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Abstract

We give labeled natural deduction systems for a family of tense logics extending the basic linear tense logicKl . We prove
that our systems are sound and complete with respect to the usual Kripke semantics, and that they possess a number of useful
normalization properties (in particular, derivations reduce to a normal form that enjoys a subformula property). We also
discuss how to extend our systems to capture richer logics like (fragments of)LTL.

1 Introduction

Hilbert-style systems, although uniform, are difficult to use in practice, especially in comparison with the more “natural”
Gentzen-style systems such as natural deduction (ND), sequent, and tableaux systems. However, devising Gentzen-style sys-
tems for modal, relevance, and other non-classical logics often requires considerable ingenuity, as well as trading uniformity
for simplicity and usability. A solution to this problem is to employlabelingtechniques, which provide a general framework
for presenting different logics in a uniform way in terms of Gentzen-style systems.

The intuition is that labeling (also called prefixing, annotating or subscripting) allows one to explicitly encode additional
information, of a semantic or proof-theoretical nature, that is otherwise implicit in the logic one wants to capture. So, for
instance, instead of a modal formulaA, we can consider thelabeled formula (lwff)x : A, which intuitively means thatA
holds at the world denoted byx within the underlying Kripke semantics. We can also use labels to specify how worlds are
related in a particular Kripke model, e.g. therelational formula (rwff)x < y states that the worldy is accessible fromx.

Labeled deduction systems have been given for several non-classical logics, e.g. [1, 3, 6, 7, 8, 11, 12, 13, 16, 19], and
research has focused not only on the design of systems for specific logics, but also, more generally, on the characterization
of the classes of logics that can be formalized this way. General properties and limitations of labeling techniques havealso
been investigated. For example, [19] highlights an important trade-off between limitations and properties, which canbe
roughly summarized as follows. Assume that we have a set of rules for reasoning about the introduction and elimination of
modal operators in lwffsx : A such as the following rules for�, where we expressx : �A as the metalevel implication
x < y =⇒ y : A for an arbitraryy accessible fromx (y is fresh, i.e. it is different fromx and does not occur in any
assumption on whichy : A depends other thanx < y):

[x < y]
....

y : A

x : �A
�I (y fresh)

x : �A x < y

y : A
�E .

Assume also that we reason on the semantic information provided by labeling usingHorn-style relational rules
x1 < y1 . . . xn < yn

x0 < y0

where thexi andyi are labels, andn ≥ 0 (so that the rule has no premises whenn = 0). While restricting our systems to
such Horn rules allows us to present only a subset of all possible non-classical logics, we can still capture several of the most
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common modal and relevance logics, and, more importantly, labeling provides an efficient general method for establishing
the metatheoretical properties of these logics, includingtheir completeness, decidability, and computational complexity. This
method relies on the separation between the sub-system for reasoning about lwffs and the sub-system for reasoning about
rwffs: derivations of lwffs can depend on derivations of rwffs (e.g. via the� rules), but rwffs depend only on rwffs (via the
Horn rules).

In this paper, we give labeled natural deduction systems fora family of tense logicsextending the basic linear tense logic
Kl [15]. Our starting point is [19] but it should be immediatelyclear that Horn rules do not suffice: even a minimal tense
logic like Kl requires its time points to be connected, i.e. for any two pointsx andy eitherx = y, or x is beforey, or y
is beforex. It is straightforward to see that such a property cannot be captured by a Horn rule like the one above; rather,
we need non-atomic rwffs, in particular disjunction (⊔) of relations, and more complex rules built using a full first-order
language, such as the axiom

∀x.y. x < y ⊔ x = y ⊔ y < x
conn .

A similar situation occurs if we wish to impose irreflexivityof our worlds. And that’s not all: as shown in [19] (in the caseof
modal logics, but the same arguments apply here, mutatis mutandis), if we move to such a first-order language and wish to
retain completeness of the resulting systems, then we need to abandon the strict separation between the sub-system for lwffs
and that for rwffs (and let derivations of rwffs depend also on lwffs). As we will see in more detail below, this is best achieved
by introducing a so-calleduniversal falsum, so that a contradiction in a world can be propagated not onlyto any other world
but also to the relational structure to derive any rwff; and,vice versa, from a contradiction in the relational sub-system we
can obtain any lwff.

The main contributions, and the structure, of this paper arethus the following. In Section 2, we give a brief presentation of
the syntax and semantics, and of a standard axiomatization,of Kl . In Section 3, we give a labeled natural deduction system
N (Kl) for Kl , which we show to be sound and complete (extending the completeness proofs given for modal logics in [19]).
Then, in Section 4, we show thatN (Kl) possesses a number of useful normalization properties; in particular, derivations
reduce to a normal form that enjoys a subformula property. InSection 5, we extendN (Kl) to capture some interesting
extensions ofKl , and in Section 6 we discuss how to extend our systems to capture richer logics like (fragments of)LTL.
We conclude, in Section 7, by comparing with related work anddiscussing future work. Detailed proofs and examples are
given in an appendix.

2 The basic linear tense logicKl

2.1 Syntax

Definition 1 Given a setP of propositional variables, the set ofwell-formedKl formulas is defined by the following
Backus-Naur-form presentation, wherep ∈ P :

A ::= p |⊥| A ⊃ A | GA | HA .

Truth of a tense formula is relative to a world in a model, so, intuitively,GA holds at a world iffA always holds in the future,
andHA holds at a world iffA always holds in the past. We will formalize this standard semantics below, but in order to
give a labeled ND system forKl , we extend the syntax with labels and relational symbols that capture the worlds and the
accessibility relation between them.

Definition 2 LetL be a set of labels and letx andy be labels inL. If A is a well-formedKl formula, thenx : A is a labeled
well-formed formula(labeled formula or lwff, for short).

The set ofwell-formed relational formulas(relational formulas or rwffs, for short) is defined as follows:

ρ ::= x < y | x = y | ∅ | ρ ⊐ ρ | ∀x. ρ .

We writeϕ to denote a generic formula (lwff or rwff). We say that an lwffx : A is atomicwhenA is atomic, i.e.A is a
propositional variable orA is ⊥. An rwff ρ is atomicwhen it does not contain any connective or quantifiers, i.e.ρ is ∅ or ρ
has the formx < y or x = y. Thegradeof an lwff or rwff is the number of occurrences of connectives(⊃ or⊐), operators
(G or H), and quantifiers (∀). Finally, given a set of lwffsΓ and a set of rwffs∆, we call the ordered pair(Γ,∆) a proof
context.

The given syntax uses a minimal set of connectives, operators, and quantifiers. As usual, we can introduce abbreviations
and use, e.g.,∼, ∧, ∨ and¬, ⊓, ⊔, for the negation, the conjunction, and the disjunction in the labeled language and in the
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relational one, respectively. For instance,∼ A ≡ A ⊃⊥ andρ′ ⊔ ρ′′ ≡ (ρ′ ⊐ ∅) ⊐ ρ′′. We can also define⊤ ≡∼⊥, other
quantifiers, e.g.∃x. ρ ≡ ¬∀x.¬ρ, and other temporal operators, e.g.FA ≡∼ G ∼ A to express thatA holds sometime in
the future.

2.2 Semantics

Definition 3 AKl frameis a pair(W ,≺), whereW is a non-empty set of worlds and≺⊆ W ×W is a binary relation that
satisfies the properties of irreflexivity, transitivity andconnectedness, i.e. for all(x, y) ∈ W2 we havex = y or (x, y) ∈≺ or
(y, x) ∈≺.

A Kl modelis a triple (W ,≺,V), where(W ,≺) is aKl frame and the valuationV is a function that maps an element of
W and a propositional variable to a truth value (0 or 1).

In order to give a semantics for our labeled system, we need todefine explicitly an interpretation of labels as worlds.

Definition 4 Given a set of labelsL and a modelM = (W ,≺,V), an interpretationis a functionλ : L → W that maps
every label inL to a world inW .

Given a modelM and an interpretationλ on it, truth for an rwff or lwffϕ is the smallest relation|=M,λ satisfying:

|=M,λ x < y iff (λ(x), λ(y)) ∈≺;
|=M,λ x = y iff λ(x) = λ(y);
|=M,λ ρ1 ⊐ ρ2 iff |=M,λ ρ1 implies|=M,λ ρ2;
|=M,λ ∀x. ρ iff for all y, |=M,λ ρ[y/x];

|=M,λ x : p iff V(λ(x), p) = 1;
|=M,λ x : A ⊃ B iff |=M,λ x : A implies|=M,λ x : B;
|=M,λ x : GA iff for all y, |=M,λ x < y implies|=M,λ y : A;
|=M,λ x : HA iff for all y, |=M,λ y < x implies|=M,λ y : A.

Hence,2M,λ x : ⊥ and 2
M,λ ∅. When|=M,λ ϕ, we say thatϕ is true in M according to the interpretationλ. By

extension:

|=M,λ Γ iff |=M,λ x : A for all x : A ∈ Γ;
|=M,λ ∆ iff |=M,λ ρ for all ρ ∈ ∆;
|=M,λ (Γ,∆) iff |=M,λ Γ and |=M,λ ∆;
Γ,∆ |=M,λ ϕ iff |=M,λ (Γ,∆) implies|=M,λ ϕ.

