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Abstract

It is known that for temporal languages, such as first-
order LT L, reasoning about constant (time-independent)
relations is almost always undecidable. This applies to tem-
poral description logics as well: constant binary relations
together with general concept subsumptions in combina-
tions of LT L and the basic description logic ALC cause
undecidability. In this paper, we explore temporal exten-
sions of two recently introduced families of ‘weak’ descrip-
tion logics known as DL-Lite and EL. Our results are
twofold: temporalisations of even rather expressive vari-
ants of DL-Lite turn out to be decidable, while the tem-
poralisation of EL with general concept subsumptions and
constant relations is undecidable.

1. Introduction

Over the last 15 years, many temporalised versions of
description logics (DLs) have been suggested and investi-
gated. We refer the reader to the survey papers and mono-
graph [6, 14, 4] where the history of the development of
both interval and point-based temporal extensions of DLs
is discussed in full detail. Our main concern in this pa-
per are extensions of DLs by point-based temporal logics,
in particular the standard linear time temporal logic LT L
(see [13] and references therein). The current state of the
art in this field can be summarised as follows: it is gen-
erally agreed that the semantics of combined temporal de-
scription logics should be based on the Cartesian products

of the flow of time (the natural numbers N forLT L) and the
domains of the DL interpretations. Thus, a model for the
combined language consists of a flow of snapshots that rep-
resent the domains of interest at various time points. This
semantics corresponds to the semantics of first-order tem-
poral logics (more precisely, to first-order temporal mod-
els with constant domains; varying and expanding domains
have been considered as well in temporalised DLs, but they
are not within the scope of this paper). In fact, the transla-
tion of standard DLs into first-order logic can be extended
to a translation of temporalised DLs into first-order tempo-
ral logics. For this semantics, the expressivity and com-
putational complexity of combinations of LT L and DLs
extending the standard Boolean DL ALC have been com-
pletely classified [14, 4]. Instead of trying to summarise all
the available results here, we only point out one of the main
insights from this investigation:

• combinations of LT L and ALC, which allow general
concept inclusions (GCIs) C1 v C2, are decidable (in
fact, usually EXPSPACE-complete) if, and only if, the
temporal operators are not applied to binary relations
(roles) and, more generally, no constraints are imposed
on the binary relations.

In other words, as long as one only wants to reason about the
temporal behaviour of axioms (corresponding to closed for-
mulas) and concepts (corresponding to unary predicates),
the resulting combination is likely to be decidable; but as
soon as the combination allows reasoning about the tem-
poral behaviour of binary relations it becomes undecidable.
This phenomenon is well understood and reflected in the de-
finition of, e.g., the monodic fragments of first-order tempo-
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ral logics [17, 12]. In particular, the undecidability results
hold for the most important temporal constraint on binary
relations, namely, that a role is constant over time: even
a single constant role results in an undecidable combina-
tion of ALC and LT L with GCIs. Without GCIs, tempo-
ral description logics may be decidable even with constant
roles [14].

Unfortunately, many applications of temporal descrip-
tion logics (say, temporal data modelling, which will be
briefly discussed in Section 3, or dynamic ontologies) re-
quire both GCIs and temporal constraints on roles, in par-
ticular constant roles. It was this problem that motivated
the research which resulted in this paper. More precisely,
our main aim was to find out whether it is possible to de-
sign useful combinations of LT L and DLs with GCIs and
constant roles that are still decidable.

Recent developments in description logic have opened a
new path to follow in designing such languages. First, the
recognition of the importance of tractable reasoning and, in
particular, query answering over DL ontologies with GCIs
has given rise to the investigation of the new DL-Lite family
of DLs [10, 11, 2]. And second, the use of huge DL-based
ontologies with GCIs in bio- and medical informatics has
led to the introduction and investigation of ‘weak’ DLs (re-
flecting the expressive power of existing ontologies) with
tractable subsumption algorithms, namely, the EL-family
of DLs [5, 7, 8]. Both families of DLs lack some of the
expressive power of ALC but have nevertheless proved ex-
pressive enough for a number of applications. In this paper,
we explore to which extent these new families of DLs can
provide basis for useful and still decidable combinations of
LT L and DLs with GCIs and constant roles.

The obtained results are twofold. On the one hand, we
prove in Section 4 that the combination of one of the most
expressive versions DL-Litebool of DL-Lite with LT L is in-
deed decidable (in EXPSPACE), even with GCIs and con-
stant roles. Moreover, its Krom fragment turns out to be
decidable in PSPACE. The proofs are based on an embed-
ding into the one-variable fragment of first-order temporal
logic. This means, in particular, that reasoning in temporal
DL-Lite can be supported by available temporal provers;
see, e.g., [12]. On the other hand, we show in Section 7 that
the corresponding combination of EL and LT L is undecid-
able. The meaning of these results is analysed in Section 8.

2. Temporal extension of DL-Litebool

We begin by introducing the temporal extension
TDL-Litebool of one of the most expressive description log-
ics DL-Litebool of the DL-Lite family [2]. It combines the
temporal operators of LT L, © (‘at the next moment’) and
U (‘until’), with the language of DL-Litebool in a straight-
forward manner by applying them to concepts and Boolean

combinations of GCIs and ABox assertions. Moreover,
we will distinguish between local and global role names.
Thus, TDL-Litebool contains object names a0, a1, . . . , con-
cept names A0, A1, . . . , local role names P0, P1, . . . , and
global role names T0, T1, . . . . Roles R, basic concepts B
and concepts C of TDL-Litebool are defined as follows:

R ::= Pi | P−i | Ti | T−i ,

B ::= ⊥ | Ai | ≥q R,
C ::= B | ¬C | C1 u C2 |

©C | C1 U C2,

where q ≥ 1 is a natural number (note that the results of
this paper do not depend on whether q is given in unary or
in binary). TDL-Litebool formulas are built from atoms of
the form

C1 v C2, C(ai), R(ai, aj)

with the help of the Boolean connectives (say, ¬ and ∧) and
the temporal operators © and U . The atoms C1 v C2 are
often called general concept inclusions (GCIs), while the
atoms C(ai) and R(ai, aj) are called ABox assertions.

A TDL-Litebool interpretation I is a function

I(n) =
(
∆, aI(n)

0 , . . . , A
I(n)
0 , . . . , P

I(n)
0 , . . . , T

I(n)
0 , . . .

)
,

where ∆ is a nonempty set, n ∈ N, aI(n)
i ∈ ∆, AI(n)

i ⊆ ∆,
P
I(n)
i ⊆ ∆ × ∆, T I(n)

i ⊆ ∆ × ∆, with aI(n)
i = a

I(m)
i

and T I(n)
i = T

I(m)
i , for all n,m ∈ N, and aI(n)

i 6= a
I(n)
j ,

for all i 6= j and all n ∈ N (the last condition means the
unique name assumption, which standard in DL). The role
and concept formation constructors are interpreted in I as
follows (where Ri is either a local or global role name):

(R−i )I(n) =
{
(y, x) | (x, y) ∈ RI(n)

i

}
,

⊥I(n) = ∅,
(≥ q R)I(n) =

{
x ∈ ∆ | ]{y | (x, y) ∈ RI(n)} ≥ q

}
,

(¬C)I(n) = ∆ \ CI(n),

(C1 u C2)I(n) = C
I(n)
1 ∩ CI(n)

2 ,

(©C)I(n) = CI(n+1),

(C1 U C2)I(n) =
⋃
k>n

(
C
I(k)
2 ∩

⋂
n<m<k

C
I(m)
1

)
.

