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Abstract

We give labeled natural deduction systems for a family afadogics extending the basic linear tense lofic We prove
that our systems are sound and complete with respect to the Ksipke semantics, and that they possess a number oflusefu
normalization properties (in particular, derivations nede to a normal form that enjoys a subformula property). Véo al
discuss how to extend our systems to capture richer lodiefragments of L. T'L.

1 Introduction

Hilbert-style systems, although uniform, are difficult tgelin practice, especially in comparison with the more “redtu
Gentzen-style systems such as natural deduction (ND)ese¢cand tableaux systems. However, devising Gentzea-sygh
tems for modal, relevance, and other non-classical logiesi@equires considerable ingenuity, as well as tradiritppumity
for simplicity and usability. A solution to this problem is émploylabelingtechniques, which provide a general framework
for presenting different logics in a uniform way in terms cfi@zen-style systems.

The intuition is that labeling (also called prefixing, armtotg or subscripting) allows one to explicitly encode diddial
information, of a semantic or proof-theoretical naturattis otherwise implicit in the logic one wants to capture, foo
instance, instead of a modal formula we can consider thiabeled formula (Iwffl: : A, which intuitively means thatl
holds at the world denoted hywithin the underlying Kripke semantics. We can also useltatmespecify how worlds are
related in a particular Kripke model, e.g. tfedational formula (rwff)z < y states that the worlg is accessible fron.

Labeled deduction systems have been given for several lagsical logics, e.g[ [1,/3/6] [7] 18,111,]12] 13} 16, 19], and
research has focused not only on the design of systems foifisjegics, but also, more generally, on the characteiopat
of the classes of logics that can be formalized this way. Gempeoperties and limitations of labeling techniques halg®
been investigated. For example, [19] highlights an impurteade-off between limitations and properties, which ban
roughly summarized as follows. Assume that we have a setied far reasoning about the introduction and elimination of
modal operators in Iwffg: : A such as the following rules fdr, where we express : JA as the metalevel implication
x < y = y : A for an arbitraryy accessible fromx: (y is fresh i.e. it is different fromz and does not occur in any
assumption on which : A depends other than < y):

[z <y]
y:'A z:0A z<y
A 07 (y fresh) 7@/:.4 0OE.

Assume also that we reason on the semantic informationgedudy labeling usinglorn-style relational rules

1 <Yt ... Tn <Yn
zo < Yo

where ther; andy; are labels, and > 0 (so that the rule has no premises wheg= 0). While restricting our systems to
such Horn rules allows us to present only a subset of all ptesson-classical logics, we can still capture several efittost


http://arxiv.org/abs/0803.3187v2

common modal and relevance logics, and, more importaiatheling provides an efficient general method for estabigshi
the metatheoretical properties of these logics, incluttiegy completeness, decidability, and computational desity. This
method relies on the separation between the sub-systeradsoming about Iwffs and the sub-system for reasoning about
rwffs: derivations of lwffs can depend on derivations offisufe.g. via the1 rules), but rwifs depend only on rwffs (via the
Horn rules).

In this paper, we give labeled natural deduction systema family oftense logicextending the basic linear tense logic
Kl [15]. Our starting point is [19] but it should be immediatelgar that Horn rules do not suffice: even a minimal tense
logic like Kl requires its time points to be connected, i.e. for any twaisat andy eitherx = y, or x is beforey, ory
is beforex. It is straightforward to see that such a property cannotdpgured by a Horn rule like the one above; rather,
we need non-atomic rwffs, in particular disjunctian) (of relations, and more complex rules built using a full fiostler
language, such as the axiom

conn .
Veyeo<ylUz=yUy<z

A similar situation occurs if we wish to impose irreflexivity our worlds. And that’s not all: as shown in [19] (in the ca$e
modal logics, but the same arguments apply here, mutatiandig), if we move to such a first-order language and wish to
retain completeness of the resulting systems, then we wegzbindon the strict separation between the sub-systemffer |
and that for rwffs (and let derivations of rwifs depend alsdwffs). As we will see in more detail below, this is best astad
by introducing a so-calledniversal falsumso that a contradiction in a world can be propagated not toréyy other world
but also to the relational structure to derive any rwff; avide versa, from a contradiction in the relational sub-systve
can obtain any Iwff.

The main contributions, and the structure, of this papettare the following. In Sectidnl 2, we give a brief presentati
the syntax and semantics, and of a standard axiomatizafidti, In Sectior B, we give a labeled natural deduction system
N (K1) for K1, which we show to be sound and complete (extending the caem@es proofs given for modal logics in19]).
Then, in Sectiol4, we show thAf( K1) possesses a number of useful normalization propertiesariicplar, derivations
reduce to a normal form that enjoys a subformula propertySeation’5, we extend/ (K1) to capture some interesting
extensions ofK7, and in Sectiofnl6 we discuss how to extend our systems toreaptiner logics like (fragments ofj T'L.
We conclude, in Sectidd 7, by comparing with related work disdussing future work. Detailed proofs and examples are
given in an appendix.

2 The basic linear tense logidsi
2.1 Syntax

Definition 1 Given a setP of propositional variables, the set ofell-formed Ki formulasis defined by the following
Backus-Naur-form presentation, wheres P:

Az=p|L|ADA|GA|HA.

Truth of a tense formula is relative to a world in a model, atyitively, GA holds at a world iffA always holds in the future,
andHA holds at a world iffA always holds in the past. We will formalize this standard @etics below, but in order to
give a labeled ND system fadkl, we extend the syntax with labels and relational symbolsdhpture the worlds and the
accessibility relation between them.

Definition 2 LetL be a set of labels and letandy be labels inL. If A is a well-formedK] formula, thenx : A is alabeled
well-formed formulglabeled formula or Iwff, for short).
The set ofwell-formed relational formulagelational formulas or rwffs, for short) is defined as folls:

pi=x<ylax=yl|b|lpdp]|Vz.p.

We write ¢ to denote a generic formula (Iwff or rwff). We say that an lwff A is atomicwhen A is atomic, i.e.A is a
propositional variable oA is L. An rwff p is atomicwhen it does not contain any connective or quantifiers,gd.s.() or p
has the formz < y or z = y. Thegradeof an Iwff or rwff is the number of occurrences of connectifesor ), operators
(G or H), and quantifiers¥). Finally, given a set of Iwffd" and a set of rwffs\, we call the ordered pa{l’, A) a proof
context

The given syntax uses a minimal set of connectives, opesadad quantifiers. As usual, we can introduce abbreviations
and use, e.g.»v, A, V and—, 11, U, for the negation, the conjunction, and the disjunctiorhim labeled language and in the



relational one, respectively. For instanee,A = A D1 andp’ U p"” = (p' I 0) 3 p”. We can also definé =~_1, other
quantifiers, e.gdx. p = —Vx. —p, and other temporal operators, efgl =~ G ~ A to express thatl holds sometime in
the future.

2.2 Semantics

Definition 3 A KI frameis a pair (W, <), whereWV is a non-empty set of worlds ardC W x W is a binary relation that
satisfies the properties of irreflexivity, transitivity aoohnectedness, i.e. for dlt, y) € W? we haver = y or (z,y) €< or
(y,x) €<.

A K1 modelis a triple (W, <, V), where(W, <) is a KI frame and the valuatiol is a function that maps an element of
W and a propositional variable to a truth valué 6r 1).

In order to give a semantics for our labeled system, we neddftne explicitly an interpretation of labels as worlds.

Definition 4 Given a set of labeld and a modelM = (W, <, V), aninterpretations a functionA : L — W that maps
every label inL to a world inW.
Given a mode/M and an interpretation\ on it, truth for an rwif or Iwff o is the smallest relatioh="** satisfying:

SMAL <y (@))€
EMA g =y !ff Az) = A(y); _
EMA p1 Do iff =M pr impliesE=MA po;
EMA V. p iff  forall y, =M ply/zl;
=M it VA@),p) = 1
MAg:ADB iff EM>2z: Aimplies=MA z: B;
Mz GA iff ~forall y, =M* z < yimplies=MA y @ A;
EMA 2 HA iff ~forall y, =M y < zimpliesE=MA y @ Al

Hence M . 1 and M2 (). When=M o, we say thatp is truein M according to the interpretation. By
extension:

=MA T ifft =MAg:Aforalz: AeT,
EMA A iff =M pforallpeA;

EMA (T, A)  iff EMA Tand =M A

LA EMA o iff =MA (T, A) implies=MA .

