
A Fast Incremental Algorithm for Managing the Execution
of Dynamically Controllable Temporal Networks

Luke Hunsberger
Vassar College

Poughkeepsie, NY 12604, USA
hunsberg@cs.vassar.edu

Abstract—A Simple Temporal Network with Uncertainty
(STNU) is a network of time points and temporal constraints
in which the durations of certain temporal intervals—the
contingent links—are bounded, but not controllable. An STNU
is dynamically controllable if there is a real-time strategy for
executing its non-contingent time points that guarantees the
consistency of the network no matter how the durations of
the contingent links turn out. Morris presented an O(N4)-
time algorithm for determining the dynamic controllability of
arbitrary STNUs, where N is the number of time points.

Morris suggested that additional O(N4)-time computation
might be needed to prepare a dynamically controllable network
for execution, with all computations done in advance of
execution. Instead, this paper shows that an STNU that has
passed Morris’ algorithm is already prepared for execution. The
paper presents an incremental, real-time execution algorithm
that is guaranteed to successfully execute the time points in
a dynamically controllable STNU using O(N2) space and
O(N4) time. The O(N4)-time computations are not done in
advance of execution, but instead are spread out over the entire
time that time points in the network are being executed: N
iterations of O(N3) per iteration. Furthermore, the most costly
computations—O(N3) per iteration—are done while waiting
for the next execution event to occur, whereas the time-critical
computations require only O(N2) per iteration.

Keywords-Temporal Networks, Dynamic Controllability

I. BACKGROUND

A Simple Temporal Network (STN) is a set of time-point
variables together with a set of constraints on those variables.
The constraint types include release, deadline and duration
constraints. Algorithms for determining the consistency of
STNs, incrementally propagating constraints through STNs,
and generating execution schedules make STNs useful in
domains where computer agents need to plan activities that
are subject to temporal constraints [1], [2], [3].

In some domains, the planning agent controls the initiation
of actions, but not their durations. A Simple Temporal
Network with Uncertainty (STNU) models this by including
a new kind of constraint, called a contingent link. An impor-
tant problem for a planning agent is to determine whether an
STNU is dynamically controllable—that is, whether a real-
time, dynamic strategy exists for executing the time points
controlled by the agent such that the network is guaranteed
to remain consistent no matter how the uncertain durations

turn out. Polynomial algorithms for determining the dynamic
controllability of STNUs, and for generating the requisite
dynamic execution strategies, make STNUs practical for a
variety of real-world applications [4], [5], [6].

The rest of this section reviews the relevant definitions and
results from prior work on temporal networks and dynamic
controllability that are needed for the rest of the paper.

A. Simple Temporal Networks

A Simple Temporal Network is a pair, (T , C), where T
is a set of time-point variables—or time points (TPs)—
and C is a set of binary constraints, each having the form,
Y − X ≤ δxy , for some X,Y ∈ T and δxy ∈ R [1]. A
pair of constraints, Y − X ≤ b and X − Y ≤ −a, are
often abbreviated as Y − X ∈ [a, b]. Typically, one of the
time points in T , called Z, has its value fixed at 0. Binary
constraints involving Z are equivalent to unary constraints.
For example, X−Z ≤ b and Z−X ≤ −a are equivalent to
X ∈ [a, b]. An STN is called consistent if there is a set of
values for its time points that satisfy all of its constraints.

Each STN, (T , C), has a corresponding graph, (N , E),
where the nodes in N correspond to the time points in T ,
and the directed edges in E correspond to the constraints
in C. In particular, each constraint, Y − X ≤ b in C,
corresponds to an edge, X −→b Y in E . The all-pairs,
shortest-path matrix for the graph of an STN is called its
distance matrix, which is often denoted by D.

The time points other than Z are called executable. To
execute a time point, X , at some time t, means to assign the
value t to X . This is represented by inserting the constraint,
X ∈ [t, t] (i.e., X = t). The executable time points in an
STN are presumed to be under the control of some agent
operating in real time. At any time t, the agent is presumed
to be free to execute any previously unexecuted time point.
Once executed, a time point’s value is permanently fixed.

