

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Automating natural deduction for linear-time temporal logic.

Alexander Bolotov1
Oleg Grigoriev2
Vasilyi Shangin2

1 Harrow School of Computer Science, University of Westminster
2 Department of Logic, Faculty of Philosophy, Moscow State University

Copyright © [2007] IEEE. Reprinted from 14th International Symposium on
Temporal Representation and Reasoning (TIME'07)), 28-30 June 2007,
Alicante, Spain. IEEE, Los Alamitos, USA, pp. 47-58. ISBN 9780769528366.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org. By choosing to view this document, you agree to
all provisions of the copyright laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

Automated Natural Deduction for Propositional Linear-time Temporal Logic∗

Alexander Bolotov
Harrow School of Computer Science

University of Westminster
Watford Road, Harrow HA1 3TP, UK.

A.Bolotov@wmin.ac.uk

Oleg Grigoriev, Vasilyi Shangin
Department of Logic, Faculty of Philosophy

Moscow State University, Moscow, 119899, Russia.
{shangin,grig}@philos.msu.ru

Abstract

We present a proof searching technique for the natural
deduction calculus for the propositional linear-time tempo-
ral logic and prove its correctness. This opens the prospect
to apply our technique as an automated reasoning tool in a
number of emerging computer science applications and in a
deliberative decision making framework across various AI
applications.

1 Introduction

In this paper we present a proof searching technique

for the natural deduction proof system for the proposi-

tional linear-time temporal logic PLTL [9] and establish

its correctness. The particular approach to build a natural

deduction calculus we are interested in is a modification

of Quine’s representation of subordinate proof [15] devel-

oped for classical propositional and first-order logic. Recall

that natural deduction calculi (abbreviated in this paper by

‘ND’) of this type were originally developed by Jaskowski

[11], improved by Fitch [8] and simplified by Quine [15].

The ND technique initially defined for classical proposi-

tional logic was extended to first-order logic [3, 4] and sub-

sequently to the non-classical framework of propositional

intuitionistic logic [13]. In [2] it was further extended to

capture propositional linear-time temporal logic PLTL and

in [5] the ND system was proposed for the computation tree

logic CTL.

The computer science community has recently become

more interested in ND systems [1, 14] mostly due to its

potential to represent the goal-directed nature of the proof.

This makes the ND method applicable in many AI areas,

most notably, in agent engineering [18]. Among other in-

teresting and even surprising applications of ND systems is

for example their use in the verification of security proto-

cols [6]. Obviously, the extension of ND to the temporal

∗This research was partially supported by Russian Foundation for Hu-

manities, grant No 06-03-00020a.

framework, widely used in agent engineering and verifica-

tion, opens broader prospectives for research in ND con-

structions. However, from the practical point of view, its

success depends on the automation of the proof searching

procedure. The latter is the subject of the current paper.

We are extending the proof searching technique which

was initially developed for the classical case [3, 4], and also

extended to intuitionistic logic [13]. We are not aware of

any other proof search algorithm for temporal ND systems.

For example, the only other ND constructions for linear-

time logic [10] and branching-time logic [16] which we are

aware of have not been followed by any presentation of the

relevant proof searching techniques.

Note that while working on the mechanisation of the ND

system for PLTL, known as PLTLND, and its correctness

we also found a simpler formulation of the underlying ND

system.

The paper is organized as follows. In §2 we describe

PLTLND reviewing the PLTL syntax and semantics in §2.1

and formulating the natural deduction calculus in §2.2. Sub-

sequently, in §3, we introduce the main proof-searching pro-

cedures (§3.1), the proof-searching algorithm (§3.2), give an

example of the algorithmic construction of the proof (§3.3)

and provide the correctness argument (§3.4). Finally, in §4,

we provide concluding remarks and identify future work.

2 Natural Deduction System PLTLND

In this section we review the logic PLTL and the calculus

PLTLND.

2.1 Syntax and Semantics of PLTL

In the syntax of PLTL we identify a set, Prop, of atomic

propositions: p, q, r, . . . , p1, q1, r1, . . . , pn, qn, rn, . . .;
classical operators: ¬,∧,⇒,∨, and temporal operators:

(‘always in the future’), ♦ (‘at sometime in the future’), �

(‘at the next moment in time’), and U (‘until’).

The set of well-formed formulae of PLTL, wffPLTL is

defined as follows.

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

Definition 1 (PLTL syntax) 1. All atomic propositions
(members of Prop) are in wffPLTL.

2. If A and B are in wffPLTL, then so are A ∧ B, ¬A,
A ∨ B, and A ⇒ B.

3. If A and B are in wffPLTL, then so are A, ♦A,
�A, and AU B.

For the semantics of PLTL we utilise the notation of [7].

A model for PLTL formulae, is a discrete, linear sequence

of states σ = s0, s1, s2, . . . which is isomorphic to the nat-

ural numbers, N , and where each state, si, 0 ≤ i, consists

of the propositions that are true in it at the i-th moment of

time. If a well-formed formula A is satisfied in the model

σ at the moment i then we abbreviate it by 〈σ, i〉 |= A. Be-

low, in Figure 1, we define the relation |=, where indices

i, j, k ∈ N .

〈σ, i〉 |= p iff p ∈ si, for p ∈ Prop
〈σ, i〉 |= ¬A iff 〈σ, i〉 �|= A
〈σ, i〉 |= A ∧ B iff 〈σ, i〉 |= A and 〈σ, i〉 |= B
〈σ, i〉 |= A ∨ B iff 〈σ, i〉 |= A or 〈σ, i〉 |= B
〈σ, i〉 |= A ⇒ B iff 〈σ, i〉 �|= A or 〈σ, i〉 |= B
〈σ, i〉 |= A iff for each j if i ≤ j then

〈σ, j〉 |= A
〈σ, i〉 |= ♦A iff there exists j such that i ≤ j

and 〈σ, j〉 |= A
〈σ, i〉 |= �A iff 〈σ, i + 1〉 |= A
〈σ, i〉 |= AU B iff there exists j such that i ≤ j

and 〈σ, j〉 |= B and for each k,
if i ≤ k < j then 〈σ, k〉 |= A

Figure 1. Semantics for PLTL

Definition 2 (PLTL Satisfiability) A well-formed for-
mula, A, is satisfiable if, and only if, there exists a model σ
such that 〈σ, 0〉 |= A.

Definition 3 (PLTL Validity) A well-formed formula, A,
is valid if, and only if, A is satisfied in every possible model,
i.e. for each σ, 〈σ, 0〉 |= A.

