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Abstract concise representation of pure reals : for instance, reals a

used for the values of clocks and integers for expressing the
We tackle the issue of representing infinite sets of real- parameters in CPDBM.
valued vectors. This paper introduces an operator for com-
bining integer and real sets. Using this operator, we de-  Fortunately, the first-order additive logic over integers
compose three well-known logics extending Presburger withand reals is decidable. Nevertheless, the algorithmic of
reals. Our decomposition splits a logic into two parts : one sets combining integers and reals does not seem simple,
integer, and one decimal (i.e. on the inter{@|1[). We also  even when it is based on finite automata like Real Vector
give a basis for an implementation of our representation.  Automata [13, 16] or weak RVA [8], or based on quantifier
elimination [29].

1 Introduction For that matter, the algorithmic of Presburger (using
finite automata) and variations of DBM are quite efficient.
Hence, our idea is to reduce the algorithmic difficulty of the

_Verification (and model-checking in particular) of infin- gt rqer additive logic of integers and reals (and of some
ite systems like timed automata [1] (and hybrid systems) g,hcjagses and decidable extensions) by decomposing a

and counter systems [5] need good symbolic representation,,,pjex set of integers and reals into a finite union of
classes ; bygood we mean having closure properties (0y g of integer sets and decimal sets. By decimal, we
first-order logic operators) and decidability results (for ,oon numbers in the dense inteffal1[ : then, we define
testing inclgsion and emptiness). . Presburger arith.m.etica new class of sets as follows. Givensets of integers
_[27, 23] enjoys such goc_Jd_ properties, and some efflment(Zi)OSiSn andn sets of decimaléD; )o<;<,., we introduce
!mplementanons (usmg_ﬂmte automata) have been intens-iha operator finite union of sumswhich builds the finite
ively used for the analysis of counter systems [6, 20, 14, 15] unions of the sumsZ; + D,. This class is shown stable
under boolean operations, cartesian product, quantditati

_ Despite the fact that the complete arithmetic on reals 5 reordering if both of the two initial classes are also
is decidable [28], only some restricted classes of the first- gi5pe.

order additive logic of reals (DBM, CPDBM, finite unions
of convex polyhedra) have been used for the analysis of
timed automata. This is mainly due to the fact that the
algorithmic complexity of DBM is polynomial, which

is the basis of efficient verification algorithms for timed
automata in BRAAL [11, 25].

One of our aims is then to re-use, in combining the
best representations of these two initial s€&)o<i<n
and (D;)o<i<n, the best libraries dealing with them to
efficiently handle finite unions ofZ, + D;)o<i<n (for
instance : RESTAF [7] for the integers and PPL [4] for

. . the reals).
However, we would like to be able to use both integers )

and reals, for at least two reasons. First, we want to analyse
timed counter systems [2, 3, 13] in which the reachability . - :
and real sets are in fact finite unions of sums of well-known

sets contain vectors with both integers and reals. Second . .

we want to be able to use inteqers as parameters for atlasses. We prove that finite unions of sums of Presburger
g P set of integers, and sets definable in the first-order additiv
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We show that three of the main classes of mixed integer




of CPDBM are expressible as the finite unions of sums of (¢; ;, <; ;) means that; — r; <, ¢; ;, wherer;,r; are
Presburger-definable sets and DBM-definable decimal setsclocks. Thus, each element of a DBM represents a diagonal
Moreover, when we go beyond Presburger by consideringconstraint (i.e. a bounded difference). Finally, termd tha
RVA, we show that the class of sets representable bydo not represent any actual constraint are symbolized by
RVA in basisb is the finite unions of sums of Presburger c¢; ; = +oc.
extended with a predicatg, (which gives integer powers
in baseb) and the additive logic of decimals extended with
a predicatelV, (which, similarily to V;,, gives negative 2.2 About extensions of DBM
powers in baseé).
On the following example taken from [9], the timed auto-

maton features 2 clocksandy, and a unique location. The
2 Representations mixing integers and reals automaton’s behaviour is very simpley:is reset to0 as
soon as it reaches while x flows continually. In the initial
state, the clocks are both setdcoMoreover, an invariant in

In this section, we motivate our work with a small )
the location ensures thatnever exceeds.

example of timed automaton. We show that extracting
integers from reals can yield more concise formula than
pure reals. Then we introduce an operator combining

y:=0
: z:=0
integer and real sets of vectors.