Truth for lwffs and rwifs built using other connectives oravptors can be defined in the usual mafiner.
2.3 An axiomatization of KI

Several different Hilbert-style axiomatizations haverbg&en for the logickl; the following one is taken from [15]:
(G1) G(AD B) D (GADGB)
(G2) ~H~GADA
(Gs
(G4

(Necg

)
)
) GA D GGA
)

[G(AVB) AN G(AVGB) AN G(GAV B)] D (GAV GB)

) If = Athen GA
(Necgr) If = Athen-HA

(MP) If - Aand+ A D Bthen- B

The axiom(G1) is standard for modal and temporal logics, whilé2) sets the dual relation betwe&handH, (G3)
expresses the transitivity arid?4 ) the connectedness 6f For brevity, we have omitted the symmetric axiof#& )-(H4)
that are obtained by replacing evegyby H and vice versa. Moreover, every classical tautology is totagy, and there are
rules for modus ponens and necessitation for lgo#mdH.

INote that truth for Iwffs is related to the standard truttatiein for modal logics by observing thet™ z : A iff =21 A.



[z: A D] [z : 4] [z <] [y <]

y;J_ z: B z:ADB z:A y:'A z:GA <y y:'A rz:HA y<=x

[ * *
:B:ARAAJ' m:ADBDI z: B oE z:GA Gl y: A z:HA HI y: A E
lp 0] o]
D paa g2y e o P YRR g refl= irrefl <
p 0 py Jdp2 D2 - Vz.p ply/z] Ve.z ==z V.= (z < )
p T=y x:l 0
t —— mon == ufl —— uf2
Veyz. (x<yMy<z) dz<z rans < Veyre<yUz=yUy<z cont ply/z] 0 uf x:l uf

*In GI (respectivelyHI), y is different fromz and does not occur in any assumption on whjchA depends other than the discarded assumptieny
(respectivelyy < x).
In VI, the variabler must not occur in any open assumption on whidtepends.

Figure 1. The rules of N(KI)

3 Alabeled natural deduction system fork

Our labeled ND systenV (K1) = N'(Kl.) + N(Klg)+N(Klg) comprises of three sub-systems, whose rules are given
in Figure].

The propositional and temporal rules &f(Ki;,) allow us to derive lwffs from other Iwffs with the help of rveff The
rulesoI andDF are just the labeled version of the standard|([14, 17]) NBs@ibr implication introduction and elimination,
where the notion odlischarged/open assumptianalso standard (e.g. the formyla: A] is discharged in the ruleI). The
rule RAA, is a labeled version akductio ad absurdumwvhere we do not enforce Prawitz’s side condition tHag 13
The temporal operator@ andH share the structure of the basic introduction/eliminatialies, with respect to the same
accessibility relation<; this holds because, for instance, we expressz A as the metalevel implication < y = y : A
for an arbitraryy accessible from: (as we did for1 in the introduction).

The relational rules oV (Ki) allow us to derive rwffs from other rwffs only. The ruldgAAy, O I, and3 E are
reductio ad absurdum and implication introduction and elation for rwffs, whilevVl andVE are the standard rules for
universal quantification, with the usual proviso faf. There are also four axiomatic rules (or “axioms”, for shetfl =,
irrefl <, trans <, andconn, which express the propertiessﬁ and<, where, for readability, we employed the symbols for
disjunction, conjunction, and negation.

The general rules o¥/ (Kl ) allow us to derive lwffs from rwifs and vice versa. The rul@n applies monotonicity to an
Iwff or rwif o, while the rulesuf1 anduf2 export falsum (and we thus call itaiversal falsupfrom the labeled sub-system
to the relational one, and vice vef$a.

Definition 5 (Derivations and proofs) A derivationof a formula (Iwff or rwff), from a proof contextT’, A) in N (K1) is a
tree formed using the rules iN' (K1), ending withp and depending only on a finite subsetaf A. We then writd’, A F .
A derivation ofy in /(K1) depending on the empty setp, is aproofof ¢ in A/(K1) and we then say that is a theorem
of N(K1).

2See[19] for a detailed discussion &1 A | , which in particular explains how, in order to maintain theality of modal operators lik&] and ¢, the
rule must allow one to derive : A from a contradictionl at a possibly different worlg, and thereby discharge the assumptionA D_L.

3Note that we do not need further axioms to express symmethyransitivity of=, since the former can be derived by usingn, conn, andirrefl <,
and the latter by usingron.

4Note that the presentation of the system could be simplifjgidtooducing a unique symbol for falsum (say), shared by the labeled and the relational
sub-systems. In that case, we would not need the mfiésand«f2, while the rules for falsum eliminatio®AA ; and RAAy could be replaced by the
following rule, where with—¢ we denote the negation of a generic formula (labeled orioelal):

[—¢]
% RAA,

However, we prefer to maintain a clear separation betweeitwh sub-systems, as it will allow us to give a simpler préstéon of normalization.



[y : Allz <] [y : Ally < 2]

y: A z<y z:FA 2B y: A y<z z:PA 2B

* *

z:FA FI z:B FE z:PA PI z: B PE
ply/x
1] [p2] o ;/ !
L Y
p1 p2 p1Up2  p p ply/z] Jxz. p P N
_ ar =l
prUpz BIU orOp B2 p UE Jz.p o

*In FE (respectivelyPE), y is different fromz andz, and does not occur in any assumption on which the upper @owe ofz : B depends other than
y: Aorz < y (respectivelyy < x).
In 3E, y does not occur in any assumption on which the upper occlerefie’ depends other thasly/z].

Figure 2. Some derived rules

[e<y]’ 7o 1 . T2 T2
x: =1 = =
T <z RAA | — ol L Y mon 3 ~s m 71‘ vy _v== mon
y: A T ~> y: L — ufl ely/x] y=z @ =2
_ It 2 m[z/y] ufl 0 _—  mon —— mon
z:GA <z 0 plz/z] plz/z]
——  GE z:A
z:A
(a) Reduction for the detowrr /GE (b) A reduction for falsum-rules (c) Reduction for the rulenon

Figure 3. Examples of reductions

We will give concrete examples of derivations in the follagrisections. For simplicity, we will employ the rules for
conjunctionA and disjunctiorv, which are derived from the basic propositional rules asasdard, as well as other derived
rules such as those fét P, LI, and3 given in Figurd P.

Since the axiomatization ok/ given in Sectiof 213 is sound and complete, we could prov§ {i'/) the axioms and
the rules of the axiomatization to establish the completeié\/ (K1) indirectly (and we do so in Sectign'/A.2.2). We can,
however, also give a direct proof of the soundness and cderges ofAV/ (K1). In fact, by adapting standard proofs for
labeled systems (see, e.d. [[8] 16, 19] and the detailedpiodhe appendix, which in particular extend those for Moda
logics in [19] to the case of universal falsum and other gaineites that mix derivations of lwffs and rwffs), we have:

Theorem 6 (Soundness and completeness®f(K1)) N (K1) = N(Klp) + N(Klgr) + N(Klg) is sound and complete,
i.e. we have thal', A - ¢ iff ', A M ¢ for every mode/M and every interpretation.

4 Normalization
4.1 Derivations in normal form

We will now show that the systetV' (K1) possesses a number of useful normalization propertieshaficend, we will
follow the classical normalization process|of[[14] as mugpeassible, while some adaptations are inspired by [19]. &déb
by simplifying the proofs by restricting the applicatiorfssome of the rules.

Lemma7 IfT', Al ¢, then there exists a derivation gffrom (T, A) where: () the conclusions of applications &AA | ,
RAAy, andmon are atomic;(iz) mon is not applied to lwffs of the form : L.

The system obtained froly (K1) by restricting the rule®R AA | , RAAy, andmon according to this lemma is equivalent to
N (K1). From now on, we will thus consider only this restricted eysiand keep calling itV (K1).