2.2 The Calculus PLTLND

Here we present the formulation of PLTLND with a

slightly different set of rules in comparison with its original

formulation in [2]. Namely, now we have two new rules,

application of negation to U and ♦ operators, but fewer

introduction rules for U (see details below).

The core idea of a natural deduction proof technique for

a logic L is to establish rules of the following two classes:

elimination rules which decompose formulae and introduc-
tion rules aimed at constructing formulae, introducing new

logical constants. Given a task to prove some formula A of

L, we aim at synthesising A. Every proof commences with

an assumption and, in general, we are allowed to introduce

assumptions at any step of the proof. In the type of natural

deduction that we are interested in, assumptions have con-

ditional interpretation. Namely, given that a formula A is

preceded in a proof by assumptions C1, C2, . . . Cn we in-

terpret this situation as follows: if C1, C2, . . . Cn are satis-

fiable in L then A is satisfiable in L. Thus, if A is a theorem

(a valid formula in L) and we want to obtain its proof then

we must interpret A ‘unconditionally’, i.e. it should not de-

pend on any assumptions. In our system, the corresponding

process is called discarding of assumptions, which accom-

panies the application of several introduction rules. As we

will see below, in a proof of a theorem in our system the set

of non-discarded assumptions should be empty.

Another feature of our construction of PLTLND is the use

of the labeling technique. In the language of PLTLND we

use labeled PLTL formulae and a specific type of expres-

sions that use labels themselves, called relational judge-
ments. Thus, additionally to elimination and introduction

rules, we also establish rules to manipulate with relational

judgements.

Extended PLTL Syntax and Semantics.
We extend the PLTL language by introducing la-

bels. Labels are terms, elements of the set, Lab =
{x, y, z, x1, x2, x3, . . .}, where x, y, z . . . are variables.

When constructing a PLTLND proof, we associate formu-

lae appearing in the proof with a model σ described in §2.1

such that labels in the proof are interpreted over the states

of σ. Since σ is isomorphic to natural numbers, we can in-

troduce the operations on labels: �, which stands for the

equality between labels,
 and ≺, which are syntactic ana-

logues of the ≤ and < relation in σ. Thus,
 satisfies the

following properties:

(2.1) For any i ∈ Lab : i
 i (reflexivity),

(2.2) For any i, j, k ∈ Lab if i
 j and j
 k then i
 k
(transitivity).

(2.3) For any i, j, k ∈ Lab if i
 j and i
 k then j ≺ k or

k ≺ j or j � k (linearity).

(2.4) For any i ∈ Lab, there exists j ∈ Lab such that i
 j
(seriality).

Now, we define a relation Next ⊂ Lab2 :
Next(x, y) ⇔ x ≺ y and there is no z ∈ Lab such that

x ≺ z and z ≺ y.

Next is the ‘predecessor-successor’ relation which sat-

isfies the seriality property: for any i ∈ Lab, there exists

j ∈ Lab such that Next(i, j).
Let ′ abbreviate the operation which being applied to i ∈

Lab gives us i′ ∈ Lab such that Next(i, i′).

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

As we have already mentioned above, now we are able to

introduce the expressions representing the properties of re-

lations ‘
’, ‘≺’, ‘�’ and ‘Next’, and the operation ′ which,

following [17], we call relational judgements.

Definition 4 (PLTLND Syntax)

• If A is a PLTL formula and i ∈ Lab then i : A is a
PLTLND formula.

• Any relational judgement of the type Next(i, j), i
 j,
i ≺ j and i � j is a PLTLND formula.

Some useful and rather straightforward properties relat-

ing operations on labels are given below.

(2.5) For any i, j ∈ Lab if Next(i, j) then i
 j.

(2.6) For any i, j ∈ Lab if i ≺ j then i
 j.

PLTLND Semantics. For the interpretation of PLTLND

formulae we adapt the semantical constructions defined in

§2.1 for the logic PLTL. In the rest of the paper we will use

capital letters A,B, C, D, . . . as metasymbols for PLTL for-

mulae, and calligraphic letters A,B, C,D . . . to abbreviate

formulae of PLTLND, i.e. either labelled formulae or rela-

tional judgements. The intuitive meaning of i : A is that A
is satisfied at the world i.

Let Γ be a set of PLTLND formulae, let DΓ = {x|x :
A ∈ Γ}, let σ be a model as defined in §2.1 and let f be a

function which maps elements of DΓ into N (recall that a

PLTL model σ is isomorphic to natural numbers).

Definition 5 (Realisation of PLTLND formulae in a model)
Model σ realises a set, Γ, if there is a mapping, f , which
satisfies the following conditions.

(1) For any x ∈ DΓ, and for any A, if x : A ∈ Γ then
〈σ, f(x)〉 |= A,

(2) For any x, y, if x
 y ∈ Γ, and f(x) = i, and f(y) =
j then i ≤ j,

(3) For any x, y, if Next(x, y) ∈ Γ, and f(x) = i, and
f(y) = j then j = i + 1.

The set Γ in this case is called realisable.

Definition 6 (PLTLND Validity) A well-formed PLTLND

formula, A = i :B, is valid (abbreviated as |=ND A) if, and
only if, the set {A} is realisable in every possible model, for
any function f .

Rules of Natural Deduction System.
In Figure 2 we define these sets of elimination and in-

troduction rules, where prefixes ‘el’ and ‘in’ abbreviate an

elimination and an introduction rule, respectively.

Elimination Rules :

∧ el1
i :A ∧ B

i :A
∧ el2

i :A ∧ B
i :B

⇒ el
i :A ⇒ B, i :A

i :B
¬ el

i :¬¬A
i :A

∨ el
i :A ∨ B, i :¬A

i :B

Introduction Rules :

∨ in1
i :A

i :A ∨ B
∨ in2

i :B
i :A ∨ B

∧ in
i :A, i :B
i :A ∧ B

⇒ in
[i :C], i :B
i :C ⇒ B

¬ in
[j :C], i :B, i :¬B

j :¬C

Figure 2. PLTLND-rules for Booleans

• In the formulation of the rules ‘⇒ in’ and ‘¬ in’ for-

mulae [i : C] and [j : C] respectively must be the most

recent non discarded [4] assumption occurring in the

proof. When we apply one of these rules on step n and

discard an assumption on step m, we also discard all

formulae from m to n − 1. We will write [m - (n−1)]
to indicate this situation.

Now, we add an additional rule which is deeply involved

into our searching procedure.

¬∨
i :¬(A ∨ B)
i :¬A ∧ ¬B

This rule simply represents one of De Morgan laws and

is derivable from the set of classical rules mentioned above.

Hence, it is a technical addition, connected with the search-

ing procedure.