. (y<1)
2.1 Timed Automata and DBM

q d it involving behavi The clock diagram associated to the automaton expli-
In order to study real-life systems involving behaviours citely shows this behaviour :

that depend on time elapsing, timed automata are probably
the most used and well-known model for such systems.

As described in [1], the basic idea of timed automata is to Y

add real-valued variables (called clocks) to finite aut@mat 2
These clocks model temporal behaviours of the system,

flowing at a universal constant rate ; each clock can be com- 1
pared to an integer constant, and possibly resét tdhe

only other guard allowed is called a diagonal constraint, 0

consisting in comparing the difference of two clocks to . _ _ _
an integer constant. As the clocks’ values are unbounded, A classical forward analysis [17] is considered here,
by computing the reachable states (i.elocation x

the state-space generated by a timed automaton is infinite ; e
therefore, regions are used to model a finite abstractionc/ock values) from the initial one (wherer = y = 0).

of the system’s behaviour. Practically intractable beeaus '"€n, we build the corresponding zones, each zone being
of its size, the region graph is then implemented as zones'€Presented by a DBM ; here, we have an infinite yet count-

in most verification tools [11, 25, 18, 24] modelling such able setof DBM as follows. Note that in this examplés
real-time systems. always< ; therefore, we will omit it in the matrices.

Technically, zones are represented by Difference Bound 0 oY
Matrices (DBM) [12, 21] in these tools. A DBM is a square o0 =0
matrix representing the constraints betweeriocks defin- S
ing a zone. Here, we see a DBM as a tufite<), where Y 1 =0 i>0

¢ = (i )ogij<n, < = (<ijlogij<n, Cij € ZU {+oo}, .
and<; ;€ {<, <}. Each element of this tuple is an element In order to make the state-space computable, abstraction

of the square matrix, defining a DBM set as follows : techniques are used to get a finite number of zones. The
abstraction being used in most model-checkers is based on
Re<={reRr"| /\ i =1 =i Cis) maximum constants : a cloaks valuation i_s considered
0<i j<n equal toco as soon as it exceeds the maximal constant to

which ¢ is ever compared. On the example, if a guarded
In order to deal with constraints involving only one clock, transitionz > 10° leads to another state, then the clock
the fictive clockr is always set to the valug An element diagram becomes as follows :



Y union of the following three sums suffices :
2 (10,-..,10° = 1} x {0} + )
! U({10°} x {0} +d)
0 U({106+1,...,oo}><{0}+.)
of ggj :formally, this abstraction yields the following set This latter symbolic representation of such a reachab-

ility set is much smaller than DBM. Indeed, representing
zones with DBM implies memorizing a possibly huge

0 vl 0 vy number of matrices, depending on the maximal constant
0 0 —i 0 0/0 00 0 - . -
10 i , 0 for the clocks (one million, in this example). However, by
1! 1 ; 6 ¢ Olo 106 O(;) introducing integers to express periodicity, we can reduce
Y - Y -

0<i<106 the representation to three small combinations of interval
Moreover, we can even get rid of the abstraction, so as
to get an exact representation for the same cost. CPDBM
also have these advantages, but are undecidable because
of the multiplication. Hence, let us specify a little more
what is our representation : we take finite unions of reals,

. : . real numbers being decomposed as sums of integers and
but location-dependent. Another abstraction technlquesmaller reals (called decimals). These integers and reals

is proposed in [10], distinguishing between upper and .., o gefined using quantification, addition, and boolean
lower bounds within maximal constants. To the best of operators

our knowledge, these are the only zone-based abstraction
techniques ; in each of them, the number of DBM still
heavily depends on maximal constants.

