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Abstract—This paper presents various semantic interpretations
for logics of knowledge and time with prefect recall. We allow
both past and future operators and examine the interpretation of
different linear flows of time. In particular, we present temporal
epistemic logics for each of the following flows of time: arbitrary
linear orders; the integers; the rationals; the reals; and for
uniform flows of time. (By uniform flows of time, we mean that
time is an arbitrary linear order that is common knowledge to
all agents). We propose axiomatizations for all logics except the
last case, for which we show that no finite axiomatization can be
found. The axiomatizations are shown to be sound and complete
in the case of arbitrary linear orders and the rationals.

Keywords: epistemic logic, temporal logic, complete
axiomatizations

I. INTRODUCTION

Logics of time and logics of knowledge have, independently,
found many applications in reasoning about computational
systems. Temporal logics are applied to reason about program
correctness [12], and logics of knowledge are applied to reason
about information in distributed systems [4]. Furthermore,
the combination of the two are well-studied and applied for
reasoning about security protocols [9].

The application of temporal epistemic logic to specifying
and verifying computational systems have generally relied on
discrete flows of time [10], [5], and interactions between logics
of knowledge and non-discrete flows of time have not received
a great deal of attention in the literature. Independent of epis-
temic logic, there has been a detailed study of temporal logic
over various flows of time [14], [1]. In [6] some combinations
between epistemic logic and non-discrete temporal logics were
examined. This work presented the complexity of a number
of temporal epistemic logics and derived axiomatizations for
some simple cases not involving perfect recall. Here we seek
to further this vein of research by providing axiomatizations
for temporal epistemic logics with perfect recall given flows
of time defined over different linear orders including: discrete
linear orders (the integers), dense linear orders (the rationals)
and continuous linear orders (the reals). As the foundation
of these results we present an axiomatization of temporal
epistemic logic over arbitrary linear orders (so that the agents
may not know the flow of time). We show that strengthening
this class so that the agents always know the flow of time
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results in a logic that cannot be finitely axiomatized. For the
interactions between knowledge and time we assume perfect
recall (or no forgetting [10]), so that once an agent knows
something about the set of possible flows of time, they always
know it.

Our extensions to non-discrete flows of time are not only
motivated by aesthetic arguments: There are numerous ap-
plications where we are required to not only reason about
a computation, but also it’s interaction with the environment.
The study of hybrid systems allows models of discrete compu-
tation (automata) to interact with continuous systems modeled
by differential equations [3]. There is an emerging application
for formal models of dense and continuous systems. Complete
theories for temporal epistemic logics over non-discrete time
may complement such applications.

II. THE LANGUAGE

Let the natural number n be fixed. We will investigate
the following logic 7EL,. The language consists of the
propositional connectives, the epistemic modalities K; (for
1 € n) and the temporal operators F and P. The set Fml of
formulas is built up from a set P of atomic propositions in
the usual manner.

Semantics is given as follows. Let S be a set of (local)
states and £ be a set of linear flows of time (L, <). A run
r over L is a function r : L — ™S for some (L,<) € L,
i.e., for a given linear flow (L, <), it associates an n-tuple
of states with every time point in L. For runs r,r" over L,
we will write r(I) ~; v/(I') (for i € n) iff r(1); = v'(I');. A
valuation v is function v : P — P(™S) associating to every
atomic proposition in P a set of n-tuples of states. A model
M consists of a set R of runs over £ and a valuation. Truth
of a formula is evaluated at a point [ of a run r. The non-
propositional cases are as follows: for i € n,

o (M,1,]) = K;p if and only if (M, I') = ¢ for all '/

and !’ such that () ~; 7' (I’)
o (M,r,1l) = Fy if and only if (M, r,l') = ¢ for some [’
such that [ < I/

e (M,r,1) = Py if and only if (M, r,l') = ¢ for some I

such that I’ <

We will use the usual abbreviations: L;p for —=K;—p, Gy
for =F—¢p, and Hy for -P—p. For a temporal operator T, let



T’ denote its “weak” version (defined by < instead of <), e.g.,
P’ is defined as Py V .