Truth for lwffs and rwffs built using other connectives or operators can be defined in the usual manner.1

2.3 An axiomatization of Kl

Several different Hilbert-style axiomatizations have been given for the logicKl ; the following one is taken from [15]:

(G1 ) G(A ⊃ B) ⊃ (GA ⊃ GB)

(G2 ) ∼ H ∼ GA ⊃ A

(G3 ) GA ⊃ GGA

(G4 ) [G(A ∨ B) ∧ G(A ∨ GB) ∧ G(GA ∨ B)] ⊃ (GA ∨ GB)

(NecG) If ⊢ A then⊢ GA

(NecH ) If ⊢ A then⊢ HA

(MP) If ⊢ A and⊢ A ⊃ B then⊢ B

The axiom(G1 ) is standard for modal and temporal logics, while(G2 ) sets the dual relation betweenG andH, (G3 )
expresses the transitivity and(G4 ) the connectedness ofG. For brevity, we have omitted the symmetric axioms(H1 )-(H4 )
that are obtained by replacing everyG by H and vice versa. Moreover, every classical tautology is a tautology, and there are
rules for modus ponens and necessitation for bothG andH.

1Note that truth for lwffs is related to the standard truth relation for modal logics by observing that|=M x : A iff |=M
x A.
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[x : A ⊃⊥]
....

y :⊥

x : A
RAA⊥

[x : A]
....

x : B
x : A ⊃ B

⊃I
x : A ⊃ B x : A

x : B
⊃E

[x < y]
....

y : A

x : GA
GI∗

x : GA x < y

y : A
GE

[y < x]
....

y : A

x : HA
HI∗

x : HA y < x

y : A
HE

[ρ ⊐ ∅]
....
∅
ρ RAA∅

[ρ1]....
ρ2

ρ1 ⊐ ρ2
⊐I

ρ1 ⊐ ρ2 ρ1
ρ2 ⊐E

ρ

∀x. ρ
∀I∗

∀x. ρ

ρ[y/x]
∀E

∀x. x = x
refl=

∀x.¬(x < x)
irrefl<

∀x.y.z. (x < y ⊓ y < z) ⊐ x < z
trans<

∀x.y. x < y ⊔ x = y ⊔ y < x
conn

ϕ x = y

ϕ[y/x]
mon

x :⊥

∅
uf 1

∅

x :⊥
uf 2

*In GI (respectively,HI), y is different fromx and does not occur in any assumption on whichy : A depends other than the discarded assumptionx < y
(respectively,y < x).
In ∀I, the variablex must not occur in any open assumption on whichρ depends.

Figure 1. The rules of N (Kl)

3 A labeled natural deduction system forKl

Our labeled ND systemN (Kl) = N (KlL)+N (KlR)+N (KlG) comprises of three sub-systems, whose rules are given
in Figure 1.

The propositional and temporal rules ofN (KlL) allow us to derive lwffs from other lwffs with the help of rwffs. The
rules⊃I and⊃E are just the labeled version of the standard ([14, 17]) ND rules for implication introduction and elimination,
where the notion ofdischarged/open assumptionis also standard (e.g. the formula[x : A] is discharged in the rule⊃I). The
ruleRAA⊥ is a labeled version ofreductio ad absurdum, where we do not enforce Prawitz’s side condition thatA 6= ⊥.2

The temporal operatorsG andH share the structure of the basic introduction/eliminationrules, with respect to the same
accessibility relation<; this holds because, for instance, we expressx : GA as the metalevel implicationx < y =⇒ y : A
for an arbitraryy accessible fromx (as we did for� in the introduction).

The relational rules ofN (KlR) allow us to derive rwffs from other rwffs only. The rulesRAA∅, ⊐ I, and⊐ E are
reductio ad absurdum and implication introduction and elimination for rwffs, while∀I and∀E are the standard rules for
universal quantification, with the usual proviso for∀I. There are also four axiomatic rules (or “axioms”, for short) refl =,
irrefl<, trans<, andconn, which express the properties of=3 and<, where, for readability, we employed the symbols for
disjunction, conjunction, and negation.

The general rules ofN (KlG) allow us to derive lwffs from rwffs and vice versa. The rulemon applies monotonicity to an
lwff or rwff ϕ, while the rulesuf 1 anduf 2 export falsum (and we thus call it auniversal falsum) from the labeled sub-system
to the relational one, and vice versa.4

Definition 5 (Derivations and proofs) A derivationof a formula (lwff or rwff)ϕ from a proof context(Γ,∆) in N (Kl) is a
tree formed using the rules inN (Kl), ending withϕ and depending only on a finite subset ofΓ∪∆. We then writeΓ,∆ ⊢ ϕ.
A derivation ofϕ in N (Kl) depending on the empty set,⊢ ϕ, is aproofof ϕ in N (Kl) and we then say thatϕ is a theorem
ofN (Kl).

2See [19] for a detailed discussion onRAA⊥, which in particular explains how, in order to maintain the duality of modal operators like� and♦, the
rule must allow one to derivex : A from a contradiction⊥ at a possibly different worldy, and thereby discharge the assumptionx : A ⊃⊥.

3Note that we do not need further axioms to express symmetry and transitivity of=, since the former can be derived by usingmon , conn , andirrefl<,
and the latter by usingmon .

4Note that the presentation of the system could be simplified by introducing a unique symbol for falsum (sayf), shared by the labeled and the relational
sub-systems. In that case, we would not need the rulesuf 1 anduf 2, while the rules for falsum eliminationRAA⊥ andRAA∅ could be replaced by the
following rule, where with−ϕ we denote the negation of a generic formula (labeled or relational):

[−ϕ]
....
f
ϕ RAAf

However, we prefer to maintain a clear separation between the two sub-systems, as it will allow us to give a simpler presentation of normalization.
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y : A x < y

x : FA
FI

x : FA

[y : A][x < y]
....

z : B
z : B

FE∗
y : A y < x

x : PA
PI

x : PA

[y : A][y < x]
....

z : B
z : B

PE∗

ρ1
ρ1 ⊔ ρ2

⊔I1
ρ2

ρ1 ⊔ ρ2
⊔I2

ρ1 ⊔ ρ2

[ρ1]....
ρ

[ρ2]....
ρ

ρ ⊔E
ρ[y/x]

∃x. ρ
∃I

∃x. ρ

[ρ[y/x]]
....
ρ′

ρ′
∃E∗

*In FE (respectively,PE), y is different fromx andz, and does not occur in any assumption on which the upper occurrence ofz : B depends other than
y : A or x < y (respectively,y < x).
In ∃E, y does not occur in any assumption on which the upper occurrence ofρ′ depends other thanρ[y/x].

Figure 2. Some derived rules

[x<y]1

π

y:A
GI1

x:GA

π2

x<z
GE

z:A

 

π2

x<z

π[z/y]

z:A

(a) Reduction for the detourGI/GE

π

x:⊥
RAA⊥

y:⊥
uf 1

∅

 

π

x:⊥
uf 1

∅

(b) A reduction for falsum-rules

π1

ϕ

π2

x=y
mon

ϕ[y/x]

π3

y=z
mon

ϕ[z/x]

 
π1

ϕ

π2

x=y

π3

y=z
mon

x=z
mon

ϕ[z/x]

(c) Reduction for the rulemon

Figure 3. Examples of reductions

We will give concrete examples of derivations in the following sections. For simplicity, we will employ the rules for
conjunction∧ and disjunction∨, which are derived from the basic propositional rules as is standard, as well as other derived
rules such as those forF, P, ⊔, and∃ given in Figure 2.

Since the axiomatization ofKl given in Section 2.3 is sound and complete, we could prove inN (Kl) the axioms and
the rules of the axiomatization to establish the completeness ofN (Kl) indirectly (and we do so in Section A.2.2). We can,
however, also give a direct proof of the soundness and completeness ofN (Kl). In fact, by adapting standard proofs for
labeled systems (see, e.g., [8, 16, 19] and the detailed proofs in the appendix, which in particular extend those for modal
logics in [19] to the case of universal falsum and other general rules that mix derivations of lwffs and rwffs), we have:

Theorem 6 (Soundness and completeness ofN (Kl)) N (Kl) = N (KlL) +N (KlR) +N (KlG) is sound and complete,
i.e. we have thatΓ,∆ ⊢ ϕ iff Γ,∆ |=M,λ ϕ for every modelM and every interpretationλ.

4 Normalization

4.1 Derivations in normal form

We will now show that the systemN (Kl) possesses a number of useful normalization properties. To that end, we will
follow the classical normalization process of [14] as much as possible, while some adaptations are inspired by [19]. We begin
by simplifying the proofs by restricting the applications of some of the rules.

Lemma 7 If Γ,∆ ⊢ ϕ, then there exists a derivation ofϕ from (Γ,∆) where:(i) the conclusions of applications ofRAA⊥,
RAA∅, andmon are atomic;(ii)mon is not applied to lwffs of the formx :⊥.

The system obtained fromN (Kl) by restricting the rulesRAA⊥, RAA∅, andmon according to this lemma is equivalent to
N (Kl). From now on, we will thus consider only this restricted system and keep calling itN (Kl).

The ND systems given in[19] for families of modal and relevance logics are based on a strict separation between the
labeled and the relational sub-systems (i.e. derivations of lwffs can depend on derivations of rwffs, but not vice versa). This
separation is possible thanks to the restriction to relational theories that are Horn theories. Our systemN (Kl) does not allow
for such a separation, since the rules for universal falsum let relational derivations depend also on labeled ones. Thus, more
complex derivations are possible, which implies that with respect to [19] we need to consider more forms of detours and
hence more forms of reductions.
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Definition 8 We say that a formulaϕ is amaximal formulain a derivation when it is both the conclusion of an introduction
rule and the major premise of an elimination rule.

We define the notion oflabel positionfor labels occurring in a formulaϕ to which the rulemon is applied. By the
restrictions of Lemma 7,ϕ can have the form(i)x : p, (ii)x < y, or (iii)x = y. We say thatx has label position1 in (i),
(ii) and(iii), andy has label position2 in (ii) and(iii).

