
A Trace Semantics for Positive Core XPath

Pieter H. Hartel
Dept. of Computer Science, Univ. of Twente, The Netherlands

Pieter.Hartel@utwente.nl

Abstract

We provide a novel trace semantics for positive core
XPath that exposes all intermediate nodes visited by the
query engine. This enables a detailed analysis of all infor-
mation relevant to the query. We give two examples of such
analyses in the form of access control policies. We translate
positive core XPath into Linear Temporal Logic, showing
that branching structures can be linearised effectively. We
use the SPIN model checker in a proof of concept implemen-
tation to resolve the queries, and to perform access control.
The performance of the implementation is competitive.

1. Introduction

Many approaches towards Access control on XML data
use XPath (directly or indirectly) both for the queries and
for access control (e.g. [5]). We are interested in combin-
ing a more flexible, logical approach [1] to access control,
with the standard XPath based querying. An XPath (version
1.0 [8]) query is normally resolved by giving the answer set.
This hides intermediate nodes visited by the query engine,
which might contain sensitive information. We intend to ex-
pose this information so that it can be analysed, for example
from the point of view of access control.

Example 1 Consider the family tree of Figure 1 with
query1 asking for family members with following siblings:

query1 = descendant :: � [following sibling :: �]

The answer set (i.e. Cain and Abel) does not reveal (1) the
name of some of the following siblings (i.e. Seth), (2) that
one of the members of the answer set is in fact a following
sibling himself (i.e. Abel), and (3) the multiplicity of the
answers (Cain is included for two reasons). So the answer
set hides information that is available to the query engine.
This information may be sensitive, and we are interested in
making this information available for analysis. We achieve
this by resolving a query not to the answer set but to the

<Adam>
<Cain>

<Enoch/>
</Cain>
<Abel/>
<Seth>

<Enosh/>
</Seth>

</Adam>

0: Root
c

��
1: Adam

p
��

c
��

c
��

c

��
2: Cain

p ��

r
��

c
��

4: Abel

p
��

l
�� r

��
5: Seth

p

		

l

c
��

3: Enoch

p
��

6: Enosh

p

��

Figure 1. Sample family tree in XML format
(left) and in navigational format (right).

entire answer trace from the root produced by the query
engine. For the example above there are three traces:

results1 = {[Root, Adam, Cain, (Abel, Seth), Cain],
[Root, Adam, Cain, (Abel), Cain],
[Root, Adam, Abel, (Seth), Abel]}

Some tags, like Abel and Seth in the first trace, are shown
in parentheses to indicate that they are the result of explor-
ing the predicate [following sibling :: �] of query1. Other
tags, such as Cain, are shown twice in the first trace be-
cause they have been visited twice: firstly while moving
right from Adam to Cain and secondly when returning from
Seth to Cain.

We can now use the information contained in a trace for
analysis purposes, such as access control. We give two ex-
amples. Firstly, suppose that (if only for historical reasons)
the node tagged Cain should not be included in a trace that
contains Abel also. Furthermore, we should like to be free
to choose whether to access Cain first, or whether to access
Abel first. This corresponds to (the object specification of)
a Chinese wall policy, where Cain and Abel are in the same
conflict of interest class. XPath is not powerful enough to
formulate such a general policy because we do not know
a-priori which axes to navigate to travel between members
of a conflict of interest class. All we could hope to do is
to formulate a specific policy for each query. To solve this
problem we use Linear Temporal Logic (LTL) to express
the policy as follows (for generality extending the conflict

1

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

of interest class to all children of Adam):

Chinese wall = �(Cain → ¬ �(Abel ∨ Seth))

The formula Chinese wall states that we should always
(operator �) have that as soon as we encounter Cain, then
we must not eventually (operator �) encounter either Abel
or Seth. This corresponds to the mandatory aspect of the
Chinese wall policy. The formula Chinese wall does not
insist that Cain is ever encountered, which corresponds to
the discretionary aspect of the Chinese wall policy.

Secondly, using an idea of de Alfaro [9], suppose that ev-
ery trace to a confidential node Cain must pass through an
access control node Adam, thus blocking access via Abel.
This can be formalised intuitively in LTL with past opera-
tors (an equivalent LTL expression with only future opera-
tors exists but it is less intuitive):

Access control = �(Cain → �−1 Adam)

The formula Access control states that any access of Cain
is due to some earlier access of Adam.

Having motivated using LTL to express access control
policies, a natural target for expressing a query is also LTL,
so that we can combine them simply with a logical ∧ opera-
tor, using the same formalism and implementation for both
querying and access control. Therefore, the focus of the pa-
per is on the semantics of positive core XPath because this
can be translated efficiently into LTL. The main contribu-
tions are (1) a novel trace semantics for positive core XPath,
(2) the translation of positive core XPath into LTL, (3) the
correctness proof of the translation with respect to the trace
semantics, and (4) a proof of concept implementation of the
system.

The next section discusses related work. Section 3 mo-
tivates the positive core XPath subset. Section 4 formalises
undecorated XML trees. Section 5 defines the Kripke struc-
ture that forms the link between the formalised XML tree
representation and the semantics of LTL. Section 6 defines
the embedding of positive core XPath into LTL via a trans-
lation algorithm. Section 7 provides a natural semantics for
positive core XPath. In the Technical Report version [17] of
this paper we provide a correctness proof of the translation
with respect to the natural semantics. Section 8 presents
the implementation of the positive core XPath engine us-
ing the SPIN model checker [18], and compares the perfor-
mance of the implementation to that of two existing XPath
query engines. The last Section concludes and suggests fu-
ture work.

