Strong Temporal, weak Spatial Logic for Rule Based Filters

Roger Villemaire
Université du Québec a Montréal
villemaire.roger @uqgam.ca

Abstract—Rule-based filters are sequences of rules formed of
a condition and a decision. Rules are applied sequentially up to
the first fulfilled condition, whose matching decision determines
the outcome. Such filters are particularly useful in network
management, where they filter packets allowed to flow in or out
of an interface. Properties of filters which either reveal or hint
to misconfiguration (anomalies) have been largely studied in the
network management community. We show that in fact such
properties are of a spatial and temporal nature. Accordingly
we introduce a spatio-temporal language appropriate for filter
properties, use it to describe major filter anomalies and finally
prove that verifying a property in this language can be done
in time polynomial in the number of filter rules.

Keywords-component; formatting; style; styling;

I. INTRODUCTION

Computer networks is an area of computer science where
temporal aspects occur in many different contexts. Since the
flow of network packets is controlled by the use of protocols,
which are often modeled by automata or transition systems,
temporal logics and model-checking techniques have been
largely applied to the verification of protocols.

Other temporal aspects have received much less attention.
For instance, in order to work properly, network equipments
must be properly configured by setting numerous param-
eters to appropriate values. In network management, one
concentrates not on the verification of the various protocols,
but on the verification of the parameters, stored in network
devices in some configuration structure, which configure
these protocols.

This paper considers one such configuration structure:
rule-based filters. These filters are widely used in network
devices called firewalls, which link different zones of a
network and filter network packets flowing from one zone
into another. Filters are configured through a sequence of
rules. Each rule is formed of a condition, which describes to
which packets it applies, and a decision telling if the packet
should be forwarded or blocked. For each packet, rules are
applied sequentially up to the first rule whose condition is
satisfied.

Since a rule applies only to packets which did not match
previous rules, the task of modifying an existing filter is
error-prone. An anomaly is a property of rule-based filters,
which either reveal or at least hint to misconfiguration. It
is therefore crucial to be able to detect such situations;

Sylvain Hallé
University of California, Santa Barbara
shalle@acm.org

consequently, anomaly-detecting algorithms and tools have
been developed in the past years by the network management
community. The best known algorithms have been shown to
run in time exponential in n, the number of rules in a filter.

In this paper, we show that anomalies are in fact spatio-
temporal properties of rule-based filters (section IV-B); they
can be defined in a logic describing a region (the condition)
evolving in time (the sequence of rules). This formalism can
express all anomaly types presented in the literature. Fur-
thermore, we show that model-checking a property definable
in our logic on some rule-based filter can be done in time
polynomial in the number of rules. Hence, it is not more
expensive that the existing algorithms (no lower bounds
have been published for these algorithms). Moreover, while
existing algorithms each account only for a small subset of
anomalies, model checking in our logic covers all anomalies
at once. Since our logic allows the precise formalization
of a broad range of properties at no algorithmic cost, we
claim that it is an appropriate formalism for describing and
verifying rule-based filters’ anomalies.

II. FILTERS IN FIREWALLS

In a global network such as the Internet, the level of trust
can vary greatly. For instance corporate intranets, usually
allow the exchange of sensitive information between trusted
participants. It is hence crucial to enforce some security
policy between the outer Internet and a corporate intranet.
Similarly, an intranet can be divided into zones, enforcing
various security policies. For instance a machine in the
engineering zone could have total access to its own zone
while having limited access to the accounting department
zone.

Security policies are usually enforced through firewalls.
A firewall is a dedicate machine or a router, which links
different zones and filters packets flowing from one zone into
another. For instance, the main corporate firewall is located
between the outer Internet and the corporate intranet, and
will usually limit access from outside to inner machines.
Such firewalls can also limit traffic from the intranet into
the Internet, for instance blocking access to high bandwidth
streams such as video, in order to control intranet congestion
—or concentrate employees on their tasks.