The ND systems given ifil9) for families of modal and relevance logics are based on at seiparation between the
labeled and the relational sub-systems (i.e. derivatibhsfts can depend on derivations of rwffs, but not vice v@rsehis
separation is possible thanks to the restriction to refafitheories that are Horn theories. Our sysi¥if!) does not allow
for such a separation, since the rules for universal falgimrelational derivations depend also on labeled ones., Thase
complex derivations are possible, which implies that wiabpect to[[19] we need to consider more forms of detours and
hence more forms of reductions.



Definition 8 We say that a formula is amaximal formulan a derivation when it is both the conclusion of an introdont
rule and the major premise of an elimination rule.

We define the notion dibel positionfor labels occurring in a formulap to which the rulemon is applied. By the
restrictions of Lemm@l %y can have the forni) = : p, (ii) x < y, or (iii) z = y. We say that: has label positiori in (i),
(#4) and (ii7), andy has label positior® in (i¢) and ().

A derivation is inpre-normal form(is a pre-normal derivationif it has no maximal formulas and in every sequence of
mon applications, all the applications which concern variablgith the same label position occur consecutively.

The notion of pre-normal derivation embodies the elimmratf standard detours (given by a couple of introductiamielation
rule applications on the same connective or operator) aratdaring ofmon applications that aims at eliminatingon de-
tours, i.e. two or more applications @fon which concern variables with the same label position. Nbég,tsincemon

is only applied to atomic formulas of the form described ahance we have eliminated maximal formulas, the case of a
sequence ofnon applications is the only case in which we can have this kindebdur.

Lemma9 Every derivation in\V' (K1) reduces to a derivation in pre-normal form.

Proof (Sketch) First, we iteratively apply proper reductionséaample is in Figurgl@:)) that remove maximal formulas.
Then the lemma follows by observing that applicationswf in a sequence can be permuted as shown in F[gdre 13 in the
appendix. -

Definition 10 We callfalsum-ruleshe rulesRAA, , RAAy, uf1, anduf2. We say that a formula is aredundant formula
in a derivation wheni) ¢ is both the conclusion and the premise of a falsum-rul€ior ¢ is both the conclusion and the
major premise of anon carrying out two substitutions in the same label positicee(Figurd %c)).

A derivation is innormal form(is a normal derivatiohiff it is in pre-normal form and does not contain any reduntla
formula.

Theorem 11 Every derivation in\/ (K1) reduces to a derivation in normal form.

Proof (Sketch) By Lemm@&l9, every derivation reduces to a pre-nbderavation. Then we can apply permutative reduc-
tions (examples in Figuig(8) — (c)) that remove redundant formulas. More details are givehereppendix. -

Normal derivations inV' (K1) have a well-defined structure that has a number of desirabjgepties. In particular, there
is an ordering on the application of the rules, which we cgrl@kto prove a subformula property for our system. To that
end, we adapt the standard definitions of subformula anl &adollows:

Definition 12 B is asubformulaof A iff (i) A is B; (ii)) Ais A1 D A, and B is a subformula ofd; or As; (i) A is GA;
and B is a subformula ofd; or (iv) A isHA; and B is a subformula ofd;. We say thay : B is asubformulaof z : A iff
Bis a subformula ofd.

p2 is asubformuleof py iff (i) p1 is po; (i) p1is p} 3 pY andps is a subformula op) or p7; or (iii) py isVa. p andps is
a subformula ofp.

Given a derivationr in N (K1), atrackin 7 is a sequence of formulas, . . . , ,, such that:

(i) ¢1 is an assumption af, an axiom, or the conclusion of a universal falsum rulg1( or uf?2);

(i) ¢; stands immediately abovg ; and is the major (or the only) premise of a rule foK i < n;

(iii) ., is the conclusion of, the premise of a universal falsum rule, or the minor prenoisa rule.

We call atrackeq, . . ., ¢, alabeled trackvhen eacly; is an Iwff and arelational trackwvhen eacly; is an rwif.

In other words, a track can only pass through the major pesmigrules and it ends at the first minor premise of a rule, or
at an application of universal falsum, or at the conclusibn.oThe following lemmas formalize properties of the struetur
of the tracks and specify the way in which the tracks are liniee to each other.

Lemma 13 Letn be a normal derivation, and lgtbe a trackys, . .., ¢, in 7. Thent consists of three (possibly empty)
parts: (1) anelimination part(2) acentral partand (3) anintroduction par{see Figuré %) where:

(i) eachy; in the elimination part is the major premise of an eliminatimle and contains; 1, as a subformula;

(i) each; in the introduction part except the last one is the premisarointroduction rule and is a subformula ¢f 1 ;

(iif) each ¢, in the central part is atomic and is the premise of a falsue-nr the major premise of aon;

(iv) the central part contains at most one application ogtah-rules;

(v) tracks originating from an application aff 1 or uf2 have an empty elimination part;

(vi) tracks ending in an application aff 1 or uf2 have an empty introduction part.
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Figure 4. The structure of a labeled track (left) and that of a relational track (right)
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mon uf2 L ufl
x:l 0
. /\ ) /\
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Figure 5. Possible connections between labeled tracks t; and relational tracks ¢,

Lemma 14 Lett; be a labeled track and. a relational track in a derivationr. Thent; andt, can be connected in one of
the following ways (shown in Figuké 5):

(i) the last formula int,. is the minor premise of & E or of aHE whose major premise is a formula in the elimination
part of ¢;;

(ii) the last formula int,. is the minor premise of aon whose major premise is a formula in the central part;of

(i) ¢, ends with an application aoff2 and the conclusion of that application is the first formuld;in

(iv) t; ends with an application aff 1 and the conclusion of that application is the first formula,in

Proof The statement follows trivially by observing tha¥, HE, mon, uf1, anduf2 are the only rules that mix labeled
and relational formulas and that, by Lemima 13, such ruledeapplied only in a specific part of a track. -

4.2 The subformula property

To prove a subformula property fdf (K1), we adapt further standard definitions:

Definition 15 Given a derivationr in N (K1), themain threads the sequenca, ..., t, of tracks such that: (1) the first
formula int; is an assumption or an axiom; (2) andt;; are connected by means of an applicationuft or uf2, for
1 <4 < (n—1);and (3) the last formula ir,, is the conclusion of.

Let be a derivation ofy from (I', A) in (K1), S1. be the set of subformulas of the formulad'ifor in T U {¢} if ¢
is a labeled formula), and'; be the set of subformulas of the formulagnu Az (orin A U Az U {¢} if ¢ is a relational
formula), whereAz is the set of axioms usedin We say thatr enjoys thesubformula propertiff

1. for all wffsy : B used in the derivation:
(i) B e Sp;or
(i) B is an assumptio O 1 discharged by an application dAA, whereD € Sy; or
(iii) B is an occurrence ofl obtained byD £ from an assumptio® O discharged by an application d®AA
whereD € Sp; or
(iv) B is an occurrence of obtained by an application dRAA, that does not discharge any assumption; or
(v) B is an occurrence of_ obtained by an application aff2;
2. for all rwifs p used in the derivation:
(i) p € Sr; or
(i) pis an assumptiop; L discharged by an application @t A A, wherep; € Sg; or
(iii) pis an occurrence dj obtained by F from an assumptiop’ =1 () discharged by an application @t A Ay, where
p' € Sg;or



(iv) p is an occurrence of obtained by an application aff1; or
(v) p is obtained by an application af.on.

Lemma 16 Every normal derivation ioV' (K1) satisfies the subformula property.

Proof This follows immediately from the standard probf [14], whiis based on the introduction of an ordering of the
tracks in a normal derivation depending on their distanoefa main thread. In our case, a main thread contains not only
labeled formulas and we have to consider more cases thae gte¢hdard proof, given that the central part of a track caa ha

a more complex structure (as it can also contain applicatidn/ 1, uf2, andmon). -

This lemma shows that although normal derivationa/it)7) have a more complex structure than normal derivations in
ND systems for classical logic [14] and ND systems for fa@silof modal and relevance logi¢s [19], they have still a well-
defined structure and satisfy a subformula property. It [gdrtant to remark that the special cases added to the defimifi
subformula property (i.e. formulas can be derived by appibmis ofuf1, uf2, or mon) do not compromise automatic proof
search completely, given that such cases can occur onlyimited section of a normal derivation (i.e. the central pdira
track).

