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Abstract—This article considers the temporal logic defined
over the class of all lexicographic products of dense linear or-
ders without endpoints and provides a complete axiomatization
for it.

I. INTRODUCTION

Given modal logics L1 and L2 in languages respectively

based on �1 and �2, their “Cartesian” product is a multi-

modal logic in the language based on both �1 and �2. Its

semantics is based on the product F1 × F2 = (W, S1, S2)
of structures F1 = (W1, R1) and F2 = (W2, R2) defined

by: W = W1 × W2, (x1, x2) S1 (y1, y2) iff x1 R1 y1 and

x2 = y2 and (x1, x2) S2 (y1, y2) iff x1 = y1 and x2 R2 y2.

The above product of structures has been considered within

the context of reasoning about knowledge [7]. See [9] for

a detailed study of the axiomatization of the corresponding

modal logics.

Given modal logics L1 and L2 in languages respectively

based on �1 and �2, it also makes sense to consider their

“lexicographic” product defined as a multimodal logic in the

language based on both �1 and �2. Its semantics is based

on the product F1 � F2 = (W, S1, S2) of structures F1 =
(W1, R1) and F2 = (W2, R2) defined by: W = W1 ×W2,

(x1, x2) S1 (y1, y2) iff x1 R1 y1 and (x1, x2) S2 (y1, y2)
iff x1 = y1 and x2 R2 y2. The above product of structures

has been considered within the context of reasoning about

time [1]. See [2] for a first step towards the axiomatization

of the corresponding modal logics.

This article considers the temporal logic defined over the

class of all lexicographic products of dense linear orders

without endpoints and gives its complete axiomatization.

Its section-by-section breakdown is as follows. Section II

defines the lexicographic product of dense linear orders

without endpoints and studies its elementary properties. In

section III, we introduce the syntax and the semantics of

the temporal logic we will be working with. Section IV

gives its axiomatization. In section V and section VI, a

method is presented for proving the completeness of this

axiomatization. Section VII pays particular attention to the

pure future fragment of our temporal language.

II. LEXICOGRAPHIC PRODUCTS OF LINEAR ORDERS

Let (S, <S) and (T, <T ) be dense linear orders without

endpoints. Their lexicographic product is the structure F =
(R,≺1,≺2) where R = S × T and ≺1 and ≺2 are the

binary relations on R defined by (s, t) ≺1 (s′, t′) iff s <S

s′ and (s, t) ≺2 (s′, t′) iff s = s′ and t <T t′. The effect

of the operation of lexicographic product may be described

informally as follows: F is the structure obtained from

(S, <S) and (T, <T ) by replacing each element of (S, <S)
by a copy of (T, <T ). See [3] or [6] for a discussion about

the global intuitions underlying such an operation. In order

to characterize its elementary properties, we introduce a first-

order language. Let V ar denote a countable set of individual

variables (with typical members denoted x, y, etc). The set

of all well-formed formulas (with typical members denoted

φ, ψ, etc) of the first-order language is given by the rule

• φ := x <1 y | x <2 y | ⊥ | ¬φ | (φ∨ψ) | ∀x φ | x = y.

The intended meanings of x <1 y and x <2 y are as

follows: “x precedes but is not infinitely close to y” and “x
precedes and is infinitely close to y”. We adopt the standard

definitions for the remaining Boolean operations and for the

existential quantifier. Another construct can be defined in

terms of the primitive ones as follows:

• x < y := x <1 y ∨ x <2 y.

The intended meaning of x < y is as follows: “x precedes

y”. The notion of a subformula is standard. We adopt the

standard rules for omission of the parentheses. Formulas in

which every individual variable in an atomic subformula is in

the scope of a corresponding quantifier are called sentences.

Models for the first-order language are flows F = (R,
≺1,≺2) where R is a nonempty set of instants and ≺1 and

≺2 are binary relations on R. We define the binary relation

≺ on R by t ≺ u iff either t ≺1 u, or t ≺2 u for each

t, u ∈ R. An assignment on F is a function f : V ar �→ R.

Satisfaction is a 3-place relation |= between a flow F =
(R,≺1,≺2), an assignment f on F and a formula φ. It is

inductively defined as usual. In particular,

• F |=f x <1 y iff f(x) ≺1 f(y) and

• F |=f x <2 y iff f(x) ≺2 f(y).
As a result,
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• F |=f x < y iff f(x) ≺ f(y).
Obviously, every lexicographic product of dense linear or-

ders without endpoints satisfies the following sentences:

IRRE • ∀x x 	<1 x,

• ∀x x 	<2 x,

DISJ • ∀x ∀y (x 	<1 y ∨ x 	<2 y),
TRAN • ∀x ∀y (∃z (x <1 z ∧ z <1 y) → x <1 y),

• ∀x ∀y (∃z (x <1 z ∧ z <2 y) → x <1 y),
• ∀x ∀y (∃z (x <2 z ∧ z <1 y) → x <1 y),
• ∀x ∀y (∃z (x <2 z ∧ z <2 y) → x <2 y),

