
Is There a Future for Deductive Temporal Verification?

Clare Dixon, Michael Fisher and Boris Konev

Department of Computer Science
The University of Liverpool,

Liverpool L69 3BX, United Kingdom�
C.Dixon,M.Fisher,B.Konev � @csc.liv.ac.uk

Keywords: fragments of PTL; deductive verification;
complexity; clausal temporal resolution.

Abstract

In this paper, we consider a tractable sub-class of
propositional linear time temporal logic, and provide
a complete clausal resolution calculus for it. The
fragment is important as it captures simple Büchi au-
tomata. We also show that, just as the emptiness check
for a Büchi automaton is tractable, the complexity of
deciding unsatisfiability, via resolution, of our logic is
polynomial (rather than exponential). Consequently, a
Büchi automaton can be represented within our logic,
and its emptiness can be tractably decided via deduc-
tive methods. This may have a significant impact upon
approaches to verification, since techniques such as
model checking inherently depend on the ability to
check emptiness of an appropriate Büchi automaton.
Thus, we also discuss how such a logic might form the
basis for practical deductive temporal verification.

1 Introduction

It is widely recognised that model checking is the
most appropriate verification method for (finite state)
systems. Yet there are some surprising aspects to
this. The model checking (i.e. satisfiability check-
ing) problem for propositional, linear temporal logic
(PTL) is PSPACE-complete [20, 23] yet practical tools
for model checking formulae in this logic have been
developed, most notably Spin [13]. This has led to
deeper investigations into the structure of temporal
formulae and their relationship with model checking,

most notably the paper by Demri and Schnoebelen [5].
There, the authors consider sub-fragments of PTL,
particularly those restricting the number of proposi-
tions, the temporal operators allowed, and the depth
of temporal nesting in formulae. Demri and Schnoe-
belen show that, since the formulae tackled in practical
model checking often fall within such fragments, then
this provides a natural explanation for the viability of
model checking in PTL.

Our research has followed a different, but related,
direction. Over a number of years, we have been con-
cerned with developing a clausal resolution calculus
for both propositional and first-order linear temporal
logics [4, 11, 14, 15, 16]. Since deciding unsatisfiabil-
ity of PTL is also PSPACE-complete, then deductive
verification of PTL formulae would seem to be an im-
practical way to proceed. However, just as Demri and
Schnoebelen showed how PTL model checking can be
seen as being tractable when we consider fragments of
PTL, so we have been examining fragments of PTL
that allow clausal resolution to be tractable. In pre-
vious work, we examined a fragment where temporal
formulae in the clausal form (SNF; see Section 2) were
essentially restricted to Horn Clauses [8]. In this paper,
however, we investigate a different fragment, where
clauses inherently involve XOR operators.

As we will show, the use of XOR has several bene-
fits. Since the complexity of unsatisfiability for XOR
clauses in classical propositional logic is low [19],
there is the potential to carry much of this over to
the temporal case. More importantly, if we consider
a Büchi automaton, then we can easily represent the
states (using say ���) and labels (using say ���) of the

automaton in PTL. Indeed, the clausal form we use
makes this simpler still with clauses such as1

� ����� �����
	 � ���
corresponding directly to transitions (in this case, from
state � � to state � � reading label � �). However, in such a
translation, an underlying problem is representing the
fact that the automaton must be in exactly one state
at any moment in time (and, similarly, that the au-
tomaton can only read exactly one label at any mo-
ment). This provides an obvious motivation for allow-
ing XOR clauses, since the formula

� ����
 ����
�������
 �����
captures the property on states that we require.

Thus, in this paper we provide several results. First,
we introduce the PTL fragment to be considered and
show a completed clausal resolution system for this.
Then we show that the complexity of deciding unsatis-
fiability via resolution is polynomial and, since Büchi
automata can be described simply by clauses in this
logic, then an emptiness check for a Büchi automaton
can be tractably carried out using clausal temporal res-
olution.

The paper is organised as follows. Section 2 reviews
the syntax and semantics of PTL, together with the
normal form, SNF, for this logic. In Section 3 we intro-
duce the restriction based on XOR clauses and provide
a corresponding modification of SNF. Section 4 intro-
duces the resolution calculus for this restricted logic,
and considers the completeness of this calculus, while
Section 5 addresses its complexity. In Section 6 we
show how Büchi Automata can be translated into this
fragment and, in Section 7 we provide concluding re-
marks, incorporating both related and future work.

2 PTL and SNF

The particular variety of temporal logic we consider
is called PTL [12], and is based on a linear, discrete
model of time with finite past and infinite future. Al-
though many variations on this simple logic have been
examined, we will just use basic PTL with future-time
temporal operators.

1Here, each proposition, ��� , represents the fact that the automa-
ton is in state � � . We assume that the automaton has � such states.