We also note that the presence of axioms (and in particudafaitt that they are expressed in a full first-order language)
makes our proof of normalization more complex and our resuétaker. Thus, it is not possible to use it as a means to show
the consistency of the system or the validity of an interfiofetheorem, as can be done for systems in [19], where oglalti
properties are expressed by Horn rules and we have only @exiams.

5 A family of tense logics

The basic linear tense logi€l leaves unanswered many fundamental natural questions gigostructure of time. How-
ever, the labeling framework allows us to express sever#idu relational properties in a straightforward and cleay,
i.e. by only adding the corresponding relational axiomsrelational sub-system. In particular, we will now showtio
extendV (K1) to capture the extensions &f with: a first/final point; unbounded time; dense time; anddite time (where
we adopted the classification of [1@]).

K with a first/final point  The semantics oK1 is given by means of temporal structures where nothing  alaout the
existence of a first or a final point. To express the existefisaah points, we can add the following axidhts the relational

sub-systems:

-_— t _— l.
Jz. Vy. - (y < x) firs Jz. Vy. ~(z < y) fina

The two axioms do not affect each other; thus we can deciddddath or just one of them to the system, according to the
logic we want to represent.

Soundness of the extended systems is straightforwarde siec axioms mirror the properties that the models of the
extended logic are required to satisfy. To show completgriesuffices to extend the canonical model constructiosgated
for N (K1) (see Sectiof Al2) to consider also the new relational axiohiternatively, we can simply prove completeness
by proving the corresponding (see, e.0.,/[18]) Hilbertesgxioms(having a first pointjand(having a final pointthat are
given in Figurd 6. In FigurEl7, we show the derivation for thstfone (the proofs of the two axioms are symmetric). Also
the normalization procedure of Sectldn 4 can still be apliethe extended system: we have just to consider the pligsibi
of more relational axioms.

Kl with unbounded time Conversely, we can express the fact that the sequence optimts is unbounded, towards the
past and/or towards the future. This corresponds to addimgadnditions of seriality on the left and/or on the righd, every
point has a predecessor and/or a successor. For this, welddwa relational axioms corresponding to the axioms far lef
and right seriality given in Figuilg 6:

_ — rser.
Vedy.y<z Iser Ve.dy.x <y

51t is worth to mention that ir 6], Bonnette and Goré givelzeed sequent system for the minimal tense Idgichat can easily capture any combination
of the reflexive, transitive, euclidean, symmetric andadenxtensions of the logic. We have not considered all ofeimesperties of the accessibility relation
here, but the missing ones can be added straightforwardhkihto the modularity of our system, which we exploit to ce@the extensions towardsl'L
we consider in the remainder of the paper. The labelingplisel of [6] is different from ours and is tailored to a learP®g implementation of their sequent
systems. In contrast, we focus here on the proof-theotetigects of our ND systems and leave an implementation forework.

6The existence of a first (or a final) point is often expresseddujing a constant to the language. For example, we coulatiinte a constartt for the
first point and an axiom stating thely. —(y < 0). We prefer not to modify the language and keep the treatnfehisoproperty closer to that of other ones.



(having afirst point) H L v PH L (left-density) PA D PPA

(having afinal point) G L Vv FG L (right-density) FA D FFA
(left-seriality) PT (left-discreteness) (PT A AAGA) D (PGA)
(right-seriality) FT (right-discreteness) (FT A AAHA) D (FHA)

Figure 6. Some axioms for extensions of Kl

conn
Vz.y. e<yUz=yUy<z [Vy. ~(y<s)]? T T2
E e—
Vy. t<yUt=ylLit<z —(t<s) [t<s]® 5 [t=sUs<t]® 0 4 4
- t<sUt=slUs<t 0 - 0 wE
— first uE3
Jz.Vy. = (y<z) 0
5 3E?
uf2
t: L 1
—————— RAA
t:HLVPHL
wherer is: andms is:
Vy. =(y<s)]? [Vy. ~(y<s)]?
0 ——— VE
[¢t:PTAHPT]! B —(g<s) [q<s]® [¢:PTAHPT]! ~(r<s) [r<s]®
— = - -  AE -
—(£:PT) [t=s]* 0 t:HPT [s<t]* 0

mon uf?2 HE uf2

(s:PT) s:L _ s:PT s: L g

PE® - E

s: L uf1 —é-l uf1
0 0

Figure 7. Derivation of the modal axiom for first point

As an example, we show completenesd(fight-seriality), wherer is some proof of : T based on a proof of or AV ~ A
in classical logic (see, e.gl., [14,]17]):
Ve dy.x <y e s: T [t < st
———— VE
Jy.t <y t:FT
t:FT

Elok

KI with dense time Another constraint that we can impose on relational strastis that the flow of time is dense, i.e. be-
tween any two points we can find a third point:

Vey.o<ydIz.z<zMNz<y dens .

Figure[11 in the appendix shows the proof of the axiom(fiyht-density) the proof for(left-density)can be obtained in a
symmetric way by using the same axiofie{s).

Kl with discrete time  Finally, we can express discreteness both towards the pdsbaards the future:

ldi
Ve o<y ddz.z<yMN-Ju.(z<ulu<y) rer

discr .
Vewy.x <y J3z.z<zM-Fu. (z<ulu<z) rawser

We omit the proof of completeness for the correspondingrazio

6 Towards LTL

We have seen that ND systems for several extensioi oan be given by extending the “base syste¥’K (). This is
not the case for all the possible extensions, however, ag goaperties, e.g. continuity or finite intervals, are setorder
properties[[18] and thus require an appropriate higheemmlational language. We now briefly discuss whether (awvg) h
it is possible to extend/ (K1) to capture a richer logic like (fragments dfY'L.



MTL: a subset of LTL For brevity, we restrict our attention to future temporaéggtors only (but the extension to the
past is straightforward) and begin by considering the syst& K1) extended with the axiomasliscr andrser so that the
flow of time is discrete and unbounded towards the futurek(is tase, the presence ofer allows us to simplifyrdiscr
toVe. 3z, < z2M—-Ju. (x < ulMu < 2)). We can express in our syntax the relatieextin terms of the relatior< (see,
e.g., [10]), i.e. we can introduce a relational symkiojwith the meaning oimmediately precedgas an abbreviation:

s<At=s<tNVae.-(s<z)U-(z<t).

This allows us to enrich the language with an opergtarhose semantics can be given without having to introdupeeific
relation for it in the definition of a model. We just need tougg that models for this logic ar&l models where< is also
discrete and serial on the right, and extend the definitidrubi with:

EMA XA it EMAr gy and EMAy AL

Rules for introduction and elimination &f can now be given in a clean way, with the usual freshnesssmciu'rXIﬂ

[z <y]
y:.A z: XA xzdy
— XA XI (y fresh) v A XE .

The logic that we capture in this extended system, which Mle/¢8K ,71.), is not LTL yet. We are able to express the
existence of an immediate successor, but we miss a way thablgtween any two points (related By there can be only a
finite sequence of points related one to each other by theéaelzext We would need to express the finite interval property,
but this is a second-order property, as observed above.

In [12], a subset of. T'L calledSmall Temporal Logicor STL for short, is introduced and given a natural deduction sgste
The reasons behind the definition 87'L are the difficulties arising from dealing with the inductiprinciple (relating<
and<) that is needed in order to represéritL. While the semantics afT'L can be given by considering Kripke structures
defined over a relation of successor (denotedW)yand by defining< as the least transitive closure &f, in the semantics
of STL the relation< is just required to contaifv. It follows that a rule for induction is not needed in a sysfemST'L.

It is easy to verify that\' (K y,r) is complete with respect to the semanticsS&L. Moreover, it can be proven to
correspond to a logic “larger” thaSTL for which the condition of linearity (or connectedness) ba telation< holds:
we call this logicMedium Temporal LogitMTLE We could also introduce rules for the operatsirsceanduntil, but they
would be quite complex and problematic from a proof-théoatpoint of view; seel[2] for a labeled tableaux system for a
distributed temporal logic that comprises flll'L, and [5] for tableaux-like ND rules fabT'L.