DENS • ∀x ∀y (x <1 y → ∃z (x <1 z ∧ z <1 y)),
• ∀x ∀y (x <1 y → ∃z (x <1 z ∧ z <2 y)),
• ∀x ∀y (x <1 y → ∃z (x <2 z ∧ z <1 y)),
• ∀x ∀y (x <2 y → ∃z (x <2 z ∧ z <2 y)),

SERI • ∀x ∃y x <1 y,

• ∀x ∃y x <2 y,

• ∀x ∃y y <1 x,

• ∀x ∃y y <2 x and

UNIV • ∀x ∀y (x = y ∨ x <1 y ∨ x <2 y ∨ y <1

x ∨ y <2 x).
Obviously, the sentences as above have not the finite model

property. By Löwenheim-Skolem theorem, they have models

in each infinite power. A flow F = (R,≺1,≺2) is said to

be standard iff it satisfies the sentences as above. Let F =
(R,≺1,≺2) be a flow, R be a binary relation on R and L
be a sublanguage of our first-order language. We shall say

that R is definable with L in F iff there exists a formula

φ(x, y) in L such that for all assignments f on F , f(x) R
f(y) iff F |=f φ(x, y).

Proposition 1: (1) = is not definable with <1 in any

standard flow; (2) = is definable with <2 in any standard

flow; (3) ≺2 is not definable with = and <1 in any standard

flow; (4) ≺1 is not definable with = and <2 in any standard

flow; (5) ≺1 is not definable with = and < in any standard

flow; (6) ≺2 is not definable with = and < in any standard

flow.
The following proposition illustrates the value of countable

standard flows.
Proposition 2: Let F = (R,≺1,≺2) and F ′ = (R′,≺′

1,
≺′

2) be standard flows. If F is countable then F is elemen-

tary embeddable in F ′.
As a corollary of proposition 2 we obtain that any two

standard flows are elementary equivalent. The first-order

theory HY of standard flows has the following list of

proper axioms: IRRE, DISJ , TRAN , DENS, SERI
and UNIV . There are several results about HY :

Proposition 3: (1) HY is countably categorical; (2) HY
is not categorical in any uncountable power; (3) HY is

maximal consistent; (4) HY is complete with respect to

the lexicographic product of any dense linear orders without

endpoints.
The membership problem in HY is this: given a sentence φ,

determine whether φ is in HY . The results are summarized

in the following proposition:

Proposition 4: (1) HY is decidable; (2) The membership

problem in HY is PSPACE-complete.

See [1] for the proofs of the above results.

III. A TEMPORAL LOGIC

It is now time to meet the temporal logic we will be

working with.

A. Syntax

Let At be a countable set of atomic formulas (with typical

members denoted p, q, etc). We define the set of formulas

of the temporal language (with typical members denoted φ,

ψ, etc) as follows:

• φ := p | ⊥ | ¬φ | (φ ∨ ψ) | G1φ | G2φ | H1φ | H2φ,

the formulas G1φ and G2φ being read “φ will be true at

each instant within the future of but not infinitely close to

the present instant” and “φ will be true at each instant within

the future of and infinitely close to the present instant” and

the formulas H1φ and H2φ being read “φ has been true

at each instant within the past of but not infinitely close

to the present instant” and “φ has been true at each instant

within the past of and infinitely close to the present instant”.

We adopt the standard definitions for the remaining Boolean

connectives. As usual, we define

• Fiφ := ¬Gi¬φ and

• Piφ := ¬Hi¬φ

for each i ∈ {1, 2}. The notion of a subformula is standard.

It is usual to omit parentheses if this does not lead to any

ambiguity.

B. Semantics

A Kripke model is a structure M = (R,≺1,≺2, V ) where

(R,≺1,≺2) is a flow and V : R �→ 2At is a function. V −1:

At �→ 2R will denote the function such that V −1(p) = {s ∈
R: p ∈ V (s)}. Satisfaction is a 3-place relation |= between

a Kripke model M = (R,≺1,≺2, V ), an instant t ∈ R and

a formula φ. It is inductively defined as usual. In particular,

for all i ∈ {1, 2},

• M |=t Giφ iff M |=u φ for each instant u ∈ R such

that t ≺i u and

• M |=t Hiφ iff M |=u φ for each instant u ∈ R such

that u ≺i t.

As a result, for all i ∈ {1, 2},

• M |=t Fiφ iff M |=u φ for some instant u ∈ R such

that t ≺i u and

• M |=t Piφ iff M |=u φ for some instant u ∈ R such

that u ≺i t.

Let φ be a formula. We shall say that φ is true in a Kripke

model M = (R,≺1,≺2, V ), in symbols M |= φ, iff M |=t

φ for each instant t ∈ R. φ is said to be valid in a flow (R,
≺1,≺2), in symbols (R,≺1,≺2) |= φ, iff M |= φ for each

Kripke model M = (R,≺1,≺2, V ) based on (R,≺1,≺2).
We shall say that φ is valid in a class C of flows, in symbols
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C |= φ, iff (R,≺1,≺2) |= φ for each flow (R,≺1,≺2) in C.

The class of all standard flows will be denoted more briefly

as Cs whereas the class of all countable standard flows will

be denoted more briefly as Cc
s .