This set of DBM is finite, but remains hugel0® + 2
matrices need to be computed and memorized, which
seems exaggerated, a fortiori for such a simple example. In
[9], a more elaborate abstraction is proposed : the clocks’
maximal constants are no more global to the system,

Actually, our approach comes down to representing sets
of real numbers by extracting their integer components ;
. . the interesting point is that adding integers to real sets ca
Writing here such an infinite or huge number of DBM g hiry their representation and ease their handling. One

would have beenimpossible ; therefore, we naturally used a1y think that adding integers to such a first-order real
parametric representation of these DBM. Actually, thiside logic would make it undecidable, but section 3 proves the

IS also. usgd by Constrained Rarametnc DB,M (CPDBM) opposite. Before that, we need to formalize our representa-
[2], which is the data structure implemented in theEDR :

[3] model-checker. CPDBM are indeed a more expressive
version of DBM, extended in two steps. First, we consider
PDBM, in which ¢; ; constants becomg ; arithmetical
terms (the parameters). Such arithmetical tetrae given

by the grammat == 0 | 1 | o |t —¢ | t+t | t =t
wherex belongs to a sek’ of real variables. Second, a
PDBM becomes a CPDBM as terms are constrained by
quantifier-free first-order formulag. Such formulas are
defined byp ::=t <t | =g | ¢V ¢ | Is_int(t) (where the
predicatel s_int(t) is true iff ¢ is an integer). Each of the
two sets of matrices hereinabove is in fact a single CPDBM.

2.3 Composing integers and reals

Notations. The set[0,1] is denoted byD in the sequel.

We also call adecimal (number) anyd € D, and a
decimal setany D C D. We write x to denote avector
(z1,...,z,). Sometimes, in order to be concise, we use
FO(...) to denote the sets represented by this first-order
logic. However, it does not make our statements incorrect,
because we mostly discuss the expressive power of such

. logics.
Consider now another way to represent the set of reach- 9

able clock values. On the second diagram showing the ab-
straction, we can see an obvious regular pattern algng
defined by three shapes //, M, and ll. We define
each shape as follows /:= {(z,y) € [0,1* | z = y}, P
A= {(v,y) €[0,1? |z >y}, andB= {(2,y) € [0,1]*}. RCR'stR= U(Zz + D;), with (Z;, D;) € 3 x ©

If we want to represent the same set as the previous abstrac- i=1

ted zones, but without DBM, we can express the periodiCity ~ 11he symbols is sometimes used for the disjoint union, but we do not
of each pattern with integers. To formalize it, taking the use such unions in this paper.

Let3 C P(Z™) and® C P(D") ; we will assume in
this paper that we are using-dimensional vectors, with
n € N. We denote by 3 W D the class of real vectors




andp > 1.

Definition 5. A classh C J,, ., P(R") is stableif it is
closed under boolean operations, cartesian product, quan-

Here are some examples of simple sets that might be of-tification, and reordering.

ten used, written as finite unions of sums of integers and

decimals :

Example 1. The empty st is written® + 0. The seR™ is
writtenZ™ 4+ D™. The seZ" is writtenZ™ + {0}.

Example 2. The setkR— = {r € R? | r; = 7o} is written
{ZEZ2|Z1:ZQ}+{(1€|D2|d1:d2}

Example 3. The setR< = {r € R? | r; < ro} is written :

{2€2| 2 <2} +{deD?|d < dy}
Nz €721 <z} +{deD?|dy > dy}

Example 4. The setR, = {r € R || + 1y = 73} is
written U,c o112 € Z° | 21 + 22 + ¢ = 2} +{d €
D3 | dy + dy = ds + ¢}, wherec denotes a carry.

The limits of our representation can be seen with
the following counter-example. Consider the set

> 1
R = (o + {57
(and not simply;) to avoid the case where the decimal part
is % = 1 for j = 1 (because it would not be a decimal,
i.e. in[0,1[). Our representation can not deal with such

}) ; note that we usg + 1

a set ; indeed, despite the fact that it is a union of sums
of integers and decimals, we can see that the union is

inherently infinite. We insist on the finiteness of the union
in our representation, mainly for implementability reason
this will be discussed in section 5.

Now, let us consider the stability of our representation.