A derivation is inpre-normal form(is a pre-normal derivation) if it has no maximal formulas and in every sequence of
mon applications, all the applications which concern variables with the same label position occur consecutively.

The notion of pre-normal derivation embodies the elimination of standard detours (given by a couple of introduction/elimination
rule applications on the same connective or operator) and anordering ofmon applications that aims at eliminatingmon de-
tours, i.e. two or more applications ofmon which concern variables with the same label position. Note that, sincemon

is only applied to atomic formulas of the form described above, once we have eliminated maximal formulas, the case of a
sequence ofmon applications is the only case in which we can have this kind ofdetour.

Lemma 9 Every derivation inN (Kl) reduces to a derivation in pre-normal form.

Proof (Sketch) First, we iteratively apply proper reductions (anexample is in Figure 3(a)) that remove maximal formulas.
Then the lemma follows by observing that applications ofmon in a sequence can be permuted as shown in Figure 13 in the
appendix. ⊣

Definition 10 We callfalsum-rulesthe rulesRAA⊥, RAA∅, uf 1, anduf 2. We say that a formulaϕ is a redundant formula
in a derivation when:(i) ϕ is both the conclusion and the premise of a falsum-rule; or(ii) ϕ is both the conclusion and the
major premise of amon carrying out two substitutions in the same label position (see Figure 3(c)).

A derivation is innormal form(is a normal derivation) iff it is in pre-normal form and does not contain any redundant
formula.

Theorem 11 Every derivation inN (Kl) reduces to a derivation in normal form.

Proof (Sketch) By Lemma 9, every derivation reduces to a pre-normal derivation. Then we can apply permutative reduc-
tions (examples in Figure 3(b)− (c)) that remove redundant formulas. More details are given in the appendix. ⊣

Normal derivations inN (Kl) have a well-defined structure that has a number of desirable properties. In particular, there
is an ordering on the application of the rules, which we can exploit to prove a subformula property for our system. To that
end, we adapt the standard definitions of subformula and track as follows:

Definition 12 B is a subformulaof A iff (i) A is B; (ii) A is A1 ⊃ A2 andB is a subformula ofA1 or A2; (iii) A is GA1

andB is a subformula ofA1; or (iv) A is HA1 andB is a subformula ofA1. We say thaty : B is a subformulaof x : A iff
B is a subformula ofA.

ρ2 is a subformulaof ρ1 iff (i) ρ1 is ρ2; (ii) ρ1 is ρ′1 ⊐ ρ′′1 andρ2 is a subformula ofρ′1 or ρ′′1 ; or (iii) ρ1 is ∀x. ρ andρ2 is
a subformula ofρ.

Given a derivationπ in N (Kl), a track in π is a sequence of formulasϕ1, . . . , ϕn such that:
(i) ϕ1 is an assumption ofπ, an axiom, or the conclusion of a universal falsum rule (uf 1 or uf 2);
(ii) ϕi stands immediately aboveϕi+1 and is the major (or the only) premise of a rule for1 ≤ i < n;
(iii) ϕn is the conclusion ofπ, the premise of a universal falsum rule, or the minor premiseof a rule.
We call a trackϕ1, . . . , ϕn a labeled trackwhen eachϕi is an lwff and arelational trackwhen eachϕi is an rwff.

In other words, a track can only pass through the major premises of rules and it ends at the first minor premise of a rule, or
at an application of universal falsum, or at the conclusion of π. The following lemmas formalize properties of the structure
of the tracks and specify the way in which the tracks are linked one to each other.

Lemma 13 Let π be a normal derivation, and lett be a trackϕ1, . . . , ϕn in π. Thent consists of three (possibly empty)
parts: (1) anelimination part, (2) acentral part, and (3) anintroduction part(see Figure 4) where:

(i) eachϕi in the elimination part is the major premise of an elimination rule and containsϕi+1 as a subformula;
(ii) eachϕj in the introduction part except the last one is the premise ofan introduction rule and is a subformula ofϕj+1;
(iii) eachϕk in the central part is atomic and is the premise of a falsum-rule or the major premise of amon ;
(iv) the central part contains at most one application of falsum-rules;
(v) tracks originating from an application ofuf 1 or uf 2 have an empty elimination part;
(vi) tracks ending in an application ofuf 1 or uf 2 have an empty introduction part.

6



⊐E, ∀E

⊐I, ∀I

RAA∅, uf 2, mon

Elimination

Central

Introduction

Part:

Part:

Part:

⊃E, GE, HE

⊃I, GI, HI

RAA⊥, uf 1, mon

Figure 4. The structure of a labeled track (left) and that of a relational track (right)

CASE 1

x < y

tr
tl

GE, HE tr

x = y

CASE 2

tl

mon uf 2
∅

x :⊥

CASE 3

tr

tl

∅

x :⊥
uf 1

CASE 4

tl

tr

Figure 5. Possible connections between labeled tracks tl and relational tracks tr

Lemma 14 Let tl be a labeled track andtr a relational track in a derivationπ. Thentl andtr can be connected in one of
the following ways (shown in Figure 5):

(i) the last formula intr is the minor premise of aGE or of aHE whose major premise is a formula in the elimination
part of tl;

(ii) the last formula intr is the minor premise of amon whose major premise is a formula in the central part oftl;
(iii) tr ends with an application ofuf 2 and the conclusion of that application is the first formula intl;
(iv) tl ends with an application ofuf 1 and the conclusion of that application is the first formula intr.

Proof The statement follows trivially by observing thatGE, HE, mon, uf 1, anduf 2 are the only rules that mix labeled
and relational formulas and that, by Lemma 13, such rules canbe applied only in a specific part of a track. ⊣

4.2 The subformula property

To prove a subformula property forN (Kl), we adapt further standard definitions:

Definition 15 Given a derivationπ in N (Kl), themain threadis the sequencet1, . . . , tn of tracks such that: (1) the first
formula in t1 is an assumption or an axiom; (2)ti and ti+1 are connected by means of an application ofuf 1 or uf 2, for
1 ≤ i ≤ (n− 1); and (3) the last formula intn is the conclusion ofπ.

Letπ be a derivation ofϕ from (Γ,∆) in N (Kl), SL be the set of subformulas of the formulas inΓ (or in Γ ∪ {ϕ} if ϕ
is a labeled formula), andSR be the set of subformulas of the formulas in∆ ∪ Ax (or in ∆ ∪ Ax ∪ {ϕ} if ϕ is a relational
formula), whereAx is the set of axioms used inπ. We say thatπ enjoys thesubformula propertyiff

1. for all lwffsy : B used in the derivationπ:
(i) B ∈ SL; or
(ii) B is an assumptionD ⊃⊥ discharged by an application ofRAA⊥ whereD ∈ SL; or
(iii) B is an occurrence of⊥ obtained by⊃E from an assumptionD ⊃⊥ discharged by an application ofRAA⊥,
whereD ∈ SL; or
(iv) B is an occurrence of⊥ obtained by an application ofRAA⊥ that does not discharge any assumption; or
(v)B is an occurrence of⊥ obtained by an application ofuf 2;

2. for all rwffsρ used in the derivationπ:
(i) ρ ∈ SR; or
(ii) ρ is an assumptionρ1 ⊐⊥ discharged by an application ofRAA∅ whereρ1 ∈ SR; or
(iii) ρ is an occurrence of∅ obtained by⊐E from an assumptionρ′ ⊐ ∅ discharged by an application ofRAA∅, where
ρ′ ∈ SR; or
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(iv) ρ is an occurrence of∅ obtained by an application ofuf 1; or
(v) ρ is obtained by an application ofmon.

Lemma 16 Every normal derivation inN (Kl) satisfies the subformula property.

Proof This follows immediately from the standard proof [14], which is based on the introduction of an ordering of the
tracks in a normal derivation depending on their distance from a main thread. In our case, a main thread contains not only
labeled formulas and we have to consider more cases than in the standard proof, given that the central part of a track can have
a more complex structure (as it can also contain applications ofuf 1, uf 2, andmon). ⊣

This lemma shows that although normal derivations inN (Kl) have a more complex structure than normal derivations in
ND systems for classical logic [14] and ND systems for families of modal and relevance logics [19], they have still a well-
defined structure and satisfy a subformula property. It is important to remark that the special cases added to the definition of
subformula property (i.e. formulas can be derived by applications ofuf 1, uf 2, ormon) do not compromise automatic proof
search completely, given that such cases can occur only in a limited section of a normal derivation (i.e. the central partof a
track).

We also note that the presence of axioms (and in particular the fact that they are expressed in a full first-order language)
makes our proof of normalization more complex and our results weaker. Thus, it is not possible to use it as a means to show
the consistency of the system or the validity of an interpolation theorem, as can be done for systems in [19], where relational
properties are expressed by Horn rules and we have only atomic axioms.

5 A family of tense logics

The basic linear tense logicKl leaves unanswered many fundamental natural questions about the structure of time. How-
ever, the labeling framework allows us to express several further relational properties in a straightforward and cleanway,
i.e. by only adding the corresponding relational axioms to the relational sub-system. In particular, we will now show how to
extendN (Kl) to capture the extensions ofKl with: a first/final point; unbounded time; dense time; and discrete time (where
we adopted the classification of [15]).5

Kl with a first/final point The semantics ofKl is given by means of temporal structures where nothing is said about the
existence of a first or a final point. To express the existence of such points, we can add the following axioms6 to the relational
sub-systems:

∃x.∀y.¬(y < x)
first

∃x.∀y.¬(x < y)
final .