B. STNs with Uncertainty

An STN with Uncertainty is an STN with a set of special
temporal intervals, called contingent links, whose durations
are beyond the control of the planning agent [4]. An STNU
is a triple, (T , C,L), where (T , C) is an STN and L is
a set of contingent links. Each contingent link has the

form, (A, x, y, C), where A and C are time points, and
0 < x < y < ∞. A is called the activation time point for
the contingent link; C is its contingent time point. Certain
restrictions on the contingent links (e.g., that two contingent
links cannot share the same contingent time point) are
captured by defining STNUs recursively, as follows:
• If (T , C) is an STN, then (T , C, ∅) is an STNU.
• If (T , C,L) is an STNU, 0 < x < y <∞, A ∈ T ,

and C 6∈ T , then (T ′, C′,L′) is an STNU, where:
T ′ = T ∪ {C}
C′ = C ∪ {C −A ∈ [x, y]}
L′ = L ∪ {(A, x, y, C)}

T can be partitioned into three sets: the contingent time
points, the executable time points, and {Z}. Note that
activation time points can be executable or contingent; thus,
contingent links can form chains or trees, but not cycles.1

In this paper, N denotes the number of time points in an
STNU, and K the number of contingent time points.

For an STNU, S = (T , C,L), there are two important
STNs: S0 = (T , C), which treats contingent links like
ordinary constraints; and Sx, called the AllMax projection,
in which all contingent durations are forced to take on their
maximum values. The corresponding graphs are denoted by
G0 and Gx; the distance matrices by D0 and Dx.

C. Dynamic Controllability

The agent directly controls the execution of the executable
time points in an STNU; however, the execution of the
contingent time points is beyond the agent’s direct control.
For example, if (A, x, y, C) is a contingent link for which A
is an executable time point, the agent directly controls only
the execution of A. Once A has been executed (i.e., once
the contingent link has been activated), the execution of C
is out of the agent’s control. Although C is guaranteed to be
executed such that C−A ∈ [x, y], the agent does not get to
choose the particular time, but only observes the execution
of C when it happens. Similar remarks apply to a tree of
contingent links with an executable time point at its root.

An STNU is dynamically controllable if there exists a
dynamic strategy for executing the executable time points
that guarantees the consistency of the network, no matter
how the durations of the contingent links turn out—within
their specified bounds. Crucially, the decisions constituting
a dynamic execution strategy cannot depend on advance
knowledge of the durations of the contingent links. Morris,
Muscettola and Vidal—hereinafter MMV—presented a con-
cise semantics for dynamic controllability [4]. This author
fixed a technical flaw in their semantics to properly capture
the prohibition against decisions based on advance knowl-
edge and to enable a characterization of dynamic execution
strategies in terms of real-time execution decisions [7].

Real-time execution decisions (RTEDs) have two forms:

1A cycle of contingent links would be inherently inconsistent.

• WAIT: Wait for some contingent TP to execute.
• (T, χ): If no contingent TPs execute before time T ,

then execute the (executable) TPs in χ at time T .
The outcome of an RTED, which the agent observes in
real time, specifies the time points that execute next. The
outcome of a WAIT decision necessarily involves the ex-
ecution of only contingent time points; the outcome of a
(T, χ) decision might involve the execution of contingent
time points, executable time points, or both.

D. DC-Checking Algorithms
DC-checking algorithms are algorithms that determine

whether STNUs are dynamically controllable. This section
summarizes three important DC-checking algorithms.

The MMV DC-checking algorithm: MMV presented
a pseudo-polynomial DC-checking algorithm based on the
generation and propagation of a new kind of constraint,
called a wait [4]. Each wait has the form: while the con-
tingent time point C remains unexecuted, the execution of
B must wait at least w units after the execution of C’s
activation time point. MMV’s DC-checking algorithm is
sound and complete with respect to the fixed semantics.

The MM DC-checking algorithm: Morris and Muscet-
tola—hereinafter MM—presented the first truly polynomial
DC-checking algorithm [5]. It begins by creating a graph,
G, that contains all edges from G0 plus two new kinds
of labeled edges. In particular, for each contingent link,
(A, x, y, C), G includes the lower-case edge, A −→c:x C,
and the upper-case edge, A←−C:−y C. The lower-case edge
represents the possibility that the duration of the contingent
link might be its minimum value, x; the upper-case edge
represents the possibility that the duration might be its
maximum value, y. Without the labels, these edges would
be mutually inconsistent; thus, the labels must be carefully
maintained when propagating constraints.