2. Related work

Our work has similarities with the work of Afanasiev et
al [3, 2], who translate XPath into the existential fragment

of Computation Tree Logic (CTL), using the nuSMV model
checker as the query engine. The differences include: (1)
we are interested in trace semantics, whereas Afanasiev et
al work with the standard semantics for answer sets; (2)
our method of model building is orders of magnitude more
efficient. The efficiency of our method is mainly due to the
judicious use of Embedded C code support provided by the
SPIN model checker. Since SPIN only supports LTL, we
represent XPath queries using LTL, rather than CTL.

XML based access control offers three fundamental
choices [21]. Should the XML data be filtered according to
the access control policy: (1) before a query is applied, (2)
after the query is applied, or (3) should the query be rewrit-
ten? Security views are an example of case (1). However,
security views are expensive to compute and to maintain,
which is why Fan et al [10] propose a method of avoiding
to build security views using efficient query optimization
techniques. Our approach to combining a query with an ac-
cess control object specification is an example of case (3):
the model checker ensures that only relevant parts of the
state space are explored. Luo et al [21] also perform query
rewriting, but consider forward axes only.

Fundulaki and Marx [12] use XPath to represent the ob-
ject specification of an access control policy, which is less
powerful than using LTL for the same purpose.

Fu et al [11] use SPIN to model check XPath queries but
their approach is radically different from ours in the sense
that both the XML data and the query are part of the model.
Fu et al use LTL formulae to specify liveness properties of
the model, where we use LTL for the queries. Fu et al do
not present performance data.

3. Positive core XPath

Full XPath is impractical to use as a tool for investigating
the fundamental relation between query and access control.
Several subsets have been defined, such as Core XPath [14],
Simple XPath [3], and Navigational XPath [22]. We adopt a
similar approach in that we (1) omit expressions and focus
on location paths and predicates, and (2) support most (11
of the 13) axes, omitting attribute and namespace only. We
omit negations for reasons to be explained later. Our subset
is essentially positive core XPath, which is core XPath with-
out negations. The abstract syntax of positive core XPath is:

X ≡ X || X | / X | X / X | X[Q] | A :: L

Q ≡ X

A ≡ self |
child | descendant | descendant or self |
parent | ancestor | ancestor or self |
preceding sibling | following sibling |
preceding | following

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

The node test L in a step A :: L is restricted to a name test
(i.e. kind tests are not supported, which is consistent with
the use of undecorated XML data). We use location paths
X by way of predicates Q.

3.1. Disjunction

A typical answer contains several results. Hence we
should expect the trace semantics of a query to be a set
of traces. The semantics of the || operator applied to two
queries is therefore the union of the traces returned for each
query separately.

Example 2 Consider query2 below, which in the standard
semantics yields an answer set consisting of Cain and Seth:

query2 = descendant :: �
[child :: Enoch ∨ child :: Enosh]

The standard semantics for XPath prescribes that the result
of the predicate should be a Boolean. In our interpretation
we take an empty trace to mean false and a non-empty trace
to represent true [26]. However, we should also like to pre-
serve the traces resulting from the predicate, because all vis-
ited nodes must be kept for further analysis. This leads to
the idea that the result should consist of two traces, both
with an initial segment corresponding to descendant :: �.
Then the traces differ: one contains the trace correspond-
ing to the left hand side of the ∨ operator, and the other
takes care of the right hand side. In both cases a common
trailing segment follows. The initial and trailing segment
are effectively copied and concatenated to each intermedi-
ate segment, yielding the following result:

results2 = {[Root, Adam, Cain, (Enoch), Cain],
[Root, Adam, Seth, (Enosh), Seth]}

With this ”copying” semantics in mind the ∨ and || opera-
tors are identified, thus obviating the need for a separate ∨
operator [4, Proposition 2]. So query2 is interpreted as:

query2′ = descendant :: �
[child :: Enoch || child :: Enosh]

3.2. Conjunction

The trace semantics of a location path with a predicate
is the concatenation of the trace of the location path and the
trace of the predicate.

Example 3 Consider query3, which in the standard se-
mantics returns the singleton answer set {Adam}:

query3 = descendant :: �
[child :: Cain ∧ child :: Abel]

The resulting trace should contain an initial segment cor-
responding to the location path descendant :: �. However
for the predicate to succeed we must be sure that there is
at least one non-empty trace corresponding to the left hand
side of the ∧ operator as well as a non-empty trace cor-
responding to the right hand side. Both non-empty traces
must be returned as part of the full trace, which we achieve
by concatenating the results. We have arbitrarily chosen to
concatenate the right hand side trace onto the left hand side
trace; interleaving or reordering would also be possible but
this is subject to further work. In all cases a trailing segment
will follow. The result then becomes:

result3 = [Root, Adam, (Cain), (Abel), Adam]

This, however, is exactly the trace that would be returned
by the following query:

query3′ = descendant :: �
[child :: Cain][child :: Abel]

Therefore we can dispense with the ∧ operator also, as re-
peated use of predicates can achieve the desired effect [4,
Proposition 2]. Propositions with ∨, ∧ and ¬ can always
be written in conjunctive normal form [20]; we can thus re-
move all nested conjunctions and disjunctions.

3.3. Negation

Negation is a problem because it is unclear what trace to
return for a negated predicate. Assume that predicates are
in conjunctive normal form, and that all occurrences of ∧
and ∨ have been removed as described above. Then there
are only, possibly negated, atomic propositions left.