The two axioms do not affect each other; thus we can decide to add both or just one of them to the system, according to the
logic we want to represent.

Soundness of the extended systems is straightforward, since the axioms mirror the properties that the models of the
extended logic are required to satisfy. To show completeness, it suffices to extend the canonical model construction presented
for N (Kl) (see Section A.2) to consider also the new relational axioms. Alternatively, we can simply prove completeness
by proving the corresponding (see, e.g., [18]) Hilbert-style axioms(having a first point)and(having a final point)that are
given in Figure 6. In Figure 7, we show the derivation for the first one (the proofs of the two axioms are symmetric). Also
the normalization procedure of Section 4 can still be applied to the extended system: we have just to consider the possibility
of more relational axioms.

Kl with unbounded time Conversely, we can express the fact that the sequence of timepoints is unbounded, towards the
past and/or towards the future. This corresponds to adding the conditions of seriality on the left and/or on the right, i.e. every
point has a predecessor and/or a successor. For this, we can add two relational axioms corresponding to the axioms for left
and right seriality given in Figure 6:

∀x.∃y. y < x
lser

∀x.∃y. x < y
rser .

5It is worth to mention that in [6], Bonnette and Goré give a labeled sequent system for the minimal tense logicKt that can easily capture any combination
of the reflexive, transitive, euclidean, symmetric and serial extensions of the logic. We have not considered all of these properties of the accessibility relation
here, but the missing ones can be added straightforwardly thanks to the modularity of our system, which we exploit to capture the extensions towardsLTL

we consider in the remainder of the paper. The labeling discipline of [6] is different from ours and is tailored to a lean Prolog implementation of their sequent
systems. In contrast, we focus here on the proof-theoretical aspects of our ND systems and leave an implementation for future work.

6The existence of a first (or a final) point is often expressed byadding a constant to the language. For example, we could introduce a constant0 for the
first point and an axiom stating that∀y.¬(y < 0). We prefer not to modify the language and keep the treatment of this property closer to that of other ones.
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(having a first point) H ⊥ ∨ PH ⊥
(having a final point) G ⊥ ∨ FG ⊥
(left-seriality) P⊤
(right-seriality) F⊤

(left-density) PA ⊃ PPA
(right-density) FA ⊃ FFA
(left-discreteness) (P⊤ ∧ A ∧ GA) ⊃ (PGA)
(right-discreteness) (F⊤ ∧ A ∧ HA) ⊃ (FHA)

Figure 6. Some axioms for extensions of Kl

first
∃x.∀y.¬(y<x)

conn
∀x.y. x<y⊔x=y⊔y<x

∀E
∀y. t<y⊔t=y⊔t<x

∀E
t<s⊔t=s⊔s<t

[∀y.¬(y<s)]2

∀E
¬(t<s) [t<s]3

¬E
∅

[t=s⊔s<t]3

π1

∅

π2

∅

⊔E4

∅
⊔E3

∅

∃E2

∅
uf 2

t:⊥
RAA⊥

1

t:H⊥∨PH⊥

whereπ1 is: andπ2 is:

[t:P⊤∧HP⊤]1

∧E
¬(t:P⊤) [t=s]4

mon
(s:P⊤)

[∀y.¬(y<s)]2

∀E
¬(q<s) [q<s]5

¬E
∅

uf 2
s:⊥

PE5

s:⊥
uf 1

∅

[t:P⊤∧HP⊤]1

∧E
t:HP⊤ [s<t]4

HE
s:P⊤

[∀y.¬(y<s)]2

∀E
¬(r<s) [r<s]6

¬E
∅

uf 2
s:⊥

PE6

s:⊥
uf 1

∅

Figure 7. Derivation of the modal axiom for first point

As an example, we show completeness for(right-seriality), whereπ is some proof ofs : ⊤ based on a proof of⊤ orA∨ ∼ A
in classical logic (see, e.g., [14, 17]):

rser

∀x.∃y. x < y
∀E

∃y. t < y

π

s : ⊤ [t < s]1
FI

t : F⊤
∃E1

t : F⊤

Kl with dense time Another constraint that we can impose on relational structures is that the flow of time is dense, i.e. be-
tween any two points we can find a third point:

∀x.y. x < y ⊐ ∃z. x < z ⊓ z < y
dens .

Figure 11 in the appendix shows the proof of the axiom for(right-density); the proof for(left-density)can be obtained in a
symmetric way by using the same axiom (dens).

Kl with discrete time Finally, we can express discreteness both towards the past and towards the future:

∀x.y. x < y ⊐ ∃z. z < y ⊓ ¬∃u. (z < u ⊓ u < y)
ldiscr

∀x.y. x < y ⊐ ∃z. x < z ⊓ ¬∃u. (x < u ⊓ u < z)
rdiscr .

We omit the proof of completeness for the corresponding axioms.

6 TowardsLTL

We have seen that ND systems for several extensions ofKl can be given by extending the “base system”N (Kl). This is
not the case for all the possible extensions, however, as some properties, e.g. continuity or finite intervals, are second-order
properties [18] and thus require an appropriate higher-order relational language. We now briefly discuss whether (and how)
it is possible to extendN (Kl) to capture a richer logic like (fragments of)LTL.
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MTL: a subset ofLTL For brevity, we restrict our attention to future temporal operators only (but the extension to the
past is straightforward) and begin by considering the system N (Kl) extended with the axiomsrdiscr andrser so that the
flow of time is discrete and unbounded towards the future (in this case, the presence ofrser allows us to simplifyrdiscr
to ∀x. ∃z. x < z ⊓ ¬∃u. (x < u ⊓ u < z)). We can express in our syntax the relationnext in terms of the relation< (see,
e.g., [10]), i.e. we can introduce a relational symbol⊳ (with the meaning ofimmediately precedes) as an abbreviation:

s⊳ t ≡ s < t ⊓ ∀x.¬(s < x) ⊔ ¬(x < t) .

This allows us to enrich the language with an operatorX, whose semantics can be given without having to introduce a specific
relation for it in the definition of a model. We just need to require that models for this logic areKl models where< is also
discrete and serial on the right, and extend the definition oftruth with:

|=M,λ x : XA iff |=M,λ x⊳ y and |=M,λ y : A .

Rules for introduction and elimination ofX can now be given in a clean way, with the usual freshness proviso forXI:7

[x⊳ y]
....

y : A

x : XA
XI (y fresh)

x : XA x⊳ y

y : A
XE .

The logic that we capture in this extended system, which we call N (KMTL), is notLTL yet. We are able to express the
existence of an immediate successor, but we miss a way to say that between any two points (related by≺) there can be only a
finite sequence of points related one to each other by the relation next. We would need to express the finite interval property,
but this is a second-order property, as observed above.

In [12], a subset ofLTL calledSmall Temporal Logic, orSTL for short, is introduced and given a natural deduction system.
The reasons behind the definition ofSTL are the difficulties arising from dealing with the inductionprinciple (relating⊳
and<) that is needed in order to representLTL. While the semantics ofLTL can be given by considering Kripke structures
defined over a relation of successor (denoted byN ) and by defining≺ as the least transitive closure ofN , in the semantics
of STL the relation≺ is just required to containN . It follows that a rule for induction is not needed in a systemfor STL.

It is easy to verify thatN (KMTL) is complete with respect to the semantics ofSTL. Moreover, it can be proven to
correspond to a logic “larger” thanSTL for which the condition of linearity (or connectedness) on the relation≺ holds:
we call this logicMedium Temporal LogicMTL.8 We could also introduce rules for the operatorssinceanduntil, but they
would be quite complex and problematic from a proof-theoretical point of view; see [2] for a labeled tableaux system for a
distributed temporal logic that comprises fullLTL, and [5] for tableaux-like ND rules forLTL.

LTL Several systems of labeled natural deduction forLTL, e.g. [4, 5, 12], introduce an induction rule like the following

x : A x < y

[x < x′][x′ ⊳x′′][x′ : A]
....

x′′ : A

y : A
ind

which does not operate at a purely relational level. Some remarks are worth about a solution like this. First of all, the rule ind

adds some more points of contact between the labeled and the relational sub-systems and leads to a failure of normalization.
Moreover, one can show that the axiom of connectedness is notneeded anymore since it is in a way “contained” in the
induction principle. In fact, the axiom(3)

∼ G(GA ⊃ B) ⊃ G(GB ⊃ A)

of weak connectednessmust obviously hold inLTL, for it can be subsumed by the induction axiom (see, e.g., [9]). Thus, in
the case we want to use a rule likeind to captureLTL, it seems more reasonable to follow a different approach that avoids

7The fact that every time point has one (and only one) immediate successor follows from right-discreteness, right-seriality, and connectedness, and it
allows one to express rules forX both in a universal and in an existential formulation. We give here the universal one.

8An axiomatization ofMTL can be obtained, as shown in [10], by adding the following axioms to those given for future-timeKl :

(KX) X(A ⊃ B) ⊃ (XA ⊃ XB)

(FUNC ) (X ∼ A ⊃∼ XA) ∧ (∼ XA ⊃ X ∼ A)

(RECG) (GA ⊃ X(A ∧ GA)) ∧ (X(A ∧ GA) ⊃ GA)
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both the extension of the relational language to a first-order language and the introduction of the universal falsum. In other
words, we could have a system forLTL which uses only Horn rules in the relational theory (from which it follows that we
have only atomic rwffs and no relational falsum) but extendsthe labeled sub-systems with a rule for induction that mixes
labeled and relational premises.