We prové that if 3 C |J,,c, P(Z™) and® C |J,,,, P(D™)

are stable by the classical first order operations then the

class3 WD = (J,cp3n WD, where3, = 3nP(Z")
and®, = ©® N P(D") is also stable by these operations.
The operations we consider are :
(union, intersection, difference), cartesian productargu
tification, and reordering. We use the following defini-
tions for these last two operations. First, quantificati®n i

boolean combinations

Notice that taking the union of two such sets is trivial, as
they are already unions of integer and decimal parts. Then,
observe tha([Zl+D1)ﬁ(Z2+D2) = (ZlﬁZQ)+(DlﬂD2)
for any 7,7, C 7™ and for anyD,, D, C D" ; thus,
the stability by union of3,, & ®,, provides the stability by
intersection. From the equalityZ; + D;1)\(Z2 + D2) =
((Z1\Z2) + D1) U (Z1 + (D1\D2)) we get the stability by
difference. The stability by cartesian product is provibgd
(Zl + Dl) X (ZQ + DQ) = (Zl X ZQ) + (Dl X DQ). The
stability by projection comes from;R = (3;Z) + (3;D),
whereR = Z + D. Finally, the stability by reordering is
obtained thanks ta(Z + D) = (nZ) + (xD). We have
proved the following proposition, which is later used in the
proofs of theorem 7 and proposition 10 :

Proposition 6 (Stability). The clas® w2 is stable if3 and
® are stable.

3 First-order additive logic over integers and
reals

Using at the same time integers and reals in the whole
arithmetic is known to be undecidable. However, when
multiplication is left apart, the first-order additive logis
decidable ; its decidability has been suggested by Buchi,
then proved by [16] with automata and by [29] using quan-
tifier elimination. Actually, it can be seen as the Presbur-
ger logic [27] extended to the reals. This first-order lo-
gic FO(R, Z, +, <) can encode complex linear constraints
combining both integral and real variables. In this section
we prove that sets definable in this logic can be decom-
posed into finite unions o + R where Z is definable
in FO(Z,+, <) and R is definable in FQD, +, <). This
result proves that complex linear constraints combining in
tegral and real variables can be decomposed into linear
constraints over integers, and linear constraints ovds.rea
More precisely, we prove the following decomposition :

Theorem 7. FO(R,Z,+,<) FO(Z,+,<) W

done by projecting away variables from the considered vec-FO (D, +, <).

tor: VR € R*, 3,R = {(le-~7ri717ri+17-~-a7dn) ‘
Ir; (r1,...,7—1,74,Ti41,---,Tn) € R}. Second, a re-
ordering is a mere permutation functianof the variables
order in a vector VR C R", R = {(rx(1), -+ Tn(n)) |
(ri,...,r) € R}. Then, we introduce a generic definition
for stability :

2Here we have to take unions, depending on the number of diores)s
for a technical purpose : the projection of a component invéator.

Proof. First of all, observe that any set definable in the
logic FO(Z,+,<) W FO(D,+,<) is also definable in
FO(R,Z,+,<). Conversely, the setk andZ, the func-
tion + : R x R — R and the predicateC are definable
in FO(Z,+, <) W FO(D, +, <) from examples 1, 2, 3, 4.
Thus, stability by first order operations provides the inclu
sion FO(R,Z,+,<) C FO(Z,+, <) W FO(D, +, <). We
deduce the equality. O



Now, let us recall that sets definable in the Presburger lo-formula(x) denoting a seZ C Z™ and let us prove that

gic FO(Z, +, <) can be characterized thankslittear sets
[23]. In fact, a setZ C Z" is definable in this logic if and
only if itis equal to a finite union of linear sekst P* where
b € 7™, Pis afinite subset o™, and P* denotes the set of
finite sumszlep,» with p1,...,px € P andk € N. This

Z + D is a| JCP-DBM,. set. Observe that € Z + D

if and only if there exist&z € Z such thatr — z € D.
The conditionr — z € D is equivalent to/\,; ., 7 —

rj <4j Ci;+2—z;. Letus consider the Presburger formula
P(p) = Jz € Z" p;; = ¢;; + 2 — z; and observe that

geometrical characterization can be extended to the cfass oR,, - = Z + D. We have proved the inclusian.