The standard abbreviations > ≡ ¬⊥, ∃R ≡ (≥ 1R),
C1 t C2 ≡ ¬(¬C1 u ¬C2), ≤ q R ≡ ¬(≥ q + 1R),
(= q R) ≡ (≤ qR) u (≥ q R), 3FC ≡ > U C (‘some
time in the future’) and 2FC ≡ ¬3F¬C (‘always in the
future’) we need in what follows are self-explanatory and
correspond to the intended semantics.
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The satisfaction relation (I, n) |= ϕ, for a TDL-Litebool

formula ϕ, is defined inductively:

(I, n) |= C1 v C2 iff CI(n)
1 ⊆ C

I(n)
2 ,

(I, n) |= C(ai) iff aI(n)
i ∈ CI(n),

(I, n) |= R(ai, aj) iff (aI(n)
i , a

I(n)
j ) ∈ RI(n),

(I, n) |= ¬ϕ iff (I, n) 6|= ϕ,

(I, n) |= ϕ1 ∧ ϕ2 iff (I, n) |= ϕ1 and (I, n) |= ϕ2,

(I, n) |= ©ϕ iff (I, n+ 1) |= ϕ,

(I, n) |= ϕ1 U ϕ2 iff there is k > n with (I, k) |= ϕ2

and (I,m) |= ϕ1 for all n < m < k.

We will also freely use the Booleans → and ∨ and the tem-
poral operators 2F and 3F for formulas. A formula ϕ is
satisfiable if there is an interpretation I and a time point n
such that (I, n) |= ϕ.

Observe that the interpretation of object names and
global role names is time-independent, while the interpre-
tation of local role names and concepts is allowed to vary
over time. Time-independent concepts can be introduced
by means of the axioms 2+

F

(
A v ©A

)
and 2+

F

(
©A v A

)
,

where 2+
Fϕ ≡ ϕ ∧2Fϕ.

At first sight one might think that the satisfiability prob-
lem for this logic is undecidable because using a single
global functional role T (functionality can be ensured by
the axiom ≥ 2T v ⊥) with functional T− one can easily
enforce the existence of a N×N grid, which could possibly
be used to encode the undecidable N × N tiling problem.
However, the language is not capable of expressing the re-
quirements on colour matching in the domain ‘dimension,’
i.e., that if (x, y) ∈ T I(n) then the colours of tiles covering
x and y match (which can be easily expressed with the qual-
ified existential quantifier ∃T.C). In fact, as we shall see
in the next section, TDL-Litebool can be embedded in the
one-variable fragment of first-order temporal logic, which
is known to be decidable, actually, EXPSPACE-complete;
see, e.g., [14]. Note that satisfiability in DL-Litebool is NP-
complete [2].

3. Temporal data modelling with TDL-Litebool

Here we briefly discuss how TDL-Litebool can be used
for temporal data modelling. It was argued in [10] that the
underlying DL DL-Litebool can represent atemporal con-
ceptual data models like UML class diagrams and Entity-
Relationship models. For example, one maps entities E,
denoting sets of abstract objects, into concept names AE .
Then one can represent the subclass relation (ISA) and
disjointness between E1 and E2 by AE1 v AE2 and
AE1 v ¬AE2 , respectively, and to express that E is cov-
ered by E1, . . . , En one can use AE v AE1 t · · · t AEn

and AE1 v AE , . . . , AEn
v AE . To capture an n-ary re-

lationship R over entities E1, . . . , En, one reifies the rela-
tionship. First, take a concept name AR and n role names
R1, . . . , Rn. The GCIs AR v (= 1Ri) ensure that every
instance of AR gives rise to a unique tuple in R; the GCIs
∃R−i v AEi guarantee that only instances of E1, . . . , En
may be connected by R. Participation constraints are
captured by cardinality restrictions AEi

v (≥ k R−i ) and
AEi

v (≤ mR−i ). An attribute P of an entity E, associat-
ing values of a concrete domainD to instances ofE, is con-
sidered as a binary relationship linking E with D: this can
be captured by a concept AP and a pair of functional roles
P1 and P2 with the GCIs AP v (= 1P1), AP v (= 1P2),
∃P−1 v AE and ∃P−2 v D.

In the temporal context, we can express all those con-
straints using 2+

F (C1 v C2) instead of the atemporal
C1 v C2. Below we write C1 v∗ C2 for 2+

F (C1 v C2).
However, even at this basic level, global roles are already
required: when reifying relationships, to ensure that every
instance of AR represents the same tuple at different times,
the roles Ri should be global; similarly, the roles P1 and
P2 introduced for an attribute P should be global. More-
over, concrete domains should be constant and disjoint: this
is captured by (D v∗ ©D) ∧ (©D v∗ D), for all D, and
D v∗ ¬D′, for all distinct concrete domains D,D′.

In addition, the temporal constructors of TDL-Litebool

are able to represent dynamic aspects of conceptual mod-
els. Timestamping is the basic temporal constraint used to
model the temporal behaviour of entities, relationships and
attributes [18, 3]. It is implemented either by marking enti-
ties, relationships and attributes as snapshot or temporary,
or leaving them unmarked. An object belongs to a snap-
shot entity either never or at all times, no object may belong
to a temporary entity at all times, and there are no tempo-
ral assumptions about instances of unmarked entities. The
meaning of timestamps for relationships and attributes is
analogous. In TDL-Litebool timestamps are expressed by
the following formulas: (AE v∗ ©AE) ∧ (©AE v∗ AE)
for a snapshot/global entity and (> v 3+

F¬AE) for a tem-
porary entity. Timestamping formulas for a relationship R
involve the concept name AR that reifies the relationship;
then we need (AR v∗ ©AR) ∧ (©AR v∗ AR) for the
snapshot/global relationship, and (> v 3+

F¬AR) for the
temporary relationship. Attributes are treated similarly.

Finally, TDL-Litebool is capable of capturing dynamic
transitions between entities where objects of a source entity,
E1, migrate to a target entity, E2, with the help of the GCI
AE1 v∗ 3FAE2 .

It was observed in [1] that temporal conceptual models
with timestamping and evolution constraints can be trans-
lated into the DLDLRUS and that reasoning with temporal
models with both timestamping and dynamic constraints is
undecidable. The main difference here is that TDL-Litebool
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lacks the ability to represent sub-relationships which is an
essential part in the undecidability proof.

4. TDL-Litebool is EXPSPACE-complete

This result is proved by providing a satisfiability pre-
serving translation of TDL-Litebool formulas into the one-
variable fragment QT L1 of first-order temporal logic with-
out function symbols and equality. To define the syntax of
QT L1, fix one variable x. Then the formulas of QT L1 are
constructed from unary predicates P (x) and P (ai) (where
ai is a constant) and propositional variables p using the
standard connectives of first-order logic (with quantifiers
∀x and ∃x) and the temporal operators © and U . QT L1-
models and the satisfaction relation between formulas and
time points are defined in the obvious way by modifying the
definition of TDL-Litebool interpretations (however, there is
no unique name assumption in this case); for details we re-
fer the reader to [14], where the following is also shown:

Theorem 1. The satisfiability problem forQT L1-formulas
is EXPSPACE-complete.