In the policy management field, a policy usually consists
of roles, events and decisions which structure access control

to some resources (see [1] for a survey). In this paper we
restrict ourself to low-level policies defined by rule-based
filters.

A. Firewall Filters

A firewall contains an inferface on each zone it connects
to. Filtering is assured by filters, two by interface, one for
incoming traffic and one for outgoing traffic. Furthermore
each filter is usually configured through a sequence of rules
(called access-lists in Cisco terminology [2, Chapter 7]).
Each rule is formed of a condition describing to which
packets it applies and a decision (typically deny/accept)
which determines if the packet is forwarded or blocked.

Even if a rule’s condition could in theory test any part of
the incoming packet, usually the condition considers only the
following fields: source and destination IP addresses, proto-
col (such as TCP, UDP, ICMP) and source and destination
ports (for TCP and UDP). Packet fields values are taken from
a finite ordered set, which is usually the set of n-bit natural
numbers for some fixed length n, with the usual ordering.
Typical examples are IP addresses (32 bits) or port numbers
(16 bits).

A rule’s condition is a conjunction of constraints of the
form f € [¢,u], where f is a packet field and [/, u] the
interval {z; ¢ < x < u}. Usually, in configuration files, these
intervals are described in a more network-centric notation
such as the IP address/mask pairs in dotted decimal format
(four dot-separated 8-bit values), a mask being a binary
number where all 0’s appear before any 1 (the inverse of the
subnet mask, in accordance with Cisco convention). A pair
such as 192.168.32.0/0.0.7.255 hence represents
the set of IP addresses which agree with 192.168.32.0
on the 0’s of the mask 0.0.7.255, which is the interval
[192.168.32.0,192.168.39.255].

A rule-based filter (for short a filter) is a list of such
rules. Each packet going through the filter is tested on every
condition up to the first satisfied one. The decision associated
with this first matching rule determines if the packet is
accepted or rejected (last matching rule is also possible, but
this is irrelevant for the results of this paper). Figure 1 shows
a schematic filter with 5 rules and a single field.

B. Anomalies

It has been noticed in the network management commu-
nity that understanding a deployed firewall packet-filtering
policy can be a daunting task. Since a rule applies only
to packets which did not match previous rules, the task of
modifying an existing filter is error-prone. Anomalies are
properties of filters which either reveal or hint to a possible
misconfiguration. In order to help detect misconfigurations,
a taxonomy of anomalies has been introduced [3]-[8].

The simplest type of anomalies, which relates two rules,
was introduced by [3], [4]. They noticed that frequently,
filter misconfiguration is due to the fact that some packet

rule | condition | decision
1 [0, 5] accept
2 (2,3] deny
3 [3,10] accept
4 [2,10] accept
5 3, 3] deny
Figure 1. A schematic filter

satisfies many rules’ conditions. It is then not obvious for a
firewall manager to determine which rule applies to which
packet nor how to properly order the rules. For instance, a
rule 7y is simply shadowed (e.g. rule 2 in Fig. 1) if there
is a rule 7o preceding rp in the filter, such that all packets
satisfying r1’s condition already satisfy 75’s. In such a case
rq1 applies to no traffic and is therefore either misplaced or
unneeded.

Correlation happens when two rules’ conditions match
some packet while the rules have distinct decisions (e.g.
rules 2 and 3 in Fig. 1). In this case the filter is not
necessarily misconfigured, but it could be useful to inform
the network engineer that the second rule’ decision will not
apply to all packets satisfying its condition.

Generalization happens when the second rule matches
more than the first, but has a different decision (rule 4
generalize rule 2 in Fig. 1). While generalization has le-
gitimate uses, such as rejecting packets from some host and
then accepting traffic from all remaining machines on its
subnet, it could be useful here also to inform the network
engineer that the rule will not apply to all packets satisfying
its condition.

A rule is simply redundant if it is simply shadowed by a
rule with the same decision (e.g. rule 5 in Fig. 1). In this
case, the rule can be removed without changing the packets
that are accepted.