7 Conclusions

We have already discussed some works that are related to the labeled ND systems for tense logics that we have given here
(for which, summarizing, we have proved not only soundness and completeness, but also a number of useful proof-theoretical
properties, and for which we also discussed extensions leading up toLTL). As we observed, the main difficulties in applying
the labeled deduction framework in the context of linear temporal logics arise from the need of expressing the conditionof
connectednessin the case of the basic linear tense logicKl (see [11] for a discussion) and theinductionprinciple in the
case ofLTL. In fact, [11] gives a fairly complex labeled tableaux system for the logicKl (called there the linear temporal
logic Kt4.3), which is analytical in that it only comprises eliminationrules for temporal operators and can be used as a
decision procedure. In contrast, the main distinctive feature of our approach is the extension of a fixed base system for the
temporal operators with relational rules that express the relational properties of the considered logic. This, in particular,
allows for uniform and modular proofs of meta-theoretic properties for families of logics, like the proofs we have givenhere.
Moreover, it makes our systems amenable to extensions to other logics as we have begun investigating towardsLTL and
to the branching-time logicsCTL andCTL∗. To that end, we plan to capitalize on the labeled ND systems for LTL given
in [4, 12], which both make use of a specific rule for induction.
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A Proofs

In this appendix we give the full proofs of the lemmas and theorems given in the body of the paper. In Sections A.1
and A.2, we give the proofs for the soundness and completeness of the systemN (Kl) (Theorem 6) and for the completeness
of the extensions ofN (Kl) (Section 5). In Section A.3, we give proofs for the normalization results presented in Section 4.

A.1 Soundness

Theorem 17 N (Kl) = N (KlL) +N (KlR) +N (KlG) is sound, i.e. it holds:

(i) Γ,∆ ⊢ ρ impliesΓ,∆ |=M,λ ρ for every modelM and every interpretationλ;

(ii) Γ,∆ ⊢ x : A impliesΓ,∆ |=M,λ x : A for every modelM and every interpretationλ.

Proof

(i) The proof is by induction on the structure of the derivation of ρ. The base case is whenρ ∈ ∆ and is trivial. There
is one step case for every axiom or rule. The axiomsconn, trans <, andirrefl < directly refer to the properties of
connectedness, transitivity, and irreflexivity ofKl models (Definition 3) and thus are trivially sound, whilerefl = and
mon preserve soundness by definition of|=M,λ x = y (Definition 4).

Consider the case of an application ofRAA∅
Γ ∆ [ρ⊐∅]1

π

∅
RAA1

∅
ρ

where∆1 = ∆ ∪ {ρ ⊐ ∅}. By the induction hypothesis,Γ,∆1 |=M,λ ∅ for every modelM and every interpretationλ.
Let us consider an arbitrary modelM and an arbitrary interpretationλ; we assume|=M,λ (Γ,∆) and prove|=M,λ ρ.
Since2M,λ ∅, from the induction hypothesis we obtain2M,λ (Γ,∆1), that, given the assumption|=M,λ (Γ,∆), leads
to 2

M,λ ρ ⊐ ∅, i.e. |=M,λ ρ and2M,λ ∅ by Definition 4.

The cases for⊐I,⊐E, ∀I and∀E follow by simple adaptations of the standard proofs for classical logic.

Finally, consider the case of an application ofuf 1

Γ ∆

π

x:⊥
uf 1

∅

for a proof context(Γ,∆) and some labelx. By the induction hypothesis, we haveΓ,∆ |=M,λ x :⊥ for everyM and
everyλ. Given a generic modelM and a generic interpretationλ, we can write2M,λ x :⊥; it follows that2M,λ (Γ,∆)
and then alsoΓ,∆ |=M,λ ∅ by Definition 4.

(ii) As in (i), by induction on the structure of the derivation of x : A. The base case is trivial and there is a step case for
every rule of the labeled system. The cases of introduction and elimination of connectives and that of universal falsum
are as in (i).

Consider an application of the ruleGI
Γ ∆ [x<y]1

π

y:A
GI1

x:GA

whereΓ,∆1 ⊢ y : A with y fresh and with∆1 = ∆ ∪ {x < y}. By the induction hypothesis, for every modelM and
every interpretationλ it holdsΓ,∆ |=M,λ y : A. We letλ be any interpretation such that|=M,λ (Γ,∆) and show that
|=M,λ x : GA. Letw be any world such thatλ(x) ≺ w. Sinceλ can be trivially extended to another interpretation (still
calledλ for simplicity) by settingλ(y) = w, the induction hypothesis yields|=M,λ y : A, and thus|=M,λ x : GA.
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Finally, consider an application of the ruleGE

Γ1 ∆1

π1

x:GA

Γ2 ∆2

π2

x<y
GE .

y:A

LetM be an arbitrary model andλ an arbitrary interpretation. If we assume|=M,λ (Γ1 ∪ Γ2,∆1 ∪∆2), then from the
induction hypotheses we obtain|=M,λ x : GA and|=M,λ x < y, and thus|=M,λ y : A by Definition 4.

The treatment ofHI andHE is analogous.
⊣

A.2 Completeness

In the following, in order to simplify the derivations, we will use some derived rules. We show here, as an example, how
to derive the rulesFI andFE (see Figure 2) from the rules for introduction/eliminationof G. We remind that the following
equivalence holds:FA ≡ ∼ G ∼ A ≡ (G(A ⊃⊥)) ⊃⊥.

The rule
y:A x<y

FI
x:FA

can be derived as follows
[x:G(A⊃⊥)]1 x<y

GE
y:A⊃⊥ y:A

⊃E
y:⊥

RAA⊥

x:⊥
⊃I1

x:G(A⊃⊥)⊃⊥

while an application ofFE

x:FA

[y:A] [x<y]

π
z:B

FE
z:B

can be replaced by the following derivation

x:G(A⊃⊥)⊃⊥

[z:B⊃⊥]1

[y:A]3 [x<y]2

π
z:B

⊃E
z:⊥

RAA⊥

y:⊥
⊃I3

y:A⊃⊥
GI2

x:G(A⊃⊥)
⊃E

x:⊥
RAA⊥

1

z:B

A.2.1 Completeness by canonical model construction

In the following, slightly abusing notation, we will writeϕ ∈ (Γ,∆) wheneverϕ ∈ Γ or ϕ ∈ ∆, and writex ∈ (Γ,∆)
whenever the labelx occurs in someϕ ∈ (Γ,∆).

Definition 18 A proof context(Γ,∆) is N (Kl)-consistentiff Γ,∆ 0 x :⊥ for everyx, and it is N (Kl)-inconsistent
otherwise.

Note that we can have inconsistency also by deriving∅ in the relational system; given the rulesuf 1 anduf 2 for universal
falsum, also this case is captured by the previous definition.

For simplicity, in the following we will omit the “N (Kl)” and simply speak of consistent and inconsistent proof contexts.
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Proposition 19 Let (Γ,∆) be a consistent proof context. Then:

(i) for everyx and everyA, either(Γ ∪ {x : A},∆) is consistent or(Γ ∪ {x :∼ A},∆) is consistent;

(ii) for every relational formulaρ , either(Γ,∆ ∪ {ρ}) is consistent or(Γ,∆ ∪ {¬ρ}) is consistent.

Proof

(i) Suppose that both(Γ ∪ {x : A},∆) and(Γ ∪ {x :∼ A},∆) are inconsistent. Then fromΓ ∪ {x : A},∆ ⊢ x :⊥, by
applying the rule⊃I, we getΓ,∆ ⊢ x :∼ A. Similarly, fromΓ ∪ {x :∼ A},∆ ⊢ x :⊥, by applying the ruleRAA⊥,
we getΓ,∆ ⊢ x : A.
But, if bothx : A andx :∼ A are derivable in the proof context(Γ,∆), then it also holdsΓ,∆ ⊢ x :⊥, by ∼ E. It
follows that the original proof context(Γ,∆) had to be inconsistent (contradiction).

(ii) The proof for the relational case is analogous and is obtained by using the corresponding relational rules i.e.⊐I,RAA∅

and¬E.
⊣

Definition 20 A proof context(Γ,∆) is maximally consistentiff the following three conditions hold:

1. (Γ,∆) is consistent,

2. for every relational formulaρ, eitherρ ∈ ∆ or ¬ρ ∈ ∆,

3. for everyx and everyA, eitherx : A ∈ Γ or x :∼ A ∈ Γ.

Completeness follows by a Henkin–style proof, where a canonical model

MC = (WC ,≺C ,VC)

is built from a proof context(Γ,∆) to show that(Γ,∆) 0 ϕ impliesΓ,∆ 2
MC ,λC

ϕ for every formulaϕ.
In standard proofs for unlabeled modal, temporal, and for other non-classical logics, the setWC is obtained by progres-

sively building maximally consistent sets of formulas, where consistency is locally checked within each set. In our case,
given the presence of lwffs and rwffs, we modify the Lindenbaum lemma to extend(Γ,∆) to one single maximally consis-
tent context(Γ∗,∆∗), where consistency is “globally” checked also against the additional assumptions in∆.9 The elements
of WC are then built by partitioningΓ∗ and∆∗ with respect to the labels, and the relation≺C between the worlds is defined
by exploiting the information in∆∗.