2.1 Syntax of PTL

The future-time temporal connectives that we use
include � (sometime in the future), (always in the
future), � (in the next moment in time), � (until), and�

(unless, or weak until). Formally, PTL formulae are
constructed from the following elements:

� a set, � , of propositional symbols;

� propositional connectives, true , false , , ! , � ,
and 	 ; and

� temporal connectives, � , � , , � , and
�

.

The set of well-formed formulae of PTL, denoted by
WFF, is inductively defined as the smallest set satisfy-
ing the following.

� Any element of � is in WFF.

� true and false are in WFF.

� If " and # are in WFF then so are

 $" "%!&# "'�(# ")	*#
�+" " ",�-# " � # �."/�

A literal is defined as either a proposition symbol or
the negation of a proposition symbol. An eventuality
is defined as a well-formed formula of the form �0" .

2.2 Semantics of PTL

As discussed above, a sequence of distinct “mo-
ments” in time underlie PTL. Typically, the Natural
Numbers, 1 , is used to represent these moments in
time. So, a model for PTL, 2 , can be characterised
as a sequence of states

2436587:9;5<��9;58��9;5>=:9������
where each state, 5 � , is a set of proposition symbols,
representing those proposition symbols which are sat-
isfied in the ?A@CB moment in time. As formulae in PTL
are interpreted at a particular state in the sequence (i.e.,
at a particular moment in time), the notation

� 2D9;?>�FE 36"
denotes the truth (or otherwise) of formula " in the
model 2 at state index ?HGI1 . For any formula " ,

� 2D9;?8� E 3 � iff � G 5 � [where � G �]� 2D9;?8� E 3 true� 2D9;?8���E 3 false� 2D9;?8� E 36"%� # iff
� 2D9;?>�FE 36" and

� 2D9;?8� E 36#� 2D9;?8� E 36"%! # iff
� 2D9;?>�FE 36" or

� 2D9;?8� E 36#� 2D9;?8� E 36")	*# iff
� 2D9;?>�FE 3) $" or

� 2D9;?8� E 36#� 2D9;?8� E 3) $" iff
� 2D9;?>���E 36"� 2D9;?8� E 3 � " iff
� 2D9;?���� � E 3 "� 2D9;?8� E 3)�+" iff there exists a 	 G(1 such that 	�
 ? and

� 2D9�	 �FE 36"� 2D9;?8� E 3 " iff for all
 G(1 , if
�
 ? then
� 2D9�
 �FE 3 "� 2D9;?8� E 36" � # iff there exists a 	 G(1 , such that 	�
 ? and

� 2D9�	 � E 3 #
and for all
0G 1 , if ?���
���	 then

� 2D9�
��FE 36"� 2D9;?8� E 36" � # iff
� 2D9;?>�FE 36",�-# or

� 2D9;?8�FE 3 "

Figure 1. Semantics of PTL

model 2 , and state index ?�G(1 , then either
� 2D9;?8�FE 36"

holds or
� 2D9;?8� E 36" does not hold, denoted by

� 2D9;?8���E 3
" . The pair

� 2D9;?>� can be considered as an interpreta-
tion (or valuation) for each formula in WFF. (N.B.,
we will reason about such interpretations in the com-
pleteness proof given later.) If there is some 2 such
that

� 2D9�� � E 3 " , then " is said to be satisfiable. If� 2D9�� �%E 3 " for all models, 2 , then " is said to be
valid and is written E 3 " . Note that formulae here are
interpreted at 5;7 ; this is an anchored definition of sat-
isfiability and validity [9].

The semantics of WFF can now be given, as in Fig-
ure 1.

2.3 SNF, a Normal Form for PTL

The resolution method that we will use later is
clausal, and so works on formulae transformed into
a normal form. The normal form, called Separated
Normal Form (SNF), comprises formulae that are im-
plications with present-time formulae on the left-hand
side and (present or) future-time formulae on the right-
hand side. The transformation into the normal form re-
duces most of the temporal operators to a core set and
rewrites formulae to be in a particular form. The trans-
formation into SNF depends on three main operations:
the renaming of complex subformulae; the removal of
temporal operators; and classical style rewrite opera-
tions [10, 11].

To assist in the definition of the normal form we in-

troduce a further (nullary) connective ‘start’ that holds
only at the beginning of time, i.e.,

� 2D9;?8�FE 3 start iff ?$3�� �
This allows the general form of the (clauses of the)
normal form to be implications. Now, formulae in SNF
are of the general form

�
�
" �

where each " � is known as a temporal clause (analo-
gous to a “clause” in classical logic) and must be one
of the following forms with each particular 	�� , 	�� , ��� ,
�! , and � representing a literal.

start 	 " � ��� (initial clause)

true 	 " � ��� (universal clause)

�
� 	#� 	 � " �! (step clause)

�
� 	#� 	 � � (sometime clause)

For convenience, the outer and � connectives are
usually omitted, and the set of clauses $ " �&% is consid-
ered.