Finally, a rule is irrelevant if it applies to no traffic going
through this filter. This happens for instance when the filter
is located in an inner firewall, behind some other firewalls
which already filter traffic. In such a case, filter rules should
only consider traffic that can reach the filter. This allows a
clean division of a global security policy within the different
firewall filters.

These anomalies where generalized by [5], [6] to consider
many rules. For instance a rule is shadowed (rule 4 is
shadowed by rules 2 and 3 in Fig. 1) if all packets satisfying
the rule’s condition already satisfies some previous rule’s
condition (different packets can now satisfy different rules’
conditions). Finally [7], [8] defined a rule to be redundant if
removing it does not change the packet which are accepted.

Besides anomalies, [9] considered other important prop-
erties of filters, such as verifying that some services are not
accessible from the Internet. Typical examples are:

e “Can I telnet from the Internet into my intranet?” or

o “Which (destination IP address, port number) pairs on
the intranet can be reached from the Internet?”

C. Anomaly Detection Algorithms

From the above descriptions, it becomes crucial to be able
to detect such situations. In recent years, anomaly detection
algorithms have been proposed to this end by the network
management community.

The algorithms presented in [3], [4] can detect anoma-
lies. Since these anomalies only relate pairs of rules, the
algorithms just have to test a pair of intervals for inclusion
or intersection, which can be done simply by comparing
endpoints.

Algorithms for managing generalized redundancy and
shadowing are presented in [5], [6]. Their method transforms
the filter into disjoint rules, such that no packet satisfies the
conditions of two different rules. This method increases the
total number of rules and an O(p™) upper bound for the
runtime is given, where p is the number of fields and n is
the number of rules. Moreover, an experimental evaluation
shows that the method works fairly well in practice.

Alternately, Binary Decision Diagrams are used in [10]
to represent sets of packets and test for shadowing, gen-
eralization, correlation and redundancy. This approach has
been evaluated purely experimentally. The sets of packets
accepted by filters are compared in [11] using a tree structure
which represent a spatial decomposition of conditions into
non-overlapping rectangles (or their higher dimension coun-
terparts). They consider anomalies such as simple shadow-
ing, correlation, generalization and simple redundancy and
developed a prototype tool to evaluate their method.

Special decision trees data structures are introduced in [7],
[8] to represent filters. Algorithms to remove redundancies
are presented with neither theoretical nor experimental eval-
uation. Finally, [9] proposes a tool which answers queries
such as those listed at the end of Section II-B. The tool
simply computes for all rules the set of packets matching
this rule and satisfying the query.

III. A LOGIC FOR RULE FILTERS

Filter properties are based both on the sequential order of
the rules (the temporal order in which the rules are applied)
and rules’ conditions (spatial regions of a finite discrete
space).

It is therefore attractive to consider applying spatial and
temporal logics to formalize filters’ properties.

We will now recall some results on spatial and temporal
logics and make the requirements for a logical description
of filter properties more precise.

A. Spatial Reasoning

Qualitative spatial reasoning has been largely studied
particularly in IA [12]-[14]. An influential formalism is the
Region Connection Calculus (RCC) [15] which describes

properties of regions of a topological space. Unfortunately,
RCC turned out to be undecidable [16], [17]. A propositional
fragment, RCC-8, built up from 8 RCC-definable binary
relations on region variables was later shown to be decidable
[18] and in fact NP-complete [19]. Finally adding Boolean
operations on region variables to RCC-8 yields BRCC-8,
which was shown to NP-complete (PSPACE-complete for
Euclidean spaces) by [20].

In order to verify filters’ properties, we face a quite simple
spatial situation: there is a single region (the condition),
which is a subset of a finite discrete space. But this region
evolves from rule to rule, introducing two kinds of temporal
aspects. First, there are temporal properties which consider
the rules independently one of another. This is the case in
a statement such as “there exists a rule with an accepting
decision”. Secondly, there are properties which relate rules’
conditions one to another. Shadowing is such a property,
since it compares the conditions of two rules by inclusion.
This second kind of properties is in fact central: shadowing,
correlation, generalization and redundancy are all of this
type.