We keep the notions of flagged and relatively flagged la-

bel with the meaning similar to the notions of flagged and

relatively flagged variable in first order logic [4]. By saying

that the label, j, is flagged, abbreviated as �→ j, we mean

that it is bound to a state and, hence, cannot be rebound to

some other state. By saying that a variable i is relatively

flagged (bound) by j, abbreviated as j �→ i we mean that

a bounded variable, j, restricts the set of runs for i that is

linked to it in the relational judgment, for example i
 j.

Now in Figure 3 we introduce the following rules to ma-

nipulate with relational judgements which correspond to the

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

properties (2.1)-(2.6).

reflexivity

i
 i

�seriality

Next(i, i′)

≺ /

i ≺ j
i
 j

�/

Next(i, i′)
i
 i′

transitivity
i
 j, j
 k

i
 k

 linearity
i
 j, i
 k

(j
 k) ∨ (j � k) ∨ (k
 j)

Figure 3. PLTLND-rules for relational judge-
ments

The linearity rule needs some additional comments.

Strictly speaking, in the PLTLND language, to avoid unnec-

essary complications, we do not allow either Boolean com-

bination of relational judgements or their negations. Ob-

viously, the conclusion of the
 linearity rule violates this

constraint. However, it expresses an obvious property of the

linear time model structure and to make our presentation

more transparent we explicitly formulate a corresponding

rule. Our justification here is very simple: the only way in

which the conclusion of this rule is involved into the con-

struction of the proof is reasoning by cases - see more de-

tails in the discussion of the relevant searching rule (5.2) in

§3.1.

Next, in Figures 4 and Figures 5 we define elimination

and introduction rules for the temporal logic operators and

the induction rule.

� When applying �
el the conclusion i′ : A becomes

marked by M1. This affects other rules:

- the condition ∀C(j : C �∈ M1) in the rules ♦el,

U el1 means that the label j should not occur in the proof in

any formula, j :C, that is marked by M1,

- the condition j :A �∈ M1 in the rule in means that

j :A is not marked by M1.

�� In U el2 the expression i[AB] is used with the follow-

ing meaning: a variable i in the proof can be marked with

[AB] if it has been introduced in the proof as a result of the

application of the rule U el1 to i :AU B.

� � � In in and the induction rules formula i
 j must

be the most recent assumption and a variable j is new in a

derivation; applying the rule on the step n of the proof, we

discard i
 j and all subsequent formulae until the step n.

Finally, we add two more rules which are also deeply

involved into our searching procedure.

el
i : A, i
 j

j :A

♦el
i :♦A

i
 j, j :A
∀C(j :C �∈ M1)
�→ j, j �→ i

�el�
i : �A
i′ :A

i′ :A ∈ M1

U el1
i :AU B, i :¬B

i :A, j :B, i ≺ j
∀C(j :C �∈ M1)
�→ j, j �→ i

U ��
el2

i[AB]
 j[AB], i[AB]
 k, k ≺ j[AB]

k :A

Figure 4. Elimination rules for temporal oper-
ators

in��� j :A, [i
 j]
i : A

j :A �∈ M1
�→ j, j �→ i

♦in
i :A

i :♦A
�

in
i′ :A, Next(i, i′)

i : �A

U in
i :B

i :AU B

Induction���

i :A [i
 j] j :A ⇒ �A
i : A

j :A �∈ M1
�→ j, j �→ i

Figure 5. Introduction rules for temporal op-
erators

¬U
i : ¬(AU B)

i : ¬B ∨ ¬B U (¬A ∧ ¬B)

¬♦
i : ¬♦A
i : ¬A

While the first rule, ¬U is not derivable from the set of

rules for temporal operators given above, the second rule,

¬♦ can be easily derived from them. However, the addi-

tion of these rules as part of the main rules of the system

significantly simplifies our searching procedure. Note also

that together with the use of fewer introduction rules for U ,

it also leads us to a new ND formulation of PLTL.

Definition 7 (PLTLND proof) An ND proof of a PLTL

formula B is a finite sequence of PLTLND formulae

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

A1,A2, . . . ,An which satisfies the following conditions:

• every Ai (1 ≤ i ≤ n) is either an assumption, in which
case it should have been discarded, or the conclusion
of one of the ND rules, applied to some foregoing for-
mulae,

• the last formula, An, is x :B, for some label x,

• no variable - world label is flagged twice or relatively
binds itself.

When B has a PLTLND proof we will abbreviate it as �ND

B indicating that B is a theorem.

Theorem 1 [PLTLND Soundness]

PROOF: The new rule, ¬U , introduced into the system,

is based on the similar equivalence, ¬AU B ≡ ¬B ∨
¬B U (¬A∧¬B). Similarly, the second rule, ¬♦, is based

on the following famous equivalence relating the and ♦
operators ¬♦A ≡ ¬A. It is an easy exercise to show

that both of these new rules preserve satisfiability. This,

together with the soundness theorem of the original formu-

lation of the ND system in [2], gives us the soundness of the

new formulation. (END)

Theorem 2 [PLTLND Completeness]

PROOF: We can also show that with the addition of the new

rules, ¬♦ and ¬U , we are able to prove all the theorems

of the logic PLTL. This completeness proof would be very

similar to that contained in [2] being different only in estab-

lishing the fact that all the axioms of PLTL are derivable in

a new system with these new rules. (END)

3 ND-proof Searching Technique

The proof searching strategy is goal-directed. The core

idea behind it is the creation of the two sequences of formu-

lae: list proof and list goals. The first sequence represents

formulae which form a proof. In the second sequence we

keep track of the list of goals. Here, each goal is either a

formula or two arbitrary contradictory formulae. We will

abbreviate this designated type of goal by ⊥. An algo-proof
is a pair (list proof, list goals) whose construction is deter-

mined by the searching procedure described below. At each

step of constructing an algo-proof, a specific goal is cho-

sen, which we aim to reach at the current stage. Thus, the

appropriate name for such a goal would be a current goal.
The first goal of list goals is extracted from the given task,

we will refer to this goal as to the initial goal.

Definition 8 (Reachability of a current goal) A cur-
rent goal, Gn, 0 ≤ n, occurring in list goals=
〈G1, G2, . . . , Gn〉, is reached if the following condi-
tions are satisfied:

• If Gn �= ⊥ then Gn is reached if there is a formula A
in list proof such that A is not discarded and A = Gn,
else

• Gn is ⊥ and it is reached if

– there are two non-discarded contradictory for-
mulae i :A and i :¬A (for some i) in list proof.

– ⊥ is derived in each of three tasks following Pro-
cedure (2.2.6), reasoning by cases (see §3.1).