Perfect recall

The logic of perfect recall is defined by the following
semantical condition: for all 7 € n,

if (1) ~; r'(I') and k < I, then there is &’ <1’ with
r(k) ~; r' (k).

Let 7ELP" denote the logic TEL,, satisfying the additional
condition of perfect recall.

This simple definition for perfect recall is very intuitive in
the case where all agents knowledge is synchronized (that is,
for all runs r, for all distinct points « and y, r(z) #%; r(y),
see [4]). However, here we do not restrict the models to be
synchronized and this can lead to some unintuitive models.
For example, consider the model consisting of a single run
over the integers, and a single agent such that for all z,y € Z,
r(z) ~ r(y) if and only if = and y have the same parity. Such
an agent is unable to distinguish between the past, present and
future, which seems contrary to notion of perfect recall.

From the perspective of logic we are mostly interested in the
properties that we are able to express using formulae, rather
than anomalous classes of models. Some interesting examples
of such properties are:

1) An agent cannot distinguish between a single point in
one run and an infinite set of points (an interval) in
another run. Only in such a case would the following
formula be satisfied:

Here the agent knows z is true, and previously knew
z had never been true. However, the agent is unsure
whether this is the first instance which z has been true.
By the perfect recall axiom, in all related runs, all past
moments where x was true must be indistinguishable to
the agent from the current state.

2) An agent does not know whether time has an end.

L,GFT AL;FGL

Here, an agent considers two runs possible: one with a
final point and one without.
3) An agent may not recognize a final point in time:

GLAL,GFT

This is perhaps a little more challenging. Should an
agent recognize when there is no next moment of time?
This may vary with context, but from an applications
point of view we could imagine an agent monitoring
traffic on a communications channel, where the agent is
unable to distinguish between no data being transmitted
(but the channel silently persisting) the channel closing
(a final point in time).

Flows of Time

All logics we examine satisfy the perfect recall constraint
and we define different logics by varying the flows of time
(L, <). Recall a linear flow of time (L, <) is defined such
that L is any non-empty set, and < is a transitive, irreflexive
and anti-symmetric relation such that for all x,y € L, either
T =1y, z <yory <z Particularly we consider:

1) General Linear Flows: TELY refers to the case where

each run may be any linear flow of time.

2) Uniform Linear Flows: UTELY" refers to the logic
where every run in the model must be over the same
flow of time. However, there are no restrictions on what
that linear flow of time may be.

3) The Integers: ZT ELL" refers to the logic where every
run in the a model must be over the integers, Z.

4) The Rationals: QT ELY" refers to the logic where every
run in the a model must be over the rational numbers,
Q.

5) The Reals: RTELE refers to the logic where every run
in the a model must be over the integers, R.

III. COMPLETENESS

We will give a finite Hilbert-style axiomatization for
TELPT.
THEOREM 1: TELE" is finitely axiomatizable.
Proof: The axioms are as follows. Besides the axioms for
propositional logic, we have the

« axioms for epistemic logic (stating that every K; is an S5

modality)

« axioms for linear temporal logic (for strict F and P) (see

for example [8], Chapter 6).

e Kip — G'K;P’K;p (perfect recall axiom, PR).

PR says that if agent ¢ knows ¢, then agent ¢ will always know
that once (s)he knew (. Rules of inference are Modus Ponens
and Universal Generalization. We refer to the axiom system
as TELP".

First let us note that the above calculus is sound w.r.t.
TELY". We just check the validity of PR. Assume that
(M,r,k) &= K;p and that £ < [. We have to show that
(M,r, 1) E K;P’K;p. So let ' and I’ be such that r(I) ~;
r'(I'). We need (M,r',l') = P'K;p. By the perfect recall
condition, there is k&’ < I’ with r(k) ~; '(k’). Hence we have
(M, 7" k') = K;p, whence (M, 1',1") = P’K; ¢ follows.

To show completeness, assume that x is a consistent for-
mula. We will construct a model satisfying  in a step-by-step
manner by “curing defects”. By a partial model M we mean a
subset M of N x Q together with a function f* associating a
maximal consistent set of formulas (mcs, for short) with every
element of M, and with n equivalence relations NZM (t€en)
such that

D (z,y) ~M (2/,9/) implies that fM(x,y) and

fM(2', ') contain the same K;¢ formulas,

2) (z,y),(x,y) € M,y <y and Gp € fM(x,y) imply

p e fMz,y),
3) the mirror image of 2 for H.