Therefore, while our spatial needs may seem minimal,
the temporal evolution of regions is a key aspect of filter
properties. This issue must therefore be properly addressed
by any logic which would be appropriate to describe filter
properties.

B. Spatio-Temporal Reasoning

Fortunately, spatial and temporal logics have been inte-
grated, yielding spatio-temporal logics, able to describe both
spatial and temporal aspects.

Particularly interesting for us is the approach of [21],
[22]. They combined Propositional Temporal Logic (PTL)
[23], [24] —a temporal logic with Next, Since and Until
operators —which they interpret on (N, <)— with BRCC-
8, a propositional spatial logic. Here, a BRCC-8 formula
describes a relationship between regions (such as inclusion)
at some moment in time. Applying PTL temporal operators
to BRCC-8 formulas gives a spatio-temporal logic called
STh.

But, [21], [22] also noticed that temporal considerations
applies not only to relationships between regions expressed
as BRCC-8 formulas, but also to the regions themselves. For
instance, considering some region C' at some instant of time,
one would like to compare it with the same region at the
next instant, which will be denoted by ()(C'). They therefore
defined temporal operators on regions in the following way.

As we already said ()(C') represents the region C at the
next instant. Furthermore O (C') represents the intersection
of the values of C' in the (strict) future, O (C) the union
of the values of C' in the (strict) future. The Until operator
is point-wise, since the region C1UC5 is formed of every
point z which is in C5 at some moment in time and was in
C1 at all moments (strictly) before.

[21], [22] further introduced the extensions ST} of STy,
which allows applying (O on region variables, and S7T%
which further allows Until, Next (and possibly their past
counterparts) on regions.

Finally [21] showed that decidability is PSPACE-complete
for STy, in EXPSPACE for S77 and ST» (in this last case
under the hypothesis that every region can have only finitely
many states).

IV. LOGICS FOR RULE-BASED FILTERS

Even if filters’ properties are of a spatio-temporal nature,
usual spatio-temporal notation doesn’t allow us to speak
easily of individual rules. In order to have more readable
logical expressions, it thus seems better to revert to a first-
order representation. Nevertheless we will show in section
IV-E that the temporal region operators, both for future
and past, are definable in the logic we will now introduce,
retaining its spatio-temporal nature.

A. A first-order Rule Language

We consider a many sorted first-order language RL. Its
sorts are R for the rules and F1, ..., F,; for the packet fields.
We will use an exponent to denote the variables’ sorts, such
as VI and 3F for quantification on the R sort. The sort of a
free variable should be clear from the context. As usual, each
variable is of a unique sort. RL also contains binary relations
symbols <, one for each sort. The intended meaning being
the sequential order on rules for sort R and the orders on
the fields’ elements for the other sorts. For all sorts, we will
use r < y to denote z < y A x # y. Finally, in order to
specify a rule’s condition, RL contains functions symbols
F5(r), fE(r) of sorts Fi, i = 1,...,d (I for lower and
u for upper), where 7 is of sort R. The intended meaning
being that a rule r’s condition is that the packet’s fields must
be in [f(r), fF1(r)] x -+ x [ff*(r), fF+(r)]. Finally RL
also contains a predicate d(r) to represent the fact that the
condition is accept (if true) or reject (if false).

We will call the quantifiers V* and 3% rule quantifiers.
Furthermore since often quantifiers are applied globally to
all packet fields, we will use Vg (called global quantifiers)
as a short-hand for Vgll . ~V£ ¢ (similarly for 35).