In the Lindenbaum lemma for predicate logic, a maximally consistent andω-complete set of formulas is inductively built
by adding for every formula∼ ∀x.A a witnessto its truth, namely a formula∼ A[c/x] for some new individual constant
c. This ensures that the resulting set isω-complete, i.e. that if, for every closed termt, A[t/x] is contained in the set, then
so is∀x.A. A similar procedure applies here not only for rwffs¬∀x. ρ, but also in the case of lwffs of the formx :∼ GA.
That is, together withx :∼ GA we consistently addy :∼ A andx < y for some newy, which acts as awitness worldto
the truth ofx :∼ GA. This ensures that the maximally consistent context(Γ∗,∆∗) is such that ifx < z ∈ (Γ∗,∆∗) implies
z : B ∈ (Γ∗,∆∗) for everyz, thenx : GB ∈ (Γ∗,∆∗), as shown in Lemma 22 below. Note that in the standard completeness
proof for unlabeled modal logics, for instance, one insteadconsiders a canonical modelMC and shows that ifW1 ∈ WC

andMC ,W1 �∼ GA, thenWC also contains a worldW2 accessible fromW1 that serves as a witness world to the truth of
∼ GA atW1, i.e.MC ,W2 �∼ A.

Lemma 21 Every consistent proof context(Γ,∆) can be extended to a maximally consistent proof context(Γ∗,∆∗).

Proof We first extend the language ofN (Kl) with infinitely many new constants for witness terms and for witness worlds.
Let t range over the original terms,s range over the new constants for witness terms, andr range over both; further, letw
range over labels,v range over the new constants for witness worlds, andu range over both. All these may be subscripted.
Let ϕ1, ϕ2, ... be an enumeration of all lwffs and rwffs in the extended language; whenϕi is u : A, we write ∼ ϕi for
u :∼ A.

We iteratively build a sequence of consistent proof contexts by defining(Γ0,∆0) = (Γ,∆) and(Γi+1,∆i+1) to be:

9We consider only consistent proof contexts. If(Γ,∆) is inconsistent, thenΓ,∆ ⊢ ϕ for all ϕ, and thus completeness immediately holds for all lwffs
and rwffs.
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• (Γi,∆i), if (Γi ∪ {ϕi+1},∆i) is inconsistent; else

• (Γi ∪ {u :∼ GA, v :∼ A},∆i ∪ {u < v}) for av not occurring in(Γi ∪ {u :∼ GA},∆i) if ϕi+1 is u :∼ GA; else

• (Γi ∪ {u :∼ HA, v :∼ A},∆i ∪ {v < u}) for av not occurring in(Γi ∪ {u :∼ HA},∆i) if ϕi+1 is u :∼ HA; else

• (Γi,∆i ∪ {¬∀x. ρ,¬ρ[s/x]}) for ans not occurring in(Γi,∆i ∪ {¬∀x. ρ}) if ϕi+1 is ∼ ∀x. ρ; else

• (Γi ∪ {ϕi+1},∆i) if ϕi+1 is an lwff or (Γi,∆i ∪ {ϕi+1}) if ϕi+1 is an rwff.

Now define
(Γ∗,∆∗) = (

⋃

i≥0

Γi,
⋃

i≥0

∆i) .

We show that the proof context(Γ∗,∆∗) is maximally consistent, i.e. it verifies the three conditions of Definition 20.

(i) First we prove that our construction preserves consistency by showing that every(Γi,∆i) is consistent. The only
interesting cases are whenϕi+1 is one of∼ GA, ∼ HA, or¬∀x. ρ. We only consider the first case, since the second
one is symmetrical, and the third is very similar.

If (Γi ∪ {u :∼ GA},∆i) is consistent, then so is(Γi ∪ {u :∼ GA, v :∼ A}) for a v not occurring in(Γi ∪ {u :∼
GA},∆i). By contraposition, suppose that

Γi ∪ {u :∼ GA, v :∼ A} , ∆i ∪ {u < v} ⊢ uj :⊥

by a derivationπ (wherev does not occur in(Γi ∪ {u :∼ GA},∆i)). Then inN (Kl) we can have a derivation like the
following:

Γi ∆i u:∼GA [v:∼A]1 [u<v]2

π

uj :⊥
RAA⊥

1

v:A
GI2

u:GA u:∼GA
∼E

u:⊥

This shows that(Γi ∪ {u :∼ GA},∆i) is inconsistent, which is not the case.

(ii) Consider an rwffρ. Suppose that bothρ /∈ ∆∗ and¬ρ /∈ ∆∗ hold. Letρ beϕi+1 for somei in our enumeration of
formulas and¬ρ beϕj+1. Now supposei < j (the other case is symmetric).ρ /∈ ∆∗ implies that(Γi,∆i ∪ {ϕi+1})
is inconsistent. Given that in our inductive construction we only add formulas to the proof context, i.e.∆i ⊆ ∆j , we
have that(Γj ,∆j ∪ {ϕi+1}) is also inconsistent. Then, by Proposition 19(ii), (Γj ,∆j ∪ {ϕj+1}) has to be consistent
andϕj+1 is added by definition to∆j . This impliesϕj+1 ∈ ∆∗, i.e.¬ρ ∈ ∆∗.

(iii) The proof for labeled formulas is the same as in the previous case and proceeds by contraposition by using Proposition
19(i).

⊣

Lemma 22 Let (Γ,∆) be a maximally consistent proof context. Then:

(i) Γ,∆ ⊢ ϕ iff ϕ ∈ (Γ,∆);

(ii) ρ1 ⊐ ρ2 ∈ ∆ iff ρ1 ∈ ∆ impliesρ2 ∈ ∆;

(iii) ∀x. ρ ∈ ∆ iff ρ[y/x] ∈ ∆ for all y;

(iv) u : A ⊃ B ∈ Γ iff u : A ∈ Γ impliesu : B ∈ Γ;

(v) u1 : GA ∈ Γ iff u1 < u2 ∈ ∆ impliesu2 : A ∈ Γ for all u2;

(vi) u1 : HA ∈ Γ iff u2 < u1 ∈ ∆ impliesu2 : A ∈ Γ for all u2.

Proof We treat only some cases, the others are similar and follow bymaximality and consistency of(Γ,∆).
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(i) The proof is analogous for rwffs and lwffs, we see the first case.

(⇐) If ϕ ∈ (Γ,∆), then triviallyΓ,∆ ⊢ ϕ.

(⇒) Consider an rwffϕ such thatϕ /∈ (Γ,∆). Then, by Definition 20,¬ϕ ∈ (Γ,∆). It follows trivially thatΓ,∆ ⊢ ¬ϕ
holds. By hypothesis,Γ,∆ ⊢ ϕ and thus by using¬E we getΓ,∆ ⊢ ∅, that contradicts the consistency of(Γ,∆).

(v) (⇐) Supposeu1 : GA /∈ Γ andu2 : A ∈ Γ for everyu2 such thatu1 < u2 ∈ ∆. Then, by maximality of(Γ,∆),
u1 :∼ GA ∈ Γ. Now suppose there exists au3 such thatu1 < u3 ∈ ∆ andu3 :∼ A ∈ Γ. Then, by hypothesis, we
knowu3 : A ∈ Γ and this leads to a contradiction. Otherwise, if such au3 does not exist, we can concludeu1 : GA ∈ Γ
that leads to a contradiction as well.

(⇒) We show it by contraposition. Supposeu1 : GA ∈ Γ, u1 < u2 ∈ ∆ andu2 : A /∈ Γ. By maximality of(Γ,∆),
we haveu2 :∼ A ∈ Γ. Then the following is anN (Kl) proof that shows(Γ,∆) is inconsistent.

u1:GA u1<u2

GE
u2:A u2:∼A

∼E
u:⊥

⊣

Our construction of maximally consistent proof contexts (Lemma 21) does not exclude the presence of two labelsx and
y that are related by the relationx = y. Now we want to derive a model from such a construction. Sincewe know from
Definition 4 that|=M,λ x = y holds only ifλ(x) = λ(y), we need to state an equivalence relation between labels on which
the functionλ can be defined.

Definition 23 LetC = (Γ,∆) be a maximally consistent proof context andLC the set of labels occurring in it, we define
the binary relation≡C onLC as follows: for everyu1, u2 ∈ LC ,

u1 ≡C u2 iff u1 = u2 ∈ ∆.

Proposition 24 Given a maximally consistent proof contextC, the relation≡C is an equivalence relation.

Proof It follows trivially by the maximality ofC and by the rulesrefl=, mon , irrefl< andconn. ⊣

Notation 25 It follows from Proposition 24 that every maximally consistent proof contextC determines a partition of the set
LC of labels occurring in it. In the following, we will also use the notation[u]C to indicate the equivalence class containing
the labelu, i.e.

[u]C = {u′ | u ≡C u′}.

Definition 26 LetC = (Γ,∆) be a maximally consistent proof context andLC be the set of labels occurring in it. We define
thecanonical modelMC = (WC ,≺C ,VC) as follows:

• WC = {[u]C | u ∈ LC};

• ([ui]
C , [uj]

C) ∈≺C iff ui < uj ∈ ∆;

• VC([u]C , p) = 1 iff u : p ∈ Γ.

We define thecanonical interpretationλC : LC → WC as follows:

λC(u) = [u]C for everyu ∈ LC .

Remark 27 Note that in the previous definition≺C andVC are well defined, since it is easy to verify that for everyu1, u2 ∈
LC it holds:

• u1 ≡C u2 implies for everyu3 ∈ LC , u1 < u3 ∈ ∆ iff u2 < u3 ∈ ∆;

• u1 ≡C u2 implies for everyu3 ∈ LC , u3 < u1 ∈ ∆ iff u3 < u2 ∈ ∆;

• u1 ≡C u2 implies for everyp ∈ P , u1 : p ∈ Γ iff u2 : p ∈ Γ.
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conn
∀x.y. x<y⊔x=y⊔y<x

∀E
x<y⊔x=y⊔y<x

[x<y⊔x=y]1

[x<y]2 ¬(x<y)
¬E

∅

[x=y]2 ¬(x=y)
¬E

∅
⊔E2

∅

[y<x]1 ¬(y<x)
¬E

∅
⊔E1

∅

Figure 8. Proof for connectedness of canonical models

Proposition 28 Given a maximally consistent proof contextC = (Γ,∆), the canonical modelMC is a Kripke model for
Kl .