While the translation from arbitrary temporal for-
mulae to SNF will not be described further here, we

note that such such a transformation not only pre-
serves satisfiability, but also ensures any model gener-
ated from the formula in SNF is a model for the orig-
inal formula [10]. In addition, the complexity of the
translation process is low [11].

3 PTL-X � and SNFX �

We will now define additional syntax for PTL,
namely the XOR operator, ‘
 ’, and characterise a
modification of SNF, called SNFX � , especially mod-
ified to capture automata-properties. The key aspect
here is that the set of propositions, � , is partitioned
into two disjoint sets, � and � . Note that these will
later represent states and labels once we begin trans-
lating automata into SNFX � .

The XOR operator is defined simply as
� 2D9;?8�FE 3�� �
�� ��
6�����:
���� iff
there is exactly one �
	
�	
� such that

� 2D9;?8� E 3�� � �
The new logic, PTL-X � , will comprise exactly those
clauses that can be represented in SNFX � . Thus, we
will concentrate first on SNFX � . Like SNF, SNFX �
is of the general form

�
�
" �

where each " � must be one of the following.

start 	 ��� � � (initial clause)

� � � � � �:� 	 � "
�

� � (step clause)

true 	 � � (universal clause)

true 	 � "
�

� � (sometime clause)

true 	 � �
 � �
�������
 � � (XOR- � clause)
true 	 � �
 ����
.�����:
 ��� (XOR- � clause)

where � � 9 � � G
� and � �4G�� , and where � � must be
one of � � , or

� � � !) � � � .
In SNFX � , at most one sometime clause and at

most one initial clause is allowed. � must equal
$�����9 ���:9������ 9 ��� % and � must equal $��A��9 ����9������ 9 ��� % .
Thus, all elements of � and � occur within some XOR
clause. In addition, there is a further restriction on
the form above, namely that, for every � � , � � such that

� � G
� and � � G�� there is at most one clause of the
form � � � � � �:� 	 � "

�
� �

in the clause set.

4 Clausal Temporal Resolution for SNFX �

Next we consider resolution rules for sets of
SNFX � clauses. The resolution rules are split into four
groups: initial resolution; step resolution; hyper XOR
resolution and temporal resolution.

Initial Unit Resolution involves resolving an initial
clause with a universal clause:

IURES
start 	 ��! � �
true 	 � �
start 	 �

The conclusion of the rule, start 	 � replaces the
premise start 	�� ! ��� .

Step Resolution resolves step clauses with universal
clauses (Step Unit Resolution, SURES) or derives ad-
ditional universal clauses from contradictions obtained
in the next moment (SRES):

SURES
� � � � � 	 � � � ! � � �

true 	 � �
� � � � � 	 � �

The conclusion of the rule, � �:� � � 	 � � replaces the
premise � � � � � 	 � � ��! � � � .

SRES
� � � � � 	 � false

true 	 � � ! � �

Hyper XOR Resolution takes several universal
clauses relating to the negation of a proposition in � ,
together with the XOR- � clause:

HRES

true 	 � � ! � �
����� 	 �����

true 	 � � ! ���
true 	 � �
6�����:
 � �
true 	 � �

The conclusion of the rule, true 	 � � replaces the
first � premises (of the form true 	 � � !4 � �).

Temporal Resolution Since there is only one some-
time clause which is of a simple form (i.e. it has true
on the left hand side) we can use a simplified version
of the standard [11] step resolution rule, defined in [3]:

TRES

"
�

� � 	
�
�
 � �

true 	 � "
�

� �

true 	
�
�
 � �

To apply TRES we must find a (non-temporal) for-
mula "

�
� � such that "

�
� � implies

�
�
 � � .

For standard SNF clauses this problem has been ad-
dressed previously in [6]. Here we have a simpler set
of clauses so the search for a loop (i.e. a set of clauses
that imply

�
�
 � �) is easier.

Loop Search Assume we are resolving with true 	
��"
�

� � . Let � 3 $�� � E � � G "
�

� � % .

� Construct a set ��� which initially contains the
set of step clauses.

� Create two sets of propositions: ��� , represent-
ing good propositions, and ��� , representing bad
propositions. Initially, let � � be the members of
� which occur on the left hand sides of clauses in
��� which are not in � and let ��� 3 �
	���� .

� Iteratively search through ��� for clauses � � �
�!� 	 � � � ! � ��� where � �.G���� or clauses
� � � � � 	 � false . Delete � � � � � 	 � � � ! � ���
(respectively � � � �!� 	 � false) from ��� , delete
� � from ��� and and let �
�/3������ $�� � % .

� Terminate when either ��� 3�� or ��� doesn’t
change as we search through the clauses.

� If ��� 3�� there is no loop, otherwise the loop is
"������� �-	 �

�
 � � .

Subsumption Finally, we assume that standard sub-
sumption takes place.