Example 4 Consider query4, which in the standard se-
mantics returns the singleton answer set {Root}:

query4 = descendant or self :: � [¬ parent :: �]

The question now is: which traces(s) to return for the pred-
icate? (a) Should it be all possible traces that do not sat-
isfy the predicate? This would be infinitely many with
the 11 axes of XPath! (b) Or should the trace be empty?
This would jeopardise our ability to analyse the trace prop-
erly: Consider our family tree again with a query asking for
brothers not involved in fratricide. Should the query return
{Seth}? Or should it return an empty answer set because it
violates the Chinese wall policy? (c) The most likely pos-
sibility is to label segments of the trace that correspond to
negated steps, so that these can be distinguished from posi-
tive steps in the analysis. This, however, we leave as future
work and for now omit negation. Note that often in policy
specifications the same approach is taken: what is not ex-
plicitly allowed is forbidden, hence negative steps are not

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

n, Start

��

n, Here

n, Up

��

n, Push

��

n, Stop

��

n, Left�� n

�����������������
��������������

�� ��

����

�������
�� �������

�������������� n, Right ��

n, Down0

��
n, Downk

��
n, Pop0

��
n, Popm

��

Figure 2. State n showing the nine possible
directions for reaching a successor state.

always necessary [16]. However, see Section 8 for an ex-
periment with alternative (a) in SPIN. This concludes the
motivation of the positive core XPath subset.

4. XML data representation

XPath queries operate on an appropriate representation
of the data that we assume to be bulk loaded; dealing with
updates and inserts is beyond the scope of the paper. To
provide efficient support for the 11 axes in queries, a rep-
resentation of the XML data is needed that is slightly more
sophisticated than a tree. Figure 1 (right) shows the nav-
igational representation that we adopt. The four types of
edges shown are p for parent, c for child, r for immediate
following sibling and l for immediate preceding sibling. All
other axes (except self) are supported by traversing more
than one edge.

The nodes of the graph are represented by a given set N,
which in the case of our running example is:

N ≡ Root | Adam | Cain | Enoch | Abel | Seth | Enosh

The edges are represented by four functions, one for each
type of edge (i.e. upd, downd, leftd, and rightd). In addition
we need a function to return to the root (rootd), as well as a
function to stay put (hered). We show only the definition of
downd, the remaining functions are similar.

downd :: N→{N}
downd(Root) = {Adam}
downd(Adam) = {Cain, Abel, Seth}
downd(Cain) = {Enoch}
downd(Seth) = {Enosh}
downd = {}

We follow the approach of the work cited at the begin-
ning of Section 3 to focus on the tags of XML data, omitting
all other information, so that this concludes the presentation
of our representation of an undecorated XML tree.

5. Kripke structure

Before we give the translation of XPath into LTL we de-
velop a Kripke structure for the resulting logic. The struc-
ture is based on the definition of two sets: N, given ear-
lier for the nodes, and D for the directions corresponding to
the axes (Here for self, Up for parent, Down for child, Left
for immediate preceding sibling, and Right for immediate
following sibling) as well as a further four directions (Start,
Stop, Push, and Pop) discussed below.

D ≡ Start | Here | Up | Down | Left | Right |
Push | Pop | Stop

Figure 2 shows all nodes in the Kripke structure that cor-
respond to a single node of an XML tree. This representa-
tion is quadratic in the number of nodes of the original XML
tree, which is clearly inefficient. We will come back to this
issue in Section 8, but we need to make the situation worse
first by considering how to deal with predicates. Referring
back to the introduction, we saw that a predicate yields a
trace segment that returns to the starting node of the seg-
ment, to linearise a finite branching structure. To support
this we need a stack of nodes in the Kripke structure. The
states of the Kripke structure are then defined by the triple
S below, where N represents the stack (i.e. a list of nodes):

S ≡ (N, D, N)
N ≡ [N]

Given an XML tree with n nodes, and a query with predi-
cates nested to a depth of d, the state space in the worst case
grows as n(d+1). In practice the state space remains small
as we shall see later (Section 8).

We now have all ingredients to show the Kripke structure
µ of our running example below.

Mα ≡ ({α}, α→{α}, α→{L})
µ :: M S

µ = ({(n, d, s) | n∈N ∧ d∈D ∧ s∈N}, σ, λ)
where
σ(n, Start, s) = {(rootd n, d′, s) | d′∈D}
σ(n, Here, s) = {(n, d′, s) | d′∈D}
σ(n, Up, s) = {(n′, d′, s) | n′∈upd n ∧ d′∈D}
σ(n, Down, s) = {(n′, d′, s) | n′∈downd n ∧ d′∈D}
σ(n, Left, s) = {(n′, d′, s) | n′∈leftd n ∧ d′∈D}
σ(n, Right, s) = {(n′, d′, s) | n′∈rightd n ∧ d′∈D}
σ(n, Push, s) = {(n, d′, n : s) | d′∈D}
σ(n, Pop, n′ : s) = {(n′, d′, s) | d′∈D}
σ(n, Pop, []) = {}
σ(n, Stop, s) = {}
λ(n, d, s) = {n, d}

Here the function σ(n, d, s) defines the set of all pos-
sible successor states. For example the successor state of

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

(n, Push, s) consists of the set of states (n, d′, n : s), where
d′ ranges over all (9) directions in D, and where n : s repre-
sents the current stack s extended with the current node n.
Summarising, the interpretation of state (n, d, s) is: we are
now at node n going in the direction d, with current stack
s. The function λ(n, d, s) defines the atomic propositions
for the state (n, d, s). We have tacitly assumed here that all
nodes in the tree have a unique tag. If this is not the case,
the Kripke structure must be extended with a unique identi-
fier for each node. We will ensure that this is the case in the
high performance SPIN models.