C. Bounded morphisms

Let (R,≺1,≺2) and (R′,≺′
1,≺′

2) be flows. A function

f : R �→ R′ is a bounded morphism from (R,≺1,≺2) to

(R′,≺′
1,≺′

2) iff the following conditions are satisfied for

each i ∈ {1, 2}:

• for all t ∈ R and for all u′ ∈ R′, f(t) ≺′
i u′ iff there

exists u ∈ R such that t ≺i u and f(u) = u′ and

• for all t ∈ R and for all u′ ∈ R′, u′ ≺′
i f(t) iff there

exists u ∈ R such that u ≺i t and f(u) = u′.
If there is a surjective bounded morphism from (R,≺1,≺2)
to (R′,≺′

1,≺′
2) then we say that (R′,≺′

1,≺′
2) is a bounded

morphic image of (R,≺1,≺2).
Lemma 1: Let (R,≺1,≺2) and (R′,≺′

1,≺′
2) be flows. If

(R′,≺′
1,≺′

2) is a bounded morphic image of (R,≺1,≺2)
then for all formulas φ, if (R,≺1,≺2) |= φ then (R′,≺′

1,
≺′

2) |= φ.

Proof: Use the bounded morphism lemma [4].

IV. AXIOMATIZATION

A temporal logic is defined to be any normal logic in the

temporal language that contains the formulas

• φ → GiPiφ and

• φ → HiFiφ

as proper axioms for each i ∈ {1, 2}. Notice that these

formulas come in pairs of “mirror images” obtained by

interchanging future and past connectives. Let HTL be the

smallest temporal logic that contains the formulas

4 • F1F1φ → F1φ,

• F1F2φ → F1φ,

• F2F1φ → F1φ,

• F2F2φ → F2φ,

d • F1φ → F1F1φ,

• F1φ → F1F2φ,

• F1φ → F2F1φ and

• F2φ → F2F2φ

and the formulas

D • F1�,

• F2�,

L • F1φ ∧ F1ψ → F1(φ ∧ ψ) ∨ F1(φ ∧ F1ψ) ∨
F1(φ ∧ F2ψ) ∨ F1(ψ ∧ F1φ) ∨ F1(ψ ∧ F2φ),

• F1φ ∧ F2ψ → F2(ψ ∧ F1φ),
• F2φ ∧ F1ψ → F2(φ ∧ F1ψ) and

• F2φ ∧ F2ψ → F2(φ ∧ ψ) ∨ F2(φ ∧ F2ψ) ∨
F2(ψ ∧ F2φ)

and their mirror images as proper axioms.

Proposition 5: Let φ be a formula. If φ ∈ HTL then Cs

|= φ.

Proof: Left to the reader.

A flow (R,≺1,≺2) is said to be prestandard iff it satisfies

TRAN , DENS, SERI and the following sentences:

LINE • ∀x ∀y (∃z (z <1 x∧z <1 y) → x = y∨x <1

y ∨ x <2 y ∨ y <1 x ∨ y <2 x),
• ∀x ∀y (∃z (z <1 x ∧ z <2 y) → y <1 x),
• ∀x ∀y (∃z (z <2 x ∧ z <1 y) → x <1 y),
• ∀x ∀y (∃z (z <2 x∧z <2 y) → x = y∨x <2

y ∨ y <2 x),
• ∀x ∀y (∃z (x <1 z∧y <1 z) → x = y∨x <1

y ∨ x <2 y ∨ y <1 x ∨ y <2 x),
• ∀x ∀y (∃z (x <1 z ∧ y <2 z) → x <1 y),
• ∀x ∀y (∃z (x <2 z ∧ y <1 z) → y <1 x) and

• ∀x ∀y (∃z (x <2 z∧y <2 z) → x = y∨x <2

y ∨ y <2 x).
The class of all prestandard flows will be denoted more

briefly as Cp whereas the class of all countable prestandard

flows will be denoted more briefly as Cc
p.

Proposition 6: Let φ be a formula. If Cp |= φ then φ ∈
HTL.

Proof: It suffices to observe that the proper axioms 4
and d and the proper axioms D and L and their mirror im-

ages are Sahlqvist formulas and correspond to sentences in a

very precise way: 4 corresponds to TRAN , d corresponds

to DENS, D and its mirror image correspond to SERI
and L and its mirror image correspond to LINE. Then use

Sahlqvist completeness theorem [4].

Obviously, every standard flow is prestandard. Conversely,

the importance of prestandard flows lies in the fact that every

countable prestandard flow satisfying UNIV is a bounded

morphic image of every countable standard flow. A proof of

this fact will be found in section VI.

V. PRELIMINARY LEMMAS

Let (R,≺1,≺2) be a standard flow and (R′,≺′
1,≺′

2) be

a prestandard flow. Suppose R and R′ are countable. The

four following lemmas constitute the heart of our method.

Lemma 2: Let s ∈ R and s′ ∈ R′. The partial function

f : R �→ R′ defined by dom(f) = {s} and f(s) = s′ is a

partial homomorphism with finite nonempty domain.

Proof: Obvious.

The partial function f : R �→ R′ defined by lemma 2 is

called initial function with respect to s and s′.
Lemma 3: Let s ∈ R and f : R �→ R′ be a partial

homomorphism with finite nonempty domain. There exists

a partial homomorphism g: R �→ R′ with finite nonempty

domain such that dom(g) = dom(f)∪{s} and g(t) = f(t)
for each t ∈ dom(f).