Now we define a translation ·† of TDL-Litebool formu-
las into QT L1. Let ϕ be a TDL-Litebool formula. De-
note by role(ϕ) the set of both local and global role names
occurring in ϕ, by g-role(ϕ) the set of global role names
in ϕ, and by ob(ϕ) the set of object names in ϕ. Let
role±(ϕ) = {R,R− | R ∈ role(ϕ)} and g-role±(ϕ) =
{T, T− | T ∈ g-role(ϕ)}. Denote by qϕ the maximum
numerical parameter in ϕ.

With every object name ai ∈ ob(ϕ) we associate the in-
dividual constant ai ofQT L1 and with every concept name
Ai the unary predicate Ai(x) from the signature of QT L1.
For each R ∈ role±(ϕ), we also introduce qϕ fresh unary
predicates EqR(x), for 1 ≤ q ≤ qϕ. Intuitively, for each
n, E1R(x) and E1R

−(x) represent the domain and range
of R at moment n (i.e., E1R(x) and E1R

−(x) are inter-
preted by the sets of points with at least one R-successor
and at least one R-predecessor at moment n, respectively),
while EqR(x) and EqR

−(x) represent the sets of points
with at least q distinct R-successors and at least q dis-
tinct R-predecessors at moment n. Additionally, for each
pair ai, aj ∈ ob(ϕ) and each role R ∈ role±(ϕ), we take
a fresh propositional variable Raiaj of QT L1 to encode
R(ai, aj).

By induction on the construction of a TDL-Litebool con-
cept C we define the QT L1- formula C∗:

⊥∗ = ⊥,
(A)∗ = A(x), (≥ q R)∗ = EqR(x),

(¬C)∗ = ¬C∗(x), (C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x),
(©C)∗ = ©C∗(x), (C1 U C2)∗ = C∗1 (x) U C∗2 (x),

where A is a concept name and R a role. Next, we extend
this translation to TDL-Litebool -formulas:

(C1 v C2)∗ = ∀x (C∗1 (x) → C∗2 (x)),
(C(ai))∗ = C∗(ai), (R(ai, aj))∗ = Raiaj ,

(¬ψ)∗ = ¬ψ∗, (ψ1 ∧ ψ2)∗ = ψ∗1 ∧ ψ∗2 ,
(©ψ)∗ = ©ψ∗, (ψ1 U ψ2)∗ = ψ∗1 U ψ∗2 ,

where C,C1, C2 are concepts, R is a role and ai, aj are
object names.

The following formulas express some natural properties
of the role domains and ranges. For every R ∈ role±(ϕ),
we need two QT L1-sentences:

ε(R) = ∃xE1R(x) → ∃x inv(E1R)(x), (1)

δ(R) =
qϕ−1∧
q=1

∀x
(
Eq+1R(x) → EqR(x)

)
, (2)

where inv(E1R) is the predicate E1R
−
k if R = Rk and

E1Rk if R = R−k . Sentence (1) says that if the domain
of R is not empty then its range is not empty either.

We also need formulas representing the relation of the
Raiaj with the unary predicates for the role domain and
range. For a role R ∈ role±(ϕ), let

ω(R) =
qϕ∧
q=1

∧
a∈ob(ϕ)

aj1 ,...,ajq∈ob(ϕ)

ji 6=ji′ for i 6=i′

( q∧
i=1

Raaji → EqR(a)
)
, (3)

ι(R) =
∧

ai,aj∈ob(ϕ)

(
Raiaj → inv(R)ajai

)
, (4)

where inv(R)ajai is the propositional variable R−k ajai if
R = Rk and Rkajai if R = R−k .

For every global role T ∈ g-role±(ϕ) we need two addi-
tional sentences:

γ1(T ) =
qϕ∧
q=1

∀x
(
EqT (x) ↔ ©EqT (x)

)
, (5)

γ2(T ) =
∧

ai,aj∈ob(ϕ)

(Taiaj ↔ ©Taiaj). (6)

Finally, we set

ϕ† = ϕ∗ ∧
∧

R∈role±(ϕ)

2+
F

(
ε(R)∧δ(R)∧ω(R)∧ι(R)

)
∧

∧
T∈g-role±(ϕ)

2+
F

(
γ1(T ) ∧ γ2(T )

)
.

Theorem 2. A TDL-Litebool formula ϕ is satisfiable iff ϕ†

is satisfiable.

4



Proof. (⇐) Let M be a first-order temporal model with a
countable domain D and let (M, 0) |= ϕ†. We denote the
interpretation of unary predicates P and propositional vari-
ables p in M at moment n by PM,n and pM,n. The inter-
pretation of constants a in M is denoted by aM. Let

W0 =
{
aM | a ∈ ob(ϕ)

}
⊆ D.

Without loss of generality we may assume that all the aM

are distinct.
We are going to construct a TDL-Litebool interpretation

I satisfying ϕ that is based on the domain

∆ = W0 ∪ (D × N).

The interpretations of object names in I are given by their
interpretations in M: aI(n) = aM ∈ W0. The interpreta-
tions AI(n) of concept names A in I are defined by taking

AI(n) =
{
w ∈ ∆ | (M, n) |= A∗[cp(w)]

}
, (7)

where the function cp : ∆ → D is defined as follows:

cp(w) =

{
w, if w ∈W0,

d, if w = (d, n) ∈ D × N.
(8)

We will call w a copy of cp(w). Now, for each R ∈ role(ϕ)
and each n ∈ N, we introduce inductively the interpretation
RI(n). (For global R this can be done for some fixed n, say
0, and then copied for all other n.) RI(n) will be defined as
the union

RI(n) =
∞⋃
m=0

Rn,m,

where, for all m ≥ 0, Rn,m ⊆Wn,m
R ×Wn,m

R ,

Wn,m
R ⊆Wn,m+1

R and
∞⋃
m=0

Wn,m
R = ∆.

We start with Wn,0
R = W0. The set Wn,m

R \Wn,m−1
R , for

m ≥ 0, will be denoted by V n,mR ; for convenience, we let
Wn,−1
R = ∅, so that V n,0R = W0.
First we define the required R-rank rn(R, d) of d ∈ D

at moment n:

rn(R, d) =


0, if (M, n) |= ¬E1R[d],
q, if (M, n) |= EqR ∧ ¬Eq+1R[d],

for 1 ≤ q < qϕ,

qϕ, if (M, n) |= Eqϕ
R[d].

It follows from (2) that rn(R, d) is a function and that if
d ∈ D and rn(R, d) = q then (M, n) |= Eq′R[d] whenever
1 ≤ q′ ≤ q, and (M, n) |= ¬Eq′R[d] for q < q′ ≤ qϕ.

We also define the actual R-rank rnm(R,w) of w ∈ ∆ at
moment n and step m by taking

rnm(R,w) =


q, if w ∈ ≥q Rn,m.∆\≥q + 1Rn,m.∆,

for 0 ≤ q < qϕ,

qϕ, if w ∈ ≥ qϕR
n,m.∆,

where ≥q S.∆ =
{
x ∈ ∆ | ]{y | (x, y) ∈ S} ≥ q

}
, for a

binary relation S.
For the basis of induction we set

Rn,0 =
{
(aM
i , a

M
j ) ∈W0×W0 | (M, n) |= Raiaj

}
. (9)

By (3) and (4), for both R and R− (where R−− = R) and
all w ∈W0,

rn0 (R,w) ≤ rn(R, cp(w)). (10)

Suppose that the Wn,m
R and Rn,m have already been de-

fined for m ≥ 0. If we had rnm(R,w) = rn(R, cp(w)),
for both R and R− and all w ∈ Wn,m

R , then the interpreta-
tion Rn,m we need for RI(n) would have been constructed.
However, in general this is not the case because there may
be some ‘defects’ in the sense that the actual rank of some
points is smaller than the required rank. Consider the fol-
lowing two sets of defects in Rn,m:

Λn,mR =
{
w ∈ V n,mR | rnm(R,w) < rn(R, cp(w))

}
,

Λn,mR− =
{
w ∈ V n,mR | rnm(R−, w) < rn(R−, cp(w))

}
.

