UNIVERSITY OF WESTMINSTER

gRabh -

vvyy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Search strategies for resolution in CTL-type logics: extension
and complexity.

Artie Basukoski
Alexander Bolotov

Harrow School of Computer Science

Copyright © [2005] IEEE. Reprinted from 12th International Symposium on
Temporal Representation and Reasoning, 2005: TIME 2005, pp. 195-197.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Search Strategies for Resolution in CTL-type Logics: Extension and Complexity.

Artie Basukoski and Alexander Bolotov
Harrow School of Computer Science,
University of Westminster, HA1 3TP, UK
{A.Bolotov,A.Basukoski } @wmin.ac.uk

Abstract

A clausal resolution approach originally developed for
the branching logic CTL has recently been extended to the
logics ECTL and ECTL™. In the application of the resolu-
tion rules searching for a loop is essential. In this paper we
define a Depth-First technique to complement the existing
Breadth-First Search and provide the complexity analysis
of the developed methods. Additionally, it contains a cor-
rection in our previous presentation of loops.

1. Introduction

In [1, 7] a clausal resolution method was developed for the
basic logic CTL with the two main stages of the method,
translation to the normal form, called Separated Normal
Form for CTL, SNFcr,, and resolution rules. It has been
shown that SNFc11, can serve as a normal form for more
expressive logics, ECTL ([2, 3]) and ECTL™ ([5]), and
the corresponding procedures for translating ECTL and
ECTL* formulae into SNFqTr, were defined. This en-
ables us to apply the resolution method defined over a set
of SNFcTy, clauses as a verification procedure for specifi-
cations written in languages of these CTL-type branching-
time logics. The core procedure for the application of the
resolution method is the discovery of loops. Formally loops
are defined as follows:
Definition 1 (Loop in SNFcr,) A loop in l is a set of
merged clauses (possibly labelled) of the form

By :POOCO(indO) sy B, anOcﬂ(indn)
where P is any of path quantifiers and the following con-
ditions hold |= C; = land = C; = \/ B;, for all

j=0

0<i<n. ’
We will abbreviate a loop introduced in Definintion 1 by
(Bo V...V By) = POP[]ljn, where

(i) if for all 4, (0 <4 < n), P; is the ‘A’ path quantifier
then P = A, (ind) is empty, and we have an A-loop in [,

(ii) if for all ¢ (0 < ¢ < n), P; there is only one ‘E’
quantifier or every P; is the ‘E’ quantifier with the same
label (ind;) then (ind) = (LC(ind;)) and we have an E-loop
in [on the path (LC(ind;)), otherwise

(iii) we have indicated a hidden E-loop in [on an infinite
path, (ind), combined from (ind;) ... {ind,). !

2 Depth First Loop search algorithms

We define a self loop in [as a loop of the form B; =
PO (I A B;) for some i. A partial loop is given as B; =
PO(IA(B; VY V...VY,)), for some n, and for each
Y;(0 < i < n),Y;is a conjunction of literals. A partial loop
becomes a loop once we have established that each Y; is also
part of a loop in [. Finally, a leading loop in [is a sequence
of m clauses of the form B; = PO (B;11 Al)<ina,> for
0 <4 < m, and for m, B,,, = POP[]L.

The depth first search method we propose is an adap-
tation of the analogous method for PLTL by Dixon in [8].
As with the PLTL algorithm we construct a search graph in
which edges represent SNFm clauses [6] and the nodes rep-
resent the left hand side of these clauses. However the set of
SNFm clauses that are applicable is dependent on whether
we are searching an A-loop or an E-loop. Nodes are added
to the graph depth first if they satisfy the expansion criteria
for either backward or forward search in order to find a sub-
graph where one of the nodes recurs. Backtracking is used
if a particular path leads to a "dead-end”. The rules govern-
ing expansion guarantee that the desired looping occurs.

Graphs in the algorithm are represented as nested lists

!'Note that while working on this paper we have found a technical prob-
lem in our past presentations of the resolution method for CTL-type logics.
Previously [5] we gave the wrong impression that a path on which a hidden
loop has been found is a limit closure of some (ind) while now we note that
it is a limit closure of a combination of existing indices (ind1) ... (indy).
However, the only way in which a hidden loop in I can be used in the
resolution method is in combination with the A<>ﬁl clause, i.e. with the
TRES 3 rule. However, the resolvent of TRES 3 is itself an AWV clause
and, therefore, has no associated indices. This allows us to avoid unneces-
sary complication of the language of indices, formally preserving our old
notation.

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)
1530-1311/05 $20.00 © 2005 IEEE

in which successive entries represent the next node in the
graph and where each additional nesting of a level indi-
cates branching, e,g. [ng,n1,[n2, nol, [n4]] represents the
two paths [ng, n1, na, no| (which is a loop) and [ng, 11, n4).
As each entry in this graph is guaranteed to also imply [in
the next moment of time (by the expansion rules), this ex-
ample represents a partial loop in [. It becomes loop in [if
we successfully expand to another loop in [from ny

Depth-First E-Search algorithm. Let R be a set of
SNFqy, clauses.?