We will define four types of defect of a partial model M.
Let (z,y), (¢',y’) € M and ¢ be a formula (in the language
of x) such that p € fM(z,y).

Future defect:
¢ has the form F1), and there is no (z,y’) € M such
that y < ' and ¢ € fM(x,7/).
Past defect:
the mirror image for P.
Epistemic defect:
¢ has the form L;v, and there is no (2/,y’) € M
such that (z,y) ~M (2/,y') and p € fM(2',5).
Perfect recall defect:
(z,y) ~M (2/,y') and z < y such that (z,2) € M
but there is no z’ <y’ such that (z,z) ~M (2, 2').

Given a countable partial model, there are at most countably
many defects. For a structure X x Y, d is a potential defect
if there is a partial model on some M C X x Y such that d
is a defect. Again, it is not difficult to see that if X and Y
are countable, then there are at most countably many potential
defects. Thus we can assume that the potential defects of NxQ
are enumerated: D = (dy,dq,...).

Let o be a fair scheduling function of all potential defects
of N x Q. That is, o : w — D such that, for every k£ and
d € D, there is | > k such that o(l) = d.

We will define the required model for y by induction.
Assume the following induction hypothesis:

Induction hypothesis: In each step of the construction, we
have defined a finite partial model based on a substructure of
N x Q.

Base step 0: Let X be an arbitrary mcs such that y € X.
The partial model M has universe {(0,0)}, f*°(0,0) = X
and, for every i, ~°= {((0,0), (0,0))}.

Inductive step k£ + 1: Let the finite partial model defined
so far be My, based on the structure M C Ny X Qf, where
N C Nand Qi C Q. Let o(k) = d. If d is not a defect of
M, then we define My, = M. If d is a defect of My,
then we consider the following cases according to the type of
the defect.

Future defect:
We have (z,y) € M;, such that Fyp € fMe(z,y) =
Y and, for all ¢ >y, ¥ ¢ fMe(x,).

By linear temporal logic we can create a witness. First assume
that for all y' > y, Fy € fMr(z,y’). Let 2 be the largest
number such that (z,z) € My, 2’ be z+ 1 and Y’ be a mcs
containing {¢ : Gp € fMr(x,2)} U {y}.

Otherwise let z be the greatest rational number w.r.t. the
following conditions:

o (x,2) € My,
o Fye fM(z,2).
Let Z = {p : Gp € fMr(2,2)}, Z/ = {p : Hp €

fMe(x,y") for some i’ > z} and Y’ be a mcs containing
ZUZ' J{¢}. We let 2’ be a rational number greater than z
but smaller than any of {u : (z,u) € M,z < u}.

KiP'Kikm (z,y) (z',y") P'Kikim, ¥, €Y1

|
o (17'7{/1—1) '
Kikm, GKP’Kiky, €Y (z,2) . (a:’jy,‘) &
. - h (2',2") Pm
(fL'/Jgr—l) &t

.

(z’jyu) &m

Fig. 1. Curing PR-defect

In both cases the new partial model M, is defined by
expanding My as My 1 = My U {(z,2")}, fMe+1(z,2') =
Y’ and N?A"'“:Nf-w"‘ U{((z,2"), (z,2"))} for i € n.

Using temporal reasoning, it is easy to check that My is
a partial model.

Past defect:

This case is completely analogous to the previous
one, and we omit the details.

Epistemic defect:

Ly € fMr(z,y) =Y, and there is no (2/,y') € My,

such that (z,y) ~* (¢/,y') and ¢ € fM*(2/,y)).
We use epistemic logic to create a witness. By epistemic (in
fact, normal modal logic) reasoning, the set Y’ = {K;p :
Kig € Y} U {¢} is consistent. Let z be the smallest
element of N such that z ¢ Nj. We define My, as the
following expansion of My let My = M, U{(z,y)}, label
(z,y) with a mecs Z D Y’ and let N?A’““QNZM’“ be the
smallest equivalence relation containing ((z,y), (z,y)), while
~ = UL((2,), (2)) for j #

Since K; is an S5 modality, My is a partial model.