In general, when we construct a proof, we check whether

the current goal has been reached. If it has been reached

then we apply the appropriate introduction rule, and this

is the only reason for the application of introduction rules.

As we will see later, such an application of an introduction

rule is absolutely determined by the structure of the previ-

ous goal and by the formulation of introduction rules. Al-

ternatively, (if the current goal has not been reached), we

continue searching for a possible update of list proof and

list goals. Note that the construction of these sequences

is determined either by the structure of the current goal,
or by the structure of complex formulae occurring within

list proof. Additionally, we introduce a mechanism of mark-

ing formulae within list proof and list goals to prevent an

infinite application of searching rules.

Now we describe a set of procedures which guide the

construction of an algo-proof.

3.1 Proof-Searching Procedures

Procedure 1. Here we update a sequence list proof by

searching (in a breadth-first manner) for an applicable elim-

ination rule, ¬♦, ¬U or ¬∨ rules. If we find a formula, or

two formulae, which can serve as premises of one of these

rules, the rule is enforced and the sequence list proof is up-

dated by the conclusion of the rule. We apply these rules in

the following order: rules to eliminate a Boolean operation,

¬♦, ¬U , ¬∨, U el, ♦el, and, finally, el. Note that el

applies to some formula i : A any time when the new

label j appears in the list proof such that i ≤ j.

Procedure 2. Here a new goal is synthesized in a backward

chaining style following one of the subprocedures described

below. They apply when Procedure 1 terminates, i.e. when

no elimination rule can be applied, and the current goal,

Gn, is not reached. The type of Gn determines how the

sequences list proof and list goals must be updated.

Procedure 2.1. This procedure is invoked when Gn is

not ⊥. Here we update sequences list proof and list goals

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

analysing the structure of Gn. Let list proof = Γ and

list goals = G1, . . . , Gn, where Gn is the current goal.

Given that Gn is not reachable, then looking at its structure,

we derive a new goal Gn+1 and set the latter as the current

goal. Below we identify various cases of applying Proce-

dure 2.1, where Gn = i :A|i :¬A|i :A∧B|i :A∨B|i :A ⇒
B|i : A|i : ♦A|i : �A|i : AU B, here i is some label

and A,B are any PLTL formulae. Let G1, . . . , Gn−1 = Δ.

The ‘−→’ in the rules below indicates that some given task

Γ � Δ, . . . on its left hand side generates a new task on its

right hand side.

(2.1.1)�

Γ � Δ, i :A −→Γ, i :¬A � Δ, i :A,⊥
(2.1.2)

Γ � Δ, i :¬A −→Γ, i :A � Δ, i :¬A,⊥
(2.1.3)

Γ � Δ, i :A ∧ B −→Γ � Δ, i :A ∧ B, i :B, i :A

(2.1.4.1)��

Γ � Δ, i :A ∨ B −→Γ � Δ, i :A ∨ B, i :A

(2.1.4.2)��

Γ � Δ, i :A ∨ B −→Γ � Δ, i :A ∨ B, i :B

(2.1.5)
Γ � Δ, i :A ⇒ B−→Γ, i :A � Δ, i :A ⇒ B, i :B

(2.1.6)���

Γ � Δ, i : A −→Γ, i
 j � Δ, j :A

(2.1.7)����

Γ � Δ, i :♦A −→Γ � Δ, i :A

(2.1.8)
Γ � Δ, i : �A −→Γ, Next(i, i′) � Δ, i′ :A

(2.1.9)����

Γ � Δ, i :AU B−→Γ � Δ, i :B

� Procedure (2.1.1) applies when A is either a proposi-

tional variable or has a form B ∨ C, ♦B or B U C
and Procedures (2.1.4), (2.1.7) and (2.1.9) have been

already applied; additionally, A itself should not have

been previously set up as a goal appearing due to Pro-

cedure 2.2 (see below).

�� Searching rule (2.1.4.2) applies when rule (2.1.4.1)

fails, i.e. when applying Procedure (2.1.4.1), we have

not managed to reach A (the left disjunct of the goal

A ∨ B) in which case the subroutine invoked into this

attempt is deleted and Procedure (2.1.4.2) is fired. In

both cases we require to terminate the subroutine if it

fails to derive a goal A or B straightforwardly using

the elimination rules.

� � � In the Procedure (2.1.6) j is a new variable and it is

absolutely flagged and i is relatively flagged.

� � �� In Procedures (2.1.7) and (2.1.9) if we cannot derive

goals i : A and i : B straightforwardly using the elimi-

nation rules, then we delete these goals.

As we mentioned above, if applying Procedure (2.1.4)

we could not reach goals i : A, i : B then we delete these

goals, leaving the current goal, i :A∨B. Similarly, when ap-

plying Procedures (2.1.7) and (2.1.9), if we could not reach

i : A or i : B, respectively, we delete these goal and are left

with the current goals i :♦A in case of (2.1.7) and AU B
in case of (2.1.9). Since in each of these cases current goals

are not reached, applying Procedure (2.1.1), we would put

¬(A ∨ B), ¬♦A or ¬(AU B) as a new assumption and ⊥
as a new goal with the subsequent application of ¬∨, ¬♦
or ¬U rule as part of Procedure 1.

Procedure 2.2. This procedure is invoked when Gn is ⊥.

It searches for those formulae in list proof which can serve

as sources for new goals. If such a formula is found then its

structure will determine the new goal to be generated. Be-

low by Γ,Ψ we understand a list of formulae in list proof
with the designated formula Ψ which is considered as a

source for new goals. The idea behind this procedure is

to search for ”missing” premises to apply a relevant elimi-

nation rule to Ψ.

(2.2.1)�

Γ, i :¬A � Δ,⊥ −→Γ, i :¬A � Δ,⊥, i :A

(2.2.2)��

Γ, i :A ∨ B � Δ,⊥ −→Γ, i :A ∨ B � Δ,⊥, i :¬A

(2.2.3)��

Γ, i :A ⇒ B � Δ,⊥−→Γ, i :A ⇒ B � Δ,⊥, i :A

(2.2.4)��

Γ, i :AU B � Δ,⊥ −→Γ, i :AU B � Δ,⊥, i :¬B

(2.2.5)���

Γ, i :A � Δ,⊥−→ Γ, i :A, i
 j � Δ, ⊥, i : A,
j :A ⇒ �A

(2.2.6)����

Γ, Lin(i, j) � Δ,⊥−→Γ, Lin(i, j), i
 j � Δ, ⊥
Γ, Lin(i, j), i � j � Δ, ⊥
Γ, Lin(i, j), j
 i � Δ, ⊥

� Applying the Procedure (2.2.1) we have ¬A in the

proof and are aiming to derive, A itself. If we are suc-

cessful then this would give us a contradiction.