The MM DC-checking algorithm uses the following rules
to generate new edges.2

(Upper Case) A←−B:x C←−y D adds: A←−B:(x+y) D
(Lower Case) A←−x C←−c:y D adds: A←−x+y D
(Cross Case) A←−B:x C←−c:y D adds: A←−B:(x+y) D
(No Case) A←−x C←−y D adds: A←−x+y D

The Lower-Case rule only applies if x ≤ 0 and A 6= C. The
Cross-Case rule only applies when x ≤ 0 and B 6= C.

In addition, the following rule, which applies when
z ≥ −x, governs the removal of upper-case labels.

(Label Removal) B←−b:x A←−B:z C adds A←−z C

Note that no rule generates new lower-case edges. Thus,
an STNU always has exactly K lower-case edges. In con-
trast, the Upper-Case and Cross-Case rules may generate

2The rules are shown using MM’s original notation. Caution! The x’s
and y’s here are not necessarily bounds for contingent links. Also, C is only
required to be contingent in the Lower-Case and Cross-Case rules, where
its activation TP is D and its lower bound is y. Finally, in the Upper-Case
and Cross-Case rules, B is contingent, with activation time point A.

new upper-case edges. However, the target of an upper-
case edge is invariably the activation time point for the
corresponding contingent link. Thus, an STNU can have at
most KN upper-case edges. MM showed that the upper-
case edges generated by their algorithm are equivalent to
the waits generated by the earlier, MMV algorithm.

The MM DC-checking algorithm uses the rules given
above to generate new edges, each of which is inserted into,
and propagated through the AllMax matrix, Dx. MM showed
that, for dynamically controllable networks, no more than
N2 rounds of edge generation are required to generate all
of the derivable edges. They also showed that if Dx remains
consistent after N2 such rounds, then the network must be
dynamically controllable. The MM algorithm is sound and
complete and runs in O(N5) time.

Morris’ DC-checking algorithm: Morris [6] developed
a faster, O(N4)-time DC-checking algorithm by focusing on
the edges that could be generated from the fixed supply of
lower-case edges in an STNU. In particular, he showed how
to more efficiently search for relevant applications of the
Lower-Case and Cross-Case rules to each lower-case edge.
Morris’ DC-checking algorithm performs only K rounds of
edge generation using these two rules and propagating the
corresponding constraints through the AllMax matrix, Dx.
He proved that if Dx were still consistent at the end of this
process, then the STNU must be dynamically controllable.

The correctness of Morris’ algorithm depends on several
important properties concerning the generation of new edges
from lower-case edges. Since these properties will be needed
later on, they are summarized below.3

Reduced Distance: The reduced distance of a path is
the sum of its edge lengths, ignoring any labels. If time point
Ti occurs before Tj in a path P , then DP(Ti, Tj) denotes
the reduced distance from Ti to Tj in P .

Path reductions: A path P is called reducible if it
contains a pair of edges to which one of the edge-generation
rules can be applied.4 Replacing that pair of edges with the
newly generated edge results in a new path P ′. The process
of moving from P to P ′ is called a reduction. By inspection,
each edge-generation rule preserves the reduced distance;
thus, so does any path reduction.

Semi-reducible paths: A path is called semi-reducible
if it can be transformed by a sequence of reductions into a
path without any lower-case edges. Morris proved that an
STNU is dynamically controllable if and only if it does not
have a semi-reducible negative cycle (i.e., a semi-reducible

3For mathematical convenience, Morris assumes that: (1) agents can
respond instantaneously to contingent executions; and (2) contingent links
can have lower bounds of zero. He transforms STNUs into a normal form,
where each contingent link has a lower bound of 0. This paper does not
make these assumptions or transformations. Thus, the summary of Morris’
work given here contains some slight differences (e.g., ≤ instead of < in
places). As Morris noted, his assumptions are not necessary. This author
prefers to avoid the assumption of instantaneous reactivity.

4A simpler characterization applies to the Label-Removal rule.

T1 T3 T4

T5Y

C

Lower-case
edge e

T2

A

extension of e
c : x Pe

Figure 1. An extension sub-path

path that forms a loop whose reduced distance is negative).
Morris’ DC-checking algorithm searches for semi-reducible
negative cycles; however, this search is made more efficient
by focusing on extension sub-paths.