sets definable in F(Z, +, <) W FO(D, +, <) by introdu-
cing the class opolyhedral convex setd setC C R” is
said polyhedral convexf C' is defined by a finite conjunc-
tion of formulas(«, x) < ¢ wherea € 7", <€ {<, <} and

¢ € Z. Recall that d&ourier-Motzkin quantification elimin-
ation proves that a seéf' C R” is definable in FOR, +, <)

if and only if it is equal to a finite union of polyhedral con-
vex sets. In [22], the authors have proved the following
geometrical characterization :

A setR C R" is definable in FQR, Z, +, <) if and only if

it is equal to a finite union of sets of the fotty- P* where
C C R" is a polyhedral convex set anfd is a finite subset
of Z™.

3.1 Decomposing DBM-based representations

In this section, we characterize an extension of DBM. We

denote by DBMp, the finite unions of DBM sets which are
included inD™. Notice that J DBMp is stable by first order
operations, thanks to a Fourier-Motzkin quantifier elimina

For the converse inclusion, let us consider a CP-DBM
setRy . LetZq = 7" N (Ry,< — d) indexed byd € D™.
Observe thaZ, is actually the following set of vectors :

Zaq = U ZGZn| /\ 2 — 25 =i C@j‘i’(dj*di)
c=o 0<i,j<n

Sinced; —d; € ]—1,1[andz; — z;, ¢; ; € Z we deduce that
Zi — 25 =44 Cij+ (d] — dl) is equivalent tor; — Zj < Ci,j
if d; —d; <;; 0anditis equivalentta; — z; < c¢;; —1
otherwise. Given a matrixa = (m; ;)o<i j<n Such that
m;; € {0,1} forany0 < 4,5 < n, we denote by, and
Dy, the following sets:

Im ={z€7Z"|3c ¢(c) A /\ zi — 2 < Cij —Mi i}
0<i,57<n

Dm={deD"| A (di—d;=i;0<mi;=0)}

0<i,5<n

Note thatD,,, is a DBM set andZq = I,,, for anyd € D,y,.

tion. FromJ,,, Dm = D™ we deduce thaR, < = Uycpn Za +

{d} = U,, Im + Dm. We have proved thak - is defin-
O

A CP-DBMy, is a DBM where the vectat is no longer a
constant, but a vector of parameters constrained by a for-able in FO(Z, 4-, <) & | JDBMp.
mula ¢(c) defined in a logicL. More precisely, a CP-
DBM,, is a tuple(¢, <) representing a set, < S.t. :

R¢>,-< = U Rc,—<
e

As introduced in [2], CPDBM correspond to CP-DBM
where L is the first-order arithmetic without quantifiers ;
in particular, multiplication is allowed in this formalism
In this section, we study another variation of DBM :
CP-DBM,, which is CP-DBM, whereL is the decidable
Presburger logic FQZ, +,<). That is, CP-DBM. are
CPDBM with quantifiers but without multiplication. We
denote by CP-DBM, the finite unions of?,, , i.e. finite
unions of CP-DBM_ sets.

4 Beyond Presburger

We have just shown our decomposition to be working on
FO(R, Z, +, <) and below. Now, we prove that it can also
be used on more expressive logics. We take the example of
Real Vector Automata (RVA) [16], which is, to the best of
our knowledge, the most expressive decidable implemented
representation for sets of real and integer vectors. RVA are
used in the tool LASH [14, 15]. In this section, the class of
sets representable by RVA is proved decomposable into our
formalism.

Letb > 2 be an integer called tH®asis of decomposition
We denote by, = {0,...,b—1} the finite set ofligitsand

We show that fini . t CP-DB in f by S, = {0,b — 1} the set ofsign digits An infinite word
e show that finite unions of CP-DBMsets are in fact ~ ~_ s ...ap*aps1apss .. . over the alphabeEr U {x} is

a combination of Presburger-definable sets and finite unions_ ;o rrectif s € S anda; € X7 for anyi > 1. In this

of DBM decimal sets : casey is called amost significant digit first decomposition
Proposition 8. We haved JCP-DBM, = FO(Z,+,<) ¥ of the following real vectop;(c) € R™:

| DBMp.