The purpose of, say, Λn,mR is to identify those ‘defective’
points w ∈ V n,mR from which precisely rn(R, cp(w)) dis-
tinct R-arrows should start (according to M), but some ar-
rows are still missing (only rnm(R,w) many arrows exist).
To ‘cure’ these defects, we extend Wn,m

R to Wn,m+1
R and

Rn,m to Rn,m+1 according to the following rules:

(Λn,mR ) Let w ∈ Λn,mR . Denote q = rn(R, d) − rnm(R,w)
and d = cp(w). Then (M, n) |= Eq′R[d] for some
q′ ≥ q > 0. By (2), (M, n) |= E1R[d] and, by (1),
there is d′ ∈ D such that (M, n) |= E1R

−[d′]. In
this case we take q fresh copies w′1, . . . , w

′
q of d′,

i.e., w′1, . . . , w
′
q ∈ ({d′} × N) \ Wn,m

R , add them to
Wn,m+1
R and add the pairs (w,w′i), 1 ≤ i ≤ q, to

Rn,m+1.

(Λn,mR− ) Letw ∈ Λn,m−R− . Denote q = rn(R−, d)−rnm(R−, w)
and d = cp(w). Then (M, n) |= Eq′R

−[d] for some
q′ ≥ q > 0. By (2), (M, n) |= E1R

−[d] and,
by (1), there is d′ ∈ D with (M, n) |= E1R[d′].
In this case we take q fresh copies w′1, . . . , w

′
q of d′,

i.e., w′1, . . . , w
′
q ∈ ({d′} × N) \ Wn,m

R , add them to
Wn,m+1
R and add the pairs (w′i, w), 1 ≤ i ≤ q, to

Rn,m+1.
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(Ω) Finally, if all defects for R in Wn,m
R have already

been cured we take, for every d ∈ D, a fresh copy
(d, l) ∈ ({d} × N) \Wn,m

R with minimal l and add it
to Wn,m+1

R .

It should be clear that the rule (Ω) guarantees that⋃∞
m=0W

n,m
R = ∆. Now we observe the following im-

portant property of the construction: for all m0 ≥ 0 and
w ∈ V n,m0

R ,

rnm(R,w) =


0, if m < m0,

q, if m = m0, for some
q ≤ rn(R, cp(w)),

rn(R, cp(w)), if m > m0.

(11)

To prove this property, consider all possible cases. If
m < m0 then w has not been added to Wn,m

R yet, i.e.,
w /∈ Wn,m

R , and so rnm(R,w) = 0. If m = m0 and
m0 = 0 then rnm(R,w) ≤ rn(R, cp(w)) follows from (10).
If m = m0 and m0 > 0 then w was added at step m0

either to cure a defect of some point w′ ∈ Wn,m0−1
R or

by (Ω). In the latter case we clearly have rnm(R,w) = 0,
and so rnm(R,w) ≤ rn(R, cp(w)). In the former case this
means that either (w′, w) ∈ Rn,m0 and w′ ∈ Λn,m0−1

R or
(w,w′) ∈ Rn,m0 and w′ ∈ Λn,m0−1

R− . In the first case

(M, n) |= E1R
−[cp(w)]. (12)

Since fresh witnesses w are picked up every time the rule
(Λn,m0−1

R ) is applied and those witnesses satisfy (12),
we obtain rnm0

(R,w) = 0, rnm0
(R−, w) = 1 and

rn(R−, cp(w)) ≥ 1. The second case is similar. If
m = m0 + 1 then all defects of w are cured at step m0 + 1
by applying the rules (Λn,m0

R ) and (Λn,m0
R− ). Therefore,

rnm0+1(R,w) = rn(R, cp(w)). If m > m0 + 1 then (11)
follows from the observation that new arrows involving w
can only be added at step m0 + 1, that is, for all m ≥ 0,

Rn,m+1 \Rn,m ⊆
V n,mR × V n,m+1

R ∪ V n,m+1
R × V n,mR . (13)

Finally, recall that if R is global then, by (5) and (6),
the above inductive procedure does not depend on n and
RI(n) = RI(m), for all n,m ∈ N.

It follows that, for all R ∈ role±(ϕ), 1 ≤ q ≤ qϕ, n ∈ N
and w ∈ ∆,

(M, n) |= EqR[cp(w)] iff w ∈ ≥ q RI(n).∆. (14)

Indeed, if (M, n) |= EqR[cp(w)] then, by definition,
rn(R, cp(w)) ≥ q. Let w ∈ V n,m0

R . Then, by (11),
rnm(R,w) = rn(R, cp(w)) ≥ q, for all m > m0. It
follows from the definition of rnm(R,w) and RI(n) that
w ∈ ≥ q RI(n).∆. Conversely, let w ∈ ≥ q RI(n).∆ and

w ∈ V n,m0
R . Then, by (11), we have q ≤ rnm(R,w) =

rn(R, cp(w)), for all m > m0. So, by the definition of
rn(R, cp(w)) and (2), we have (M, n) |= EqR[cp(w)].

Now we show by induction on the construction of con-
cepts C in ϕ that, for all n ∈ N and w ∈ ∆,

(M, n) |= C∗[cp(w)] iff w ∈ CI(n). (15)

The basis of induction is trivial for B = ⊥ and follows
from (7) if B = Ai and (14) if B = ≥ q R. The induction
step for the Booleans (C = ¬C1 and C = C1 uC2) and the
temporal operators (C = ©C1 and C = C1 U C2) follows
from the induction hypothesis.

Finally, we show that for each subformula ψ of ϕ,

(M, n) |= ψ∗ iff (I, n) |= ψ. (16)

For ψ = C1 v C2 and ψ = C(ai), this follows from (15).
For ψ = Rk(ai, aj), (aIi , a

I
j ) ∈ R

I(n)
k iff, by (13),

(aIi , a
I
j ) ∈ Rn,0k iff, by (9), (M, n) |= Rkaiaj . The case

ψ = R−k (ai, aj) is similar. The induction step for the
Booleans (ψ = ¬ψ1 and ψ = ψ1 ∧ ψ2) and the tempo-
ral operators (ψ = ©ψ1 and ψ = ψ1U ψ2) follows from the
induction hypothesis.

Thus, we obtain (I, 0) |= ϕ. The implication (⇒) is
straightforward.