LTL Several systems of labeled natural deductionifé¥, e.g. [4] 5| 12], introduce an induction rule like the foliogy
[ < 2'][z’ f]x”}[m’ 1 Al

z: A <y 2 A
y: A

ind

which does not operate at a purely relational level. Somarksmare worth about a solution like this. First of all, thierind
adds some more points of contact between the labeled andl#t®nal sub-systems and leads to a failure of normatinati
Moreover, one can show that the axiom of connectedness isgeated anymore since it is in a way “contained” in the
induction principle. In fact, the axiort8)

~ G(GA D B) D G(GB D> A)

of weak connectednerssust obviously hold inL.T'L, for it can be subsumed by the induction axiom (see, &.9., T¥jus, in
the case we want to use a rule likad to captureL.T'L, it seems more reasonable to follow a different approadhab@ids

"The fact that every time point has one (and only one) immediatcessor follows from right-discreteness, right-igriaand connectedness, and it
allows one to express rules f¥rboth in a universal and in an existential formulation. Weediere the universal one.
8An axiomatization of\/ T'L can be obtained, as shown in[10], by adding the followingws to those given for future-tim&{:
(Kx) X(A D B) D (XADXB)
(FUNC) (X ~ AD~XA)A(~XADX ~ A)
(RECG) (GADX(AANGA)) AN(X(ANGA) DGA)
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both the extension of the relational language to a firstidategguage and the introduction of the universal falsum.theo
words, we could have a system fbf'L which uses only Horn rules in the relational theory (from ehit follows that we
have only atomic rwffs and no relational falsum) but extetigdslabeled sub-systems with a rule for induction that mixes
labeled and relational premises.

7 Conclusions

We have already discussed some works that are related tatiblet ND systems for tense logics that we have given here
(for which, summarizing, we have proved not only soundnagdssampleteness, but also a number of useful proof-theateti
properties, and for which we also discussed extensiongigagh to L7'L). As we observed, the main difficulties in applying
the labeled deduction framework in the context of lineargenal logics arise from the need of expressing the condiifon
connectedness the case of the basic linear tense logit (see [11] for a discussion) and tireductionprinciple in the
case ofLTL. In fact, [11] gives a fairly complex labeled tableaux syst®r the logicKI (called there the linear temporal
logic Kt4.3), which is analytical in that it only comprises eliminatiomles for temporal operators and can be used as a
decision procedure. In contrast, the main distinctiveufiEbf our approach is the extension of a fixed base systenhédor t
temporal operators with relational rules that express étational properties of the considered logic. This, in igatér,
allows for uniform and modular proofs of meta-theoreticp@uies for families of logics, like the proofs we have gilare.
Moreover, it makes our systems amenable to extensions & tmbics as we have begun investigating towakdd. and
to the branching-time logic€ 7L and CTL*. To that end, we plan to capitalize on the labeled ND system&TL given
in [4][12], which both make use of a specific rule for induction
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A Proofs

In this appendix we give the full proofs of the lemmas and thews given in the body of the paper. In Sectibns|A.1
andA.2, we give the proofs for the soundness and completerfigise systendV' (K1) (TheoreniB) and for the completeness
of the extensions ol (K1) (Sectiorid). In Section Al3, we give proofs for the normal@aresults presented in Sectidn 4.

A.1 Soundness

Theorem 17 N(K1) = N (Kl) + N (Klg) + N(Klg) is sound, i.e. it holds:
(i) T,AF p impliesT’, A ="* p for every mode/M and every interpretation;

(i) T,AFz: A impliesT’, A =M 2 : A for every mode/M and every interpretation.
Proof

(i) The proof is by induction on the structure of the derigatof p. The base case is whene A and is trivial. There
is one step case for every axiom or rule. The axiamsn, trans <, andirrefl < directly refer to the properties of
connectedness, transitivity, and irreflexivity & models (Definitioi B) and thus are trivially sound, whitg? = and
mon preserve soundness by definitioneft* 2 = y (Definition[4).

Consider the case of an applicationRi Ay
I A [p30]}

Ll RAAj

P
whereA; = A U {p 3 (}. By the induction hypothesi§, A; =** () for every modelM and every interpretatioh.
Let us consider an arbitrary mod&l and an arbitrary interpretatiox; we assume="** (T', A) and prove="t* p.
SinceM:A (), from the induction hypothesis we obtat®* (T, A,), that, given the assumptiga™** (", A), leads
toEMA p 30, i.e. =M pandEMA () by Definition[.

The cases fori I, J F, VI andVE follow by simple adaptations of the standard proofs forgitze logic.
Finally, consider the case of an applicationugf

A

T
x:l
0

uf1

for a proof context{I", A) and some labet. By the induction hypothesis, we halleA =" z : 1 for everyM and
every\. Given a generic modeV! and a generic interpretation we can write** x : 1; it follows thatZMA (T, A)
and then als@', A =M () by Definition[4.

(i) Asin (i), by induction on the structure of the derivatiof « : A. The base case is trivial and there is a step case for
every rule of the labeled system. The cases of introductichedimination of connectives and that of universal falsum

are as in (i).
Consider an application of the rul&
A [z<y]!
s
v GI'
z:GA

wherel’, A; |y : A with y fresh and withA; = A U {« < y}. By the induction hypothesis, for every model and
every interpretation it holdsT', A =M 3 . A. We let)\ be any interpretation such that** (', A) and show that
E=MA 20 GA. Letw be any world such that(z) < w. Since) can be trivially extended to another interpretation (still
called for simplicity) by setting\(y) = w, the induction hypothesis yields™* y : A, and thug=™* z : GA.
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Finally, consider an application of the rut®

I‘1 A1 Fg Ag
™1 T2
z:GA <y
—F GE..
y: A

Let M be an arbitrary model andlan arbitrary interpretation. If we assurpe*’* (I'y UT, A; U Ay), then from the
induction hypotheses we obtgig™* z : GA and=M* 2 < y, and thug="* y : A by Definition[2.

The treatment o/ andHE is analogous.

A.2 Completeness

In the following, in order to simplify the derivations, we lnise some derived rules. We show here, as an example, how
to derive the rule§ 1 andFFE (see Figur€l2) from the rules for introduction/eliminatifrG. We remind that the following
equivalence hold£A =~ G ~ A = (G(ADL1)) DL.

The rule
y: A <y
— FI
x:FA
can be derived as follows
[z:G(ADL)]! <y
GE
y:ADL y:A
DE
y: L
RAA,
x: 1
- e DI]
z:G(ADL)DL
while an application ofF £
[y:A] [z<y]
Y
x:FA z:B
FE
z:B
can be replaced by the following derivation
[y:A]® [2<y)?
m
[z:BDL]* z:B
SOFE
z:l RAA,
y: L
oI
y:ADL
- GI2
:G(ADL)DL z:G(ADL)
OE
x: L
RAA,!

z:

A.2.1 Completeness by canonical model construction

In the following, slightly abusing notation, we will writg € (I, A) wheneverp € T or p € A, and writex € (T', A)
whenever the labet occurs in some» € (T', A).

Definition 18 A proof context(I’, A) is N (K1)-consistentff I, A ¥ z :L for everyz, and it is N'(K{)-inconsistent
otherwise.

Note that we can have inconsistency also by deriing the relational system; given the rulegl and uf2 for universal
falsum, also this case is captured by the previous definition
For simplicity, in the following we will omit the A/(K1)” and simply speak of consistent and inconsistent proofexdst
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Proposition 19 Let(I", A) be a consistent proof context. Then:
(i) for everyx and everyA, either(T' U {x : A}, A) is consistent of' U {z : ~ A}, A) is consistent;

(i) for every relational formula , either(T", A U {p}) is consistent ofT", A U {—p}) is consistent.
Proof

(i) Suppose that botfl" U {z : A}, A) and(T" U {z : ~ A}, A) are inconsistent. Then fromuU {z : A}, A+ z :L, by
applying the ruleoI, we getl’, A + z : ~ A. Similarly, fromT U {z : ~ A}, A+ 2 : L, by applying the ruleRAA |,
we getl', A - x : A.

But, if bothz : A andx : ~ A are derivable in the proof contef, A), then it also hold®", A -z : 1, by~ E. It
follows that the original proof context”, A) had to be inconsistent (contradiction).