1. Search for all clauses of the form B;, = AQI, or
Bi = EOl<ing,>, for k = 0...b, disjoin the left
hand sides, set toExzpand = {Bj ... By}. If for any
B we find —B then terminate returning {¢rue}. Other-
wise use sets of literals in to Expand as the start nodes.

2. Set the current node ng to the next element in
toExpand if one is available, and path = [(ng)]. If
no such node is available terminate - no new loops are
found. Now, perform a backward search from ng (step
3) and mark this point as a continuation point for a pos-
sible forced forward search. When we return from the
continuation - if we have not yet found a loop with ng
as a disjunct we force a forward search on ng (to step
6). Otherwise goto step 7.

3. Perform a backward search from ng until either

(a) no loop was detected from any of the successors
to ng - goto continuation from step 2.

(b) a self-contained loop was found - goto continua-
tion from step 2.

(c) a partial-loop was found, i.e. we have used a
clause that has two or more disjuncts on its right
hand side - remove any nodes that do not form
part of the partial loop (the prefix to the loop),
store the disjunct list obtained from this clause
after removing the disjunct already used in the
partial loop and continue processing with step 4.

4. Set ng, the current node, equal to a new disjunct from
the disjunct list if one is available and goto step 5. Oth-
erwise we have detected a loop and return to the con-
tinuation from step 2.

5. Perform a forward search from ng until either

(a) no loop was detected from any of the successors
to ng, backtrack to where the disjunctive clause
was used (step 3, 5 or 6) and continue processing.

(b) a self-contained loop was found - goto step 2 con-
tinuation.

(c) a partial loop was found - goto step 4.

6. Perform a forced forward search on ng until either

2In the Depth-First A-Search algorithm which we do not describe here
we only consider A clauses.

(a) no loop was detected from the successors to ny,

return to continuation Step 2.
(b) a self contained loop was found - goto step 7.
(c) a partial loop was found - goto step 4.

7. Remove any nodes from the path that do not form part
of the loop, called the prefix to the loop. Extract the
set of nodes from the path constructed (noting indices
where appropriate) and add them to loops F ound vari-
able. Start the next search from step 2.

Backwards Search Algorithm During the backwards
search we seek clauses in SNFm whose right hand side con-
tains a conjunct with [/, and also implies the current node.

1. Given the current node n;, expand the next node
n;4+1 in the search tree by looking for clauses or
combinations of clauses of the form AY_ k., =
AO (V=g Co A1) or AG_gka = EO(Vj_oCh A
l) <indg>»
where = Cp, = n;.

2. If such a clause exists
(a) set the current node n; 1 to be /\g:0 k, and label

<ind,> if looking for an E loop;
(b) if » > 1 structure the search path to represent

this and store the disjuncts that have not been
matched to the current node in a list for future
processing; and
(c) goto step 3;
otherwise, if no such a clause exists
(a) if ¢ > 0 backtrack setting the current node to n;_;

and repeat step 1; or
(b) if 7 = 0 terminate backwards search and return to

the main algorithm.

3. (@) if ni41<ing.> 1s already in the search path return
to the main algorithm - a loop or partial loop was

detected on <4, >; Otherwise
(b) increment ¢ and continue at step 1.

Forwards Search Algorithm The forward search algo-

rithm is invoked after a partial loop has been detected using
Backwards Search but disjuncts remain to be processed. We
also force the forward search for each element in the ini-
tial expansion list if the backward search has not returned
the most general left hand side for a loop condition for
this node.> The algorithm works by finding clauses in the
set SNFm such that the current node implies the left hand
side of the next node, and the right hand side of the next
node also contains [. Here the expansion criteria for the
node n; are \?_ k, = AO(Vy_o Co A1) or A?_j kq =
EO (V,_o CoAl)<ing, >, where n; = A\;_g kq. Otherwise
the algorithm follows the basic principles of the Backwards
search algorithm.

3By ”most general” loop we mean the current node as a disjunct, e.g.
if searching for a loop starting with node ng = p and we return a loop
p A q = AOAL[], then we force forward search on p to see if we can
discover a loop condition with p as a disjunct.