The translation ϕ† of ϕ is obviously too lengthy to pro-
vide us with reasonably low complexity results. However, it
follows from the proof above that in fact a lot of information
in this translation is redundant and can be safely omitted.
We define now a more concise translation of ϕ into QT L1.
For R ∈ role±(ϕ), let QRϕ be the set of natural numbers
containing 1 and all the numerical parameters q for which
≥ q R occurs in ϕ. Then we set

ϕ[ = ϕ∗ ∧
∧

R∈role±(ϕ)

2+
F

(
ε(R) ∧ δ[(R) ∧ ω[(R) ∧ ι(R)

)
∧

∧
T∈g-role±(ϕ)

2+
F

(
γ[1(T ) ∧ γ2(T )

)
,

where ε(R), ι(R) and γ2(T ) are as before (see (1), (4) and
(6), respectively),

δ[(R) =
∧

q,q′∈QR
ϕ , q

′>q

q′>q′′>q for no q′′∈QR
ϕ

∀x
(
Eq′R(x) → EqR(x)

)
, (17)

ω[(R) =
∧
q∈QR

ϕ

∧
a∈ob(ϕ)

aj1 ,...,ajq∈ob(ϕ)

ji 6=ji′ for i 6=i′

( q∧
i=1

Raaji → EqR(a)
)
, (18)

γ[1(T ) =
∧
q∈QT

ϕ

∀x
(
EqT (x) ↔ ©EqT (x)

)
. (19)
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Corollary 3. A TDL-Litebool formula ϕ is satisfiable iff the
QT L1-sentence ϕ[ is satisfiable.

Proof. Follows from the fact that ϕ† is satisfiable iff ϕ[ is
satisfiable. Indeed, if (M, 0) |= ϕ† then (M, 0) |= ϕ[.
Conversely, if (M, 0) |= ϕ[ then one can construct a new
model M′ based on the same domain D as M by taking

• AM′,n = AM,n, for all concept names A and n ∈ N;

• EqR
M′,n = Eq′R

M,n, for R ∈ role±(ϕ), 1 ≤ q ≤ qϕ
and n ∈ N, where q′ is the maximum number fromQRϕ
with q′ ≤ q;

• Raiaj to be true in M′ at n iff (M, n) |= Raiaj , for
all R ∈ role±(ϕ), all ai, aj ∈ ob(ϕ) and all n ∈ N;

• aM′
= aM, for all a ∈ ob(ϕ).

It follows immediately from the definition that we have
(M′, 0) |= ϕ†. (For example, (M′, 0) |= ϕ∗ follows from
the fact that for every concept (≥ q R) from ϕ we have
EqR

M′,n = EqR
M,n, for all n ∈ N.)

This observation makes it possible to prove the following
result:

Theorem 4. The satisfiability problem for TDL-Litebool is
EXPSPACE-complete.

Proof. As we know, satisfiability for QT L1 is EXPSPACE-
complete. However, we cannot use this result directly be-
cause the size of ϕ[ is exponential in the number of ob-
ject names (in fact, double exponential, if qϕ is given in
binary): |ϕ[| ≤ const · |ϕ| + |ob(ϕ)|qϕ+1. Instead, we use
the EXPSPACE algorithm presented in [14, Theorem 11.30]
(see also [16]) which, given a QT L1-sentence ψ, decides
whether ψ is satisfiable or not by guessing an ultimately pe-
riodical quasimodel such that the lengths of its prefix and
its period are bounded by some numbers l1 and l2, respec-
tively. In general, both l1 and l2 are double exponential in
the length |ψ| of ψ. Hence, the algorithm requires single
exponential space to write down the two numbers. The al-
gorithm also requires exponential space to store at most 3
state candidates. Clearly, every realisable state candidate C
for ϕ[ is uniquely determined by the following parameters:

• the set of propositional variables and the set of closed
subformulas of the form ∀xχ(x) that belong to the
types of C;

• for every type in C, the set of all open subformulas that
belong to this type.

It is easy to compute that ϕ[ contains |role±(ϕ)| · |ob(ϕ)|2
propositional variables and |ϕ|+3·|role±(ϕ)| closed subfor-
mulas of the form ∀xχ(x). Therefore, the ‘propositional’
part of a state candidate can be stored in space bounded

by p1(|ϕ|), where p1 is a polynomial. Next, for each type
for ϕ[, the number of open subformulas that belong to this
type is bounded by |ϕ|, and the number of types in every
state candidate is bounded by 2|ϕ|. Therefore, the ‘type’
part of a state candidate can be stored in space bounded by
2|ϕ| · |ϕ|, and so the overall space required to store a state
candidate for ϕ[ is bounded by 2p2(|ϕ|), for some polyno-
mial p2. Now, [14, Theorem 11.26] provides more precise
upper bounds on l1 and l2:

l1 ≤ ](ϕ[) and l2 ≤ kϕ[ · ](ϕ[) · [2(ϕ[) + ](ϕ[),

where ](ϕ[) is the number of distinct state candidates, [(ϕ[)
the number of distinct types, and kϕ[ the number of ‘even-
tualities,’ i.e., subformulas of ϕ[ of the form χ1 U χ2. It
follows from the above argument that ](ϕ[) ≤ 22p2(|ϕ|)

and
[(ϕ[) ≤ 2p1(|ϕ|) · 2|ϕ| (every type for ϕ[ is uniquely de-
termined by its ‘propositional’ part and the subset of open
subformulas that belong to it). Finally, the number kϕ[ of
‘eventualities’ is bounded by |ϕ|+2·|role±(ϕ)|. This shows
that although the length of ϕ[ is (double) exponential in |ϕ|,
the numbers l1 and l2 are only double exponential in |ϕ|
(not triple exponential as one would expect). Therefore, the
algorithm of [14, Theorem 11.30] runs in EXPSPACE.

The EXPSPACE lower bound follows from the fact that
there is a satisfiability preserving polynomial translation
from QT L1 to TDL-Litebool . First, by introducing new
unary predicates one can transform, in a satisfiability pre-
serving way, each QT L1-formula into a QT L1-sentence
containing neither ∃x nor nested ∀x. Such a sentence ϕ
can be translated into TDL-Litebool by first associating with
every unary predicate P (x) a concept name (P (x))‡ = AP .
For every subformula ψ of ϕ with free x, we obtain a con-
cept ψ‡ by distributing the translation ·‡ over the connec-
tives ©, U , ¬ and ∧, e.g., (ψ1 ∧ ψ2)‡ = ψ‡1 u ψ

‡
2. For each

subformula of the form ∀xψ, set (∀xψ)‡ = (> v ψ‡).
Now, for QT L1-sentences, the translation ·‡ again distrib-
utes over the connectives ©, U , ¬ and ∧. It is easily seen
that ϕ is satisfiable iff ϕ‡ is satisfiable.

The same lower bound follows also from Theorem 10
below.

5. TDL-Litekrom is PSPACE-complete

Consider now the Krom fragment TDL-Litekrom of
TDL-Litebool with atomic formulas of the form

D1 v D2, ¬D1 v D2, D1 v ¬D2,

D(ai), R(ai, aj),

where concepts D1, D2 are formed from basic concepts B
by means of © only:

D ::= B | ©D. (20)
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We can still apply all temporal operators and the Booleans
to formulas. (Note that spatio-temporal logics of a similar
kind were considered in [15] and [9]. Note also that satisfi-
ability for the underlying DL DL-Litekrom is NLOGSPACE-
complete [2].)

It is readily seen that the ·[-translations of TDL-Litekrom

formulas can be transformed in a satisfiability preserving
way (by introducing abbreviations for nested © operators)
to formulas of the following fragment QT L1

krom of QT L1:

Q(x) ::= Pi(x) | ¬Pi(x),
L(x) ::= Q(x) | ©Q(x),

ϕ ::= ∀x
(
L1(x) ∨ L2(x)

)
| L(aj) |

¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1 U ϕ2,

where the Pi are unary predicate symbols and the aj are
constants. Predicates Pi(x) and their negations ¬Pi(x) will
be called literals; literals Q(x) and ©-prefixed literals will
be called temporal literals.