This concludes the presentation of the Kripke structure
so that we can turn our attention to the translation of positive
core XPath into LTL.

6. Translation of positive core XPath into LTL

The function Tx below translates an XPath query into an
LTL formula. The function takes a query as its first argu-
ment, and an LTL formula φ which represents what should
happen after we have dealt with the query. Consider for
example the first clause of Tx. Since φ represents what hap-
pens after xp1||xp2, φ must happen after xp1 as well as xp2.
This corresponds to the ”copying” semantics alluded to in
the introduction.

Consider also the second clause, which states that for
an absolute query /xp we go from the current node in the
Start direction, leading to the node Root in the next (X)
step. Then we continue with xp, ultimately followed by φ.
The remaining clauses are intended to be self explanatory.

Tx :: X→T→T

Tx[[xp1 || xp2]]φ = Tx[[xp1]]φ ∨ Tx[[xp2]]φ
Tx[[/ xp]]φ = Start ∧ X(Root ∧ Tx[[xp]]φ)
Tx[[xp1 / xp2]]φ = Tx[[xp1]](Tx[[xp2]]φ)
Tx[[xp1[xp2]]]φ = Tx[[xp1]](Push ∧

X(Tx[[xp2]](Pop ∧ X φ)))
Tx[[a :: l]]φ = Ta[[a]](l ∧ φ)

The function Ta below follows the same pattern as Tx.
The first argument is an axis and the second argument φ cor-
responds to the query that must be matched after the current
axis has been matched. For example the first clause states
that the proposition Here must be true in the current state,
and that φ must hold in the next state.

Also note the difference between descendant and
descendant or self. In the former we check first that a move
in the direction Down can be made, optionally followed by
a further sequence of moves in the Down direction until fi-
nally a state is found in which φ is true. In the latter case
we accept either a move to the current node (direction Here)
or the moves implied by the axis descendant. The cases for
the remaining axes are expected to be self explanatory.

Ta :: A→T→T

Ta[[self]]φ = Here ∧ X φ
Ta[[child]]φ = Down ∧ X φ
Ta[[parent]]φ = Up ∧ X φ
Ta[[descendant]]φ = Down ∧ X(Down U φ)
Ta[[ancestor]]φ = Up ∧ X(Up U φ)
Ta[[descendant or self]]φ = Ta[[self]]φ ∨ Ta[[descendant]]φ
Ta[[ancestor or self]]φ = Ta[[self]]φ ∨ Ta[[ancestor]]φ
Ta[[following sibling]]φ = Right ∧ X(Right U φ)
Ta[[preceding sibling]]φ = Left ∧ X(Left U φ)
Ta[[following]]φ = Up U(Right ∧

X(Right U(Down U φ)))
Ta[[preceding]]φ = Up U(Left ∧

X(Left U(Down U φ)))

We present some examples of the translation.

Example 5 Query5 delivers the traces from the current
context node to a child with tag Adam. There is one such
trace from the Root.

query5 = child :: Adam
ltl5 = Tx[[query5]] Stop

= Down ∧ X(Adam ∧ Stop)
result5 = [(Root, Down, []), (Adam, Stop, [])]

The LTL translation ltl5 is valid on the trace result5:
result5 |= ltl5 �

Example 1 revisited We now revisit query1 to demon-
strate how predicates are translated.

ltl1 = Tx[[query1]] Stop
= Down ∧ X(Down U(Push ∧

X(Right ∧ X(Right U(Pop ∧ X Stop)))))

results1 = {[(Root, Down, []), (Adam, Down, []),
(Cain, Push, []), (Cain, Right, [Cain]),
(Abel, Right, [Cain]), (Seth, Pop, [Cain]),
(Cain, Stop, [])],

[(Root, Down, []), (Adam, Down, []),
(Cain, Push, []), (Cain, Right, [Cain]),
(Abel, Pop, [Cain]), (Cain, Stop, [])],

[(Root, Down, []), (Adam, Down, []),
(Abel, Push, []), (Abel, Right, [Abel]),
(Seth, Pop, [Abel]), (Abel, Stop, [])]}

The LTL formula ltl1 is valid on all traces of the set
results1:

∧{r |= ltl1 | r∈results1} �

This concludes the LTL translation of positive core
XPath.

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

7. Natural semantics for XPath

Borrowing ideas from Wadler [27], we define the seman-
tics of positive core XPath as a relation between a trace and
a query on the left hand side and a trace on the right hand
side. The trace on the left hand side is the end point of
the current trace, from which the current (context) node can
be found. Consider for example the rule [abs] for absolute
queries. The endpoint of the current trace is (x,⊥), where
x is the current context node, and the direction in which to
go is yet unknown (⊥). The premise of the rule asserts that
the relative query xp started at the Root yields a trace xs′,
where the direction taken from the Root will be known (i.e.
�= ⊥). The right hand side of the conclusion prepends the
state (x, Start) to xs′, to account for the fact that now we
know in which direction to proceed from the original, ini-
tial node x. We hope that the remaining clauses are self
explanatory. (As usual we omit explicit coercions, for ex-
ample using the : operator for the concatenation of traces
and traces, traces and elements etc.).