�� When we apply Procedures (2.2.2-2.2.4), our target is

to derive formulae that being in the proof would en-

able us to apply a relevant elimination rule, ∨el,⇒el

or U el1 .

� � � Procedure (2.2.5) applies after (2.2.1)-(2.2.4) and only

when there is at least one formula with the outer

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

in list proof. Applying this procedure, we aim at find-

ing the conditions which would enable us to apply the

induction rule. Thus, the side conditions here require

that A in i : A does not have as its main operator

and �→ j, j �→ i.

� � �� Lin(i, j) abbreviates the linearity constraint (i
 j) ∨
(i � j) ∨ (j
 i). This searching rule represents rea-

soning by cases. If a linearity constraint is introduced

into the proof and the current goal is ⊥ then the rule

requires to derive ⊥ making each of the disjuncts of

the linearity constraints in turn as a new assumption.

See also comments to Procedure (5.2) below.

Procedure 3. This procedure checks reachability of the cur-

rent goal in the sequence list goals. If, according to Defi-

nition 8, the current goal Gn is reached then the sequence

list goals is updated by deleting Gn and setting Gn−1 as the

current goal.

Procedure 4. Procedure 4 indicates that one of the intro-

duction ND-rules, i.e.a rule which introduces a logical con-

nective or a temporal operator, must be applied. We will

see below that any application of the introduction rule is

completely determined by the current goal of the sequence

of goals. This property of our proof searching technique

protects us from inferring by introduction rules an infinite

number of formulae in list proof.

Procedure 5. This procedure regulates our business with

relational judgements.

(5.1) Relational judgements, i
 i, are introduced into

list proof immediately after the introduction of any

new label i.

(5.2) Any time when list proof contains two statements i

j and i
 k, we derive the linearity constraint (j

k) ∨ (j � k) ∨ (k
 j).

(5.3) Any time when list proof contains two statements i

j and j
 k, we derive the transitivity constraint i
 k.

(5.4) Any time when list proof contains two statements

Next(i, i′) and i ≺ j, we apply the �seriality and

≺ /
 rules deriving i
 i′ and i
 j. Note that the
� seriality constraints are introduced into list proof

by Procedure (2.1.8).

Procedure (5.2) needs additional comments. As we

mentioned, in the PLTLND language we do not allow ei-

ther Boolean combination of relational judgements or their

negations. However, to express an obvious property of the

linear time model structure and to make our presentation

more transparent, we explicitly formulated a corresponding,

linearity, rule in §2. Procedure (5.2) introduces the corre-

sponding linearity constraint (j
 k) ∨ (j � k) ∨ (k
 j).

However, the only way, in which this constraint is involved

into the proof is the subsequent application of reasoning

by cases, Procedure (2.2.6) where, informally speaking, we

split the current task to derive ⊥ making each of the com-

ponents of the linearity constraint as a new assumption. If

we successful in doing this then, by reasoning by cases, ⊥
is derivable from the linearity constraint itself. Hence, since

the linearity is the property of any linear model, correspond-

ing to our interpretation of the formulae in list proof, we

will mark ⊥ as reached. An obvious reasoning rule used

here would be to derive j : A from i : A and i = j for any

i, j ∈ Lab.

Now we are ready to describe a searching algorithm, speci-

fying the application of the procedures above.

3.2 Proof-Searching Algorithm PLTLalg
ND

Let us explain, schematically, the performance of the

proof-searching algorithm by describing its major compo-

nents. These components correspond to the searching pro-

cedures presented in §3.1.

Given a task � G, we commence the algorithm by set-

ting the initial goal, G0 = G. Then for any goal Gi (0 ≤ i),
apply Procedure 3, to check if Gi is reached. If Gi is

not reached we apply Procedure 1 and Procedure 5, ob-

taining all possible conclusions of the elimination rules to

obtain Gi. If we fail, then Procedure 2 is invoked, and,

dependent on the structure of the goal Gi the sequence

list proof is updated by adding new assumptions and the se-

quence list goals by adding new goals. If the current goal
is reached, then we determine which introduction rules are

to be applied. Otherwise, which could only be in the case,

when current goal is set as ⊥ and we do not have contra-

dictory formulae in list proof, we update list goals looking

for possible sources of new goals in list proof. We continue

searching until either we reach the initial goal, G0, in which

case we terminate having found the desired proof, or until

list proof and list goals cannot be updated any further. In

the latter case we terminate, and no proof has been found

and a (finite) counterexample can be extracted.

Before formulating the main stages of the proof-

searching algorithm we have to describe our marking tech-

nique which introduces and eliminates special marks for

formulae in list proof and list goals. Most of these marks

are devoted to prevent looping either in application of elim-

ination rules or in searching. Thus, we mark:

• formulae that were used as premisses of the rules in-

voked in Procedures 1 and 5;

• goals A ∨ B, ♦A and AU B in Procedures (2.1.4),

(2.1.7) and (2.1.9) respectively to allow deletion of the

subsequent goals, see comments �� and � � �� to these

rules;

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

• those formulae in list proof which were considered

as sources of new goals in Procedure 2.2 and these

new goals themselves to prevent looping in Procedure

(2.1.1) - see comments � to this procedure; note that

if a formula A has generated a goal B in this way, but

later B has been reached, hence discarded, from the

proof, we get rid of the mark for A allowing to con-

sider this formula again as a source of new goals;

• the label of the conclusion of the �
el rule to preserve

satisfiability in rules ♦el, in and the induction rule.

Formulation of the algorithm.

(1) Given a task � G, we consider G as the initial goal of

the proof and write G into list goals. If the set of given

assumptions in Γ is not empty then these assumptions

are written in a list proof. Set current goal = G, go to
(2).

(2) Apply Procedure 3 (analysis of the reachability of the

current goal, Gn).

(2a) If Gn is reached then go to (3) else

(2b) if elimination rules are applicable go to (4)

else

(if no more elimination rules are applicable)

go to (5) else

(if no more rules from Procedure 5 ap-

plied to relational judgements are applica-

ble) go to 6.

(3) Based on the structure of the goal reached

(3a) If Gn (reached) is the initial goal then go to (7a)

else

(3b) (Gn is reached and it is not the initial goal).

Apply Procedure 4 (which invokes introduction

rules), go to 2.

(4) Apply Procedure 1 , go to (2).

(5) Apply Procedure 5, go to (2).

(6) Apply Procedure 2.