Since the SNFX � temporal resolution rules can be
seen as a particular strategy for unrestricted temporal
resolution [11] (note that in both unit resolution rules,
the conclusion of the rule subsumes the premise); we,
obviously, have the following soundness theorem.

Theorem 1 The rules of clausal temporal resolution
preserve satisfiability.

The completeness theorem requires a proof.

Theorem 2 If a set of SNFX � clauses is unsatisfiable
then the temporal resolution procedure will derive a
contradiction when applied to it.

Proof
We adapt the completeness proof of the original sys-
tem [11, 3] as described below. First, we introduce
additional definitions.

We split the set of temporal clauses into four groups.
Let
�

denote the initial clause,

� be the set of all universal clauses,
�

be the set of all step clauses,
�

be the sometime clause, and
�

be the set of XOR clauses.

Definition 3 (behaviour graph) Given a set of
SNFX � clauses over a set of propositional symbols
� , we construct a finite directed graph as follows.
The nodes of are interpretations of � , and an
interpretation, ! , representing some pair

� 2D9;?8� , is a
node of if !(E3'�"� � .

For each node, ! , we construct an edge in G to a
node !$# if, and only if, the following condition is satis-
fied:

� For every step clause
�&% 	 � � �,G � , if !(E3 %

then !'# E 3�� .

A node, ! , is designated an initial node of if !6E3� � �(� � . The behaviour graph) of the set of clauses
is the maximal subgraph of given by the set of all
nodes reachable from initial nodes.

Notice that, because of the XOR-clauses, exactly
one proposition � G � and exactly one proposition
� G � are true in ! . Therefore, we can associate nodes
of the behaviour graph,) , with pairs

� ��9 � � , where
��G � and �$G � .

Let
� ��9 � � , � � # 9 � # � be nodes of graph) . We denote

the relation

“
� � # 9 � # � is an immediate successor of

� � 9 � � ”
by
� ��9 � ��� � ��# 9 � #C� , and the relation

“
� � # 9 � # � is a successor of

� ��9 � � ”
by
� ��9 � ��� � � � # 9 � # � .
The proof of completeness proceeds by induction

on the number of nodes in the behaviour graph) ,
which is finite. If) is empty then the set � � � � � is
unsatisfiable. In this case there must exist a derivation
by IURES and HRES (and this is because the rules
IURES and HRES taken alone coincide with com-
plete classical hyper resolution).

Now suppose) is not empty. Let ! be a node of
) which has no successors. We show that there exists
an inference by temporal resolution deleting the node
from the graph. Then, there exists exactly one step rule

� � � 	 � "
�

� � 9

whose left-hand side matches
� ��9 � � . Notice that, for

every 	 and every
 G $���9������ � % , we have
� � � �

� � � � � ���
(for otherwise, there would be an edge

in) from
� � 9 � � to

� � � 9 � � �). Because of the restricted
form of � , it means that for every
 G $���9������ � % ,
we have � � ! � � G%� . Therefore, for every 	 the
clause true 	 � � can be deduced by HRES and,
hence, the clause true 	 ��!' � can be obtained
by SURES, SRES. This eliminates node ! from the
behaviour graph.

In case when all nodes of) have a successor, a con-
tradiction can be derived with the help of the temporal
resolution rule TRES. Note that we impose no restric-
tion on this rule (it coincides with the temporal resolu-
tion rule for the general calculi presented in [11, 3])
and the proof of completeness is no different from
what is already published [11, 3]. �

5 Complexity of SNFX � Resolution

To analyse the complexity of SNFX � resolution, we
first consider the complexity of the saturation proce-
dure by step resolution (by step resolution we mean
rules IURES, SURES, SRES, and HRES), then we
consider the complexity of loop search, and finally, we
consider the overall complexity of the proof procedure.

� Complexity of step resolution

Let � be a set of SNFX � clauses. Recall that the
set of propositions in � is partitioned into two dis-
joint sets, � and � ; let the cardinality of � be 	
the cardinality of � be � .

We show that there exists a polynomial-
complexity (in terms of 	 and �) procedure that
saturates � by step resolution, that is, applies the
rules IURES, SURES, SRES, and HRES to �
exhaustively until no new clause can be derived.

Notice that any saturation procedure, which en-
sures that no inference rule is attempted on the
same set of premises more than once, will have a
polynomial complexity. Notice further that the
Given Clause Algorithm [18] satisfies this re-
quirement.

The complexity of the procedure is bounded then
by the number of different sets of premises to
which inference rules can be applied. It suffices
to notice that the HRES rule can be applied to
at most 	 different sets of premises; SRES to at
most ��
�	 sets of premises; the SURES rule
can be applied to at most 	 �
�� sets of dif-
ferent premises (notice that, since no two step
clauses have the same left-hand side, there are
at most 	

 � different step rules in any clause
set); and, similarly, the IURES rule can be ap-
plied to at most 	 sets of different premises. Alto-
gether, the complexity of the saturation procedure
is �

�
	 �
 � � .