In this section we establish (using the quasimodel tech-
nique from [14]) a PSPACE upper bound for satisfiability of
QT L1

krom formulas from which we obtain the following re-
sult (using Lemma 8 and an argument similar to the proof
of Theorem 4):

Theorem 5. The satisfiability problem for TDL-Litekrom

formulas is PSPACE-complete.

We denote by ¬̇L(x) the formula equivalent to ¬L(x)
in the above restricted syntax, e.g., ¬̇©Pi(x) is ©¬Pi(x)
and ¬̇©¬Pi(x) is ©Pi(x). For every formula of the form
©Q(x), we reserve a unary predicate Q′(x) called the sur-
rogate of ©Q(x). Note that we introduce surrogates only
for temporal literals (unlike ‘standard’ quasimodels, here
we do not need to explicitly introduce surrogates for other
temporal subformulas). Given a formula ψ, denote by ψ the
result of replacing all subformulas of ψ of the form ©Q(x)
by their surrogates.

For a QT L1
krom sentence ϕ, let clϕ be the union of

sub0 ϕ, Σϕ and the Ξaϕ, for a ∈ conϕ, where sub0 ϕ is the
set of closed subformulas of ϕ, conϕ the set of all constants
in ϕ, and

Λϕ =
{
Pi(x), ¬Pi(x), ©Pi(x), ©¬Pi(x) |

Pi(x) a predicate in ϕ
}
,

Σϕ =
{
∀x (L1(x) ∨ L2(x)) | L1(x), L2(x) ∈ Λϕ

}
,

Ξaϕ =
{
L(a) | L(x) ∈ Λϕ

}
, for a ∈ conϕ.

A state candidate C for ϕ is any subset of clϕ satisfying the
properties

(qs0K) χC =
∧
ψ∈C∩Σϕ

ψ is satisfiable;

(qs1K) for every ψ ∈ Σϕ, if χC |= ψ then ψ ∈ C;

(qs0c) for every L(a) ∈ Ξaϕ, ¬̇L(a) ∈ C iff L(a) /∈ C;

(qs1c) for every L1(a), L2(a) ∈ Ξaϕ,
if L1(a), L2(a) ∈ C then ∀x (¬̇L1(x)∨ ¬̇L2(x)) 6∈ C;

(qs¬) for every ¬ψ ∈ sub0 ϕ, ¬ψ ∈ C iff ψ /∈ C;

(qs∧) for every ψ1 ∧ ψ2 ∈ sub0 ϕ,
ψ1 ∧ ψ2 ∈ C iff ψ1, ψ2 ∈ C.

Let q be a map associating with every w ∈ N a state
candidate q(w) for ϕ. We call q a quasimodel for ϕ if the
following conditions hold:

(qm0) ϕ ∈ q(w0), for some w0 ≥ 0;

(qm1) for every ∀x (©Q1(x) ∨©Q2(x)) ∈ Σϕ,
∀x (©Q1(x) ∨©Q2(x)) ∈ q(w)

iff ∀x (Q1(x) ∨Q2(x)) ∈ q(w + 1);

(qm2) for every ©Q(a) ∈ Ξaϕ,
©Q(a) ∈ q(w) iff Q(a) ∈ q(w + 1);

(qm3) for every ©ψ ∈ sub0 ϕ,
©ψ ∈ q(w) iff ψ ∈ q(w + 1);

(qm4) for every ψ1 U ψ2 ∈ sub0 ϕ, ψ1 U ψ2 ∈ q(w)
iff there is k > 0 such that ψ2 ∈ q(w + k) and
ψ1 ∈ q(w + n), for all 0 < n < k.

Lemma 6. A QT L1
krom sentence ϕ is satisfiable iff there is

a quasimodel for ϕ.

Proof. Suppose (M, w0) |= ϕ. Then

q(w) =
{
ψ ∈ clϕ | (M, w) |= ψ

}
defines a quasimodel for ϕ. Conversely, suppose that q is a
quasimodel for ϕ.

Claim 7. If {L1(x), . . . , Lk(x)} ⊆ Λϕ and C is a state
candidate for ϕ, then

χC ∧ ∃x
(
L1(x) ∧ · · · ∧ Lk(x)

)
(21)

is satisfiable iff there are no 1 ≤ i, j ≤ k such that
∀x (¬̇Li(x) ∨ ¬̇Lj(x)) ∈ C.

Proof of claim. As formula (21) is a conjunction of the
form ∀xχ1(x) ∧ ∃xχ2(x), it is satisfiable iff the formula
χ1[a] ∧ χ2[a] is satisfiable, where a is a constant symbol.
Now, if χ1[a] ∧ χ2[a] is satisfiable then there are no i, j
such that ∀x (¬̇Li(x) ∨ ¬̇Lj(x)) ∈ C. Conversely, suppose
that there are no such i, j, but χ1[a] ∧ χ2[a] is not satisfi-
able. Then χ1[a] |= ¬χ2[a]. By (qs0K), χ1[a] is satisfiable.
Moreover as it is a 2-CNF,

χ1[a] |= ¬L1[a] ∨ · · · ∨ ¬Lk[a]

implies that there are i, j with χ1[a] |= ¬Li[a] ∨ ¬Lj [a].
It follows from (qs1K) that ¬Li[a] ∨ ¬Lj [a] is a conjunct of
χ1[a], contrary to our assumption.

8



Say that t ⊆ Λϕ is a type for a state candidate C if

• L(x) ∈ t iff ¬̇L(x) /∈ t, for every L(x) ∈ Λϕ;

• if L1(x), L2(x) ∈ t then ∀x (¬̇L1(x) ∨ ¬̇L2(x)) 6∈ C,
for every L1(x), L2(x) ∈ Λϕ.

By Claim 7, if t is a type for C then χC∧∃x
∧

t is satisfiable.
Denote by Tw the set of all types for q(w). A pair of types
(t, t′) is called suitable if ©Q(x) ∈ t iff Q(x) ∈ t′. Then
the following two properties hold:

(succ) for each t ∈ Tw there is t′ ∈ Tw+1 such that (t, t′)
is a suitable pair;

(pred) for each t′ ∈ Tw+1 there is t ∈ Tw such that (t, t′)
is a suitable pair.

To show (succ), suppose that t ∈ Tw, but there is no
t′ ∈ Tw+1 such that (t, t′) is a suitable pair. Let
©Q1(x), . . . ,©Qk(x) be all temporal literals of the form
©Q(x) in t. Then

χq(w+1) ∧ ∃x
(
Q1(x) ∧ · · · ∧Qk(x)

)
is not satisfiable. By Claim 7, there are i, j such that
∀x (¬̇Qi(x) ∨ ¬̇Qj(x)) ∈ q(w + 1). Then, by (qm1),
∀x (¬̇©Qi(x) ∨ ¬̇©Qj(x)) ∈ q(w), and so, by Claim 7,
the formula χq(w) ∧ ∃x

(
©Q1(x) ∧ · · · ∧ ©Qk(x)

)
is not

satisfiable, contrary to our assumption. Property (pred) is
proved analogously.

Now we define a set R of ‘runs’ through q by taking all

r ∈
∏
w∈N Tw

such that (r(w), r(w+1)) is a suitable pair for every w. By
(succ) and (pred), for every w and every type t ∈ Tw there
is r ∈ R such that r(w) = t.