(6a) If Gn �= ⊥ then apply Procedure 2.1 (analysis of

the structure of Gn), go to (2) else

(6b) Apply Procedure 2.2 (searching for the sources

of new goals in list proof), go to (2) else

(6c) (if all formulae in list proof are marked, i.e. have

been considered as sources for new goals), go to
(7b).

(7) Termination

(7a) The desired ND proof has been found. EXIT,

(7b) No ND proof has been found. EXIT.

3.3 Example Proof

Now we give an example of the PLTLND algo-proof es-

tablishing that the following formula is a theorem.

(p ⇒ �p) ⇒ (p ⇒ p) (1)

We will provide sufficient comments explaining how

the main parts of the searching procedure, list proof and

list goals are constructed. We will also split the construc-

tion of the PLTL
alg
ND into stages to ease the understanding of

the techniques applied.

The proof starts with setting a formula x : (p ⇒
�p) ⇒ (p ⇒ p) as the main goal, G0, in the list goals.

Consecutive applications of Procedure (2.1.5) to this for-

mula result in adding new assumptions x : (p ⇒ �p)
and x : p in the list proof. On the second step the current

goal is x : p, so we apply Procedure (2.1.6) to obtain the

current goal y :p where y must be flagged and x must be rel-

atively flagged. At the same time a new assumption x
 y
is added to the list proof at step 3. Here we apply Procedure

1 inferring y :p ⇒ �p at step 4. However, the current goal,

y :p, is still non reachable, hence, by Procedure (2.1.1), the

current goal is ⊥ with adding at step 5 a new assumption

y :¬p. Thus, we have

list proof analysis list goals
G0

1. x : (p ⇒ �p) assum. G0, G1 = (x :p ⇒ p)
2. x :p assum. G0, G1, x : p

G0, G1, x : p, y :p
3. x
 y assum. �→ y, y �→ x
4. y :p ⇒ �p el, 1, 3
5. y :¬p assum. G0, G1, x : p, y :p,⊥

The current goal, ⊥, is non-reachable. Here the algo-

rithm applies Procedure (2.2) searching for non-discarded

formulae in the list proof. Note, that x : (p ⇒ �p) has

been marked since the el rule was applied to it. The first

formula to apply Procedure (2.2) is y : p ⇒ �p (step 4)

giving us the new goal, y : p. It is not reachable, hence

by Procedure (2.1.1), the new assumption is y :¬p (step 6)

and the new goal is ⊥. At this moment all complex formu-

lae are marked, but an -formula is in the list proof and

the algorithm is looking for a prospective application of the

induction rule by Procedure (2.2.5). Thus, we update the

list goals with x : p, z : p ⇒ �p, where z is flagged

and x is relatively flagged in list goals. Additionally, a new

assumption, x
 z, is added at step 7 allowing us to infer

z : p ⇒ �p at step 8. Therefore, z : p ⇒ �p is reached

and is discharged from the list goals. The current goal now

is x : p which is reachable via the induction rule (step

9) requiring to discard formulae 7-8 from list proof and flag

variables.

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

list proof analysis list goals
G0, G1, x : p, y :p,⊥, y :p,

6. y :¬p assum. G0, G1, x : p, y :p,⊥, y :p,
⊥
G0, G1, x : p, y :p,⊥, y :p,
⊥, x : p, z :p ⇒ �p

7. x
 z assum. �→ z, z �→ x
8. z :p ⇒ �p el 1, 7 G0, G1, x : p, y :p,⊥, y :p,

⊥, x : p
9. x : p induction

2, 7, 8,
[7 − 8]
�→ z
z �→ x G0, G1, x : p, y :p,⊥, y :p,

⊥

The current goal is now ⊥ which is easily reached: ap-

ply the el rule to formulae 3 and 9 deriving 10 which is

contradiction with 6. Hence we reached the goal ⊥, and

apply the ¬in rule to 6 and 10 deriving step 11 and discard-

ing formulae 6-10 from list proof. The current goal, y : p,

is reached at step 12 by eliminating double negation from

11. The current goal now is ⊥, and we apply the ¬in rule

to steps 5 and 12, deriving 13 and discarding formulae 5-12

from list proof. The current goal y : p is reachable by ¬el

from 13. Now x : p is reachable by applying the in

rule to 3 and 14 deriving 15 and discarding formulae 3-14.

list proof analysis list goals
10. y :p el, 3, 9 G0, G1, x : p, y :p,⊥, y :p,⊥
11. y :¬¬p ¬in, 6, 10,

[6 − 10] G0, G1, x : p, y :p,⊥, y :p
12. y :p ¬el, 11 G0, G1, x : p, y :p,⊥
13. y :¬¬p ¬in, 5, 12,

[5 − 12] G0, G1, x : p, y :p
14. y :p ¬el, 13 G0, G1, x : p
15. x : p in, 3, 14,

[3 − 14],
�→ y,
y �→ x G0, G1 = (x :p ⇒ p)

The last steps are obvious applications of the ⇒in rule at

steps 16 and 17. Note that at step 16 we discard formulae 2-

14 while on step 17 we discard in list proof all the remaining

formulae, 1-16.

list proof analysis list goals
16. x :p ⇒ p ⇒in, 15,

[2 − 15] G0

17. x : (p ⇒ �p) ⇒
(p ⇒ p) ⇒in, 16,

[1 − 16] G0 reached

The set of non-discarded assumptions is empty, the ini-

tial goal is reached, hence we have a desired proof of for-

mula (1). Note that in the presentation of this proof, due to

the space limit, we omitted a few steps, such as ⇒el applied

to 10 and 4 and a few subsequent steps as they do not con-

tribute to the proof. Observe also that all of our introduction

rules were guided by alive goals in the list goals. For exam-

ple, given that we have reached the goal, y : p, at step 14,

the structure of the previous goal, x : p, determines the

subsequent application of the in rule.

An interested reader may wish to compare this algorith-

mic proof of formula (1) with the manual proof of the same

formula in [2]: this would illustrate nicely the necessary

complications and even obvious redundancy (at this stage

of developing a searching method) introduced by a proof

searching routine comparing it with a ‘hand-made’ proof.

3.4 Correctness

There are three necessary conditions that a proof search

procedure for a decidable system should have: termina-

tion, soundness and completeness. Being decidable, PLTL

encourages researchers at presenting algorithms that effec-

tively tell us if any given input formula is a theorem build-

ing up a desired proof or there is an assignment falsifying

it, providing a counter-model. Below we will sketch proofs

of all these properties of PLTL
alg
ND.

Theorem 3 PLTL
alg
ND terminates for any input PLTL for-

mula.