B. Examples

The set of packets with fields (p1,...,pq) satisfying rule
r’s condition is definable by the following RL-formula:

S Pd) = /\ szi(T)

Set theoretic operations (intersection, union) and relations
(inclusion, equality) on these sets are therefore also definable
in RL. In order to simplify notation, we will use C(r, —)
to represent the set of packets satisfying r’s condition. This
will allow to concisely express useful concepts, such as for
instance the fact that all packets satisfying the condition

C(T,pl,.. szgf'fl(r)

of rule r also satisfy the condition of rule r/, which we
will denote by C(r,—) C C(r',—). This set inclusion is
obviously expressible in RL, by:

Vlljll ”.v;f;i(c(r’pl""’pd) - C(T/7p17"'7pd))

Furthermore we will freely use unions such as J,. .
the union on all rules ’ occurring before r, UT / <, the union
on all rules r’ occurring before r and having decision d, or
U, <, <, the union on all rules occurring between 7 and r”.
Such unions of RL-definable sets are again RL-definable.

Finally, since the first rule whose condition matches a
packet is responsible for the decision, we will denote by
Match(r,—) the set C(r, =)\ U, ., C(', —).

We can now define in RL all the anomalies of section
II-B.

Properties of a rule r:
« simply shadowed: 357" < r A C(—ycow,-),
o shadowed: C(r,—) C U, ey O, =),
o simply redundant: 3% < r A (d(r) < d(r')) A
C(r,—) €O,),

o redundant: Match(r,—) C Uf,(;),.(C(T/, =)\
Ur<pr < €07, =)

o irrelevance: C(r,—) NTTF = .

For irrelevance (apply to no traffic going through this
firewall), the traffic through this firewall, formed of all
packets which weren’t rejected by upstream firewalls, must
be expressed by an RL-formula TTF'. Since every firewall
condition is a Boolean combination of comparisons between
a packet field and a constant, 77 F' will also have this form.
Pairs of rules r, r’

o correlation: C'(r,—)NC(r', =) # DA (d(r) & d(r")),

o generalization: » < ' AC(r,—) C C(r', =) A (d(r) ¥

d(r')),
Properties of a packet p: (here we use p as a shorthand
for packet’s fields p1,...,pq)

o Accept(p): 3EC (r, p)AA(r)AVE (' <7 — =C(1',p)),

In fact, a firewall can be seen as a device carrying out
the model-checking of Accept(p) on every incoming packet

p. RL does therefore not only describes properties of filters
but also the filter outcome.

for

Queries
e “Can some packet with source
address outside my intranet
UN =[132.208.0.0,132.208.255.255])

reach Telnet port (23) of a machine on my intranet?”:
35 (psrcIP ¢ IN /\pdestIP €IN /\pdestPort =23
NAccept(p))

(this is a Boolean query, returning either True or False).

o “Which destIP/port on my intranet IN can be reached
from the Internet?”

HESTCIPHFSTCPort (psrcIP ¢ IN A paestip € INA

PsrcIP ~PsrcPort
Accept (psourcIP s PsrcPorts PdestI Py PdestPort))

(this returns the values of the free variables pgestrp,
pdestPort)'
Filter properties

« Do not allow spoofed packet (coming from outside but
with an internal source IP address). Applies to a filter
on an incoming queue of an outer interface.
Vg(psrclp €IN — _'Accept(p))'

o Incoming packets for SMTP port (25) should have the
mail server (mail) as destination IP address.

VII; (pdestPort =25A Accept(p) — DdestIP = mazl)

C. Model-checking

We consider in this section the model-checking problem
of an RL-formula on a filter. In our complexity analysis we
will consider RL-formulas containing only global and rule
quantifiers. Since a field quantifier (v%, 3%%) can always
be replaced by a global quantifier (v, 3F), this does not
restrict generality.

The simplest model-checking algorithm would be to test
every possible element for every quantifier. This gives a time
complexity of O(|D|% - n?), where D = Dy X -+ X Dy,
gy is the global quantifier rank (maximal nesting of global
quantifiers) and ¢, is rule quantifier rank.

The size of a filter is the total size of its rules. A rule being
a pair of elements of D (the upper and lower bounds in the
rule’s condition) and the decision (which can be considered
as a single bit), the factor |D| makes the above algorithm
exponential in the size of the filter. Indeed, with a single
IP address field, this algorithm would test all 32 bits IP
addresses.