Proof: Since dom(f) is finite and nonempty, then there

exists a positive integer k and there exists w1, . . . , wk ∈
R such that {w1, . . . , wk} = dom(f). Let us remind that

(R,≺1,≺2) is standard. Hence, without loss of generality,

we may assume that w1 ≺ . . . ≺ wk. Now, consider the four

following cases.
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1) Suppose there exists a positive integer l such that l ≤
k and s = wl. Let g: R �→ R′ be the partial function

defined by dom(g) = dom(f) and g(t) = f(t) for

each t ∈ dom(f).
2) Suppose there exists a positive integer l such that 1 ≤

l−1, l ≤ k, wl−1 ≺ s and s ≺ wl. Since (R,≺1,≺2)
satisfies DISJ , then wl−1 ≺i s for exactly one i ∈
{1, 2} and s ≺j wl for exactly one j ∈ {1, 2}. Since

(R,≺1,≺2) satisfies TRAN , f : R �→ R′ is a partial

homorphism and (R′,≺′
1,≺′

2) satisfies DENS, then

there exists s′ ∈ R′ such that f(wl−1) ≺′
i s′ and s′ ≺′

j

f(wl). Let g: R �→ R′ be the partial function defined

by dom(g) = dom(f) ∪ {s}, g(t) = f(t) for each t
∈ dom(f) and g(s) = s′.

3) Suppose s ≺ w1. Since (R,≺1,≺2) satisfies DISJ ,

then s ≺i w1 for exactly one i ∈ {1, 2}. Since (R′,
≺′

1,≺′
2) satisfies SERI , then there exists s′ ∈ R′

such that s′ ≺′
i f(w1). Let g: R �→ R′ be the partial

function defined by dom(g) = dom(f)∪ {s}, g(t) =
f(t) for each t ∈ dom(f) and g(s) = s′.

4) Suppose wk ≺ s. Since (R,≺1,≺2) satisfies DISJ ,

then wk ≺i s for exactly one i ∈ {1, 2}. Since (R′,
≺′

1,≺′
2) satisfies SERI , then there exists s′ ∈ R′

such that f(wk) ≺′
i s′. Let g: R �→ R′ be the partial

function defined by dom(g) = dom(f)∪ {s}, g(t) =
f(t) for each t ∈ dom(f) and g(s) = s′.

The reader may easily verify that g: R �→ R′ is a partial ho-

momorphism with finite nonempty domain such that dom(g)
= dom(f) ∪ {s} and g(t) = f(t) for each t ∈ dom(f).
The partial function g: R �→ R′ defined by lemma 3 is

called forward completion of f with respect to s.
Lemma 4: Let s ∈ R, t′ ∈ R′, i ∈ {1, 2} and f : R �→ R′

be a partial homomorphism with finite nonempty domain

such that s ∈ dom(f) and f(s) ≺′
i t′. There exists t ∈

R and there exists a partial homomorphism g: R �→ R′

with finite nonempty domain such that s ≺i t, dom(g) =
dom(f)∪ {t}, g(u) = f(u) for each u ∈ dom(f) and g(t)
= t′.

Proof: Since dom(f) is finite, then dom(f)∩ {t ∈ R:

s ≺ t} is finite. Hence, there exists a nonnegative integer

k and there exists t1, . . . , tk ∈ R such that {t1, . . . , tk} =
dom(f)∩{t ∈ R: s ≺ t}. Let us remind that (R,≺1,≺2) is

standard. Hence, without loss of generality, we may assume

that s ≺ t1 . . . ≺ tk. Since (R,≺1,≺2) satisfies DISJ , then

s ≺j1 t1 . . . ≺jk
tk for exactly one k-tuple (j1, . . . , jk) ∈

{1, 2}k. Since f : R �→ R′ is a partial homomorphism, s ∈
dom(f) and {t1, . . . , tk} ⊆ dom(f), then f(s) ≺′

j1
f(t1)

. . . ≺′
jk

f(tk). Now, we proceed by induction on k.

Basis. Suppose k = 0. Since (R,≺1,≺2) satisfies SERI ,

then there exists t ∈ R such that s ≺i t. Let g: R �→ R′

be the partial function defined by dom(g) = dom(f)∪{t},

g(u) = f(u) for each u ∈ dom(f) and g(t) = t′.
Step. Suppose k > 1. Now, consider the four following

cases.