P ≡ [(N, D)]
→ :: 〈P, X〉↔P

〈(x, ⊥), xp1〉 → xs′

[bar1] 〈(x, ⊥), xp1 || xp2〉 → xs′

〈(x, ⊥), xp2〉 → xs′

[bar2] 〈(x, ⊥), xp1 || xp2〉 → xs′

〈(Root, ⊥), xp〉 → xs′

[abs] 〈(x, ⊥), / xp〉 → (x, Start) : xs′

〈(x, ⊥), xp1〉 → xs′ : (x′, ⊥),
〈(x′, ⊥), xp2〉 → xs′′

[slash] 〈(x, ⊥), xp1 / xp2〉 → xs′ : xs′′

〈(x, ⊥), xp1〉 → xs′ : (x′, ⊥),
〈(x′, ⊥), xp2〉 → xs′′ : (x′′, ⊥)

[pred] 〈(x, ⊥), xp1[xp2]〉 →
(xs′ : (x′, Push) : xs′′ : (x′′, Pop) : (x′, ⊥)

xs′ : (x′, ⊥)∈Pa[[a]](x, ⊥)
[step] 〈(x, ⊥), a :: l〉 → xs′ : (x′, ⊥),

if l = �∨l = x′

The semantic function Px below provides a convenient
interface to the natural semantics.

Px :: X→(P→{P})
Px[[xp]][(x, ⊥)] = {xs′ : (x′, Stop) | xs′ : (x′, ⊥)∈

〈(x, ⊥), xp〉 →}

The rule [step] relies on the function Pa below to deal
with the 11 axes of XPath.

Pa :: A→(P→{P})
Pa[[self]] = herep

Pa[[child]] = downp

Pa[[parent]] = upp

Pa[[descendant]] = downp +p

Pa[[ancestor]] = upp +p

Pa[[descendant or self]] = Pa[[self]] ∨p Pa[[descendant]]
Pa[[ancestor or self]] = Pa[[self]] ∨p Pa[[ancestor]]
Pa[[following sibling]] = rightp +p

Pa[[preceding sibling]] = leftp +p

Pa[[following]] = horizontalp rightp
Pa[[preceding]] = horizontalp leftp

The function Pa in turn relies on a number of functions
below to calculate the possible traces from the current node
(again found in the endpoint of the current trace) in the di-
rection indicated by the axis. For example downp with a
current node x yields a set of segments (x, Down) : (y,⊥)
where y ranges over all children of node x, as defined by the
function downd of Section 4. The result of downd is empty
if node x has no children.

go :: D→(N→{N})→(P→{P})
go d f(x, ⊥) = {(x, d) : (y, ⊥) | y∈f x}
herep :: P→{P}
herep = go Here hered

downp, upp :: P→{P}
downp = go Down downd

upp = go Up upd

leftp, rightp :: P→{P}
leftp = go Left leftd
rightp = go Right rightd

The function horizontalp is used by the axes preceding
and following to discover trace segments corresponding to
the nodes that precede respectively follow the current node
in XML document order.

horizontalp :: (P→{P})→(P→{P})
horizontalp fp = hhc ∨p ((upp +p) ∧p hhc)

where
h = fp +p

hhc = h ∨p (h ∧p (downp +p))

Finally we need three operators (+p, ∧p, and ∨p) to glue
trace segments together.

+p :: (P→{P})→(P→{P})
r +p = r ∨p (r ∧p r +p)
∧p, ∨p :: (P→{P})→(P→{P})→(P→{P})
(r ∧p q)(x, ⊥) = {ys : zs | ys : (y, ⊥)∈r(x, ⊥)∧

zs∈q(y, ⊥)}
(r ∨p q)(x, ⊥) = r(x, ⊥) ∪ q(x, ⊥)

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

XPath
Tx ��

Px
��

LTL

|=
��

traces ⊃ [17]
�� traces

Figure 3. The relation between the translation
from XPath to LTL and the semantics of both.

To conclude this section we illustrate the relation be-
tween the Natural semantics of positive core XPath and its
translation into LTL using Figure 3.

8. SPIN engine

We now present two ways of representing the Kripke
structure as an explicit state model for SPIN to show that
in practical cases, the state space does not grow as in the
worst case.

8.1. Pure Promela Model

The Promela model below is an optimised representation
of the Kripke structure of Section 5. The state consists of
an mtype declaration introducing the nodes and directions,
and three variables tag, dir, and stack representing the
current tag, direction of travel, and stack.

mtype={ Root, Adam, Cain, Enoch, Abel,
Seth, Enosh, Start, Here, Up, Down,
Left, Right, Push, Pop, Stop };

mtype tag=Root;
mtype dir=Down;
byte stack=0;

The XML tree is built using a series of macros. The
first parameter is the node number as shown in Figure 1, the
second is the tag and the remaining parameters are the node
numbers of the parent, children, and the nodes immediately
to the left and the right.

init{
nodeR(0,Root,1);

node3(1,Adam,0,2,4,5);
node1r(2,Cain,1,3,4);

node0(3,Enoch,2);
nodel0r(4,Abel,1,2,5);
nodel1(5,Seth,1,4,6);

node0(6,Enosh,5);
end: skip
}

We do not give the definitions of the macros as these are
largely repetitive. Instead we show the expansion of the
node with tag Adam. Starting at label s1, where 1 is the
node number of Adam, there is a non-deterministic choice
leading to all possible successor states of s1. Promela does
not offer a ”computed goto”, so this has to be simulated for
popping the stack. Promela models must be finite. There-
fore, we limit the stack depth to 2, supporting a nesting level
of 2 for predicates. (Using qualifier flattening [23] a nesting
depth of 1 would be sufficient).