Proof. Let us first prove the inclusio®. Let us consider S 4 Zb_iai

a DBM (c, <) denoting a seD C D™ and a Presburger L=b i>1

po(o) = b*




A Real Vector Automaton (RVA) basisb is a Blichi auto-
maton A over the alphabeE} U {x} such that the lan-
guagelan(A) recognized byA contains onlyb-correct
words. The sefA] represented by is defined by[A] =
{pp(c) | o € Lan(4)}. A setR C R" is saidb-
recognizableif there exists a RVAA in basisb such that
R = [A].

According to [16], the class dfrecognizable sets can be
logically characterized by FQR, Z, +, <, X;) whereX, is
an additional predicate. The predicatg over R? is such
that X, (z, u, a) is true if and only if there exists a most sig-
nificant digit first decompositioar = sa; ...ax * agt1 - ..
of 2 and an integef € N such that; = a andu = b* .

Theorem 9. [16] A set R C R™ is b-recognizable if and
only if it is definable in FQR, Z, +, <, X3).

In order to provide a decompostion of
FO(R,Z,+, <, X}), the predicateX, is proved expressible
by two valuation function$}, andWW, where :

e V, : Z\{0} — Z is theinteger valuation functiomn-
troduced in [19] and defined by,(z) = b, where
j € Z is the greatest integer such tihat' z € Z.

e W, : D\{0} — D is thedecimal valuation function
defined byW,(d) = ¥/, wherej € Z is the least in-
teger such that—’/d ¢ D.

By expressing X, in FO(R,Z,+,<,V,, Wy)
and V,, W, in FO(R,Z,+,<,X;) we deduce that
FO(R,Z,+,<,X;,) = FO(R,Z,+,<,V,, W;). Finally,
from proposition 6 and theorem 7, we get the following
proposition.

Proposition 10. FO(R,Z,+, <, X3) =
FO (Z) +7 §7 ‘/27) L-H FO([D) +7 §7 Wb)

Moreover, it is clear that the logic F@, +,<,V;) W
FO(D, +,<,W;) extends FGZ,+,<) ¥ FO(D, +, <).
However, even if the functiod, is crucial to logically
characterize the class éfrecognizable sets, this predic-
ate is not used in practice. In fact, in order to get effi-
cient algorithms for manipulating Blichi automata (more
precisely, minimization and determinization), we only €on
sider setsk C R that can be represented byveak RVA
[14]. Recall that a Biichi automatoA is said weak if
any strongly connected componesitsatisfiesS C F' or
SN F =, whereF is the set of accepting states. Un-
fortunately, the class of se8 C R™ representable by a
weak RVA is not logically characterized since this class

is not stable by first order operations (because of projec-

tion). In practice, since any sg¢ C R" definable in
FO(R,Z, +,<,V,) can be represented by a weak RVA, the

RVA symbolic representation is only used for represent-

ing sets in this logic (i.e. withoul;). Just remark that

FO(R,Z,+,<, W) = FO(Z, +, <, V3)WFO(D, +, <). Fi-
nally, note that weak RVA are used in the tool LIRA [8],
whose benchmarks show very efficient computation times
for sets defined in FCR, Z, +, <).

5 Towards an implementation

From an implementation perspective, our decomposition
has been designed to fitEBEPIS requirements. GNEPI
[26] is a modular framework supporting Presburger-based
solvers and model-checkers, distributed under GNU Public
License. Its core consists of a plugin manager, which
computes generic operations (such as boolean opera-
tions, quantification, satisfiability) on sets encoded &s th
solutions of Presburger-like formulas. Different imple-
mentations of these operations can be used as plugins ;
existing ones include ®ESTAF, LIRA, LASH, MONA,
OMEGA, and PPL. We have begun to design a plugin for
our decomposition, which uses two existing plugins : one
for the integer part, and one for the decimal part.

