal-
able XML data dissemination. InProceedings of
the International Conference on Very Large Data
Bases (VLDB), pages 826–837. Morgan Kaufmann
Publishers, 2002.

[12] A. Cimatti, E. M. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. NuSMV 2: An Open-
Source Tool for Symbolic Model Checking. In
Proceedings of the International Conference on
Computer-Aided Verification, 2002.

[13] E. Clarke, E. A. Emerson, and A. P. Sistla. Au-
tomatic verification of finite-state concurrent sys-
tems using temporal-logic specifications.ACM
Transactions on Programming Languages and
Systems, 8(2):244–263, 1986.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled.
Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

[15] G. Gottlob and C. Koch. Monadic Queries over
Tree-Structured Data. InLogic in Computer Sci-
ence, pages 189–202, Los Alamitos, CA, USA,
July 22–25 2002. IEEE Computer Society.

[16] G. Gottlob, C. Koch, and R. Pichler. Efficient Al-
gorithms for Processing XPath Queries. InPro-
ceedings of the International Conference on Very
Large Data Bases (VLDB), 2002.

[17] J. Y. Halpern, R. Harper, N. Immerman, P. G. Ko-
laitis, M. Vardi, and V. Vianu. On the unusual ef-
fectiveness of logic in computer science.The Bul-
letin of Symbolic Logic, 7(2):213–236, 2001.

[18] C. Koch. Efficient processing of expressive node-
selecting queries on XML data in secondary stor-
age: A tree automata-based approach. InProceed-
ings of the International Conference on Very Large
Data Bases (VLDB), 2003.

[19] A. Marian and J. Siḿeon. Projecting XML docu-
ments. In J. C. Freytag, P. C. Lockemann, S. Abite-
boul, M. J. Carey, P. G. Selinger, and A. Heuer,
editors,Proceedings of International Conference
on Very Large Data Bases VLDB, pages 213–224.
Morgan Kaufmann Publishers, 2003.

[20] G. Miklau and D. Suciu. Containment and equiv-
alence for an XPath fragment. InProceedings of
the Symposium on Principles of Database Systems
(PODS), pages 65–76, 2002.

[21] NuSMV: a new symbolic model checker. URL:
http://nusmv.irst.itc.it .

[22] E. Quintarelli. Model-Checking Based Data Re-
trieval: an application to semistructured and tem-
poral data. PhD thesis, Dipartimento di Elettron-
ica e Informazione, Politecnico di Milano, 2002.

[23] A. R. Schmidt, F. Waas, M. L. Kersten, M. J.
Carey, I. Manolescu, and R. Busse. XMark: A
Benchmark for XML Data Management. InPro-
ceedings of the International Conference on Very
Large Data Bases (VLDB), pages 974–985, 2002.
URL: http://monetdb.cwi.nl/xml/ .

[24] J. Shanmugasundaram, H. Gang, K. Tufte,
C. Zhang, D. J. DeWitt, and J. Naughton. Re-
lational databases for querying XML documents:
Limitations and opportunities. InProceedings of
the International Conference on Very Large Data
Bases (VLDB), pages 302–314. Morgan Kauf-
mann, 1999.

[25] P. Wadler. Two semantics for XPath. Technical re-
port, Bell Labs, 2000.

[26] World Wide Web Consortium. Extensible markup
language (XML). URL: http://www.w3.
org/XML , 1998.

[27] World Wide Web Consortium. XML path lan-
guage (XPath) version 1.0 – W3C recommen-
dation. URL: http://www.w3.org/TR/
xpath.html , 2000.

[28] XMChecker: an XML model checker.
URL: http://lit.science.uva.nl/
Research/XMChecker .