s1: if
:: d_step{ tag=Adam; dir=Start }; goto s0
:: d_step{ tag=Adam; dir=Here }; goto s1
:: d_step{ tag=Adam; dir=Up }; goto s0
:: d_step{ tag=Adam; dir=Down }; goto s2
:: d_step{ tag=Adam; dir=Down }; goto s4
:: d_step{ tag=Adam; dir=Down }; goto s5
:: d_step{ tag=Adam; dir=Push;

stack=(stack<<4)|1 }; goto s1
:: d_step{ (stack&15)==0 -> tag=Adam;

dir=Pop; stack=(stack>>4) }; goto s0
:: ...
:: d_step{ (stack&15)==6 -> tag=Adam;

dir=Pop; stack=(stack>>4) }; goto s6
:: d_step{ tag=Adam; dir=Stop }; goto end
fi ;

8.2. Promela model with Embedded C code

Promela provides facilities to embed C code in the
model [19]. We use this facility to separate parsing an XML
file, and building an in-memory data structure in C on the
one hand from the query processing with SPIN on the other
hand. We use the eXpat library to parse the XML data [7].
The in-memory data structure follows the navigational for-
mat as shown in Figure 1, and the Kripke structure. For each
node in the tree we malloc() a node with the appropriate
number of children using the C type definition:

typedef struct node* Nodeptr ;
typedef struct node {

int tag ;
int sz ; /* Number of children */
Nodeptr parent, left, right ;
Nodeptr child[sz] ;

} Node ;

The state of the Embedded C Promela model consists of
five variables, where tag, dir, and stack are as in the
pure Promela model. The added variable ptr points at the
Node to which we are moving, and nr is used to index the
appropriate child. The Promela model with Embedded C
Code has fewer control states (106 versus 493 of the Pure
Promela model) but it has more data states.

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

short tag ;
byte dir ;
int stack ;
c_state "Nodeptr ptr" "Global"
short nr ;

The init process below consists of the initialization
where the C code which parses the XML tree is called.
This is followed by a do statement with a non-deterministic
choice for each of the nine directions, except for the Down
direction, which has more cases to support nodes with many
children efficiently. We show the cases for Up and one of
the cases for Down, the remaining cases are similar.

init {
... Initialisation calling XML parser ...
do
:: d_step{

c_expr{ now.ptr->parent != NULL } ->
c_code{

now.tag = now.ptr->tag ;
now.dir = Up ;
now.ptr = now.ptr->parent ;

}
}
:: d_step{ c_expr{ now.ptr->sz > 0 } ->

c_code {
now.tag = now.ptr->sym ;
now.dir = Down ;
now.ptr = now.ptr->child[0] ;

}
}
... Other cases ...

}

With the Kripke structure in place all that remains is to
add the never claim generated by SPIN for the LTL formula
that represents the query. The never claim specifies undesir-
able behaviour and SPIN will try to find a counter example.
Therefore every counter example represents a match of the
query, showing the details of the trace as required.

8.3. Performance

We discuss the performance of the pure Promela model
first, then compare the performance of the Promela model
to that of proper XPath query engines. All our performance
figures apply to a Sun SPARC Ultra-Enterprise Server run-
ning SunOS 5.8.

Pure Promela The number of control states defined by
our running example µ from Section 5 is 493. The number
of data states defined by tag, dir and stack is at least
7 × 9 × 72 = 3087. Multiplied by the number of control
states, this yields over 1.5 M states. However a small per-
centage of these states is explored, as is shown in the second

Table 1. The number of states stored by SPIN
for the family tree example.

SPIN version query1...5

1 2 3 4 5
pure 114 189 186 36 18
embedded C 36 91 46 7 5

row of Table 1. The columns correspond to the five example
queries discussed earlier in the paper. The first row shows
the query number, the second shows the number of states
stored to find at least one trace. (SPIN does not guarantee
to find all traces. For query2 SPIN returns all (2) traces, but
for query1 only one of the three traces is found.)

The presence of data for query4 in Table 1 is due to the
fact that we translate the negated predicate into a negated
LTL formula thus:

Tx[[xp1[¬ xp2]]]φ = Tx[[xp1]](¬(Push ∧
X(Tx[[xp2]](Pop ∧ X φ))))

This means that SPIN might try to discover infinitely many
counter examples, which for the purpose of this experiment
is capped at 100.

Promela with Embedded C Code The Promela model
with embedded C code performs better than the pure
Promela model, because only the work relevant for the
query processing is exposed to the model checker, the rest
is hidden in the C code. The number of states explored is
shown in the second row of Table 1. The runtime of the
query processing is not interesting since the XML tree cor-
responding to µ (Section 5) is tiny.

Comparison with XML Task Force and MacMill The
third experiment repeats and extends the experiments of
Afanasiev et al [3], using the standard XMark XML bench-
mark as the data base [25], with MacMill [6] and the XML
taskforce query engine [13]. The six queries of Afanasiev
et al are as follows:

xmark1 = / child :: site / child :: regions /
child :: africa / child :: item /
child :: description / child :: parlist /
child :: listitem / child :: text

xmark2 = / descendant :: item / child :: description /
child :: parlist / child :: listitem /
child :: text

xmark3 = / descendant :: item / descendant :: text
xmark4 = descendant :: open auction[child :: bidder]
xmark5 = descendant :: item[child :: payment]

[child :: location]
xmark6 = descendant :: item[descendant :: payment]

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

The extension consists of the three queries below, which
originate from Grust et al [15].

xmark7 = descendant :: open auction /
descendant :: description

xmark8 = descendant :: age / ancestor :: person
xmark9 = descendant :: open auction / child :: privacy /

preceding sibling :: bidder

The XML files generated by XMark range in size from
1.11MB to 111MB, using seven scaling parameter settings
f = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0.