(ii) The prooffor the relational case is analogous and isioletd by using the corresponding relational rulesnié, RAA
and-FE.
_|

Definition 20 A proof contextI', A) is maximally consisteniff the following three conditions hold:
1. (T, A) is consistent,
2. for every relational formula, eitherp € A or —p € A,
3. for everyr and everyA, eitherx : AeTorx:~ A€eT.
Completeness follows by a Henkin—style proof, where a ceabmodel
ME = (WE, <€ V°)

is built from a proof contex(I", A) to show tha{T", A) ¥ ¢ impliesT', A pMEAC  for every formulap.

In standard proofs for unlabeled modal, temporal, and foeohon-classical logics, the 98i¢ is obtained by progres-
sively building maximally consistent sets of formulas, wheonsistency is locally checked within each set. In ouecas
given the presence of lwffs and rwifs, we modify the Lindemisdemma to extendl”, A) to one single maximally consis-
tent contex{I'*, A*), where consistency is “globally” checked also against tditional assumptions in[d The elements
of WY are then built by partitioning* andA* with respect to the labels, and the relatiefi between the worlds is defined
by exploiting the information in\*.

In the Lindenbaum lemma for predicate logic, a maximallysistent andv-complete set of formulas is inductively built
by adding for every formulav Vz. A awitnessto its truth, namely a formula- A[c/x] for some new individual constant
c. This ensures that the resulting seticomplete, i.e. that if, for every closed tetmA[t/z] is contained in the set, then
so isVx. A. A similar procedure applies here not only for rwif§'z. p, but also in the case of Iwffs of the form: ~ GA.
That is, together withr : ~ GA we consistently adg : ~ A andz < y for some newy, which acts as avitness worldto
the truth ofz : ~ GA. This ensures that the maximally consistent contExt A*) is such thatift < z € (I'*; A*) implies
z: B € (I'*, A*) for everyz, thenz : GB € (I'*, A*), as shown in Lemma22 below. Note that in the standard copnpéss
proof for unlabeled modal logics, for instance, one insteaasiders a canonical modé&f“ and shows that iV, € W¢
and M, W, E~ GA, thenWC also contains a worltt/, accessible fromvV; that serves as a witness world to the truth of
~ GAatWy,i.e. ME Wy E~ A.

Lemma 21 Every consistent proof conteft, A) can be extended to a maximally consistent proof corffextA*).

Proof We first extend the language &f( K1) with infinitely many new constants for witness terms and finess worlds.
Let ¢ range over the original terms,range over the new constants for witness terms,rarahge over both; further, let
range over labels; range over the new constants for witness worlds, @anange over both. All these may be subscripted.
Let ¢1, @2, ... be an enumeration of all Iwffs and rwifs in the extendatbluage; wherp; is u : A, we write ~ ¢, for
u i~ A

We iteratively build a sequence of consistent proof comteytdefining(T'y, Ag) = (I', A) and(T'; 41, A1) to be:

9We consider only consistent proof contexts(IIf, A) is inconsistent, thel, A - ¢ for all ¢, and thus completeness immediately holds for all lwffs
and rwffs.
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A, if (T; U{pir1}, A;) is inconsistent; else

i U{u:~GAv:~ A}, A; U {u < v})forawv notoccurring in(l'; U {u : ~ GA}, A;) if pi11 iSu :~ GA; else

U{u:~HA v:~ A}, A, U {v <u})forav not occurring in(T; U {u : ~ HA}, Aj) if w41 iSu :~ HA; else

(s
(I
(s
*

Ty, A; U {=Vz. p, —p[s/x]}) for ans not occurring in(T';, A; U {=Vz. p}) if p;41 1S ~ Vx. p; else

° (1—‘1 U {gDi+1}, Al) if ©Yit1 is an Iwff or (1—‘1, A; U {(Pi-f-l}) if Vit is an rwff.

A= Jay

i>0 >0

Now define

We show that the proof contefd*, A*) is maximally consistent, i.e. it verifies the three condii@f Definitior20.

(i) First we prove that our construction preserves consesteby showing that everyI';, A;) is consistent. The only
interesting cases are when,; is one of ~ GA, ~ HA, or —Vx. p. We only consider the first case, since the second
one is symmetrical, and the third is very similar.

If (T; U{u :~ GA}, A;) is consistent, then so i§"; U {u : ~ GA,v :~ A}) for av not occurring in(T’; U {u : ~
GA}, A;). By contraposition, suppose that

Fiu{u:~GA v~ A}, AjU{u <o} b oujil

by a derivationr (wherev does not occur itil’; U {u : ~ GA}, A;)). Then in\/ (K1) we can have a derivation like the
following:
i A w~GA  [vi~vAlY [u<w)?

wjil

RAA?

v:A o’

u:GA u: ~GA
w: L

This shows thatT"; U {u : ~ GA}, A;) is inconsistent, which is not the case.

~E

(i) Consider an rwffp. Suppose that both ¢ A* and—p ¢ A* hold. Letp be ;1 for somei in our enumeration of
formulas and-p be ;1. Now supposé < j (the other case is symmetrig).¢ A* implies that(T';, A; U {@;11})
is inconsistent. Given that in our inductive constructiomenly add formulas to the proof context, i&; C A;, we
have tha(T';, A; U {¢;+1}) is also inconsistent. Then, by Propositiod &9, (T';, A; U {¢,+1}) has to be consistent
andy;, is added by definition té\ ;. This impliesp; 1 € A*,i.e.—~p € A*.

(iii) The proof for labeled formulas is the same as in the res case and proceeds by contraposition by using Propositi
[19(4).
4|

Lemma 22 Let(T', A) be a maximally consistent proof context. Then:
() T,AF g iff p€(T,A);
(i) p1 TJp2 € A iff pr € Aimpliesps € A;
(i) Vz.p € A iff ply/x] € Aforall y;
(ivy u:A>DB el iffu: AeTimpliesu: B eT;
(V) u1 : GA € T iff u; < up € Aimpliesuy : A € T for all us;

(Vi) uy : HA € T iff ug <uy € Aimpliesus : A € T for all us.
Proof We treat only some cases, the others are similar and follomdmimality and consistency ¢f’, A).
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(i) The proofis analogous for rwffs and Iwffs, we see the firsecas
(<) If o € (T, A), then triviallyT', A - .
(=) Consider an rwffp such thatp ¢ (T', A). Then, by Definitioh 20;-¢ € (T, A). It follows trivially thatT', A - =
holds. By hypothesid;, A i~ ¢ and thus by usingE we getl’, A - (), that contradicts the consistency(f, A).

(v) (<) Supposes; : GA ¢ T andug : A € T for everyus such thatu; < ug € A. Then, by maximality ofT', A),
uy :~ GA € I'. Now suppose there existsig such thaty; < us € A andug : ~ A € I'. Then, by hypothesis, we
knowus : A € I" and this leads to a contradiction. Otherwise, if suehy does not exist, we can conclude: GA € I
that leads to a contradiction as well.

(=) We show it by contraposition. Suppoge : GA € T', u1 < us € A andus : A ¢ T'. By maximality of (T', A),
we haveu; : ~ A € T'. Then the following is aoV' (K1) proof that showsI", A) is inconsistent.

u1:GA up <u2

GE
uz:A ug: ~A

w: L

~E
-

Our construction of maximally consistent proof contexterfimd 21l) does not exclude the presence of two labelisd
y that are related by the relation= y. Now we want to derive a model from such a construction. Sime&know from
Definition[4 that=""* = = y holds only if\(z) = A(y), we need to state an equivalence relation between labeldimtw
the function\ can be defined.

Definition 23 LetC = (I', A) be a maximally consistent proof context abd the set of labels occurring in it, we define
the binary relation=" on L¢ as follows: for everys,, us € L,

up =€ uy  iff up = us € A
Proposition 24 Given a maximally consistent proof contéxtthe relation=C is an equivalence relation.
Proof It follows trivially by the maximality ofC' and by the rulesefi =, mon, irrefl < andconn. -

Notation 25 It follows from Propositiofi 24 that every maximally consigtproof context” determines a partition of the set
L¢ of labels occurring in it. In the following, we will also ugeet notation]“ to indicate the equivalence class containing
the labelu, i.e.

[u]© = {u | u=C '}

Definition 26 LetC = (', A) be a maximally consistent proof context alifd be the set of labels occurring in it. We define
thecanonical modeM® = (W, <€, VY) as follows:

o WE={[u]”[ue LY
o ([u), [u]9) € <C iff u; <uy € A;
e VC([u%p)=1iff u:perl.
We define theanonical interpretation® : L¢ — W¢ as follows:
A (u) = [u]® for everyu € LC.