� Complexity of loop search

Notice that since at every iteration of loop search,
at least one proposition is deleted from � � , there
are at most 	 iterations. Using efficient imple-
mentation techniques, the search in every iter-
ation can be implemented in time bounded by

	
 � . Therefore, the complexity of loop search
is 	 �
 � .

� Overall complexity

The overall procedure works as follows: the set of
clauses is saturated by step resolution, then loop
search is attempted. If loop search succeeds, the
set of clauses is extended by the conclusion of
the TRES rule and the entire process repeats (we
call the process the main loop) until either a con-
tradiction is obtained, or nothing new can be de-
rived.

The overall complexity of the proof procedure is
bounded by the product of the number of itera-
tions of the main loop and the joint complexity of
saturation and loop search. Note that there may
not be more than 	 iterations of the main loop.
Therefore, the overall complexity of proof search
is �

�
	 =
 � � .

6 From Büchi Automata to SNFX �

We will now consider the representation of a Büchi
automaton as a set of SNFX � clauses and, in particu-
lar, emptiness checking of the automaton as deriving a
refutation in SNFX � . We begin with a standard defi-
nition of a Büchi automaton [21, 22].

6.1 Definition of a Büchi automaton

A Büchi automaton,
�

, is a tuple ��� 9 � 9�� 7�9���9��
	 ,
where:
� �%3 $�� 7�9������
� ��% is a finite non-empty alphabet;

� � 3 $ � 7 �����<� � % is a finite set of states;

� � 7�� � , is a set of initial states;

� ��3 �
���� ����� is a non-deterministic transi-
tion function; and

� � � � , is a set of accepting states.

A ��� 	�� � 3�� 7 9�� � 9�� � 9������ of a Büchi automaton,�
, over the word � 3��F7 � ��� �$����� , where � � G!� ,

is an infinite sequence of states, � � G � where the first
state is the initial state, i.e. ��7 G"� 7 , and for every other
state ��� � � for ? 3�� 9 ��9������ we have ��� � � G#� � � �;9�� � � .

A run, � � , is $&% %(' � 58? 	*) if there is a state � G+�
such that � appears in � � infinitely often.

6.2 From Büchi Automata to SNFX �

We aim to construct a set of SNFX � clauses , from�
such that , is satisfiable if, and only if,

�
has an

accepting run.
To represent

�
in SNFX � we use the following

propositions:-

� � � for each � � G � ;

� � � for each � � G#� .

The set � � of SNFX � clauses representing the au-
tomata

�
is as follows.

start 	 "
�

� � for ��� G"� 7
� � � � � � � 	 � "

�
� � for � � G"� � � � 9-� � �

� � � � � � � 	 � false for � � � � 9-� � � 3 �
true 	 ����
.�����:
 ��� for � 3 $ � ��9������<� � %
true 	 � ��
.������
 ��� for �%3 $�� ��9������.� � %
true 	 � "

�
� � for � � G/�

Proposition 4 A Büchi automaton� 3 ��� 9 � 9/��7�9"� 9"�0	 has an accepting run
� � (over infinite word �) if, and only if, the set of
SNFX � clauses, � � , defined above, is satisfiable.

Proof

	%� We first show that, given a Büchi automaton,
�

,
with an accepting run such that � � is its transla-
tion into SNFX � , as described above, there is a
model which satisfies � � .

Let
� 3 ��� 9 � 91� 7�92��92�0	 , be a given non-

empty Büchi automaton and let
�

have an ac-
cepting run � � 33� 7 ����� �$�����.� @ � @ � � ����� , (� @ G��
for 5 3 � 9 ��9.��9������) over an infinite word � 3
� 7 � � � � �����.� @ � @ � � ����� . For some accepting state
�54+G6� , �54 must appear infinitely often in � � . In
the run � � , at the 58@CB moment of time when the
automaton is in the state � @ and reads � @ , it moves
to � @ � � , i.e. � � � @ 9�� @ � 37� @ � � .
We now construct a model 2 and show it satisfies
the clause set � � . We note that as

� " � # �98
" � # we can assume that the external “

” operator in Section 3 is applied to each implica-
tion in � � .

Let � be a set of propositional symbols where
� 3 $�� �-E � �-G�� %
� $�� � E ���$G � % . We construct
an infinite sequence of states

2437� 7:9 � ��9 � ��9 ������9 � @ 9 � @ � ��9 �����
as follows. Set the propositions that are true in
each state to match those read by

�
on the ac-

cepting run for the infinite word � , i.e. � � G
� @ if, and only if, � @ 3 � � . For any � � G/� then
� �-G"� @ if, and only if, � @ 3)� � (set � � to be true if
and only if the state visited in the 5�@CB moment in
time of the accepting run, � � , is � �).