Let us now show that in fact RL model-checking, for a fix
packet format (i.e. a fix number of fields) and fix quantifiers
ranks, can be done in time polynomial in the number of
rules.

Theorem 1: Model-checking an RL-formula on an n rule
filter can be done in time O(2d'q?" (2n+1)44s .n4r), where
gy is the global quantifier rank and ¢, is the rule quantifier
rank.

Proof: We test again possible values for every quanti-
fier. For a rule quantifier, we test every possible rule, yielding
a n9 factor. But for global quantifiers we will test only some
of the possible values.

A rule condition is formed of the Cartesian product of
d intervals. The endpoints of the n rules’ conditions -
th intervals divide D;, into at most 2n + 1 intervals. An
Ehrenfeucht-Fraissé game argument similar to the one used
to show that two linear orders of cardinality at least 2%
satisfy the same first-order formulas of quantifier rank at

most k [25, Theorem 3.6], shows that keeping at most 29/
many elements in these (2n + 1) intervals gives a structure
which satisfies the same RL-formula in global quantifier
rank ¢y and rule quantifier rank ¢,.. Note that if there are
less than 29/ many elements in the interval, we will pick
all of them, otherwise the choice of any 29/ many elements
will do.

Picking values of global quantifiers in this new structure
yields a time complexity of O(((2n 4 1) -297)49s . pir) =
O(2%% - (2n + 1)%r - par). m

We now have a time complexity polynomial in n but still
exponential in terms of d, ¢y and g.. Let us now show that
unless P = NP there are no model-checking algorithm
polynomial in both n and d.

Theorem 2: Model-checking an RL-formula is NP-hard
and this even if the formula contains only two rule and one
global quantifier.

Proof: We will show in fact that there is a polynomial
reduction of SAT to the model-checking of an RL-formula
with two rule quantifiers and one global quantifier.

We define a filter whose rules’ decisions are all ’reject’
except for the last rule which accepts any packet. Such a
filter satisfies the RL-formula 35 Accept(p) if there is a
packet which satisfies no condition except the last one. Let
us now define these conditions.

Take d to be the number of propositional variables
Py,...,P; in a CNE. Take D; = {0,1}, ¢ = 1,...,d. For
any clause define a rule with the following condition. If P;
appears in the clause, add f; € [0] to the condition, if P
appears in the clause, add f; € [1] to the condition. Finally
if neither P; nor P; appears in the clause, add f; € [0, 1].

Now the clause is satisfied if and only if the rule’s
condition is false. Therefore the CNF is satisfiable if and
only if some packet is accepted by the filter. []

To show that the exponents gf, ¢, in an RL model-
checking algorithm are unavoidable (unless P=NP), we show
that RL model-checking is in fact PSPACE-complete and
this even if only one of ¢; or g, is allowed to vary.

Theorem 3: Model-checking an RL-formula is PSPACE-
complete. It is still PSPACE-hard if at least one of gy, g, is
not fix.

Proof: Membership into PSPACE follows from the fact
that in our algorithm, in order to test every possible element
for every quantifier, it suffices to store, besides the instance
itself, the current value for each quantifier.

To show PSPACE-completeness, we polynomially reduce
Satisfiability of Quantified Boolean (QBF), which is a
known PSPACE-complete problem [26], to model-checking
RL.

We will do this reduction in two different ways. First by
polynomially encoding a QBF into a filter with a single rule
and a single field (with at least two elements) and no rule
quantifier. Secondly by polynomially encoding a QBF into a

filter with at least two rules, a single field (with any number
of elements) and no field quantifiers.

In the first case, consider a filter with a single rule and a
single field F' with at least two elements. The smallest field
element s is clearly definable in RL. Now encode a QBF
into an RL-formula by replacing a quantified propositional
variable Qp by the quantifier Q" on a new F-sort variable
u and P by u = s. Since there are at least two fields
values, u can always be chosen to make u = s either true
or false. Therefore this RL-formula ¢ is equisatisfiable with
the original QBF.