PROOF: For the termination we need to establish that both

main sequences, list proof and list goals, that constitute

PLTL
alg
ND, are finite, and also that there are no loops in the

searching procedure. Two observations are important here.

Firstly, the marking technique guarantees the finite number

of application of rules in Procedures 1 and 5, and the fi-

nite number of formulae that are introduced into list proof
and list goals by Procedure 2. Note that our special proce-

dures to deal with the most difficult for the natural deduction

cases related to disjunctive goals, namely, with the goals of

the type i : A ∨ B, i : ♦A and i : AU B reflected in the

Procedures (2.1.4), (2.1.7) and (2.1.9), prevent us of being

involved into loops.

Secondly, any application of an introduction rule is com-

pletely determined by the algorithm. Namely, if the current

goal is reached and it is a contradiction, ⊥, then we ap-

ply the ¬in rule to the contradictory formulae introducing

into the proof the negation of the most recent non-discarded

assumption. Any other type of the current goal which is

reached required us to consider the previous goal and the

corresponding introduction rule is fired. Thus, for example,

if the current goal (reached) is i : A or i : B and the previ-

ous goal is i : A ∨ B, see Procedure (2.1.4), then we apply

the ∨in rule to either i : A or i : B reaching the previous

goal, i :∀ ∨ B by simply adding the missing component of

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

disjunction. Similarly, if the current goal (reached) is j : A
and the previous goal is i : A, see Procedure (2.1.6),

then we would have introduced into the proof an assump-

tion i
 j, and thus, the in rule is applied. (END)

Theorem 4 PLTL
alg
ND is sound.

PROOF: Soundness of PLTL
alg
ND follows immediately from

the fact that list proof obtained following the steps of the

algorithm is a proof in the calculus PLTLND. Hence, if there

is an algo-proof of A then a list proof of this algo-proof is a

proof of A in the system PLTLND. By Theorem 1, PLTLND

is sound. Therefore, PLTL
alg
ND is sound, too. (END)

Lemma 1 From an exhausted non successful algo-proof
for a PLTLND formula A we can extract a model which
falsifies A.

PROOF: We adopt a technique developed in many sources,

see for example [12]. In an exhausted non successful algo-

proof for A the algorithm terminates without finding a

proof, having applied all its procedures and with the final

goal ⊥ which is not reached. We can show that in this case

list proof contains a set of indexed literals, i : l, (l is a propo-

sitional variable or its negations) sufficient to construct a

model, say σ, which falsifies A: if l is a propositional vari-

able than there is a mapping, f , such that 〈σ, f(i)〉 |= l
otherwise, 〈σ, f(i)〉 |= ¬l. Procedure 2 plays the main role

here: we construct σ from a collection of saturated sets,

atoms, along with an accesibility relation. In our case this

relation is encoded by a set of relational judgements, while

the assignment to the literals as shown above provides us

with a set of atoms. (END)

Theorem 5 PLTL
alg
ND is complete.

PROOF: We must show that for every PLTLND valid for-

mula, A, PLTL
alg
ND finds a PLTLND proof. This is a simple

consequence (by contraposition) of Lemma 1. (END)

Termination, soundness and completeness results imply

the fundamental property of our algorithm reflected in the

following theorem.

Theorem 6 For any input formula A, the PLTLND termi-
nates either building up a PLTLND-proof for A or providing
a counter-model.

Constructing a counter-model. Let us now illustrate

how the algorithm works with a non-provable formula,

♦q ⇒ pU q. We commence this proof by setting up the

main goal G0 = ♦q ⇒ pU q. Applying Procedure (2.1.5),

we update list proof by x : ♦q at step 1 and list goals by

the new goal G1 = x : pU q. Next, we apply ♦el rule to

formula at step 1 obtaining steps 2 and 3 and setting up re-

quired restrictions on the labels x and y. The current goal,

G1 is not reachable, therefore, by Procedure (2.1.1) we con-

tinue by refutation updating list proof by the new assump-

tion G1 = x : ¬(pU q) and the new goal ⊥. At this stage

we apply Procedure 1, namely, the ¬U rule to derive step 5

from step 4.

list proof analysis list goals
G0

1. x :♦q assump. G0, G1

2. x
 y ♦el, 1, �→ y
y �→ x

3. y :q ♦el, 1
4. x :¬(pU q) assump. G0, G1,⊥
5. x : ¬q ∨ (¬q U (¬p ∧ ¬q)) ¬U , 4

The current goal, ⊥, is not reachable, hence, by Proce-

dure (2.2.2) we set up the new goal, x :¬ ¬q. Again, this

is not reachable, therefore, by Procedure (2.1.2) we update

list proof by x : ¬q and list goals by the new goal, ⊥.

Next, we apply Procedure 1, namely, el rule to steps 2

and 6, deriving step 7. This gives us the desired contradic-

tion - steps 3 and 7. Hence, we apply the ¬in rule to these

formulae obtaining step 8 and discarding formulae 6-7 from

list proof.

list proof analysis list goals
G0, G1,⊥, x :¬ ¬q

6. x : ¬q assump. G0, G1,⊥, x :¬ ¬q,⊥
7. y :¬q el, 2, 6
8. x :¬ ¬q ¬in, 3, 7

[6 − 7] G0, G1,⊥

Applying Procedure 1, namely, the ∨el rule to 5 and 8,

we derive step 9.

list proof analysis list goals
9. x :¬q U (¬p ∧ ¬q) ∨el, 5, 8 G0, G1,⊥, x : ¬q

The current goal is x : ¬q, Therefore, by Procedure

(2.1.6), we update list proof by the new assumption, x
 z
and set up the new goal, z : ¬q. Note that at this stage, z
must be a new flagged variable, and x becomes relatively

flagged, which is reflected in our comments in the algo-

proof, �→ z, z �→ x. Since we have a new relational judge-

ment added into list proof, we apply Procedure 5 to derive

the linearity constraint. Namely, by Procedure (5.2) from 2

and 10 we derive step 11, where Lin(y, z) = y
 z ∨ y �
z ∨ z
 y. The current goal, z :¬q, is not reachable, hence,

we apply Procedure (2.1.2) and update list proof by formula

10 setting up the new goal, ⊥.