Once this plugin is ready, any combination of two other
plugins is possible : for example, one could trRESTAF
over integers and PPL over decimals. One could even
be curious and study the efficiency of two instances of
LIRA plugins, each one working on its own part (integer
or decimal). Another benefit, coming from the new decom-
position of RVA, would be to use the LASH plugin only
on one part, and manage the other one differently : this
might improve the effectiveness of RVA, which are very
expressive but not really efficient in practice. So far, our
first tests on small conjunctions of linear constraints show
execution times close to the ones of LIRA.

What we need now for an implementation is a unique
way to represent sets. Indeed, in order to avoid unduly
complicated representations of sets, we have to make
our representation canonical. Therefore, let us set the
theoretical framework we use in practice.

Let 3 C P(Z") and® C P(D"). Notice that ifR =
(Z+D1)U(Z+Ds),thenR = Z+Dwith D = D;UDs ;
we will always suppose tha@ is closed under union wlog.
Then, notice thak C R™ can be represented by a partially
defined functionfy such that :

fR:3— D
Zi— D

This  function’s interpretation is defined as
p

=1 =UJ (Zi + fR(Zi)), which matches the nat-
i=1
ural writing of R introduced in section 2.3. Note that this



representatiotfz is not unique.

For technical reasons, we extefid to a totally defined
function fr st. fr(Z) = 0if Z ¢ dom(fr) and
fr(Z) = fr(Z) otherwise.
support of fr assupp(fr) = {Z | fr(Z) # 0}. Inthe

remainder of this paper, we will use without ambiguity the

notation f instead offx.

We are now able to represent the setvith a function
we wish to handle. Therefore, we want to identffy and

[fr] : inorder to do so, this latter interpretation has to be an
injection. Generally, this is not the case : using the pnesio

definitions, we could have different writings pfr]. How-

ever, if the images by are disjoint, then the interpretation
[fr] is an injection. Finally, for effectivity reasons, we will

Moreover, we define the

Example 16. The setR; = {r € R® | ry + ry = r3}
is represented by the IDF, defined byf,(Zy,) = Dy,
f+(Z1) = D1, f4+(0) = D*\(D1 U Dy) and f(Z) = 0
otherwise where (intuitively € {0, 1} denotes a carry) :
Z.={2€?3| 21+ 2 +c=2}
DC:{dED3|d1+d2:d3+C}

Observe thatany set[dDF5, _p, ] isin3,wD,,. The

converse is obtained by proving the following proposition :

Proposition 17 (Closure by union) Let R €
[IDF5,_.5,]. Then, foranyZ € 3, andD € ®,,, we
alsohaveRU (Z + D) € [IDF5, .o, ].

Proof. We consider an IDF : 3,, — ©,, such thaf f] =
R and two setsZ € 3,, andD € ©,,. We must prove that

only consider functions whose support is finite. In the re- there exists an IDF’ : 3,, — ®©,, such thaf[f'] = R’

mainder of this section, we formalize this reasoning.
Let F50 ={f: 3 — D | supp(f) is finite}.

Definition 11. The interpretation function].] associates

to everyf € Fs3_o a set of real vectors defined by

1= U

Zesupp(f)
Notice that sincesupp(f) is finite, 75_.» do not suf-

(Z + f(Z)).

fice to represent every set of real vectors, as shown in th
counter-example on page 4. Let us now restrict ourselves to

the functions we handle :

Definition 12. An IDF (Integer-Decimal Function)s a
function f € F3_p such thatJ, f(Z) = D™ and such
thatZ # 72/ = f(Z) N f(Z') = 0. We denote them all
byIDF5_ .o = {f € F5_9 | f isan IDF}. We also write
[IDFs_ 5] ={[/]| f € IDF5_p}.

with R" = RU(Z+ D). We consider the following function:

e 3a
7z — (fezno) U

Z" | Z1uz=2"

—>@n

(f(Z”) N D)

As expected we are going to prove thdtis an IDF such
that[f'] = R'. We first show thatf’ is an IDF. First of

all observe thatJ,, f'(Z') = D". Next, letZ],Z; € 3,

such thatf’(Z1) N f'(Z5) # 0 then either(f(Z])\D) N
(f(Z5)\D) # 0 or there existZY, Z such thatZ{ U Z =
ZiandZy U Z = Zyand(f(Z{)ND)N(f(ZY)NnD) # 0
since the other cases are not possible. @Gi{tZz;)\D) N
(f(Z5)\D) # 0 implies f(Z]) N f(Z4) # 0 and sincef is
anIDFwe geZ] = Z,. And (f(Z{)NnD)N(f(Z4)ND) #
0 implies Z{ = Z! and in particularZ; = Z. We have
proved thatf’ is an IDF. Finally, equalityf /'] = R’ comes