Extension sub-paths: Suppose e is a lower-case edge,
A−→c:x C, within a path P . The extension of e in P , if it
exists, is a sub-path Pe of P such that:
• Pe immediately follows the edge e in P and, thus, is

a sub-path from C to some other time point Y ;
• DP(C, Ti) > 0, for each interior time point Ti in Pe;
• DP(C, Y) ≤ 0.

The extension sub-path is illustrated in Fig. 1, where the
vertical position of each time point Ti represents the reduced
distance from C to Ti—which remains positive until the last
edge in the extension sub-path.

The extension sub-path, Pe, is important because if it can
be reduced to a single edge, then that edge could be used to
“reduce away” the lower-case edge e, using either the Lower-
Case or Cross-Case rule. That could only be prevented if
Pe reduced to an upper-case edge from the same contingent
link as e—because then the Cross-Case rule could not be
used.5 That could only happen if Pe contained an upper-
case edge from the same contingent link as e, a situation
that Morris calls a breach. Morris proved that if an STNU
has a semi-reducible negative cycle, then it has a breach-free
semi-reducible negative cycle.

In addition, Morris showed that if a path P contains
extension sub-paths from two lower-case edges, then those
extension sub-paths must either be disjoint or nested (i.e.,
one fully inside the other). He then used that to prove that if
an STNU has a semi-reducible negative cycle, it must have a
breach-free semi-reducible negative cycle in which the depth
of nesting of extension sub-paths is at most K.

Thus, Morris’ DC-checking algorithm performs K rounds
of searching through breach-free extensions of lower-case
edges, looking for applications of the Lower-Case or Cross-
Case rules. Each round effectively increments the depth
of nesting of extension sub-paths. If, after receiving all
of the edges generated by K such rounds, the AllMax
matrix, Dx, is still consistent, then the network is necessarily
dynamically controllable.

E. DC-Checking vs. Execution

A DC-checking algorithm is only responsible for de-
termining whether an STNU is dynamically controllable.

5Recall the restriction B 6= C in the Cross-Case rule.

That is, it need only ensure the existence of a dynamic
execution strategy; it need not construct one. However, in
successful instances (i.e., when the network in question turns
out to be dynamically controllable), both the MMV and MM
DC-checking algorithms generate all of the edges that are
derivable from the edge-generation rules.6 Thus, both of
these DC-checking algorithms also effectively prepare the
network for execution. In particular, MMV showed that this
full complement of edges can be used as the basis for a real-
time execution algorithm—henceforth called the MMV-EX
algorithm—that guarantees the consistency of the STNU no
matter how the contingent durations turn out. Unfortunately,
the information used by this algorithm is generated in
O(N5) time by the MM DC-checking algorithm.

In contrast, Morris’ faster, O(N4)-time DC-checking al-
gorithm typically does not generate all of the edges that are
derivable from the edge-generation rules. Instead, it focuses
on “reducing away” the lower-case edges. Thus, for any
STNU that passes Morris’ algorithm, it seemed plausible
that extra work might be required to prepare the network for
execution. Toward that end, Morris briefly sketched an extra
O(N4)-time procedure to generate the rest of the derivable
upper-case and ordinary edges—in advance of execution.7

The next section demonstrates that this is not necessary.

II. THE NEW-EX EXECUTION ALGORITHM

This section presents a new execution algorithm, called
NEW-EX, that takes as its starting point an STNU that
has passed Morris’ DC-checking algorithm. The algorithm’s
overall computational complexity is O(N4). However, this
O(N4)-time computation is not done in advance of exe-
cution; instead, it is spread out over the entire time that
time points in the network are being executed: N iterations
at O(N3) per iteration. Furthermore, the most expensive,
O(N3) computations can be done while the agent is waiting
for the next execution event to occur, whereas the time-
critical computations require only O(N2) per iteration.

The NEW-EX algorithm demonstrates that it is not neces-
sary to generate all of the additional upper-case and ordinary
edges in advance of execution, as suggested by prior work.
Instead, a network that passes Morris’ DC-checking algo-
rithm is, in effect, already prepared for execution.