1) Suppose i = 1 and j1 = 1. Hence, f(s) ≺′
1 t′ and

f(s) ≺′
1 f(t1). Since (R′,≺′

1,≺′
2) satisfies LINE,

then either t′ = f(t1), or t′ ≺′
1 f(t1), or t′ ≺′

2 f(t1),
or f(t1) ≺′

1 t′, or f(t1) ≺′
2 t′. Now, consider the five

following cases.

a) Suppose t′ = f(t1). Let g: R �→ R′ be the partial

function defined by dom(g) = dom(f) and g(u)
= f(u) for each u ∈ dom(f).

b) Suppose t′ ≺′
1 f(t1). Since (R,≺1,≺2) satisfies

DENS, then there exists t ∈ R such that s ≺1

t and t ≺1 t1. Let g: R �→ R′ be the partial

function defined by dom(g) = dom(f) ∪ {t},

g(u) = f(u) for each u ∈ dom(f) and g(t) =
t′.

c) Suppose t′ ≺′
2 f(t1). Since (R,≺1,≺2) satisfies

DENS, then there exists t ∈ R such that s ≺1

t and t ≺2 t1. Let g: R �→ R′ be the partial

function defined by dom(g) = dom(f) ∪ {t},

g(u) = f(u) for each u ∈ dom(f) and g(t) =
t′.

d) Suppose f(t1) ≺′
1 t′. Since {t2, . . . , tk} =

dom(f) ∩ {t ∈ R: t1 ≺ t}, then by induction

hypothesis, there exists t ∈ R and there exists

a partial homomorphism g: R �→ R′ with finite

nonempty domain such that t1 ≺1 t, dom(g) =
dom(f)∪{t}, g(u) = f(u) for each u ∈ dom(f)
and g(t) = t′.

e) Suppose f(t1) ≺′
2 t′. Since {t2, . . . , tk} =

dom(f) ∩ {t ∈ R: t1 ≺ t}, then by induction

hypothesis, there exists t ∈ R and there exists

a partial homomorphism g: R �→ R′ with finite

nonempty domain such that t1 ≺2 t, dom(g) =
dom(f)∪{t}, g(u) = f(u) for each u ∈ dom(f)
and g(t) = t′.

2) Suppose i = 1 and j1 = 2. Hence, f(s) ≺′
1 t′ and

f(s) ≺′
2 f(t1). Since (R′,≺′

1,≺′
2) satisfies LINE,

then f(t1) ≺′
1 t′. Since {t2, . . . , tk} = dom(f)∩{t ∈

R: t1 ≺ t}, then by induction hypothesis, there exists

t ∈ R and there exists a partial homomorphism g:

R �→ R′ with finite nonempty domain such that t1
≺1 t, dom(g) = dom(f)∪{t}, g(u) = f(u) for each

u ∈ dom(f) and g(t) = t′.
3) Suppose i = 2 and j1 = 1. Hence, f(s) ≺′

2 t′ and

f(s) ≺′
1 f(t1). Since (R′,≺′

1,≺′
2) satisfies LINE,

then t′ ≺′
1 f(t1). Since (R,≺1,≺2) satisfies DENS,

then there exists t ∈ R such that s ≺2 t and t ≺1

t1. Let g: R �→ R′ be the partial function defined by

dom(g) = dom(f) ∪ {t}, g(u) = f(u) for each u ∈
dom(f) and g(t) = t′.

4) Suppose i = 2 and j1 = 2. Hence, f(s) ≺′
2 t′ and

f(s) ≺′
2 f(t1). Since (R′,≺′

1,≺′
2) satisfies LINE,

then either t′ = f(t1), or t′ ≺′
2 f(t1), or f(t1) ≺′

2 t′.
Now, consider the three following cases.
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a) Suppose t′ = f(t1). Let g: R �→ R′ be the partial

function defined by dom(g) = dom(f) and g(u)
= f(u) for each u ∈ dom(f).

b) Suppose t′ ≺′
2 f(t1). Since (R,≺1,≺2) satisfies

DENS, then there exists t ∈ R such that s ≺2

t and t ≺2 t1. Let g: R �→ R′ be the partial

function defined by dom(g) = dom(f) ∪ {t},

g(u) = f(u) for each u ∈ dom(f) and g(t) =
t′.

c) Suppose f(t1) ≺′
2 t′. Since {t2, . . . , tk} =

dom(f) ∩ {t ∈ R: t1 ≺ t}, then by induction

hypothesis, there exists t ∈ R and there exists

a partial homomorphism g: R �→ R′ with finite

nonempty domain such that t1 ≺2 t, dom(g) =
dom(f)∪{t}, g(u) = f(u) for each u ∈ dom(f)
and g(t) = t′.

The reader may easily verify that g: R �→ R′ is a partial

homomorphism with finite nonempty domain such that s
≺i t, dom(g) = dom(f) ∪ {t}, g(u) = f(u) for each u ∈
dom(f) and g(t) = t′.
The partial function g: R �→ R′ defined by lemma 4 is

called left-backward completion of f with respect to s, t′

and i.
Lemma 5: Let s ∈ R, t′ ∈ R′, i ∈ {1, 2} and f : R �→ R′

be a partial homomorphism with finite nonempty domain

such that s ∈ dom(f) and t′ ≺′
i f(s). There exists t ∈

R and there exists a partial homomorphism g: R �→ R′

with finite nonempty domain such that t ≺i s, dom(g) =
dom(f)∪ {t}, g(u) = f(u) for each u ∈ dom(f) and g(t)
= t′.

Proof: Similar to the proof of lemma 4

The partial function g: R �→ R′ defined by lemma 5 is

called right-backward completion of f with respect to s, t′

and i.

VI. COMPLETENESS

We can now prove the following proposition.