For each of the nine XPath queries and seven XML files,
we measure the total time taken to read and parse the XML
file and to execute the query, but excluding the time taken
to compile the query. Each of the 9 × 7 measurements is
an average of ten experiments, with a standard deviation
of 8% or less. The query processing speed, defined as the
size of the XML file divided by the time necessary to read
and parse the XML input and to execute the query, is inde-
pendent of the nine XMark queries and the seven data base
sizes. The processing speed of MacMill is best with an av-
erage and standard deviation of 4885 ± 2% KB/s, for the
TaskForce engine we found 2302± 6% KB/s, and for SPIN
2173 ± 3% KB/s. Overall we conclude that the SPIN im-
plementation is competitive, which, going by the processing
speed is MacMill : TaskForce : SPIN = 2.3 : 1.1 : 1.0

The second experiment shows that on pure query exe-
cution, MacMill is always slower than SPIN. (The Task-
Force engine does not report pure query processing times,
and it is not distributed in source form so we could not add
this feature). MacMill is probably slower because it reports
all answers; the SPIN implementation reports only one an-
swer, thus providing it with an unfair advantage. Chang-
ing MacMill to provide only one answer proved difficult.
Therefore we conduct a third and last experiment to put the
SPIN implementation and MacMill on an equal footing.

The third experiment uses a worst case scenario based on
a degenerate XML tree as follows:

<A1><A2>...<An> </An>...</A2></A1>

To answer the query descendant :: B both implementations
traverse all n + 1 nodes of the entire tree once, requiring
both to perform the same amount of work. The time taken
to answer the query is linear in n; MacMill t = 24 × n and
SPIN t = 38×n. Times are in µSec, the results are based on
averages of ten experiments per data point, n ranges from
10000 to 40000, the standard error in the coefficients is less
than 2%, and small constant offsets are omitted. Again, we
claim that the SPIN implementation is competitive because
it runs at a little more than half the speed of MacMill.

The fact that SPIN does not report all answers is not a
problem with the main results of the paper, i.e. the trace
semantics and its embedding in LTL.

9. Conclusions and Future work

We define a novel trace semantics for positive core XPath
that supports location paths, predicates, and 11 out of 13
axes. Expressions and negation are not currently supported.
We show that positive core XPath can be translated into
LTL. The translation is based on the idea that a branch-
ing structure as induced by location paths with predicates
can be linearised effectively with the use of a stack. The
translation is proved correct with respect to the trace se-
mantics in the Technical Report version of this paper [17].
The trace semantics provides opportunities for analysis. We
give two examples showing that enforcing access control
policies amounts to model checking the conjunction of the
policy and the (LTL translation of) the query. Finally the
SPIN model checker is used as an efficient query engine,
by providing it with a representation of an XML file and a
never claim corresponding to the query translated into LTL.
The performance of the SPIN implementation is compara-
ble to that of the W3C XPath Taskforce Query engine.

Our SPIN implementation represents a successful exper-
iment in creative laziness in the sense that we use exist-
ing tools (SPIN and the eXpat parser) for a new purpose
(query processing) [24]. The necessary glue consists of
a small Promela model and some C code (400 lines) that
enable the model checker to traverse the XML tree, and a
small compiler from XPath expressions into LTL (17 lines
of Haskell). By comparison MacMill comprises about 2600
lines of Yacc and C++. The SPIN implementation has some
undesirable features. In particular it stops after reporting
one trace, and each new query must be compiled. This
makes the current implementation unsuitable for practical
use. A way forward would be to build, a query engine based
on state of the art model checking technology. Instead of de-
veloping a tool from scratch one would use building blocks
from a modular model checker and build an efficient special
purpose tool with relative ease. This opens up a spectrum of
possibilities ranging from a complete implementation from
scratch (MacMill), via a partial implementation using exist-
ing model checker modules (future work) to our implemen-
tation with minimal glue.

10. Acknowledgements

Loredana Afanasiev and Massimo Franceschet provided
their CTL benchmark and commented on the approach.
Sandro Etalle suggested using multi-lateral security as a
motivating example. Gerard Holzmann and Theo Ruys
answered many SPIN questions. Theo Ruys, Maurice
van Keulen and the anonymous TIME 2005 referees com-
mented on a draft of the paper. Christoph Koch provided
MacMill.

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

References

[1] M. Abadi. Logic in access control. In 18th Annual IEEE
Symp. on Logic in Computer ScienceC (LICS), pages 228–
233, Ottawa, Canada, Jun 2003. IEEE Computer Society
Press, Los Alamitos, California.

[2] L. Afanasiev. XML query evaluation via CTL symbolic
model checking. In European Summer School in Logic, Lan-
guage and Information (ESSLLI) Student Session, pages 1–
12, Nancy, France,, Aug 2004.

[3] L. Afanasiev, M. Franceschet, M. Marx, and M. de Rijke.
CTL model checking for processing simple XPath queries.
In 11th Int. Symp. on Temporal Representation and Rea-
soning (TIME), pages 117–124, Tatihou, France, Jul 2004.
IEEE Computer Society Press, Los Alamitos, California.