Proof It suffices to show thatMC is irreflexive, transitive and connected.
Suppose there exist three worldsW1,W2, andW3 in WC such that(W1,W2) ∈≺

C and(W2,W3) ∈≺
C , but(W1,W3) /∈≺C .

By definition 26, this implies there exist at least three labels x, y andz such thatλ(x) = W1, λ(y) = W2, λ(z) = W3,
x < y ∈ ∆ andy < z ∈ ∆, butx < z /∈ ∆, i.e. by the maximality ofC, ¬(x < z) ∈ ∆. But this leads to the inconsistency
of (Γ,∆), as shown by the following derivation.

trans<
∀x.y.z. (x<y⊓y<z)⊐x<z

∀E
(x<y⊓y<z)⊐x<z

x<y y<z
⊓I

x<y⊓y<z
⊐E

x<z ¬(x<z)
¬E

∅

Connectedness ofMC can be proved in a similar way by using the ruleconn. Suppose there exist two distinct worlds
W1 andW2 in WC such that(W1,W2) /∈≺C and(W2,W1) /∈≺C . By definition 26, this implies there exist at least two
labelsx andy such thatλ(x) = W1, λ(y) = W2, x = y /∈ ∆, x < y /∈ ∆ andy < x /∈ ∆, i.e. by the maximality ofC,
¬(x = y) ∈ ∆, ¬(x < y) ∈ ∆ and¬(y < x) ∈ ∆. But this leads to the inconsistency of(Γ,∆), as shown by the derivation
in Figure 8.

Irreflexivity of MC can be shown in a similar way. ⊣

Lemma 29 Let C = (Γ,∆) be a maximally consistent proof context,MC the canonical model andλC the canonical
interpretation built onC as in Definition 26. Then:

(i) ρ ∈ ∆ iff Γ,∆ |=MC ,λC

ρ;

(ii) u : A ∈ Γ iff Γ,∆ |=MC ,λC

u : A.

Proof

(i) (⇒) By hypothesis,ρ ∈ ∆. Then, if we assume|=MC ,λC

(Γ,∆), it immediately follows|=MC ,λC

ρ.

(⇐) By hypothesis,Γ,∆ |=MC ,λC

ρ. Let us supposeρ /∈ ∆. By maximality of(Γ,∆), it follows ¬ρ ∈ ∆. Then we
have alsoΓ,∆ |=MC ,λC

¬ρ (see direction (⇒)). But, since we have by hypothesisΓ,∆ |=MC ,λC

ρ, this yields the
absurdΓ,∆ |=MC ,λC

∅.

(ii) The proof for labeled formulas is analogous.
⊣

Theorem 30 N (Kl) = N (KlL) +N (KlR) +N (KlG) is complete, i.e. it holds:

(i) if Γ,∆ 0 w : A , then there exist aKl modelMC and an interpretationλC such thatΓ,∆ 2
MC ,λC

w : A;

(ii) if Γ,∆ 0 ρ , then there exist aKl modelMC and an interpretationλC such thatΓ,∆ 2
MC ,λC

ρ.

Proof
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[t:GA]1

trans<
∀x.y.z. (x<y⊓y<z)⊐x<z

∀E
∀y.z. (t<y⊓y<z)⊐t<z

∀E
∀z. (t<s⊓s<z)⊐t<z

∀E
(t<s⊓s<r)⊐t<r

[t<s]2 [s<r]3

⊓I
t<s⊓ s<r

⊐E
t<r

GE
r:A

GI3
s:GA

GI2
t:GGA

⊃I1
t:GA⊃GGA

Figure 9. Derivation of the axiom (G3 )

(i) If Γ,∆ 0 w : A, then(Γ∪{w :∼ A},∆) is consistent; otherwise there exists awi such thatΓ∪{w :∼ A},∆ ⊢ wi :⊥,
and thenΓ,∆ ⊢ w : A. Therefore, by Lemma 21,(Γ ∪ {w :∼ A},∆) is included in a maximally consistent proof
contextC = ((Γ ∪ {w :∼ A})∗,∆∗). Let MC be the canonical model forC. It suffices to find an interpretation
according to whichMC is not a model forw : A. By Lemma 29,(Γ ∪ {w :∼ A})∗,∆∗ |=MC ,λC

w :∼ A, where
MC is aKl model by Proposition 28. It followsΓ ∪ {w :∼ A})∗,∆∗

2
MC ,λC

w : A, and thusΓ,∆ 2
MC ,λC

w : A.

(ii) We can repeat the same proof for relational formulas. IfΓ,∆ 0 ρ, then(Γ,∆∪ {¬ρ}) is consistent. Then we can build
a maximally consistent proof contextΓ∗, (∆∪{¬ρ})∗ such thatΓ∗, (∆∪{¬ρ})∗ 2

MC ,λC

ρ, and thusΓ,∆ 2
MC ,λC

ρ.
⊣

A.2.2 Completeness by axioms

It is possible to give an indirect proof of completeness by showing that all the axioms listed in Section 2.3 for the logicKl

are derivable inN (Kl). In the following derivations, for simplicity, we will sometimes use derived operators and derived
rules, and exploit trivial equivalences between formulas implicitly.

We begin by giving derivations for the axioms(G1) and(G2 ):

[t:G(A⊃B)]1 [t<s]3

GE
s:A⊃B

[t:GA]2 [t<s]3

GE
s:A

⊃E
s:B

GI3
t:GB

⊃I2
t:GA⊃GB

⊃I1

t:G(A⊃B)⊃(GA⊃GB)

[t:PGA]1

[s:GA]2 [s<t]2

GE
t:A

PE2

t:A
⊃I1

t:PGA⊃A

The derivation for(G3 ) is shown in Figure 9, while the derivation for(G4 ) is in Figure 10. We omit here the derivations for
the symmetric axioms(H1 )-(H4 ).

Completeness of the extended systems considered in Section5 can be also proved by deriving the corresponding axioms.
In Section 5, we have already proved the axioms forhaving a first pointandright-seriality. We show the derivations for
right-densityand forright-discretenessin Figure 11 and Figure 12, respectively. Derivations of theother axioms (final point,
left-seriality, left-density, left-discreteness) are symmetric and we thus omit them.

A.3 Normalization

Proof [Lemma 7]
(i) We show that any application ofRAA⊥, RAA∅, andmon with a non-atomic conclusion can be replaced with a derivation
in which such rules are applied only to formulas of smaller grade by the set of transformations given below. By iterating
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[t:F∼A∧F∼B]2

∧E
t:F∼A

[t:F∼A∧F∼B]2

∧E
t:F∼B

conn
∀x.y. x<y⊔x=y⊔y<x

∀E
∀y. s<y⊔s=y⊔y<s

∀E
s<r⊔s=r⊔r<s

π1

∅

[s=r⊔r<s]5

π2

∅

π3

∅

⊔E8

∅
⊔E5

∅
uf 2

t:⊥
FE4

t:⊥
FE3

t:⊥
RAA⊥

2

t:GA∨GB
⊃I1

t:(G(A∨B)∧G(A∨GB)∧G(GA∨B))⊃(GA∨GB)

whereπ1 is:

[r:∼B]4

[t:(G(A∨B)∧G(A∨GB)∧G(GA∨B))]1

∧E
t:G(A∨GB) [t<s]3

GE
(s:A∨GB)

[s:∼A]3 [s:A]7

∼E
s:⊥

[s:∼GB]6 [s:GB]7

∼E
s:⊥

∨E7

s:⊥
RAA⊥

6

s:GB [s<r]5

GE
r:B

∼E
r:⊥

uf 1
∅

π2 is:

[r:∼B]4

[t:(G(A∨B)∧G(A∨GB)∧G(GA∨B))]1

∧E
t:G(A∨B) [t<s]3

GE
s:A∨B

[s:∼A]3 [s:A]12

∼E
s:⊥

[s:∼B]11 [s:B]12

∼E
s:⊥

∨E12

s:⊥
RAA⊥

11

s:B [s=r]8

mon
r:B

∼E
r:⊥

uf 1
∅

andπ3 is:

[s:∼A]3

[t:(G(A∨B)∧G(A∨GB)∧G(GA∨B))]1

∧E
t:G(GA∨B) [t<r]4

GE
r:GA∨B

[r:∼GA]9 [r:GA]10

∼E
r:⊥

[r:∼B]4 [r:B]10

∼E
r:⊥

∨E10

r:⊥
RAA⊥

9

r:GA [r<s]8

GE
s:A

∼E
s:⊥

uf 1
∅

Figure 10. Derivation of the axiom (G4 )

[t:FA]1

dens
∀x.y. x<y⊐∃z. (x<z⊓z<y)

∀E
∀y. (t<y⊐∃z. (t<z⊓z<y))

∀E
t<s⊐∃z. (t<z⊓z<s) [t<s]2

⊐E
∃z. (t<z⊓z<s)

[t:∼FFA]3

[s:A]2

[t<r⊓r<s]4

⊓E
r<s

FI
r:FA

[t<r⊓r<s]4

⊓E
t<r

FI
t:FFA

∼E
t:⊥

uf 1
∅

∃E4

∅
uf 2

t:⊥
RAA⊥

3

t:FFA
FE2

t:FFA
⊃I1

t:FA⊃FFA

Figure 11. Derivation of the modal axiom for right-density
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[t:F⊤∧A∧HA]1