Perfect recall defect:

We have (z,y) ~M* (2/,3/), and z < y such that
(x,z) € My, but there is no z/ < y' such that
(z,2) ~ME (2!, 2)).
We use the perfect recall axiom and temporal reasoning to
create a witness, see Figure 1.

We have to find a mcs Y’ such that Y’ and Y = fM*(z, 2)
agree on K;-formulas, and place Y in the finite linear order
in which (2/,3) occurs. Let us consider this linear order
(@',yo) < -+ < (a,y;); then y' = y; for some [ < j. Let us
denote fMk (2 y,) by Y, (0 <p <.

Our aim is to show that one of the following sets of formulas
is consistent.

% {p:HpeV}iu{p:HpeV, 1}U---U{p:Hpe

Yi}U{e:Hpe Yo} U{K,p: Kip €Y}



' {p:HpeVY}U{p:HpeY 1}U---U{p:Hpe
Yl}U{KZgOKZQOGY}U{(PGQOGYb}

d: {p:Hp e VU{Kip : Kip e YIU{p: Gy €
Yio1tU---U{p:HpeYi}U{p:Hp e Yy}

Let (K;®0, - .-, Ki@m, ... ) be an enumeration of all the for-
mulas of form K;¢ in Y, and define x,,, = A{K;pp : p < m}.
Clearly K;k,, < kpn, whence K;k,, € Y. Thus, by the
perfect recall axiom, G'K;P’K;x,, € Y. Since we have a
partial model, we get P’K;x,, € Y;. By epistemic reasoning,
P’'k,, € Y. By our assumption x,, ¢ Y; for a large enough
m, whence Pk, €Y.

For every p < [, let us enumerate (¢f), ¢7, ...) the formulas
in Yy, and define £}, = A{¢} : ¢ < m}. Similarly we define
~b, for G-formulas in Y}, and x%, for H-formulas in Y.

For every m consider the formula ,,:

Phim A&y ANP(ELTTAPELZ A AP(E), APE) L))

Since My, is a partial model, 1, € Y7, i.e., 1, is consistent.
By our assumption that none of the Y), is the right witness, for
a big enough m, -k, € Y, forevery 0 < p <[, ie., K, AED,
is inconsistent. Then, by temporal reasoning, at least one of
the following formulas ¢?, (0 < p <) is consistent.
¢9n: ’fn/\P(gin_l/\P(/\P(f'rln/\P( 7OTL/\PK‘77L))"'))
Pl €APESIAPG - AP(EL AP(km APED)) .. L))

Ut & AP(Rm AP A AP(EL APER) . ..)
As m grows, for at least one fixed p, say r, infinitely many
formulas ], are consistent. Observe that ¢? , — P form’ >
m, whence 7, is consistent for every m. Next consider the
following formulas P .

P

P

le,/\X£;1/\"'AX}rL/\XQn/\KJWl
Xim A X P A A X A o A7,

Pt Xom Ao Ayt A Ay A,

If P is inconsistent, then so is the formula ¢?, for a
big enough m’ (by temporal reasoning). Thus ¢! must be
consistent for all m. It follows that ®" is consistent.

Then there is a mcs Z containing ®”. This is the required
witness, since we can insert a point (z’, z’) into the linear order
(@' y0) < -+ < (2',y) below (', y,) (and above (z,y,_1)
if this exists). (Again we use the density of rational numbers
here.)