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)
1530-1311/05 $20.00 © 2005 IEEE

3 Complexity Analysis

Here the upper bounds on the performance of the algo-
rithms are proposed. Let |[SNF| stand for the number of
these clauses, and Let | Prop| stand for the number of liter-
als in SN F'. We will further distinguish the following sub-
sets, |E|, |A| and |E;|, |A;|, meaning the number of E and A
clauses in SN F respectively, and the subsets of these that
also imply O!. Also let || Fy|| stand for |P| — | P;|, where P
is either of the path quantifiers. We will follow the conven-
tion where T'(n) = O(f(n)) is the upper bound on the time
it takes the algorithm to find all loops and terminate for the
set SN F'. The algorithm begins by extracting all the clauses
which imply Ol in SNF. This number is |4,| for the A-
search and |4;|+|E;_,, . | (the number of E clauses imply-
ing Ol along a path labelled by < ind >) for the E-search.
Since each such clause is used as the root of a tree this value
is a linear multiplier of the complexity for the depth first tree
expansion. The tree expansion begins with the backwards
search. To conduct a backwards search, from the current
node, n;, we create a new node in the search tree for each
SN Fm clause that fulfills the expansion criteria, i.e. the
RHS of the matching clause implies the current node and
also implies O!. Let |A| be the number of clauses which
satisfy these criteria. Hence, the maximum branching factor
is 241 —2ll41l | with an average branching factor of 24| for
some k < | A;|. We now look at the depth of the search tree.
Consider the base case, that of a self loop, n; = O (n; Al)
which is the shortest loop possible. If all the loops are of
this kind then the maximum depth of the search tree is 0.
Hence to increase the depth of the search tree requires a
chain of the form n; = O (ni41 A1) = O (N2 AD) ...
for unique n € Prop. The maximum such chain possible
is |Prop|, hence, the maximum depth of the search tree is
| Prop|, and we have an upper bound for our algorithm of
O((2141 — 2llAully[Propl) A similar measure is obtained for
a E search where we need to consider all the E clauses with
the same index in addition to the A clauses. So, instead of
|A| we need to consider |A| + |E<nas |, where |E< s |
is the number of clauses with the same label. The algorithm
is very sensitive to the proportion of A and E clauses in the
set SINF. The worst case performance arises when all are
A clauses, in which case it reduces to the PLTL complex-
ity given by O(2!SNFI*IPropl) The best case performance
arises when there are no A clauses. Here the determining
factor becomes the number of clauses with the same label.
In this case |A|+|E< na> | becomes (0 + | E< 1,4~ |) and the
complexity is O((2/F<rma>| — QllE<inax [)[Proply "where if
there is only one clause for each index then the complexity
is | By * (21 — 2°)IPrePl which is linear in the number of
clauses that imply O/.

4 Conclusions and Future Work

We have extended the Depth-First Loop search algorithm
originally developed for PLTL to branching time logic and
presented complexity results. We have also highlighted the
cases where the algorithm performs better than the PLTL
resolution in cases where a choice between the two meth-
ods is appropriate. This algorithm significantly enhances
our ability to incorporate different resolution strategies for
the clausal resolution method developed for a number of
branching time logics (CTL, ECTL and ECTL+). These in-
sights will be useful in developing guided searches in order
to improve the performance of the clausal resolution method
with a view towards implementation in the near future.

In our previous work [4] we have shown that the
complexity of the transformation procedure ECTL'—
SNFcr1, is polynomial in the length of the input ECTL™
formula. This result combined with the complexity of the
loop searching method brings us one step further to estab-
lishing the overall complexity of the resolution technique
for ECTL™.

References

[1]1 A.Bolotov. Clausal Resolution for Branching-Time Temporal
Logic. PhD thesis, Department of Computing and Mathemat-
ics, The Manchester Metropolitan University, 2000.

[2] A. Bolotov. Clausal resolution for extended computation tree
logic ECTL. In Proceedings of the Time-2003/International
Conference on Temporal Logic 2003, pages 107-117, Cairns,
July 2003. IEEE.

[3] A.Bolotov and A. Basukoski. Clausal resolution for extended
computation tree logic ECTL. To be published in the Journal
of Applied Logic. Extended version of [2].

[4] A.Bolotov and A. Basukoski. Clausal resolution for extended
computation tree logic ECTL ™. Extended version of [5], sub-
mitted for a journal piblication.

[5] A.Bolotov and A. Basukoski. Clausal resolution for extended
computation tree logic ECTL™. In Proceedings of the Time-
2004, pages 140-147. IEEE, July 2004.

[6] A. Bolotov and C. Dixon. Resolution for Branching Time
Temporal Logics: Applying the Temporal Resolution Rule. In
Proceedings of the 7th International Conference on Temporal
Representation and Reasoning (TIME2000), pages 163-172,
Cape Breton, Nova Scotia, Canada, 2000. IEEE Computer
Society.

[7]1 A. Bolotov and M. Fisher. A Clausal Resolution Method
for CTL Branching Time Temporal Logic. In Proceedings
of the 7th International Conference on Temporal Representa-
tion and Reasoning (TIME97), pages 20-27. IEEE Computer
Society, 1997.

[8] C. Dixon. Temporal resolution using a breadth-first search
algorithm. Annals of Mathematics and Artificial Intelligence,
22:87-115, 1998.

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)
1530-1311/05 $20.00 © 2005 IEEE