Proposition 7: Let (R,≺1,≺2) be a standard flow and

(R′,≺′
1,≺′

2) be a prestandard flow. If R and R′ are count-

able and R′ satisfies UNIV then (R′,≺′
1,≺′

2) is a bounded

morphic image of (R,≺1,≺2).
Proof: One main idea underlies our step-by-step

method: we think of the construction of the surjective

bounded morphism from (R,≺1,≺2) to (R′,≺′
1,≺′

2) as a

process approaching a limit via a sequence f0: R �→ R′,
f1: R �→ R′, . . . of partial homomorphisms with finite

nonempty domains. Lemma 2 is used to initiate the construc-

tion whereas lemmas 3, 4 and 5 are used to make improve-

ments at each step of the construction. Let s0 ∈ R and s′0 ∈
R′. Consider an enumeration (t0, u′

0, i0), (t1, u′
1, i1), . . . of

R×R′×{1, 2} where each item appears infinitely often. We

inductively define a sequence f0: R �→ R′, f1: R �→ R′, . . .
of partial homomorphisms with finite nonempty domains as

follows:

Basis. Let f0: R �→ R′ be the initial function with respect

to s0 and s′0.

Step. Let gn: R �→ R′ be the forward completion of fn with

respect to tn, hn: R �→ R′ be the left-backward completion

of gn with respect to tn, u′
n and in and fn+1: R �→ R′ be

the right-backward completion of hn with respect to tn, u′
n

and in.

The reader may easily verify that the sequence f0: R �→ R′,
f1: R �→ R′, . . . of partial homomorphisms with finite

nonempty domains is such that dom(f0) ⊆ dom(f1) ⊆
. . .,

⋃{dom(fn): n is a nonnegative integer} = R and

for all nonnegative integers n, fn+1(s) = fn(s) for each

s ∈ dom(fn). Let f : R �→ R′ be the function defined by

dom(f) = R and f(s) = fn(s) for each s ∈ R, n being

a nonnegative integer such that s ∈ dom(fn). The reader

may easily verify that f : R �→ R′ is a surjective bounded

morphism from (R,≺1,≺2) to (R′,≺′
1,≺′

2).
The result that emerges from the discussion above is the

following theorem.

Theorem 1: Let φ be a formula. The following conditions

are equivalent:

1) φ ∈ HTL;

2) Cs |= φ;

3) Cc
s |= φ;

4) Cp |= φ;

5) Cc
p |= φ.

Proof: (1) → (2). Use proposition 5.

(2) → (3). Obvious.

(3) → (5). Use lemma 1, proposition 7 and the fact that

every generated flow satisfying TRAN and LINE also

satisfies UNIV .

(5) → (4). Use Löwenheim-Skolem theorem for modal

models [4].

(4) → (1). Use proposition 6.

VII. PURE FUTURE FORMULAS

φ is said to be a pure future formula iff it contains no

occurrence of the temporal connectives H1 and H2. We do

not know whether all standard flows validate the same pure

future formulas. Nevertheless,

Proposition 8: For all pure future formulas φ, φ is valid

in the lexicographic flow defined over (Q, <) and (R, <) iff

φ is valid in the lexicographic flow defined over (Q, <) and

(Q, <).
Proof: Let (R,≺1,≺2) be the lexicographic flow de-

fined over (Q, <) and (R, <) and (R′,≺′
1,≺′

2) be the

lexicographic flow defined over (Q, <) and (Q, <).
Suppose (R′,≺′

1,≺′
2) 	|= φ. Hence, there exists a function

V ′: R′ �→ 2At, there exists t0 ∈ Q and there exists u0

∈ Q such that (R′,≺′
1,≺′

2, V
′) 	|=(t0,u0) φ. Let m be the

function from Q×R to the set of all maximal propositionally

consistent sets of formulas such that for all t ∈ Q and for

all u ∈ R, either u ∈ Q and m(t, u) ⊇ {ψ: (R′,≺′
1,≺′

2, V
′)

|=(t,u) ψ}, or u 	∈ Q and m(t, u) ⊇ {ψ: there exists u′ ∈ Q
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such that u < u′ and for all u′′ ∈ Q, if u < u′′ and u′′ <
u′ then (R′,≺′

1,≺′
2, V

′) |=(t,u′′) ψ}. Since (R′,≺′
1,≺′

2, V
′)

	|=(t0,u0) φ, hence, φ 	∈ m(t0, u0). We define a function V :

R �→ 2At by V (t, u) = m(t, u)∩At for each t ∈ Q and for

each u ∈ R. As a simple exercise, we invite the reader to

show by induction on the complexity of pure future formulas

ψ that for all t ∈ Q and for all u ∈ R, (R,≺1,≺2, V ) |=(t,u)

ψ iff ψ ∈ m(t, u). Since φ 	∈ m(t0, u0), then (R,≺1,≺2, V )
	|=(t0,u0) φ. Therefore, (R,≺1,≺2) 	|= φ.

Suppose (R′,≺′
1,≺′

2) |= φ. Since HY is countably categori-

cal, then Cc
s |= φ. By theorem 1, Cs |= φ. Hence, (R,≺1,≺2)

|= φ.
There is no known complete axiomatization of the set of

all Cs-valid pure future formulas. Let HTLi denotes the

restriction of HTL to the set of formulas based on the

temporal connective Gi for each i ∈ {1, 2}.
Proposition 9: HTL1 is equivalent to the smallest nor-

mal logic that contains, in the language based on �, the

following formulas as proper axioms: ��φ → �φ, �φ →
��φ, �� and �(�φ ∧ �ψ) → �(φ ∨ �ψ).