Next we show 2 satisfies the clause set � � .

The run � � is an accepting run which starts from
� 7 . Thus � 7 is one of the initial states, i.e. � 7 G
��7 , and from how we have constructed 2 , �:7 is
satisfied in the initial moment � , i.e.

� 2D9�� � E 3 ��7 .
Also as

� 2D9�� � E 3 start and
� 2D9;5����E 3 start for 5 �

� , from the semantics of start, the initial clause
of the clause set � ��������	� 	 "
�� ��
�� � �
is satisfied at every moment in time.

Next we must show that the step clauses of � �
hold. Consider the implication,

� � � � � � ��	 � "
�

� ���

For any moment 5 such that
� 2D9;5;� �E 3 ��� or� 2D9;5;���E 3 � � the above holds trivially.

Next consider some time 5 such that
� 2D9;5��0E 3 � �

and
� 2D9;5;� E 3 � � . We must show that

� 2D9;5;� E 3
� "

�
� � . From the construction of 2 there must

be some state � � 3 � @ which is visited in the
5 @CB moment of the accepting run and a transition
��� G�� � � � 9-� � � such that in the 5 ��� st moment in
time the accepting run is at state ���,3 � @ � � hav-
ing read � � 3�� @ . Thus, from the construction
of 2 ,

� 2D9;5 ���:� E 3 ��� and from how we have con-
structed � � and the semantics of ! ,

� 2D9;5 ��� � E 3 "
�

� �$�

Hence, from the semantics of “ � ”,

� 2D9;5;�FE 3 � "
�

� �

and � 2D9;5�� E 3 � � � � � 	 � "
�

� ���

Thus, at all moments in time each step clause
holds and ��

� � � � � � � 	 � "
�

� ����
is satisfied.

Recall that the run � � in the 58@CB moment of time
visits the state � � 3!� @ . From the construction of
2 ,
� 2D9;5;��� � � and

� 2D9;5���� � � for every � � �3 � � .
Hence the XOR- � clause is also satisfied in 2 at
every moment. Similarly from the infinite word �
of the accepting run and how we have constructed
2 at each state we have

� 2D9;5;�
E 3 � � for some � �
such that � 	%? 	�� and

� 2D9;5����E 3 � � for all
 �3 ?
such that � 	
�	
� .

Finally consider the sometime clause. From the
construction of the model

� 2D9;5���� �54 if, and only
if, � @ 3 �54 and since the automaton � � hits the
state �54 infinitely often, the sometime clause is
satisfied.

Therefore, all clauses in � � are satisfiable in 2 .� � Assume now that for an automaton
�

, the cor-
responding set of SNFX � clauses, ��� , is satisfi-
able. We show that

�
has an accepting run. Con-

sider the sequence of states 2 3 � 7 9�� � 9�� � 9������
such that

� 2D9�� � E 3 � � . Because of the XOR
clauses, for every 5! � there is exactly one
� � G � and exactly one � � G � such that � � G
� @ and � � G � @ . We show by induction on 5
that the sequence of states � 7 9�� � 9������-� @ and the
word � 7 9-� ��9������
� @ are such that � 7 G ��7 and
� � � @ 9-� @ � 3 � @ � � .
For 5 3�� , since

� 2D9�� � E 3 �
start 	 "
�� ��
�� � � �

the state � 7 is initial. Consider now the step
clause

� � � � � � ��	 � "
�

� ���

(Note that the right-hand side of the step clause
cannot be false for otherwise false G � @ � � .)
Then � � G/� @ � � . Note that � � G#� � ���>9-� � � .
It remains to notice that, since

� 2D9�� � E 3 �
true 	 � "

�
� � �

for � � G � , the state � � appears in the sequence
� � 3 � 7:9 � ��9������ 9 � @ 9������ infinitely often, that is,
the run � � is accepting.

�

Example 1 Consider a Büchi Automaton
� � 3

��� 9 �$9 � 7 9 � 9 �0	 , where:

� �%3 $�� 7 9-� � %
� � 3 $ � � 9 � � 9 � = 9 ����9 ��� %
� � 7 3 $ � � %
� � 3 $ � � 9 ��� %

The transitions are given below.

� � � � 9-� ��� � � � 9-� �:�
� � $ � �:9 � � % $ � � %
� � $ � � % $ � = %
� = $ � � % $ � � %
� � $ � =:9 � � % $ � � %
��� $ ��� % $ � � %

Hence there is no accepting run.

� � start 	 ���
��� ����� � � 	 � � ����! � � �
��� ����� ��� 	 � � �� � ��� � � � 	 � � �� � � � � � � 	 � � =� � ��= � � � 	 � ���� � ��= � ��� 	 � � �	 � � � � � � 	 � � ��=�! � � �
 � � � � ��� 	 � ���� � ��� � � � 	 � ���
� � � � � � ��� 	 � ���
� ��� true 	 � �
 � �
 � =
 ����
 ���
� ��� true 	 � �
 ���
� � � true 	 � � ��� ! � � �

Loop Search Initially, ��� 3 $�� � 9 � = 9 � � % and �
� 3
$�����9 � � % . There is no change to either set so the loop is

� ��� ! ��= ! � � � 	 � ����� � � �
Applying temporal resolution we obtain.