The NEW-EX algorithm begins with the network existing
at the end of Morris’ DC-checking algorithm. The ordinary
and upper-case edges in that network together comprise the
core edges. The NEW-EX algorithm maintains two distance
matrices: D0, which is initialized with only the ordinary core
edges; and Dx, which is initialized with all of the core edges.
During the execution phase, whenever any (contingent or
non-contingent) time point executes, both of these matrices

6Recall that MM showed that the upper-case edges generated by their
algorithm are equivalent to the waits generated by the MMV algorithm.

7Morris did not include implementation details or a proof of correctness.

89 −1

Z

X
5

−2

Zout

−1

X
−2

5

−4
−4

Y Y

89

Zin 0

Figure 2. Splitting Z into Zin and Zout

are updated accordingly. In addition, whenever any contin-
gent time point executes, the NEW-EX algorithm, in effect,
removes the upper-case edges associated with that time point
from the network. This updating of Dx is performed by first
resetting Dx to a copy of D0, which contains no upper-case
edges, and then re-inserting the upper-case core edges for
the unexecuted contingent time points.

The core set of edges: Let S be an STNU and G its
corresponding graph, which includes the original lower-case
and upper-case edges for each contingent link. Let the core
set of edges denote the ordinary and upper-case edges from
G together with those generated by Morris’ algorithm. Note
that the core set of edges does not include any lower-case
edges. The consistency check in Morris’ algorithm consists
of inserting the core edges—minus their labels—into the
AllMax matrix, Dx, and then propagating them. Note that
Dx does not distinguish upper-case and ordinary edges.

The main insight behind the NEW-EX algorithm is that
prior to the execution of a contingent time point, C, it is not
necessary to distinguish upper-case edges associated with
C and ordinary edges. As shown in prior work [4], each
upper-case edge, B−→C:−w A, is equivalent to a constraint
of the form, “as long as C remains unexecuted, B must not
be executed until at least w units after the execution of A.”
Thus, prior to the execution of C, this upper-case edge is
indistinguishable from the ordinary edge, B −→−w A. Thus,
prior to the execution of C, Dx contains the information
needed by the execution algorithm concerning C.

Once C executes, the upper-case edges associated with C
are no longer needed. Thus, if Dx can be updated during the
course of execution so that its entries reflect only that which
can be derived from the core upper-case edges associated
with unexecuted contingent time points, then Dx will always
have exactly what is needed by the execution algorithm.
The required updating of Dx involves effectively removing
the associated core upper-case edges from Dx whenever a
contingent time point executes.

A. Initializing the NEW-EX Algorithm

The NEW-EX algorithm makes one basic, but very impor-
tant modification to the temporal network that dramatically
reduces the amount of subsequent constraint propagation
during execution: it splits the Z time point into two time
points, Zin and Zout, as described in earlier work [2], and
as illustrated in Fig. 2. As a result of this change, all edges
that formerly had Z as their destination now have Zin as

IF Ux and Uc are both empty, THEN done, ELSE:
1. Generate the next real-time execution decision, RD.
2. Launch the real-time execution decision, RD.
3. If necessary, prepare the helper matrix, D′x.
4. Observe execution outcome: (NOW′, NewExec).
5. If any contingent time points executed, Dx := D′x.
6. Add (and propagate) execution constraints for newly

executed time points and constraints that unexecuted time
points occur at or after NOW′.

7. If any contingent time points executed, update Dx.
8. Go to next iteration with NOW := NOW′.

Figure 3. One iteration of NEW-EX algorithm

their destination; and all edges that formerly had Z as their
source now have Zout as their source. This change would
have little effect if an edge from Zin to Zout of length 0
were also added to the network, depicted by a dashed line
in the figure. However, this edge is purposely left out to
eliminate the possibility of propagating constraints through
(what used to be) Z. Although the omission of this edge
typically changes the shortest-path information stored in
the corresponding distance matrix, the original shortest-path
information is easily retrieved from the new distance matrix.
In particular, if D∗0 is the distance matrix for the modified
network, then the original entry, D0(X,Y), is given by:

D0(X,Y) = min{D∗0(X,Y), D∗0(X, Zin) +D∗0(Zout, Y)}

The elimination of propagation through Z is particularly
helpful during execution, since execution constraints invari-
ably involve Z. The rest of this paper presumes that this
modification has been made to all networks.