Remark 27 Note that in the previous definition® andV® are well defined, since it is easy to verify that for everyu, €
L€ it holds:

o u; =% uy implies for everyus € LC, u; < ug € Aiff up < uz € A,
o u; =% uy implies for everyus € L€, usz < uy € Aiff ug < ug € A,

o u; = uy implies foreveryp € P,uy :p € Diffug : p € T,
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[<y)? ~(z<y) [e=y]? —(z=y)
conn -E -E
Ve.y. z<yUzr=yUy<zx [w<yum:y]1 0 0 [y<w]1 —(y<z)
vE UE? -E
r<yUr=yly<z 0 0

upt

Figure 8. Proof for connectedness of canonical models

Proposition 28 Given a maximally consistent proof contéxt= (I', A), the canonical modeM¢ is a Kripke model for
Kl.

Proof It suffices to show thaM © is irreflexive, transitive and connected.

Suppose there exist three worldg , W, andWs in W such thaty, Wa) €< and(W,, Ws) €<, but(W;, Wi) ¢<C.
By definition[26, this implies there exist at least three lahe y and z such that\(z) = Wy, A(y) = Wh, A(z) = W,
xr<y€Aandy < z € A,butz < z ¢ A, i.e. by the maximality o, -(z < z) € A. But this leads to the inconsistency
of (I, A), as shown by the following derivation.

trans<

Vry.z. (z<yNy<z)dz<z o<y y<z

VE
(z<yNy<z)dx<z r<yMy<z

<z - —(x<z)
0

-

Connectedness 0¥ can be proved in a similar way by using the ratexn. Suppose there exist two distinct worlds
Wi andW, in WC such thatOv;, W) ¢<¢ and (W, W1) ¢<¢. By definition[26, this implies there exist at least two
labelsz andy such that\(z) = Wi, A(y) = W,z =y ¢ A,z <y ¢ Aandy < = ¢ A, i.e. by the maximality of”,
-z =y) €A, ~(x <y) € Aand—(y < z) € A. But this leads to the inconsistency@f, A), as shown by the derivation
in Figure 8.

Irreflexivity of M can be shown in a similar way. -

Lemma?29 LetC = (T, A) be a maximally consistent proof contexy“ the canonical model and® the canonical
interpretation built onC' as in Definitio 26. Then:

() pe A iff T,AEMA

i) u:AeTl iff I,AEMTA 4. A
(ii) A=

Proof

(i) (=) By hypothesisp € A. Then, if we assume=M" A" (T, A), it immediately follows="" A" p.

(<) By hypothesisI", A |:M07AC p. Let us supposg ¢ A. By maximality of (I', A), it follows —p € A. Then we
have alsd’, A |:CMZJC —p (see direction)). But, since we have by hypothedisA =M p, this yields the
absurdl, A =M7AT ),

(i) The proof for labeled formulas is analogous.

Theorem 30 N(KI1) = N (KlL) + N(Kir) + N(Klg) is complete, i.e. it holds:
) if T, A ¥ w: A, then there exist &I modelMC and an interpretatiol\’ such thaf", A EM A7 4 - A:
(i) if I, P ;

(i) if T, A¥ p, then there exist &/ modelMC and an interpretation\C such thaf, A M”27 ),
Proof
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trans<
Ve.y.z. (z<yNy<z)dz<z

Vy.z. (t<yMy<z)IJt<z

Vz. (t<sMs<z)dt<z . [t<s]? [s<r]®
s T~ n
(t<sMs<r)dt<r t<sMs<r 1
1 aE
[t:GA] t<r
1 GE
T
s:GA GI2
——— GI
t:GGA

- Il
t:GADGGA -

Figure 9. Derivation of the axiom (G3)

(i) FT,AF w: A, then(TU{w :~ A}, A) is consistent; otherwise there exist®asuch thal' U{w : ~ A}, A F w; : L,
and therl', A + w : A. Therefore, by Lemm@a2iI' U {w : ~ A}, A) is included in a maximally consistent proof
contextC' = ((T' U {w :~ A})*, A*). Let M be the canonical model fa?. It suffices to find an interpretation
according to whichM¢ is not a model forw : A. By Lemma 29, U {w : ~ A})*, A* EMTAT 4 i~ A, where
MC is a Kl model by Propositiof 28. It follow U {w : ~ A})*, A* EMTAT ¢ A, and thud™, A EMTA 1 A,

(i) We can repeat the same proof for relational formula&, I ¥ p, then(T', A U {—p}) is consistent. Then we can build
a maximally consistent proof conteit, (A U{—p})* such thal™, (AU{-p})* EM AT p and thug, A gM7A7 ),
_|

A.2.2 Completeness by axioms

It is possible to give an indirect proof of completeness bywghg that all the axioms listed in Sectibn 2.3 for the logit
are derivable inV(K1). In the following derivations, for simplicity, we will sontienes use derived operators and derived
rules, and exploit trivial equivalences between formutaglicitly.

We begin by giving derivations for the axior&1) and(G2):

[t:G(ADB)]* t<s]® [t:GA)? t<s]®
GE GE
s:ADB s:A

B DF

S:

3
t:GB GI
- 312
t:GADGB

t:G(ADB)D(GADGB)

[s:GA]2 [s<t]?
[t:PGA]' t:A
t:A
t:PGADA
The derivation for( G3) is shown in Figur€l9, while the derivation fo64 ) is in Figure 10. We omit here the derivations for
the symmetric axioméH1)-(H4).
Completeness of the extended systems considered in SBotiam be also proved by deriving the corresponding axioms.
In Sectior b, we have already proved the axiomshaving a first pointandright-seriality. We show the derivations for
right-densityand forright-discretenesi Figure[11 and Figule 12, respectively. Derivations ofdtieer axiomsfinal point,
left-seriality, left-density left-discretenegsare symmetric and we thus omit them.

PE?
oIt

A.3 Normalization

Proof [LemmadT]
(1) We show that any application &AA , , RAAy, andmon with a non-atomic conclusion can be replaced with a deovati
in which such rules are applied only to formulas of smallexdgr by the set of transformations given below. By iterating
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Ve.y. c<yUr=yUy<z

conn

™2 3

Vy. s<yls=ylUy<s 1 [s=rur<s]® 0 0 s
s<rUs=rUr<s 0 0 HE
uE®
[t:F ~AAF ~B)? 0
2 ———— AE uf2
[t:F ~AAF ~ B] t:F ~B il
——  AE Fet
t:F~A t: L 3
FE
t: L 2
———— RAA
t:GAVGB o
t:(G(AVB)AG(AVGB)AG(GAVB))D(GAVGB)
wherer is:
[t:(G(AVB)AG(AVGB)AG(GAV B))|*
t:G(AVGB) [t<s]® [s: Al [s:A]7 [s:~GB]®  [s:GB]”
~E
(s:AVGB) s:L s:L
VET
s:L 6
RAA | .
S: [5<7,]J
[”':NB]4 r:B GE
AL ufl
0
o iS:
[t:(G(AVB)AG(AVGB)AG(GAV B))]*
t:G(AVB) [t<s]® [s:~A]3 [s:A]12 [s: ~B]'1 [s:B]'2
s:AVB cE s: L ~ VB2 ~
RAA, 1!
EH + [s=r]®
- ~B]4 B mon
..J_ NE
SAE ]
0
andrs is:
[t:(G(AVB)AG(AVGB)AG(GAV B))]*
t:G(GAVB) t<r]* [r: ~GA]® [r:GA]10 [r:~B]4 [r:B]'0
r:GAVB [ ~ ril VEl0 ~
r: L 9
——— RAA |
r:GA [r<s]®
[s:~A]8 s:A eB
S uf1
0
Figure 10. Derivation of the axiom  (G4)
t<rir<s]*
— NE
dens [s:A)2 r<s t<rir<s]*
Ve.y. z<yd3z. (z<zMz<y) rFA FI t<r .
Vy. (t<yD3z. (t<2zM2<y)) [t: ~FFA]® t:FFA
t<s3z. (t<zMz<s) [t<s]? tL ~
JE ufl
Jz. (t<zMz<s)
2 Ipt
uf2
t: L
—— RAA,®
[t:FA]* t:FFA
FE?