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

list proof analysis list goals
10. x
 z assum. G0, G1,⊥, x : ¬q, z :¬q

�→ z, z �→ x
11. Lin(y, z) linearity,

2, 10
12. z :q assum. G0, G1,⊥, x : ¬q, z :¬q,⊥

The current goal, ⊥ is not reachable, therefore, we apply

Procedure 2 looking for the sources for new goals. The first

formula which should be considered as the source for new

goals, is formula 9, x : ¬q U (¬p ∧ ¬q). Thus, by Proce-

dure (2.2.4), we update list goals by x :¬(¬p ∧ ¬q). Now

list goals is G0, G1,⊥, x : ¬q, z :¬q,⊥, x :¬(¬p ∧ ¬q).
The current goal is not reachable, therefore, by Procedure

2.1.2, we update list proof by formula 13 and list goals by

the new goal, ⊥. Procedure 1 (∧el) will give us steps 14 and

15.

list proof analysis list goals
13. x :¬p ∧ ¬q assum. G0, G1,⊥, x : ¬q, z :¬q,⊥,

¬(¬p ∧ ¬q),⊥
14. x :¬p ∧el, 13
15. x :¬q ∧el, 13

Our current goal is ⊥, no more elimination rules are

applicable hence, we apply Procedure 2 looking for the

sources for new goals. Procedure 2 finds the linearity con-

straint at step 11 and apply Procedure (2.2.6) to update

list proof with the new assumption, y
 z at step 16.

list proof analysis list goals
16. y
 z assumption

Note that at step 16 we take the first disjunct of the linear-

ity constraint as a new assumption but already here failed to

reach ⊥, hence, the algorithm terminates having not found

the desired proof. This means that the input formula is

not valid and we can extract the following counter-model

considering the set of literals and relational judgements in

list proof. Indeed, consider a model, σ, and a mapping, f ,

such that 〈σ, f(y)〉 |= q, which along with f(x) ≤ f(y)
gives 〈σ, f(x)〉 |= ♦q. At the same time 〈σ, f(x)〉 �|= p
and 〈σ, f(x)〉 �|= q, hence 〈σ, f(x)〉 �|= pU q. Therefore,

♦q ⇒ pU q is not realisable in the obtained model σ and

hence is not valid.

4 Discussion

We have presented PLTLND, a proof searching algorithm

for the natural deduction formulation of the logic PLTL

and established its correctness. To the best of our knowl-

edge, the only other ND construction for linear-time logic

[10] does not have a proof searching technique behind it.

PLTL
alg
ND not only enables a full mechanisation of the under-

lying ND calculus but also allows us to use it as a decision

procedure. As we have shown, for any input PLTL formula,

PLTL
alg
ND terminates either finding a proof indicating that the

input formula is a theorem, hence valid; otherwise, in case

of its termination without a proof, a counter-model can be

extracted.

Our approach extends the proof searching technique for

classical propositional logic which has been implemented

and is available on-line [3]. Most of searching procedures

involved into PLTL
alg
ND, as well as the algorithm itself, are

structurally similar to those used in the classical logic set-

ting. We believe that this fact reflects the uniform nature of

our approach to natural deduction constructions for various

logics.

Following the extension of natural deduction to

branching-time logic CTL [5], one of the topics for future

research would be a corresponding extension of PLTL
alg
ND to

automate the natural deduction representation of this use-

ful logic. Another important part of our future work will be

study of complexity of the method and the refinement of the

searching technique with the subsequent implementation.

We hope that the structural similarity of proof searching al-

gorithms for classical and temporal settings will play here

a significant role. Note also, that during the implementa-

tion we are planning to embed one of the existing constraint

solvers to deal with the algebra of relational judgements.

References

[1] D. Basin, S. Matthews, and L. Viganò. Natural

deduction for non-classical logics. Studia Logica,

60(1):119–160, 1998.

[2] A. Bolotov, A. Basukoski, O. Grigoriev, and

V. Shangin. Natural deduction calculus for linear-time

temporal logic. In Joint European Conference on Ar-
tificial Intelligence (JELIA-2006), pages 56–68, 2006.

[3] A. Bolotov, V. Bocharov, A. Gorchakov, V. Makarov,

and V. Shangin. Let Computer Prove It. Logic

and Computer. Nauka, Moscow, 2004. (In Rus-

sian), Implementation of the proof search technique

for classical propositional logic available on-line at

http://prover.philos.msu.ru.

[4] A. Bolotov, V. Bocharov, A. Gorchakov, and

V. Shangin. Automated first order natural deduction.

In Proceedings of IICAI, pages 1292–1311, 2005.

[5] A. Bolotov, O. Grigoriev, and V. Shangin. Natural de-

duction calculus for computation tree logic. In IEEE
John Vincent Atanasoff Symposium on Modern Com-
puting, pages 175–183, 2006.

[6] E. Clarke, S. Jha, and W. R. Marrero. Using state

space exploration and a natural deduction style mes-

sage derivation engine to verify security protocols. In

Proceedings of the IFIP TC2/WG2.2,2.3 International
Conference on Programming Concepts and Methods,

pages 87–96, June 1998.

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

[7] M. Fisher, C. Dixon, and M. Peim. Clausal tempo-

ral resolution. ACM Transactions on Computational
Logic (TOCL), 1(2):12–56, 2001.

[8] F. Fitch. Symbolic Logic. NY: Roland Press, 1952.

[9] D. Gabbay, A. Phueli, S. Shelah, and J. Stavi. On

the temporal analysis of fairness. In Proceedings of
7th ACM Symposium on Principles of Programming
Languages, pages 163–173, Las Vegas, Nevada, 1980.

[10] A. Indrzejczak. A labelled natural deduction system

for linear temporal logic. Studia Logica, 75(3):345–

376, 2004.

[11] S. Jaskowski. On the rules of suppositions in formal

logic. In Polish Logic 1920-1939, pages 232–258. Ox-

ford Univ. Press, 1967.

[12] O. Lichtenstein and A. Pnueli. Propositional temporal

logics: Decidability and completeness. Logic Journal
of the IGPL, 8(1), 2000.

[13] V. Makarov. Automatic theorem-proving in intuition-

istic propositional logic. In Modern Logic: Theory,
History and Applications. Proceedings of the 5th Rus-
sian Conference, StPetersburg, 1998. (In Russian).

[14] F. Pfenning. Logical frameworks. In J. A. Robin-

son and A. Voronkov, editors, Handbook of Automated
Reasoning, chapter XXI, pages 1063–1147. Elsevier,

2001.

[15] W. Quine. On natural deduction. Journal of Symbolic
Logic, 15:93–102, 1950.

[16] C. Renteria and E. Haeusler. Natural deduction for

CTL. Bulletin of the Section of Logic, Polish Acad. of
Sci., 31(4):231–240, 2002.

[17] A. Simpson. The Proof Theory and Semantics of Intu-
itionistic Modal Logic. PhD thesis, College of Science

and Engineering, School of Informatics, University of

Edinburgh, 1994.

[18] M. Wooldridge. Reasoning about Rational Agents.
MIT Press, 2000.

14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2836-8/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