The NEW-EX algorithm is initialized as follows.
• The following hash tables are initialized:
Ux : the unexecuted executable time points
Uc : the unexecuted contingent time points
A+: the activated, but unexecuted contingent TPs
A−: the unactivated contingent time points
EX : the executed time points.

• The strongest ordinary edges generated by Morris’
DC-checking algorithm—at most N2—are added to the
distance matrix, D0, and fully propagated using the
O(N3) Floyd-Warshall algorithm [8].
• The AllMax distance matrix, Dx, is that which exists
at the end of Morris’ DC-checking algorithm.
• The upper-case edges generated by Morris’ algorithm
are collected in a K-by-N matrix, UC. In particular,
each upper-case edge, B−→C:−w A, yields the entry
UC(C,B) = −w. The UC matrix does not change during
execution; it is used only to update Dx.

B. The Iterative Execution Algorithm

Fig. 3 summarizes one iteration of the NEW-EX algo-
rithm. The individual steps are discussed in further detail

m := min{a+ x | C ∈ A+}
(A is the activation TP for C, executed at a)

IF m ≤ T,
FOR i = 1 to N

FOR j = 1 to N
D′x(i, j) := D0(i, j)

FOR EACH C ∈ A−
FOR j = 1 to N

IF UC(C, j) < D′x(j, A)
(A is the activation TP for C)

D′x(j, A) := UC(C, j)
Run Floyd-Warshall on D′x

Figure 4. Pseudo-code for Step 3

below. The first iteration begins with NOW set to 0.
Step 1 involves generating the next real-time execution

decision (RD). In pseudo-code, it looks like this:

IF Ux empty, THEN RD := WAIT
ELSE T := min{−Dx(X, Zin) | X ∈ Ux}

χ := {X ∈ Ux | − Dx(X, Zin) = T}
RD := (T, χ)

If only contingent time points remain to be executed, then
the decision is WAIT. Otherwise, the AllMax matrix, Dx,
is used to determine the lower bounds for each of the
as-yet-unexecuted executable time points. The minimum
such value is called T . χ is then the set of the as-yet-
unexecuted executable time points whose lower bound is
T . The generated decision can be glossed as: “If nothing
happens before time T , then execute the time points in χ at
time T .”

Step 2 of the algorithm is to launch the decision—which
simply means that the agent commits to it. In the case of
a WAIT decision, the agent waits to see which contingent
time point(s) will execute next. For a (T, χ) decision, the
agent waits to see whether any contingent time points will
happen to execute before time T .

While waiting to see what happens next, the agent carries
out Step 3, which involves creating a helper matrix, D′x.
This matrix will be needed later on should one or more
contingent time points happen to execute. The pseudo-code
for Step 3 is given in Fig. 4. It begins by computing m,
the earliest time at which a currently activated contingent
time point might execute. If m ≤ T , then it is possible
that the next execution event will involve contingent time
points, in which case the helper matrix would be needed.
The helper matrix starts out as a fresh copy of D0. Then,
for each currently unactivated contingent time point, the
corresponding upper-case edges—from the UC matrix—are
added to D′x. The reason is that a currently unactivated
contingent time point cannot execute next; thus, it will still
be unexecuted in the next iteration; thus, its upper-case edges
need to be included in D′x. After all such edges have been

FOR EACH X ∈ NewExec and D ∈ {D0,Dx}:
LinearUpdate(D, Zout, X, NOW′)
LinearUpdate(D, X, Zin,−NOW′)
Remove X from Ux or Uc

Add X to EX with value NOW′

IF X is an activation time point for some contingent
time point C, then move C from A− to A+

FOR EACH Y ∈ Ux ∪ Uc and D ∈ {D0,Dx}:
LinearUpdate(D, Y, Zin,−NOW′)

Figure 5. Pseudo-code for Step 6

LinearUpdate(D, Zout, J, w)
D(Zout, J) := w
FOR k = 1 to N
IF w +D(J, k) < D(Zout, k)
D(Zout, k) := w +D(J, k)

Figure 6. Pseudo-code for LinearUpdate

inserted, the Floyd-Warshall algorithm is used to propagate
them throughout the matrix. Further updating of this matrix
is postponed until Step 7, at which time it will be known
whether any contingent time points did in fact execute. The
O(N3) Floyd-Warshall algorithm dominates Step 3.