Proof: Let φ be a formula based on �. Obviously, as

the reader is asked to show, if φ is derivable from the above

axioms then the corresponding formula φ1 based on G1 is

valid in Cs. Reciprocally, suppose φ is not derivable from

the above axioms. Therefore, by Sahlqvist completeness

theorem, there exists a generated structure (W, R) where

W is a nonempty set of instants and R is a binary relation

on W such that

• for all t, u ∈ W , if there exists v ∈ W such that t R
v and v R u then t R u,

• for all t, u ∈ W , if t R u then there exists v ∈ W such

that t R v and v R u,

• for all t ∈ W , there exists u ∈ W such that t R u and

• for all t, u, v ∈ W , if t R u and t R v then either {w
∈ W : u R w} = {w ∈ W : v R w}, or u R v, or v R
u,

there exists a function V : W �→ 2At and there exists t0 ∈
W such that (W, R, V ) 	|=t0 φ. Let ∼ be the binary relation

on W defined by t ∼ u iff either t = u, or not t R u and

not u R t for each t, u ∈ W . The reader may easily verify

that ∼ is an equivalence relation on W . Let (R′,≺′
1,≺′

2)
be the flow defined by R′ = W and ≺′

1 and ≺′
2 are the

binary relations on R′ defined by t′ ≺′
1 u′ iff t′ R u′ and

t′ ≺′
2 u′ iff t′ ∼ u′ and V ′: R′ �→ 2At be a function such

that V ′−1(p) = V −1(p). The reader may easily verify that

(R′,≺′
1,≺′

2) is prestandard and such that (R′,≺′
1,≺′

2, V
′)

	|=t0 φ1. By theorem 1, φ1 is not valid in Cs.
Proposition 10: HTL2 is equivalent to the smallest nor-

mal logic that contains, in the language based on �, the

following formulas as proper axioms: ��φ → �φ, �φ →
��φ, �� and �φ∧�ψ → �(φ∧ψ)∨�(φ∧�ψ)∨�(ψ∧
�φ).

Proof: Let φ be a formula based on �. Obviously, as

the reader is asked to show, if φ is derivable from the above

axioms then the corresponding formula φ2 based on G2 is

valid in Cs. Reciprocally, suppose φ is not derivable from

the above axioms. Therefore, by Sahlqvist completeness

theorem, there exists a generated structure (W, R) where

W is a nonempty set of instants and R is a binary relation

on W such that

• for all t, u ∈ W , if there exists v ∈ W such that t R
v and v R u then t R u,

• for all t, u ∈ W , if t R u then there exists v ∈ W such

that t R v and v R u,

• for all t ∈ W , there exists u ∈ W such that t R u and

• for all t, u, v ∈ W , if t R u and t R v then u = v or

u R v or v R u,

there exists a function V : W �→ 2At and there exists t0 ∈
W such that (W, R, V ) 	|=t0 φ. Let (R′,≺′

1,≺′
2) be the flow

defined by R′ = W∪{∞} where ∞ is a new instant and ≺′
1

and ≺′
2 are the binary relations on R′ defined by t′ ≺′

1 u′

iff u′ = ∞ and t′ ≺′
2 u′ iff either t′, u′ ∈ W and t′ R u′, or

t′ = ∞ and u′ = ∞ and V ′: R′ �→ 2At be a function such

that V ′−1(p) = V −1(p). The reader may easily verify that

(R′,≺′
1,≺′

2) is prestandard and such that (R′,≺′
1,≺′

2, V
′)

	|=t0 φ2. By theorem 1, φ2 is not valid in Cs.
Consider a flow (R,≺1,≺2) and i, j ∈ {1, 2} be such that

i 	= j. We shall say that Gi is definable with Gj in (R,≺1,
≺2) iff there exists a formula φ(p) with Gj such that (R,
≺1,≺2) |= Gip ↔ φ(p).

Proposition 11: (1) G1 is not definable with G2 in any

standard flow; (2) G2 is not definable with G1 in any

standard flow.
Proof: Let (R,≺1,≺2) be a standard flow

(1) Suppose there exists a formula φ(p) in G2 such that

R |= G1p ↔ φ(p). Let t, u ∈ R be such that t ≺1 u.

We need to consider a function V : R �→ 2At such that

V −1(p) = {s ∈ R: t ≺1 s} and a function V ′: R �→ 2At

such that V ′−1(p) = {s ∈ R: t ≺1 s} \ {s ∈ R: not s
≺1 u}. Notice that (R,≺1,≺2, V ) |=t G1p and (R,≺1,
≺2, V

′) 	|=t G1p. As a simple exercise, we invite the reader

to show by induction on the complexity of formulas ψ(p)
in G2 that (R,≺1,≺2, V ) |=t ψ(p) iff (R,≺1,≺2, V

′) |=t

ψ(p). Hence, (R,≺1,≺2, V ) |=t φ(p) iff (R,≺1,≺2, V
′)

|=t φ(p). Thus, (R,≺1,≺2, V ) |=t G1p iff (R,≺1,≺2, V
′)

|=t G1p. These facts together constitute a contradiction.