t:FFA
- DO
t:FADFFA

Figure 11. Derivation of the modal axiom for right-density
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0 uf2
ril 6
RAA | A
rdiscr riA 5 [t<sM(Vu. = (t<u)U—(u<s))]
Ve.y. <y (Iz. e<zMN(-3u. z<uMNu<z)) S HA HI i<s
Vy. t<y3(3z. t<zMN(Vu. = (t<u)U=(u<2))) [t: ~FHA]? t:FHA F
t<qT(3z. t<zM(Vu. = (t<u)U—(u<z))) [t<u)® L ~E
JE ufl
[t:FTAAAHA]! Jz. t<2M(Vu. ~(t<u)U-(u<z)) 0
————— AE 3p*
t:FT [0]
P FE3
uf2
t: L 2
—— RAA,
t:FHA
I]
t:(FTAAAHA)DFHA
wherer is:
[t:FTAAAHA]
————— AE .
t:HA [r<t]
conn HE
Vz.y. e<yUr=yUy<z [r: NA]G A B
VE ~
. T < — Ll : L ™
Vy. r<yUr=yUy<r T uf1 1
r<tUr=tUt<r 0 0
uET
(]
andm is:
[t:FTAAAHA]Y
TA My [t<sM(Vu. —(t<u)U—(u<s))]*
6 mon nE 9 8 ° 5
[r:~vA] r:A Vu. - (t<u)U—-(u<s) [ (t<r)] [t<r] [~ (r<s)] [r<s]
~E -E -E
r: L —(t<r)U-(r<s) 0 0
— ufl LE®
[r=tut<r]” 0 0
) uEs

Figure 12. Derivation of the modal axiom for right-discrete ness
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these transformations, we get a derivatiopdfom I"; A where the conclusions of applications®flA |, RAAy, andmon
are atomic.

(1) First, we consider applications 6AA . There are three possible cases, depending on whether tticusion is
z:BD>C,z:GB,orz: HB. Note that in the following transformations we only show ffaet of the derivation where the
reduction, denoted by, actually takes place; the missing parts remain unchanged.

(Case 1)
[z:BDC]'  [x:B]?
— DF
[z:CD1])? z:C
DFE
[z:(BDC)D1L] 2l .
” z:(BDC)DL 2!
~ :
y: L
RAA, T
z:BDOC y: L
RAA,?
z:C
oI
z:BDC
(Case 2)
[z:GB]* [z<y)®
— GE
[y:B>1]? y:B
DFE
y: L
[:GBD1] RAA |
x: L
T —- —== Jn
v z:GBD L
- RAAL T
z:GB
y: L
RAA,?
y:B 5
GI
z:GB

Case 3 concerns formulas of the fogm H A4; it is analogous to the previous one and we omit the redudtioit.

(2) Applications of RA Ay can be reduced to applications on formulas of lower gradewiong an approach analogous
to that of RAA . Itis easy to see that in this case, we can also restrict thicagipns of RA Ay in which the conclusion is
not(. We have to consider two possibilities: formulas of the fgrnm p, and formulas of the forriwz. p. We consider only
the second case, since the first one is analogous to the casplightion for labeled formulas:

[p20]*
[Vz. p20] V. p0
™ b
0 e 0
RAA, — RAA;j
V. p
vI
Vz.p

(3) Finally, we consider applications of the ruleon. We have five cases depending on the form of the formula thheéis
major premise of thenon application:

@z:ADB
(b) x: GA
(c) x: HA
(d) pr 3 p2
(e) Vz.p
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TRy r=z o TRy r=z 3
- mon —_ mon
zRy y=u 3 > zZRy z=v U
mon mon
ZRu z=v vRy y=u
mon mon
vRu vRu

Figure 13. Rule permutation for the ordering of mon applications

(Case a)
[y:A' z=y
—————— mon
z:ADB z:A
z:ADB x=y —  DFE
—_  mon A . B =y
y:ADB mon
y:B
oIt
y:ADB
(Case b)
ly<z]' 2=y
z:GA  z=y z:GA <z mom
—_———mon o~ """ GE
y:GA z:A oIt
y:GA I
(Case e)
Vz.p
Ve.p y=z P y=z
—————— mon ~> —— mon
V. plz/y] plz/y]

—— I
V. plz/y]

The caséc) is analogous t@b), while the transformation for the caéé) is as in(a) whereD plays the role ob.
(77) We show that every application @fon on a Iwff of the formz : L can be replaced by an application®f A that
does not discharge any assumption:

™ - T
z: L = z: L
7‘7! mon ~ RAA,
y: L y: L

_|

Proof [Lemma[9] We follow the procedure based on proper reducticses! in [19] and we only treat the case$/DF,
GI/GE andVI/NVE. The transformations for the detoursd/ E andHI/HI can be easily inferred from these. Any formula
 in a derivation is the root of a tree of rule applications legdack to assumptions. We caltle formula®f ¢ the formulas

in this tree other tharp. In order to eliminate maximal formulas from a derivatiarsuffices to apply the transformations
listed below, picking in the set of maximal formulas the fadenwith the highest grade that has only maximal formulas of
lower grade as side formulas, and iterating this proceskthete are no more maximal formulas in the proof. The preces
ends because at every step no new maximal formula as large lasger than) the eliminated one is introduced.

[z:A]
2
T
z:A
(Z) x:B To PN
— DI 1
z:ADB z:A
oFE z:B
z:B
[z<y]
s rx<z
(i) A N
GI
z:GA r<z z:A
GE
z:A
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P T x
(i) v e
ply/x]
Finally, in Fig.[I3 we show how to permute applications o€giin order to get a derivation where, given a sequeneecaf
applications, the ones on the same label position occur mneediately below the other. We denote witha relational
symbol that can stay both fer and for=. In the derivation on the left, the first and the third apgimaof mon refer to the

same label position and thus are moved one immediately biblewther. The derivations obtained in this way will then be
further simplified during the normalization process. -

ply/=]

Proof [Theoreni1l] First, we observe that by Lemimda 9 we can obtaigrization in pre-normal form. Now let us show
how to remove redundant formulas. We know from Leniiha 7 thetyeapplication of a falsum-rule has an atomic formula
as a conclusion. Thus it is sufficient to consider the folltayiransformations:

A

- A

. ) T
(1)) =L paa, ~ L0

y: L
RAA | z:A
z:A

RAA |

where A is L or an atomic formula. Note that if the formuta: A DL is contained i and discharged by the second
application ofRA A in the derivation on the left, then the same can be done ingheation on the right.

x: L

- RAA .
(”) y: L o &ufl
uf1 (]
0
T
x: L uf1 g
(4i7) 2 NN et RAAL
uf2 y: L
y: L
T
. 0 T
() T~y
ufl

For the rulemon, given the ordering ofnon applications obtained by permutations defined in Lerhina@ptily case we
have to treat is when two applications@bn working on the same label position of a formula occur conseely. Then
we simply exploit the transitivity o (obtained by usingnon). Note that, by Lemm@l 7, in the following reductignis an
atomic formula.

T T2 T2 T3
$ =Y T3 T =Y Y==z
————— mon > —————— mon
ely/a] y==2 @ =2
mon ———— mon
plz/x] wlz/x]

4|

Proof [Lemmal13] (i) and (i) follow from the absence of maximal fimslas in a normal derivation: in a tragk no
introduction rule application can precede an applicaticeincelimination rule. In other words, a track in a normal dation

is such that the elimination part (when not empty) startfwithon-atomic formula and consists of some applications of
elimination-rules; if the elimination part ends with an mio formula, then the central part (when not empty) consiéts
some applications of rules whose conclusion is still an &darmula; the introduction part (when not empty) startéwean
atomic formula and consists of some applications of intotidn rules (see Figl4).
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(iif) comes from the fact that in a normal derivation a falsame and thenon-rule can be applied only to atomic formulas.

(iv) follows directly from the absence of redundant fornwila a normal derivation (see TheorEm 11).

For (v) and (vi), observe that tracks originating from anlaygion of uf1 or uf2 start with an atomic formula and thus
cannot have an elimination part, while tracks ending in goliegtion of uf1 or uf2 end with an atomic formula and thus
their introduction part must be empty. -
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