Then the partial model My, 1 is defined by adding (2/, ")
to Mjp, labelling it with Z, and taking a minimal extension
of ~M* 5o that (z, z) NzM’““ (z',7') (again N?A’““:w?/[k
U{((z",2"), (¢, 2))} for j # 0). '

Limit step: We take the union M of My, (k € N). Clearly
M is a partial model. Furthermore, the fair scheduling policy
guarantees that it does not contain any defect (once a defect
has been cured it cannot reoccur). Thus M is a partial model
of x without defects. From M we can define a model N for x
as follows. Let us replace every element m = (x,y) of M by
an n-tuple h(m) = (mg, my,...,my—1) such that h(m); =
h(m'); iff m ~; m' in M. We define h(m) < h(m’) iff

Sk Skt

Fig. 2. Frames §j, and §x41

m < m/. The valuation v is determined by the labels in M:
h(m) € v(p) iff p € fM(m). It is routine to check that N
indeed satisfies x. [ ]

REMARK 1: The reader might wonder why we are not
using the canonical model to satisfy . By Sahlqvist’s Corre-
spondence and Completeness Theorems (see [2, Theorem 3.54
and Theorem 4.42]) the canonical model satisfies the frame
conditions corresponding to our axioms (< is a transitive,
non-branching relation, ~;s are equivalence relations and the
confluence property of perfect recall holds) and y. But it is
not obvious to us how to turn the canonical model to a model
based on tuples of states and runs. Furthermore, our hope is
that modifications of the step-by-step construction above might
work for special cases (like the reals).

IV. THE UNIFORM CASE

We start with showing that Y7 EL,, is not finitely axiomatiz-
able in general. This is in contrast to pure temporal logic where
the logic of linear flows is finitely axiomatizable. Later we will
see that in specific cases (such as the rationals) uniformity can
be achieved.

We prove the theorem below by exploiting the relationship
between modal logic and algebraic languages. See [2] (Chapter
5) for a good general overview of this relationship.

THEOREM 2: The uniform version of temporal epistemic
logic UT EL,, is not finitely axiomatizable, even for a single
agent (n = 1).

Proof: We will prove the theorem by showing that the
equational theory of the complex algebras of the frames of
UTEL, is not finitely axiomatizable in first-order logic.

For every positive integer k, we let Ly = (k, <), i.e., the
linear flow of time with length k — 1. We define the frame F,
consisting of two disjoint runs, one on L1 and one on L 9.
Thus we can identify these runs with the corresponding flows
of time. The relation ~; is defined as (k+1Wk+2) x (k+1W
k + 2) where W denotes disjoint union. That is, there are two
flows of time, with length £ and k + 1, respectively, and the
universal relation ~; to interpret the sth agent’s knowledge.
Sometimes we will denote the runs Ly and Lg4o of §x by
F? and F}, respectively. (See Figure 2).



Let ¢m(§) denote the (full) complex algebra of the frame
§. Hence €m(§}) has universe P(k+1wk+2) and operations
N, N\ and o for every modal/temporal connective A:

oan(X)={yek+1Wk+2:yRax for some z € X}

where Ra is the accessibility relation defining A.

Let V denote the variety generated by all €m(F) where §
is a frame of U7 EL,,. Recall from basic modal logic that the
validities of U7 EL,, and the valid equations of V correspond
to each other in the following sense:

SEpov=tm@) Ep=1
and thus
UTEL, Ep— <=V Ep=1.

To prove that V is not finitely axiomatizable in first-order
logic it is enough to show that its complement is not closed
under ultraproducts. This is done in the following two lemmas.

|

LEMMA 1: For every k, €m(Fy) is not in V.

Proof: Let ¢, be the formula expressing that time is k
long:
HHL — F*(T AGL))

and consider ¥y, = ¢ — Kpy. Note that vy, is valid formula
of UTEL,,, since all runs in a frame have the same length. On
the other hand, §j [~ ¢r. Thus €m(Fy) = ¢ = T, whence
Cm(Fy) is not in V. [

LEMMA 2: Any non-principal ultraproduct 2[ of €m(Fy) is
in V.

Proof: Let § be the ultraproduct of the frames §; over
a non-principal ultrafilter I/, and denote its complex algebra
¢m(F) by B. Then the lemma follows by

1) BisinV,

2) A can be embedded into B.

For 1 observe that § has two isomorphic (uncountable) linear
flows of time, i.e., it is a frame of the logic. Indeed, one can
define the isomorphism by “shifting” (an equivalence class
of) a sequence by one to the right. In more detail, let  be
an element of the ultraproduct of frames and = be such that
T=xz/Uand {i:xz; € F!} €U, ie., T is an element of the
ultraproduct such that it is defined by a sequence of elements
from the runs F}'. Since F}' = F?, | = (i + 2, <), for a large
set (i.e., in /) of indices 7, we have z; € Fﬁrl as well. Let
y = (0,zq,21,...) and § = y/U. We define the isomorphism
L by «(z) = . It is easy to check that ¢ is surjective and
injective, and that it preserves the ordering <.