[4] M. Benedikt, W. Fan, and G. M. Kuper. Structural prop-
erties of XPath fragments. In D. Calvanese, M. Lenzerini,
and R. Motwani, editors, 9th Int. Conf. on Database Theory
(ICDT), volume LNCS 2572, pages 79–95, Siena, Italy, Jan
2003. Springer-Verlag, Berlin.

[5] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specify-
ing and enforcing access control policies for XML document
sources. World Wide Web, 3(3):139–151, 2000.

[6] P. Buneman, M. Grohe, and C. Koch. Path queries on com-
pressed XML. In J. C. Freytag, P. C. Lockemann, S. Abite-
boul, M. J. Carey, P. G. Selinger, and A. Heuer, editors, 29th
Int. Conf. on Very Large Data Bases (VLDB), pages 141–
152, Berlin, Germany, Sep 2003. Morgan Kaufmann.

[7] J. Clark. Expat XML Parser. Open Software Technology
Group, Fremont, California, Jul 2004.

[8] J. Clark and S. D. (eds.). XML Path Language (XPath Ver-
sion 1.0). W3C, Nov 1999.

[9] L. de Alfaro. Model checking the world wide web. In
G. Berry, H. Comon, and A. Finkel, editors, 13th Int. Conf.
on Computer Aided Verification (CAV), volume LNCS 2102,
pages 337–349, Paris, France, Jul 2001. Springer-Verlag,
Berlin.

[10] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML
querying with security views. In G. Weikum, A. C. König,
and S. Deßloch, editors, SIGMOD Int. Conf. on Manage-
ment of Data, pages 587–598, Paris, France, Jun 2004. ACM
Press, New York.

[11] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
web services. In 13th conf. on World Wide Web, pages 621–
630, New York, NY, USA, 2004. ACM Press, New York.

[12] I. Fundulaki and M. Marx. Specifying access control poli-
cies for XML documents. In 9th ACM Symp. on access con-
trol models and technologies, pages 61–69, IBM, Yorktown
Heights, USA, Jun 2004. ACM Press, New York.

[13] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries. In 28th Int. Conf. on Very Large
Data Bases (VLDB), pages 95–106, Hong Kong, China, Aug
2002. VLDB Endowment Inc.

[14] G. Gottlob, C. Koch, and R. Pichler. XPath processing in a
nutshell. SIGMOD Rec., 32(2):21–27, Jun 2003.

[15] T. Grust, M. V. Keulen, and J. Teubner. Accelerating XPath
evaluation in any RDBMS. ACM Trans. Database Syst.,
29(1):91–131, Mar 2004.

[16] J. Y. Halpern and V. Weissman. Using First-Order logic
to reason about policies. In 16th IEEE Computer Secu-
rity Foundations Workshop (CSFW), pages 187–201, Pacific
Grove, California, Jun 2003. IEEE Computer Society Press,
Los Alamitos, California.

[17] P. H. Hartel. A trace semantics for positive core XPath
(with proofs). Technical report TR-CTIT-05-03, Centre for
Telematics and Information Technology, Univ. of Twente,
The Netherlands, Jan 2005.

[18] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference manual. Pearson Education Inc, Boston Mas-
sachusetts, 2004.

[19] G. J. Holzmann and R. Joshi. Model-Driven software veri-
fication. In S. Graf and L. Mounier, editors, 11th Int. SPIN
Workshop: Model Checking Software, volume LNCS 2989,
pages 76–91, Barcelona, Spain, Apr 2004. Springer-Verlag
Heidelberg.

[20] M. Huth and M. Ryan. Logic in Computer Science. Cam-
bridge University Press, UK, 2004.

[21] B. Luo, D. Lee, W.-C. Lee, and P. Liu. QFilter: Fine-
Grained Run-Time XML access control via NFA-based
query rewriting. In 13th Conf. on Information and Knowl-
edge Management (CIKM), pages 543–552, Washington D.
C., Nov 2004. ACM Press, New York.

[22] M. Marx and M. de Rijke. Semantic characterizations of
navigational XPath. Technical report, Univ. of Amsterdam,
2004.

[23] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. In A. B. Chaudhri, R. Unland, C. Djer-
aba, and W. Lindner, editors, XML-Based Data Manage-
ment and Multimedia Engineering (EDBT), volume LNCS
2490, pages 109–127, Prague, Czech Republic, Mar 2002.
Springer-Verlag, Heidelberg.

[24] T. C. Ruys. Optimal scheduling using branch and bound
with SPIN 4.0. In T. Ball and S. K. Rajamani, editors,
10th Int. SPIN Workshop on Model Checking Software, vol-
ume LNCS 2648, pages 1–17, Portland, Oregon, May 2003.
Springer-Verlag, Berlin.

[25] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for XML
data management. In 28th Int. Conf. on Very Large Data
Bases (VLDB), pages 974–985, Hong Kong, Aug 2002.
VLDB Endowment Inc.

[26] P. L. Wadler. How to replace failure by a list of successes,
a method for exception handling, backtracking and pattern
matching in lazy functional languages. In J.-P. Jouannaud,
editor, 2nd Functional programming languages and com-
puter architecture (FPCA), volume LNCS 201, pages 113–
128, Nancy, France, Sep 1985. Springer-Verlag, Berlin.

[27] P. L. Wadler. Two semantics for XPath. Technical note,
Dept. of Comp. Sci, Univ. of Edinburgh, Jan 2000.

Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME’05)

1530-1311/05 $20.00 © 2005 IEEE