∧E
t:F⊤

rdiscr
∀x.y. x<y⊐(∃z. x<z⊓(¬∃u.x<u⊓u<z))

∀E
∀y. t<y⊐(∃z. t<z⊓(∀u.¬(t<u)⊔¬(u<z)))

∀E
t<q⊐(∃z. t<z⊓(∀u.¬(t<u)⊔¬(u<z))) [t<u]3

⊐E
∃z. t<z⊓(∀u.¬(t<u)⊔¬(u<z))

[t:∼FHA]2

π

∅
uf 2

r:⊥
RAA⊥

6

r:A
HI5

s:HA

[t<s⊓(∀u.¬(t<u)⊔¬(u<s))]4

⊓E
t<s

FI
t:FHA

∼E
t:⊥

uf 1
∅

∃E4

∅
FE3

∅
uf 2

t:⊥
RAA⊥

2

t:FHA
⊃I1

t:(F⊤∧A∧HA)⊃FHA

whereπ is:

conn
∀x.y. x<y⊔x=y⊔y<x

∀E
∀y. r<y⊔r=y⊔y<r

∀E
r<t⊔r=t⊔t<r

[r:∼A]6

[t:F⊤∧A∧HA]1

∧E
t:HA [r<t]7

HE
r:A

∼E
r:⊥

uf 1
∅

π1

∅
⊔E7

∅

andπ1 is:

[r=t⊔t<r]7

[r:∼A]6

[t:F⊤∧A∧HA]1

∧E
t:A [r=t]8

mon
r:A

∼E
r:⊥

uf 1
∅

[t<s⊓(∀u.¬(t<u)⊔¬(u<s))]4

⊓E
∀u.¬(t<u)⊔¬(u<s)

∀E
¬(t<r)⊔¬(r<s)

[¬(t<r)]9 [t<r]8

¬E
∅

[¬(r<s)]9 [r<s]5

¬E
∅

⊔E9

∅

⊔E8

∅

Figure 12. Derivation of the modal axiom for right-discrete ness

20



these transformations, we get a derivation ofϕ fromΓ,∆ where the conclusions of applications ofRAA⊥, RAA∅, andmon

are atomic.
(1) First, we consider applications ofRAA⊥. There are three possible cases, depending on whether the conclusion is

x : B ⊃ C, x : GB, orx : HB. Note that in the following transformations we only show thepart of the derivation where the
reduction, denoted by , actually takes place; the missing parts remain unchanged.

(Case 1)

[x:(B⊃C)⊃⊥]

π

y:⊥
RAA⊥

x:B⊃C

 

[x:C⊃⊥]2

[x:B⊃C]1 [x:B]3

⊃E
x:C

⊃E
x:⊥

⊃I1

x:(B⊃C)⊃⊥

π

y:⊥
RAA⊥

2

x:C
⊃I3

x:B⊃C

(Case 2)

[x:GB⊃⊥]

π

y:⊥
RAA⊥

x:GB

 

[y:B⊃⊥]2

[x:GB]1 [x<y]3

GE
y:B

⊃E
y:⊥

RAA⊥

x:⊥
⊃I1

x:GB⊃⊥

π

y:⊥
RAA⊥

2

y:B
GI3

x:GB

Case 3 concerns formulas of the formy : HA; it is analogous to the previous one and we omit the reductionfor it.
(2) Applications ofRAA∅ can be reduced to applications on formulas of lower grade, following an approach analogous

to that ofRAA⊥. It is easy to see that in this case, we can also restrict to applications ofRAA∅ in which the conclusion is
not∅. We have to consider two possibilities: formulas of the formρ1 ⊐ ρ2 and formulas of the form∀x. ρ. We consider only
the second case, since the first one is analogous to the case ofimplication for labeled formulas:

[∀x. ρ⊐∅]

π

∅
RAA∅

∀x. ρ

 

[ρ⊐∅]1

∀I
∀x. ρ⊐∅

π

∅
RAA1

∅
ρ

∀I
∀x. ρ

(3) Finally, we consider applications of the rulemon . We have five cases depending on the form of the formula that isthe
major premise of themon application:

(a) x : A ⊃ B

(b) x : GA

(c) x : HA

(d) ρ1 ⊐ ρ2

(e) ∀x. ρ
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π
xRy

π1

x=z
mon

zRy

π2

y=u
mon

zRu

π3

z=v
mon

vRu

 

π
xRy

π1

x=z
mon

zRy

π3

z=v
mon

vRy

π2

y=u
mon

vRu

Figure 13. Rule permutation for the ordering of mon applications

(Case a)

x:A⊃B x=y
mon

y:A⊃B
 

x:A⊃B

[y:A]1 x=y
mon

x:A
⊃E

x:B x=y
mon

y:B
⊃I1

y:A⊃B

(Case b)

x:GA x=y
mon

y:GA
 

x:GA

[y<z]1 x=y
mon

x<z
GE

z:A
GI1

y:GA

(Case e)

∀x. ρ y=z
mon

∀x. ρ[z/y]
 

∀x. ρ
∀E

ρ y=z
mon

ρ[z/y]
∀I

∀x. ρ[z/y]

The case(c) is analogous to(b), while the transformation for the case(d) is as in(a) where⊐ plays the role of⊃.
(ii) We show that every application ofmon on a lwff of the formx :⊥ can be replaced by an application ofRAA⊥ that

does not discharge any assumption:
π

x:⊥

π′

x=y
mon

y:⊥

 

π

x:⊥
RAA⊥

y:⊥

⊣

Proof [Lemma 9] We follow the procedure based on proper reductionsused in [19] and we only treat the cases⊃I/⊃E,
GI/GE and∀I/∀E. The transformations for the detours⊐I/⊐E andHI/HI can be easily inferred from these. Any formula
ϕ in a derivation is the root of a tree of rule applications leading back to assumptions. We callside formulasof ϕ the formulas
in this tree other thanϕ. In order to eliminate maximal formulas from a derivation, it suffices to apply the transformations
listed below, picking in the set of maximal formulas the formula with the highest grade that has only maximal formulas of
lower grade as side formulas, and iterating this process until there are no more maximal formulas in the proof. The process
ends because at every step no new maximal formula as large as (or larger than) the eliminated one is introduced.

(i)

[x:A]

π1

x:B
⊃I

x:A⊃B

π2

x:A
⊃E

x:B

 

π2

x:A

π1

x:B

(ii)

[x<y]

π

y:A
GI

x:GA x<z
GE

z:A

 

x<z

π[z/y]

z:A
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(iii)

π

ρ
∀I

∀x. ρ
∀E

ρ[y/x]

 
π[y/x]

ρ[y/x]

Finally, in Fig. 13 we show how to permute applications of rules in order to get a derivation where, given a sequence ofmon

applications, the ones on the same label position occur one immediately below the other. We denote withR a relational
symbol that can stay both for< and for=. In the derivation on the left, the first and the third application ofmon refer to the
same label position and thus are moved one immediately belowthe other. The derivations obtained in this way will then be
further simplified during the normalization process. ⊣

Proof [Theorem 11] First, we observe that by Lemma 9 we can obtain a derivation in pre-normal form. Now let us show
how to remove redundant formulas. We know from Lemma 7 that every application of a falsum-rule has an atomic formula
as a conclusion. Thus it is sufficient to consider the following transformations:

(i)

Γ∆

π

x:⊥
RAA⊥

y:⊥
RAA⊥

z:A

 

Γ∆

π

x:⊥
RAA⊥

z:A

whereA is ⊥ or an atomic formula. Note that if the formulaz : A ⊃⊥ is contained inΓ and discharged by the second
application ofRAA⊥ in the derivation on the left, then the same can be done in the derivation on the right.

(ii)

π

x:⊥
RAA⊥

y:⊥
uf 1

∅

 

π

x:⊥
uf 1

∅

(iii)

π

x:⊥
uf 1

∅
uf 2

y:⊥

 

π

x:⊥
RAA⊥

y:⊥

(iv)

π

∅
uf 2

x:⊥
uf 1

∅

 
π

∅

For the rulemon , given the ordering ofmon applications obtained by permutations defined in Lemma 9, the only case we
have to treat is when two applications ofmon working on the same label position of a formula occur consecutively. Then
we simply exploit the transitivity of= (obtained by usingmon). Note that, by Lemma 7, in the following reductionϕ is an
atomic formula.

π1

ϕ

π2

x=y
mon

ϕ[y/x]

π3

y=z
mon

ϕ[z/x]

 
π1

ϕ

π2

x=y

π3

y=z
mon

x=z
mon

ϕ[z/x]

⊣

Proof [Lemma 13] (i) and (ii) follow from the absence of maximal formulas in a normal derivation: in a trackt, no
introduction rule application can precede an application of an elimination rule. In other words, a track in a normal derivation
is such that the elimination part (when not empty) starts with a non-atomic formula and consists of some applications of
elimination-rules; if the elimination part ends with an atomic formula, then the central part (when not empty) consistsof
some applications of rules whose conclusion is still an atomic formula; the introduction part (when not empty) starts with an
atomic formula and consists of some applications of introduction rules (see Fig 4).
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(iii) comes from the fact that in a normal derivation a falsum-rule and themon-rule can be applied only to atomic formulas.
(iv) follows directly from the absence of redundant formulas in a normal derivation (see Theorem 11).
For (v) and (vi), observe that tracks originating from an application ofuf 1 or uf 2 start with an atomic formula and thus

cannot have an elimination part, while tracks ending in an application ofuf 1 or uf 2 end with an atomic formula and thus
their introduction part must be empty. ⊣
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