� � � true 	 � �
 � � 9����������
� � � true 	 � =
 � � 9����������
� � � true 	 � �
 � � 9����������

Thus clauses 3–8 are subsumed by one of 14–16.

� 	 � � � � � � 	 � false
 � 9 � � 9������������
�
 � � � � ��� 	 � false
 � � 9 � � 9������������
� � � true 	 ��� ! � �
 � 	 9����������
� � � true 	 � � ! � �
 �
 9����������
� ��� true 	 ���
 � ��9 � � 9.� � 9�� �����!�
����� ��� � � � 	 � � �
 ��9 � � 9����"�������
� � � ��� � � � 	 � false
 � ��9.����9������������
� � � ��� � ��� 	 � false
 ��9.� ��9������������
� � � true 	 ����! � �#
 � � 9����������
� � � true 	 � � ! � �
 � � 9����������
� 	 � true 	 ���
 � ��9.� � 9.� � 9�� �����!�
�
 � start 	 false
 � 9.� 	 9�$%�"�����&�

Example 2 Now, consider a Büchi Automaton
� � 3

��� 9�� 9 � 7�9 ��9 �0	 , where:

� �%3 $�� � %
� � 3 $ ����9 � ��9 � = %

� ��7 3 $ ��� %
� � 3 $ � � %

The transitions are given below.

� � � � 9-� � �
� � $ � ��9 � � %
� � $ � = %
� = $ � = %

Hence there is no accepting run.

� � start 	 � �
��� ��� � � � 	 � � ��� ! �����
��� � � � � � 	 � � =� � ��=�� � � 	 � ��=� � true 	 ����
 ���
 � =� � true 	 � �� � true 	 � � �

Note that, since the only symbol in the alphabet is � � ,
the XOR- � clause is simply true 	 � � (clause 5).

Loop Search Initially, ��� 3 $�����9 ��= % and �
� 3
$���� % . From clause � we delete � � from ��� and add to
��� and obtain �
�'3 $���= % and ��� 3 $�����9 ��� % . There
is no change to either set so the loop formula is

��= 	 ���
By applying temporal resolution we obtain the follow-
ing. 	 � true 	 � =
 � 9�� �������
This subsumes clause 3.

 � ����� � � 	 � false
 ��9 	 9����"�������� � true 	 � � !(� �

 9����������
� � � true 	 � �
 � 9 � 9��"�����&�
� ��� ��� � � � 	 � ���
 ��9 � � 9������������

Clause 11 now subsumes clause 2. Now, attempt-
ing loop search again (note the current set of step
clauses is just clause 11) we have � � 3 $�� � % and
��� 3 $�����9 � = % . We obtain the loop

��� 	 ���
By applying temporal resolution we obtain the follow-
ing.

� ��� true 	 � �
 � 9�� �������
� � � start 	 false
 � 9 � ��9�$%�"�������

7 Conclusions

In this paper we have introduced a novel fragment
of PTL, and have provided a complete resolution cal-
culus for this fragment. The complexity analysis car-
ried out has shown that the resolution approach pro-
vides a polynomial decision procedure. While this is
interesting in itself, a further important aspect is that
we can represent a Büchi Automaton (symbolically
and directly) as formulae in this fragment, with the
emptiness check for such an automaton corresponding
to the search for a resolution refutation.

In establishing that some system,
�����

, satisfies a
property,

%
, algorithmic, rather than deductive ap-

proaches have been predominant. In particular, the
model checking approach [22, 2], characterised by
checking the emptiness of the automata product2

�
���

 �	��

has been very successfully applied.
On the other hand, deductive temporal verification

has been largely ignored (though see [17]), often due
to its much higher complexity. With our work in this
paper, we believe that deductive temporal verification
can be successfully applied to such problems, for ex-
ample by representing

 ����� � � �& % in PTL-X � , where

 ����� � � is the temporal/symbolic description/semantics
of the behaviour of the system. That PTL-X � corre-
sponds closely to Büchi Automata which, in turn, are
at the heart of algorithmic verification, gives reason for
optimism. Thus, our future work concerns developing
such a view of deductive temporal verification further,
as well as examining more complex (but still tractable)
XOR temporal logics [7]. Concerning practical imple-
mentation, we note that the complexity given in Sec-
tion 5 is a worst case analysis. With ‘clever’ imple-
mentations, we expect the practical complexity to gen-
erally be much lower than this.