Similarly, in the second case, consider a filter with at least
two rules, the first rule r, is again definable in RL. Encode
now a QBF into an RL-formula by replacing a quantified
propositional variable Qp by the quantifier Q% on a new
R-sort variable » and P by r = r,. Since there are at least
two rules, this RL-formula is again equisatisfiable with the
original QBF.]

The fact that our algorithm is exponential in d, ¢¢ and g,
is not so important in practice, since usual values of d are
small, such as d = 5 and, as we saw in section IV-B, most
properties have small quantifier ranks.

D. Restricted Rule Language

It is still possible to improve model-checking run-time by
a more detailed analysis of the properties of section IV-B. In
fact, in all the examples of that section, comparison (by <
or =) on a field sort always contains either f,"*(r) or fI(r)
on one side. If we define the restricted rule language RRL
to contain all RL formulas in which comparison by < or =
on a field sort contain either f;(r) or f(r) on one side,
we can show the following.

Theorem 4: Model-checking an RRL-formula on an n
rule filter can be done in time O((2n + 1)4'97 - n?"), where
gy is the global quantifier rank and g, is the rule quantifier
rank.

Proof: We test again all possible values for rule quan-
tifiers, yielding the n9- factor.

For global quantifiers, we consider again the endpoints
of the n rules’ conditions ¢-th intervals, which divides D;,
into at most 2n + 1 intervals. Now since comparison with a
quantified field variable occurs only with these end-points,
it is sufficient to pick a single value in each of these 2n + 1
intervals. This yields a time complexity of O((2n + 1) .
nir). [|

E. Temporal Region Operators in RF

We chose to use a first-order language to describe filter
properties since it offers the convenience of being able to
name rules and packets. Nevertheless we want to make clear
that all region temporal operators are easily expressible in
RL. This follows from the fact that they are all definable
by set-theoretic operations on time indexed regions. For
instance O)(C(r'—)) is easily specified in RL by expressing

the fact that it is the condition of the nearest future rule.
O%(C(r,—)) is simply (,,., C(r’, —). Likewise ¢ (C)
and the Until operator can be expressed from their definition
as is also the case for past operators.

V. CONCLUSION

We showed that filter properties, such as anomalies, can
be describe using spatial and temporal reasoning. We intro-
duced a spatio-temporal language RL, used it to describe all
usual filter anomalies and finally proved that verifying an
RL property on a filter can be done in time polynomial in
the number of rules. Finally we noted that a restricted form
of this language is sufficient to express all stated anomalies,
which allowed us to still tighten our polynomial bound.

REFERENCES

[1] R. Boutaba and I. Aib, “Policy-based management: A histor-
ical perspective,” Journal of Network and Systems Manage-
ment, vol. 15, no. 4, pp. 447-480, 2007.

[2] J. Boney, Cisco 10S in a Nutshell. O’Reilly, December 2001.

[3] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy
anomalies in distributed firewalls,” in The 23rd Annual Joint
Conference of the IEEE Computer and Communications So-
cieties (INFOCOM), 2004, pp. 2605-2616.

[4] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict
classification and analysis of distributed firewall policies,”
IEEE Journal on Selected Areas in Communications, vol. 23,
no. 10, pp. 2069-2084, 2005.

[5] E. Cuppens, N. Cuppens, and J. Garca-Alfaro, “Misconfig-
uration management of network security components,” in
Proceedings of the 7th International Symposium on System
and Information Security (SSI 2005). Sao Paulo, Brazil: ITA
Corporate, 1 - 10, November 2005, p. (electronic medium).

[6] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Com-
plete analysis of configuration rules to guarantee reliable net-
work security policies,” International Journal of Information
Security, vol. 7, no. 2, pp. 103-122, 2008.

[7] A. Liu and M. Gouda, “Complete redundancy detection in
firewalls,” in Proceedings of the 19th Annual IFIP WG 11.3
Working Conference on Data and Applications Security, ser.
Lecture Notes in Computer Science, vol. 3654. Springer,
2005.