For 2: This is a standard result. One can define the em-
bedding as follows: given an equivalence class of a sequence
X of subsets X;, map it to the set of equivalence classes of
the sequences determined by the product of the X;s. In more
detail, let X be an arbitrary element of A, and X; be such
that X = [[ X;/U. Define the isomorphism x by

X(X) ={z/U : x; € X;}.

It is routine to check that x is indeed an isomorphism. ]

COROLLARY 1: UTELYT is not finitely axiomatizable.
Proof: Note that § satisfies the perfect recall condition,
since ~; is the universal relation. |

REMARK 2: Since the frame § that we defined in the proof
of Lemma 2 is discrete, we have that UTEL,, and UTELL"
over discrete flows of time are not finitely axiomatizable.

We have shown that temporal epistemic logic with perfect
recall cannot be axiomatized with these assumptions alone.
However, if we also specify the particular flow of time, then
axiomatizations may be feasible.

The axiomatization of 7ELP" and proof presented in Sec-
tion III is a basic approach to knowledge and time. Effectively
we have shown for an arbitrary temporal logic, and an arbitrary
epistemic logic, the axiom PR is sufficient to capture the
concept of perfect recall. However, practical reasoning about
knowledge and time will often use the assumptions that

1) There is one consistent flow of time;

2) this consistent flow of time is common knowledge to all

agents.

Below we extend the above axiomatization to apply to such
specified uniform flows of time.

V. THE RATIONALS

We now suppose the TELL" is interpreted solely over
flows of time that are isomorphic to the rational numbers. To
axiomatize such a logic it is sufficient to add to the axioms
above the no-end-point axiom (NEP) and the density axiom
(Dense):

NEP

Dense

PTAFT
Fp — FFp.

We let QTELP" be the system TELP" augmented with NEP
and Dense.

THEOREM 3: The system QTELL" is sound and complete
for temporal epistemic logic with perfect recall over rational
flows of time, Q7 ELP".

Proof: Soundness is easy to check and is left to the reader.

To prove completeness we show that the construction above
can be extended to include and cure density defects. That is,
we apply the construction for general linear flows of time
(above) with a new density defect in the schedule and suppose
each mcs is consistent with respect to all substitution instances
of the axioms NEP and Dense. (Note that the end points will
not require a new defect since an FT defect will be cured as
a future defect). In more detail, we call (z,y,y’) a densiry
defect if y <y, fMr(x,y) = U, fMr(z,y') = @, and for
all z with y < z < o/, fM*(z, 2) is undefined. We include all
density defects to the schedule of defects waiting to be cured.

Given a density defect as above, we have for all o € @,
Fa € U. By the density axiom it follows that FFa € 0.
Therefore, for all &« € ® and 8 € ¥, B A FFa is consistent.
Hence PG AFa is consistent by temporal reasoning. It follows
that there is a mcs A such that for all § € ¥, P3 € A and
for all &« € ®, Fao € A. If such a A could not be found, there
must be some finite « € ® and # € ¥ such that Fo — —Pj3
contradicting the reasoning above.



Thus we can define My 1 = My U {(z,2)} and let
M, ) = A and ~ = U{(2,2), (2, 2))) for
1 € n, curing the defect. [ |

VI. THE INTEGERS

Previously temporal epistemic logic with perfect recall, next
and until, but without past operators has been axiomatized over
integer flows of time [9], [10]. Also, temporal epistemic logic
with perfect recall, next, until and since has been axiomatized
over flows of time isomorphic to the natural numbers [11]. For
completeness we examine the temporal epistemic logic with
perfect recall using only the tense operators (so that next and
previous operators are not available). Note that the axiomatiza-
tions in [9], [10] make use of the operators until and next which
are known to be expressively complete for the natural numbers,
whereas F and P are not expressively complete). Furthermore,
the axiomatization relies on the relationship between the next,
until and knowledge operators to capture the perfect recall
property. For these reasons the axiomatization of ZTEL?" does
not follow trivially from the works mentioned above.