For a ∈ conϕ and w ∈ N, let

twa =
{
L(x) ∈ Λϕ | L(a) ∈ q(w)

}
.

It follows from (qs0c) and (qs1c) that the twa are types. More-
over, by (qm2), (twa , t

w+1
a ) is a suitable pair for every w.

Thus, there is ra ∈ R with ra(w) = twa , for every w.
Consider the model M =

(
R, aM

0 , . . . , PM,w
0 , . . .

)
,

where aM
j = raj and PM,w

i =
{
r ∈ R | Pi ∈ r(w)

}
.

It is readily checked that (M, w0) |= ϕ.

Lemma 8. A QT L1
krom-sentence ϕ is satisfiable iff there

is an ultimately periodical quasimodel q for ϕ such that
q(l1 + w) = q(l1 + l2 + w), for every w ∈ N and some
l1, l2 with l1 ≤ ](ϕ) and l2 ≤ kϕ · ](ϕ) + ](ϕ), where ](ϕ)
is the number of distinct state candidates for ϕ and kϕ the
number of eventualities in ϕ.

Proof. Similar to the proof of [14, Theorem 11.26].

Theorem 9. The satisfiability problem for QT L1
krom is

PSPACE-complete.

Proof. The upper bound follows from Lemma 8 using an
algorithm that first guesses l1 and l2 and then tries to con-
struct an ultimately periodical quasimodel (see [14, The-
orem 11.30]). The lower bound follows from PSPACE-
hardness of LT L (which is a fragment of QT L1

krom).

6. TDL-Litehorn is EXPSPACE-complete

Consider the Horn fragment TDL-Litehorn of
TDL-Litebool whose atomic formulas are of the form

D1 u · · · uDk v D, D(ai), R(ai, aj),

whereD,D1, . . . , Dk are formed from basic conceptsB by
means of © only as in (20). Again we can apply all tempo-
ral operators and the Booleans to formulas. (Note that sat-
isfiability for the underlying DL DL-Litehorn is P-complete
[2].)

Theorem 10. The satisfiability problem for TDL-Litehorn

is EXPSPACE-complete.

Proof. The upper bound follows from Theorem 4. The
lower one is proved by reduction of the N × 2n corridor
tiling problem that is known to be EXPSPACE-complete
(for details see, e.g., [19, 16]): given an instance (T, τ0, n),
where T is a finite set of tile types, τ0 ∈ T is a tile type, and
n ∈ N is given in unary, decide whether T tiles the N× 2n-
corridor {(x, y) | x ∈ N, 0 ≤ y < 2n} in such a way that
τ0 is placed at (0, 0) and the top and bottom sides of the
corridor are of some fixed colour, say, white. We construct
a TDL-Litehorn formula ϕT,τ0,n such that (i) its length is
polynomial in |T | and n, and (ii) T tiles the N×2n corridor
(with τ0 on (0, 0) and with white top and bottom sides) iff
ϕT,τ0,n is satisfiable.

The formula ϕT,τ0,n will be constructed in a number of
steps. To explain the meaning of its subformulas, let us fix
some interpretation I with some domain ∆.

Let Sτ , for τ ∈ T , be role names and suppose that the
following formula holds in I at 0:

2+
F

∨
τ∈T

(
> v ∃Sτ

)
∧

∧
τ 6=τ ′

2+
F

(
∃Sτ u∃Sτ ′ v ⊥

)
. (22)

Then there is a uniquely determined sequence τ0, τ1, . . . of
tile types such that ∃SI(m)

τm = ∆ and (∃S−τm
)I(m) 6= ∅, for

every m ∈ N; see Fig. 1.
Suppose also that the following formulas hold in I at 0:∧

τ∈T
2+
F

(
∃S−τ v

ln

j=1
Qj u ©N

)
, (23)∧

τ∈T
2+
F

(
∃S−τ uN v ⊥

)
, (24)

2+
F

(
N v ©N

)
. (25)
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.

.

no ∃S−τ , for all τ

N and no ∃S−τ , for all τ

Wτi

∃S−τi

Qj , for some 1 ≤ j ≤ n

dn
j=1 Qj

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 . . .

︸ ︷︷ ︸
N× 22 corridor

Figure 1. A model I satisfying ϕT,τ0,2.

(Formulas of the form D1 u · · · u Dk v D′
1 u · · · u D′

j

are just syntactic sugar.) It follows that at every moment of
time m one can select a point dm ∈ (∃S−τm

)I(m) such that
dm ∈ NI(m+1) and dm ∈ (Qnu· · ·uQ1)I(m). The former
implies, by (24) and (25), that the dm are all distinct, and
the latter will be used to encode a 2n counter on dm.

The formulas encoding the 2n counter on elements of
the domain are more or less standard (taking into account
that Qi stands for the i-th bit being 0 and Qi for the i-th bit
being 1):∧

1≤i≤n

2+
F

(
Qi uQi v ⊥

)
,

∧
1≤j<i≤n

[
2+
F

(
Qi uQj uQj−1 u · · · uQ1 v ©Qi

)
∧2+

F

(
Qi uQj uQj−1 u · · · uQ1 v ©Qi

)]
,∧

1≤j≤n

[
2+
F

(
Qj uQj−1 u · · · uQ1 v ©Qj

)
∧ 2+

F

(
Qj uQj−1 u · · · uQ1 v ©Qj

)]
.

It follows, in particular, that if the counter is ‘initialised’ on
some d, i.e., d ∈ (Qnu· · ·uQ1)I(k), for some k ∈ N, then

• d ∈ (Qn u · · · uQ1)I(j) iff j ≡ k (mod 2n);

• there is 1 ≤ i ≤ n such that d ∈ Q
I(j)
i iff j 6≡ k

(mod 2n).

Note also that if d /∈ Q
I(k)
i ∪ QI(k)

i , for some 1 ≤ i ≤ n
and k ∈ N, then the counter may not behave properly on d.

However, on every dm, the counter is initialised at moment
m and, therefore, is defined correctly on it.

Let B and the Wτ , for τ ∈ T , be concept names. Then
the following formulas ensure correctness of tiling:

(> v ∃Sτ0), (26)

(∃S−τ0 v B) ∧2+
F (B v ©B), (27)∧

τ∈T
down(τ) 6=white

2+
F (B u

ln

j=1
Qj u ∃Sτ v ⊥), (28)

∧
τ,τ ′∈T

up(τ) 6=down(τ ′)

2+
F

(
∃Sτ u©∃Sτ ′ v ⊥

)
, (29)

∧
τ,τ ′∈T

right(τ) 6=left(τ ′)

2+
F

(
∃S−τ v ©Wτ ′

)
, (30)

∧
τ∈T

2+
F

(
Wτ u

ln

j=1
Qj u ∃Sτ v ⊥

)
, (31)

∧
τ∈T

n∧
i=1

2+
F

(
Wτ uQi v ©Wτ

)
. (32)

Indeed, (26) ensures that τ0 is placed at (0, 0) and (27) that
d0 ∈ BI(k), for all k ∈ N. It follows that we have a ‘mas-
ter counter’ (distinguished by the concept B), which is ini-
tialised on d0 at 0 and has value 0 at every moment of time,
when a tile for the bottom row is being selected. Then (28)
guarantees that the bottom of the corridor is coloured white.
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By (29), the adjacent colours of tiles in the same column
match. It also follows from (29) that the top of the corridor
is also white: the up-colour of a tile in the top row matches
the down-colour of the tile at the bottom of the next column,
which is white by (28). To make the colours of adjacent tiles
in the same row match (such tiles are 2n moments of time
apart) we use the 2n counters. Take dm ∈ (∃S−τm

)I(m).
By (30), dm ∈ W

I(m+1)
τ ′ , for every tile τ ′ that cannot be

put to the right of τm in a correct tiling. As the counter is
initialised on dm at moment m, it has value 1 at m + 1.
Then, by (32), we have dm ∈ W

I(m+2)
τ ′ , for every tile τ ′

that cannot be put to the right of τm. The same argument
iteratively applies until the moment m+ 2n − 1 and there-
fore, we have dm ∈W I(m+2n)

τ ′ , for every tile τ ′ that cannot
be put to the right of τm. But then, by (31), no such tile τ ′

can be selected as τm+2n .
It follows that if ϕT,τ0,n is satisfiable then T tiles the

N × 2n-corridor. The converse implication is clear. Note
that ϕT,τ0,n does not use any number restriction.