[8] M. G. Gouda and A. X. Liu, “Structured firewall design,”
Computer Networks, vol. 51, no. 4, pp. 1106-1120, 2007.

[9] A.Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis
engine,” in SP ’00: Proceedings of the IEEE Symposium
on Security and Privacy. — Washington, DC, USA: IEEE
Computer Society, 2000, pp. 177-187.

[10] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mo-
hapatra, “FIREMAN: A toolkit for firewall modeling and
analysis,” in IEEE Symposium on Security and Privacy. Los
Alamitos, CA, USA: IEEE Computer Society, 2006, pp. 199—
213.

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

Y. Yin, R. Bhuvaneswaran, Y. Katayama, and N. Takahashi,
“Analysis methods of firewall policies by using spatial re-
lationships between filters,” in International Conference on
Signal Processing, Communications and Networking (ICSCN
’07), 2007, pp. 348-354.

L. Vieu, “Spatial Representation and Reasoning in Artificial
Intelligence,” in Spatial and Temporal Reasoning, O. Stock,
Ed. http://www.wkap.nl/: Kluwer, 1997, pp. 3—41. [Online].
Available: ftp://ftp.irit.fr/IRIT/LILAC/V-SRR97.pdf

R. Casati and A. C. Varzi, Parts and Places: The Structures
of Spatial Representation. MIT Press, 1999.

A. G. Cohn and S. M. Hazarika, “Qualitative spatial represen-
tation and reasoning: An overview,” Fundamenta Informati-
cae, vol. 46, no. 1-2, pp. 1-29, 2001.

D. A. Randell, Z. Cui, and A. G. Cohn, “A spatial logic
based on regions and connection,” in KR’92: 3rd International
Conference on Knowledge Representation and Reasoning.
Morgan Kaufmann, 1992, pp. 165-176.

N. M. Gotts, “Using the RCC formalism to describe the topol-
ogy of spherical regions,” Report 96.24, School of Computer
Studies, University of Leeds, Tech. Rep., 1996.

C. Dornheim, “Undecidability of plane polygonal mereotopol-
ogy,” in Principles of Knowledge Representation and Reason-
ing: Proceedings of the 6th International Conference (KR-98).
Morgan Kaufman, 1998, pp. 342-353.

B. Bennett, “Spatial reasoning with propositional logics,”
in Principles of Knowledge Representation and Reasoning:
Proceedings of the 4th International Conference (KR94).
Morgan Kaufmann, 1994, pp. 51-62.

J. Renz and B. Nebel, “On the complexity of qualitative
spatial reasoning: a maximal tractable fragment of the region
connection calculus,” Artificial Intelligence, vol. 108, no. 1-2,
pp. 69-123, 1999.

F. Wolter and M. Zakharyaschev, “Spatial reasoning in RCC-8
with boolean region terms,” in Proceedings of the fourteenth
European Conference on Artificial Intelligence, ECAI 2000,
Berlin, Germany, W. Horn, Ed. 10S Press, 2000, pp. 244—
248.

——, “Spatio-temporal representation and reasoning based on
RCC-8,” in Proceedings of the seventh Conference on Prin-
ciples of Knowledge Representation and Reasoning, KR2000.
Morgan Kaufmann, 2000, pp. 3-14.

——, “Qualitative spatio-temporal representation and rea-
soning: a computational perspective,” in Exploring Artifitial
Intelligence in the New Millenium. Morgan Kaufmann, 2002,
pp- 175-216.

Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems:Specification. Springer-Verlag, 1992.

——, Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

[25] L. Libkin, Elements of Finite Model Theory, ser. Texts in
Theoretical Computer Science. An EATCS Series. Springer
Verlag, 2004.

[26] L. J. Stockmeyer and A. R. Meyer, “Word problems requiring
exponential time: Preliminary report,” in STOC. ACM, 1973,

pp. 1-9.