An axiomatization for temporal epistemic logic over the
integers can be defined by adding the axioms NEP (see above),
and:

ZF
zp

(G(Gp — p)) — (FGp — Gp) discrete future
(H(Hp — p)) — PHp — Hp) discrete past

These axioms are known to be sufficient to axiomatize the
tense operators, F and P, over the integers (see for example
[1]). We define ZTELE" to be the axiom system TELY"
augmented with the axioms NEP, ZF and ZP.
LEMMA 3: The system ZTELZ" is sound for temporal
epistemic logics with perfect recall over integer flows of time.
Proof: (Sketch) The soundness of NEP, ZF and ZP is
well known (e.g. [1]). The soundness of the other axioms
follows from their soundness for general linear flows of time.
|
We conjecture that the system is also complete, but the proof
has thus far been elusive. The approach taken has been to
to show that every formula that is consistent with ZTELP"
has an integer model. We know that every formula consistent
with ZTELE" is consistent with TELE" (the logic of general
linear flows), so we are able to apply Theorem 1 to build
a model that satisfies both the consistent formula, as well
as every substitution instance of the axioms NEP, ZF and
ZP. Having built this model, we attempt to transform it into
an integer model without introducing any new defects, using
the techniques of [13]. While the strategy is promising, there
remain some anomalous cases which are difficult to address.
CONJECTURE 1: The system ZTELP" is complete for
temporal epistemic logics with perfect recall over integer flows
of time.

VII. THE REALS

We now present an axiomatization for logics of knowledge
with perfect recall over real flows of time. For notational

convenience, we only present the single agent case, but the
multi-agent case may be treated similarly.

As with the previous results, we simply augment the axiom
systems for general flows of time with sufficient axioms to
ensure that all the legitimate flows of time will be isomorphic
to the real line. We show that, as with linear temporal logic,
it is sufficient to augment the axioms for rational flows of
time (i.e. density axioms and no end-points) with an axiom
for Dedekind completeness. In terms of topology of the line,
these axioms ensure that every convergent sequence of points
converges to some accumulation point.

The Dedekind axiom is:

D FHp — (Gp V F(Hp A —=p) V F(Hp A p A GP—p)) (1)

and we let RTEL?" be the axiom system QTEL?" augmented
with the axiom D. (Note that as we are extending QTEL?",
density and no end-points are already given).

Note that the inverted version of D, below, can be inferred
using D and the other temporal axioms presented.

PGp — (Hp Vv P(Gp A —p) VP(Gp Ap AHF—p). (2)

LEMMA 4: The system RTELZ" is sound for temporal
epistemic logics with perfect recall over real flows of time.
The proof is relatively straightforward and is left to the reader.

CONJECTURE 2: The system RTEL?" is complete for
temporal epistemic logics with perfect recall over real flows
of time.

As with the integer case, we attempt to show every formula
that is consistent with RTELE" has a model over real-flows
of time via a rational-flowed model for that formula. Given
a rational-flowed model of the consistent formula we attempt
to convert that model into a real-flowed model without in-
troducing any additional defects. It was hoped that we could
extend the knowledge relations and the valuation of atomic
propositions to include the irrational points, as can be done in
the purely temporal case (see for example [7]). However, in
the presence of epistemic operators with perfect recall this is
not straightforward, and it appears that this technique needs
to be further extended.

VIII. CONCLUSION

Here we have presented a number of axiomatizations and
related results for temporal epistemic logics with perfect recall
and varying flows of time. We have shown the axiomatizations
for TELP" (where flows of time are arbitrary) and Q7T ELE”
(where the flows of time are isomorphic to the rational
numbers) are sound and complete. We have also shown that
the logic UTEL, (where the flow of time is arbitrary, but
known to all agents) no finite axiomatization can be given.
In the remaining cases, Z7 ELL" (the integers) and RTELY”
(the reals) work is ongoing. We propose sound axiomatizations
here, and are working towards completeness proofs.
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