Work related to that developed in this paper con-
cerns the excellent analysis by Demri and Schnoebe-
len [5], work on complexity of fragments of classi-
cal logic [19] and our own previous work on the re-
lationship between SNF and Büchi Automata [1] and
on other tractable fragments of SNF [8].

2Here, ��
���� captures all the paths/executions through ����� ,
while ����� describes all the paths that satisfy ��� , i.e., all those
paths that do not satisfy � .

Finally, we would like to thank Radina Yorgova for
her work on varieties of RSNF [8] which helped us to
formulate the fragment described in this paper.

References

[1] A. Bolotov, M. Fisher, and C. Dixon. On the Re-
lationship between � -Automata and Temporal Logic
Normal Forms. Journal of Logic and Computation,
12(4):561–581, August 2002.

[2] E.M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, December 1999.

[3] A. Degtyarev, M. Fisher, and B. Konev. A Simpli-
fied Clausal Resolution Procedure for Propositional
Linear-Time Temporal Logic. In U. Egly and C. G.
Ferm üller, editors, Automated Reasoning with Ana-
lytic Tableaux and Related Methods (TABLEAUX-02),
volume 2381 of LNCS, pages 85–99. Springer-Verlag,
2002.

[4] A. Degtyarev, M. Fisher, and B. Konev. Monodic
Temporal Resolution. ACM Transactions on Compu-
tational Logic, 7(1), January 2006.

[5] S. Demri and P. Schnoebelen. The Complexity of
Propositional Linear Temporal Logic in Simple Cases.
Information and Computation, 174(1):84–103, 2002.

[6] C. Dixon. Temporal Resolution using a Breadth-First
Search Algorithm. Annals of Mathematics and Artifi-
cial Intelligence, 22:87–115, 1998.

[7] C. Dixon, M. Fisher, and B. Konev. XOR-Temporal
Logics. (Submitted), 2006.

[8] C. Dixon, M. Fisher, and M. Reynolds. Execution
and Proof in a Horn-clause Temporal Logic. In Ad-
vances in Temporal Logic. Kluwer Academic Publish-
ers, 1999.

[9] E. A. Emerson. Temporal and Modal Logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, pages 996–1072. Elsevier, 1990.

[10] M. Fisher. A Normal Form for Temporal Logic and its
Application in Theorem-Proving and Execution. Jour-
nal of Logic and Computation, 7(4):429–456, August
1997.

[11] M. Fisher, C. Dixon, and M. Peim. Clausal Tempo-
ral Resolution. ACM Transactions on Computational
Logic, 2(1):12–56, January 2001.

[12] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The
Temporal Analysis of Fairness. In Proceedings of the
Seventh ACM Symposium on the Principles of Pro-
gramming Languages (POPL), pages 163–173, Jan-
uary 1980.

[13] G. J. Holzmann. The Spin Model Checker: Primer
and Reference Manual. Addison-Wesley, November
2003.

[14] U. Hustadt and B. Konev. TRP++ 2.0: A Tempo-
ral Resolution Prover. In Proceedings of Conference
on Automated Deduction (CADE-19), number 2741 in
LNAI, pages 274–278. Springer, 2003.

[15] U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov.
TeMP: A Temporal Monodic Prover. In D. Basin and
M. Rusinowitch, editors, Proceedings of the Second
International Joint Conference on Automated Reason-
ing (IJCAR 2004), volume 3097 of LNAI, pages 326–
330. Springer, 2004.

[16] B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and
U. Hustadt. Mechanising First-Order Temporal Res-
olution. Information and Computation, 199(1-2):55–
86, 2005.

[17] Z. Manna and the STeP group. STeP: Deductive–
Algorithmic Verification of Reactive and Real-Time
Systems. In International Conference on Computer
Aided Verification (CAV), volume 1102 of LNCS.
Springer-Verlag, 1996.

[18] W. McCune. Otter 2.0. In Proceedings of Conference
on Automated Deduction (CADE-10), volume 449 of
LNCS, pages 663–664, 1990.

[19] T. J. Schaefer. The Complexity of Satisfiability Prob-
lems. In Proceedings of the Tenth Annual ACM
Symposium on Theory of Computing, pages 216–226,
1978.

[20] A. P. Sistla and E. M. Clarke. Complexity of Propo-
sitional Linear Temporal Logics. Journal of the ACM,
32(3):733–749, July 1985.

[21] A. P. Sistla, M. Vardi, and P. Wolper. The comple-
mentation problem for b üchi automata with applica-
tions to temporal logic. Theoretical Computer Sci-
ence, 49:217–237, 1987.

[22] M. Y. Vardi. An automata-theoretic approach to linear
temporal logic. In Logics for Concurrency - Structure
versus Automata (Proceedings of 8th Banff Higher Or-
der Workshop), volume 1043 of LNCS, pages 238–
266. Springer, 1996.

[23] P. Wolper. Temporal Logic Can Be More Expressive.
Information and Control, 56, 1983.