The sets from examples 1, 2, 3, 4 are represented by thdrom:

following IDF :

Example 13. The empty st is represented by the IDF,
defined byf, (Z) = 0 forany Z # () and byf, ()) = D™.
The setR” is represented by the IDF+ (also notedfg-)
defined byf+(Z") = D™ and f+(Z) = 0 otherwise. The
setZ" is represented by the IDF- defined byfz»(Z™) =
{0} and fz~ (Z) = 0 otherwise.

Example 14. The setR- = {r € R? | ;1 = m} is
represented by the IDF_ defined byf_(Z_) = D_,
f=(0) = D>\ D— and f_(Z) = 0 otherwise, where:

Zo={2€l?|21=2} D—={deD?|d =ds}

Example 15. The setR< = {r € R? | 1 < 1o} is
represented by the IDF< defined byf<(Z.) = D-,
f<(Z<) = D< and f<(Z) = () otherwise where:

Ze={z2€?%| 2 <z} Ds={deD?|d, >ds}
Z<e={2€7%| 2 <z} D<={decD?|d <do}

1= + £(2)
ZI
~U(@ + (r(z)\p))
Z/
U @ +u@)nb))

Z" | 2"uZ=2"'

=@ +r@n\o)Juz"v z)+ (f(2")n D))

AL

=J@" +((f(z"\D)u (f(2")n D))

AU

u(Z+Dn(Jf(2")

=[/1u(Z+D)

O

Hence, we have just proved the following proposition :



Proposition 18. 3,, W®,, = [IDF3, _»,
Let us prove that this new representation is canonical :

Proposition 19. For any fi,fo € IDF3_ .5, [fi] =
[fo]l = fi=fa

Proof. ConsiderZ; C 7™ and let us prove thaf; (7;) C
f2(Z1). Naturally, we can assume thét(Z;) # 0 since
otherwise the inclusion is immediate. In this case, there
existsd € fi(Z1). As (f2(Z))z forms a sharing oD",
there existsZ, such thatd € f»(Z2). Let us prove that
71 C Zy. We can assume that;, # (0. Letz, € Z; and
observe thaty = z; +d € [fi] and from[fi] = [f2]
we getr; € [f2]. Thus, there exist&) such thatr; €
Zh + fo(Z4). SinceZz) C Z™ and f»2(Z5) C D™ we get
z, € Zhandd € fo(Z5). As (f2(Z))z forms a sharing
of D™ andd € f2(Z2) N f2(Z)) we getZy = Zj. In
particularz,; € Z, and we have proved thaty C Z5. The
other inclusionZ, C 7, is obtained symetrically. We have
proved thatZ, = Z,. Thereforef1(Z1) C f2(Z7) for any
Z1. By symmetry we deduce thdt (Z) = f»(Z) for any
Z. Thereforef; = fo. O

Notice that in practice, this canonicity depends on how
the sets i3 and® are represented. Indeed, if any of these

hull of Presburger-definable sets (as automata [19] or as
semi-linear sets [23]), and the convex hull of sets definable
in FO(D, +,<) (as finite unions of convex sets, using
Fourier-Motzkin). We can push this reasoning to other
symbolic representations and to other operations, such as
upward or downward closure.

Globally, this method of separating integers and reals
would speed up the software development process, because
of the ease of using already existing plugins. As mentioned
above, one can test the combination of any pair of plugins
(provided there’s at least one working on reals and another
one on integers). Furthermore, a very interesting point is
that a programmer can test his new plugin for real sets
directly in GENEPI, and then extend its expressivity by
coupling it with PRRESTAF or another plugin handling
integer sets. Obviously, the converse (extending an in-
teger plugin to the reals) is also possible in the same fashio
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