(2) Suppose there exists a formula φ(p) in G1 such that

R |= G2p ↔ φ(p). Let t, u ∈ R be such that t ≺2 u.

We need to consider a function V : R �→ 2At such that

V −1(p) = {s ∈ R: t ≺2 s} and a function V ′: R �→ 2At

such that V ′−1(p) = {s ∈ R: t ≺2 s} \ {s ∈ R: not s
≺2 u}. Notice that (R,≺1,≺2, V ) |=t G2p and (R,≺1,
≺2, V

′) 	|=t G2p. As a simple exercise, we invite the reader

to show by induction on the complexity of formulas ψ(p)
in G1 that (R,≺1,≺2, V ) |=t ψ(p) iff (R,≺1,≺2, V

′) |=t

ψ(p). Hence, (R,≺1,≺2, V ) |=t φ(p) iff (R,≺1,≺2, V
′)

|=t φ(p). Thus, (R,≺1,≺2, V ) |=t G2p iff (R,≺1,≺2, V
′)

|=t G2p. These facts together constitute a contradiction.
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Let

• Gφ := (G1φ ∧ G2φ),
the formula Gφ being read “φ will be true at each instant

within the future of the present instant”. As a result, for all

Kripke models M = (R,≺1,≺2, V ), for all instants t ∈ R
and for all formula φ,

• M |=t Gφ iff M |=u φ for each instant u ∈ R such

that t ≺ u.

Consider a flow (R,≺1,≺2) and i ∈ {1, 2}. We shall say

that Gi is definable with G in (R,≺1,≺2) iff there exists a

formula φ(p) with G such that (R,≺1,≺2) |= Gip ↔ φ(p).
Proposition 12: (1) G1 is not definable with G in any

standard flow. (2) G2 is not definable with G in any standard

flow.

Proof: Let (R,≺1,≺2) be a standard flow

(1) Suppose there exists a formula φ(p) in G such that R |=
G1p ↔ φ(p). Let t, u ∈ R be such that t ≺1 u. We need to

consider a function V : R �→ 2At such that V −1(p) = {s ∈
R: t ≺1 s} and a function V ′: R �→ 2At such that V ′−1(p)
= {s ∈ R: t ≺1 s} \ {s ∈ R: not u ≺1 s}. Notice that (R,
≺1,≺2, V ) |=t G1p and (R,≺1,≺2, V

′) 	|=t G1p. As a sim-

ple exercise, we invite the reader to show by induction on the

complexity of formulas ψ(p) in G that (R,≺1,≺2, V ) |=t

ψ(p) iff (R,≺1,≺2, V
′) |=t ψ(p). Hence, (R,≺1,≺2, V )

|=t φ(p) iff (R,≺1,≺2, V
′) |=t φ(p). Thus, (R,≺1,≺2, V )

|=t G1p iff (R,≺1,≺2, V
′) |=t G1p. These facts together

constitute a contradiction.

(2) Suppose there exists a formula φ(p) in G such that R |=
G2p ↔ φ(p). Let t, u ∈ R be such that t ≺2 u. We need to

consider a function V : R �→ 2At such that V −1(p) = {s ∈
R: t ≺2 s} and a function V ′: R �→ 2At such that V ′−1(p)
= {s ∈ R: t ≺2 s} \ {s ∈ R: not s ≺2 u}. Notice that (R,
≺1,≺2, V ) |=t G2p and (R,≺1,≺2, V

′) 	|=t G2p. As a sim-

ple exercise, we invite the reader to show by induction on the

complexity of formulas ψ(p) in G that (R,≺1,≺2, V ) |=t

ψ(p) iff (R,≺1,≺2, V
′) |=t ψ(p). Hence, (R,≺1,≺2, V )

|=t φ(p) iff (R,≺1,≺2, V
′) |=t φ(p). Thus, (R,≺1,≺2, V )

|=t G2p iff (R,≺1,≺2, V
′) |=t G2p. These facts together

constitute a contradiction.

VIII. CONCLUSION

This article considered the temporal logic defined over

the class of all lexicographic products of dense linear orders

without endpoints and gives its complete axiomatization.

Much remains to be done.

Firstly, there is the issue of the completeness of the temporal

logic characterized by the lexicographic product of two

linear orderings. Could transfer results for completeness

similar to the ones obtained in [10] within the context of

independently axiomatizable bimodal logics be obtained in

our lexicographic setting?

Secondly, there is the question of the decidability of the

temporal logic characterized by the lexicographic product

of two linear orderings. All extensions of S4.3, as proved

in [5], [8], possess the finite model property and all finitely

axiomatizable normal extensions of K4.3, as proved in [13],

are decidable. Is it possible to obtain similar results in

our lexicographic setting? Or could undecidability results

similar to the ones obtained in [12] within the context of

the products of the modal logics determined by arbitrarily

long linear orders be obtained in our lexicographic setting?

Thirdly, there is the question of the complexity of the

temporal logic characterized by the lexicographic product

of two linear orderings. Is it possible to obtain in our

lexicographic setting complexity results by following the

line of reasoning suggested by [11] within the context of

temporal logics?
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