7. Temporalised EL is undecidable

In contrast to the positive results above we now show that
even a rather weak temporalisation T LEL of ELwith global
roles and GCIs is undecidable. To prove this we do not need
ABox assertions. Moreover, 3F will be the only temporal
concept constructor, and 2+

F the only operator applied to
formulas. Besides, no local roles are required. Formally,
T LEL concepts C are defined as follows:

C ::= > | Ai | C1 u C2 | ∃Ti.C | 3FC,

where the Ti are global role names. A T LEL GCI is
a formula of the form 2+

F (C1 v C2) (often written as
C1 v∗ C2), where C1, C2 are T LEL concepts. Observe
that every set of T LEL GCIs is satisfiable: they are satisfied
in the model where all concepts and roles are interpreted by
the whole domain at every time point.

In fact, the interesting reasoning problem for T LEL is
whether a GCI is a logical consequence of a set of GCIs.
Without the temporal operators, this problem is known to
be decidable in polynomial time [5]. We are now going to
show that it is undecidable for T LEL.

Theorem 11. It is undecidable whether a T LEL GCI is a
consequence of a finite set of T LEL GCIs.

Proof. The proof is by reduction of the following version
of the undecidable satisfiability problem for temporalised
ALC. Define the concepts C of T LALC as follows:

C ::= > | ⊥ | Ai | ¬C | C1 t C2 |
C1 u C2 | ∃Ti.C | 3FC.

We introduce >, ⊥ and t as primitive connectives because
this will be useful in the reduction below. A T LALC GCI
is of the form 2+

F (C1 v C2), where C1, C2 are T LALC
concepts. Say that an ALC concept C is satisfiable relative
to a set of GCIs if there exists a model satisfying C and the
set of GCIs. The following is proved in [14]:

Theorem 12. Satisfiability ofALC concepts relative to sets
of T LALC GCIs is undecidable.

Suppose now that a set of T LALC GCIs and a concept in
ALC are given. First, we perform a number of satisfiability
preserving operations.

(a) Ensure that negation ¬ occurs in front of concept
names only: for every concept ¬C with complex C, in-
troduce a fresh concept name A, replace ¬C with ¬A, and
add A v∗ C and C v∗ A to the set of GCIs. The resulting
concept is satisfiable relative to the resulting set of GCIs if
the original one was satisfiable relative to the original set of
GCIs.

(b) Ensure that ¬ does not occur at all in the set of GCIs
nor in the concept: for every concept ¬A, introduce a fresh
concept name A, replace every occurrence of ¬A with A,
and add > v∗ A tA and A uA v∗ ⊥ to the set of GCIs.

(c) Ensure that disjunction t does not occur at all in the
set of GCIs nor in the concept: first, modulo introduction of
new concept names, we may assume that t does not occur
in the concept and that the only occurrences of t in the set
of GCIs are of the form (i)AtB v∗ C and (ii)C v∗ AtB,
whereA andB are concept names andC is disjunction free.
Denote the resulting set of GCIs by T and the concept by
C0. Now we replace in T the former kind of GCI with
A v∗ C and B v∗ C. The latter one is replaced with four
GCIs

C v∗ ∃R.(M u 3FX u3FY ),
∃R.(M u 3F (X u 3FY )) v∗ A,

∃R.(M u 3F (Y u 3FX)) v∗ A,

∃R.(M u 3F (X u Y )) v∗ B,

where R is a fresh global role name and X , Y and M are
fresh concept names (for each concept inclusion C v∗ A t
B). Denote by T ′ the the new set of GCIs. Clearly, if C0

is satisfiable relative to T ′, then C0 is satisfiable relative
to T . Conversely, suppose that C0 is satisfiable relative to
T . We may assume that the witness interpretation has an
infinite domain ∆. Consider a GCI C v∗ A t B. Interpret
R in such a way that RI(n) is a forest of infinite outdegree,
i.e., RI(n) is acyclic, for each w ∈ ∆ there exist infinitely
many w′ ∈ ∆ such that (w,w′) ∈ RI(n), and for each
w′ there exists at most one w with (w,w′) ∈ RI(n). Now
interpret M by choosing for each w ∈ CI(n) exactly one
node w′ ∈ MI(n) with (w,w′) ∈ RI(n). This can be done
in such a way thatMI(n)∩MI(m) = ∅ for n 6= m. Finally,
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interpret X and Y as follows: suppose (w,w′) ∈ RI(m),
w ∈ CI(m), and w′ ∈ MI(m), for some m. Then w ∈
(A t B)I(m). If w ∈ BI(m), then include w′ in XI(m+1)

and Y I(m+1). If w ∈ AI(m) \ BI(m), then include w′ in
XI(m+1) and Y I(m+2). It can be shown that the extended
interpretation I satisfies T ′ and C0.

Observe that T ′ and the concept C0 only contain the op-
erators u, ∃, >, ⊥, and 3F . We now reduce satisfiability
of C0 relative to T ′ to subsumption in T LEL. Introduce a
fresh concept name L, replace every occurrence of ⊥ with
L and extend T ′ with ∃T.L v∗ L, for every role T from
T ′ and C0, and 3FL v∗ L. Then C0 is satisfiable relative
to T ′ iff C ′0 v∗ L does not follow from the new set T ′′ of
GCIs, for the new concept C ′0: clearly, if C0 is satisfiable
relative to T ′, then we obtain an interpretation I satisfying
T ′′ in which LI(0) = ∅ but C ′I(0)

0 6= ∅. Conversely, if
C0 is not satisfiable relative to T ′, then for every interpre-
tation I with w ∈ C

′I(0)
0 , there exists a w′ reachable from

w following a path along global roles T I(0) (from T ′ and
C0) such that w′ ∈ LI(m). But then, by the new GCIs,
w ∈ LI(0).

8. Conclusion

We have shown that temporalisations of various dialects
of DL-Lite are decidable with global roles and GCIs, while
temporalisations of EL are not. The crucial difference be-
tween the two languages is the absence of ‘qualified’ quan-
tification in DL-Lite. As there is no constructor ∃R.C in
DL-Lite, we can actually encode global roles using tempo-
ral constraints on unary predicates. Although we obtain un-
intended models where roles are not global, the language is
too ‘weak’ to notice this. Note, however, that these decid-
ability results can easily be ruined by role inclusions. We
have also seen that, in contrast to qualified quantification,
the presence of Boolean operators does not have any impact
on the decision problem: although EL does not contain t
and ¬, its temporal dimension together with GCIs is per-
fectly capable of reintroducing them.
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