In Step 4, the agent simply observes the next execution
outcome, which involves the simultaneous execution of one
or more time points. NOW′ is the time of the execution
event; NewExec is the set of newly executed time points.
If the decision was WAIT, then NewExec will contain only
contingent time points, executed at NOW′. If the decision was
(T, χ), then there are three possibilities [7]:
• NOW′ < T and NewExec ∩ χ = ∅
• NOW′ = T and NewExec = χ
• NOW′ = T and χ ⊂ NewExec

In the first case, one or more contingent time points executed
before time T ; so, the time points in χ were not executed.
In the second and third cases, nothing happened before time
T ; so, the time points in χ were executed at time T . The
third case includes the (unlikely) possibility that one or more
contingent time points also happened to execute precisely at
time T .

Step 5 involves checking whether any contingent time
points actually executed. If so, then Dx is replaced by the
helper matrix, D′x, computed in Step 3.

Step 6 carries out the propagation of constraints in re-
sponse to the new execution event. In particular, each newly
executed time point X is constrained by X = NOW′, and each
still-unexecuted time point Y is constrained by Y ≥ NOW′.
Since these constraints involve Zin and Zout, a linear-time
updating function, LinearUpdate, can be used. (This is
one of the major advantages derived from splitting Z into
Zin and Zout.)

The pseudo-code for the LinearUpdate function for a

IF NewExec contains contingent time points:
Vec := new vector of length N
FOR j = 1 to N

Vec[j] := Dx(j, Zin)
FOR EACH C ∈ A+ with activation time point A
a := execution time of A
FOR j = 1 to N

IF UC(i, j)− a < Vec[j]
THEN Vec[j] := UC(i, j)− a

FOR j = 1 to N
LinearUpdate(Dx, j, Zin, Vec[j])

Figure 7. Pseudo-code for Step 7

constraint of the form, J−Zout ≤ w, is shown in Fig. 6. The
code for a constraint, Zin − I ≤ −w, is analogous. Since
Step 6 requires at most 4N calls to LinearUpdate, the
computations for Step 6 are bounded by O(N2).

Step 7 completes the updating of Dx for the next iteration,
if necessary. Fig. 7 contains the relevant pseudo-code. Notice
that Dx only needs updating if one or more contingent time
points actually executed. In that case, the upper-case edges
(from the UC matrix) corresponding to any activated, but
unexecuted contingent time points, must be added to Dx.
(The upper-case edges for unactivated contingent time points
were already added during Step 3.) Because the activation
time points for these contingent links have already executed,
they are, in effect, rigid with the time point Z (as represented
by the two time points, Zin and Zout) [9]. Thus, instead
of adding edges aimed at the activation time point, the
algorithm adds equivalent edges aimed at Zin. Thus, these
updates can be performed by the LinearUpdate function.
Even better, although there could be, in principle, up to KN
such edges, the target is always Zin; thus, it suffices to keep
track of only the strongest such updates for each of the
N time points in the network. This is okay since Dx does
not distinguish upper-case edges from different contingent
time points. A vector of length N is used to accumulate
the strongest such constraints. Afterward, at most N of the
linear updates are performed, for a total cost of O(N2) for
Step 7.

C. Complexity Analysis

Since at least one time point gets executed during each
iteration, the NEW-EX algorithm completes at most N iter-
ations. The dominating computation is Step 3, the creation
of the helper matrix, which takes O(N3) time due to the
use of Floyd-Warshall. No other step has complexity more
than O(N2). Thus, the overall complexity of the algorithm is
O(N4). Since it maintains two distance matrices, the matrix
of upper-case edges, and several linear-sized hash tables, the
algorithm’s space complexity is O(N2).

D. Correctness of the NEW-EX Algorithm

For an STNU that passes Morris’ DC-checking algorithm,
the NEW-EX algorithm guarantees the consistency of the
network throughout execution, no matter how the contingent
durations turn out—within their specified bounds. The guar-
antee stems from the facts proven below. For convenience, in
all that follows, the reduced length of a path P is denoted by
|P|r; G denotes the graph containing the original ordinary
edges from the STNU, together with the lower-case and
upper-case edges inserted before the application of any edge-
generation rules; and Gc contains, in addition, the ordinary
and upper-case edges generated by Morris’ algorithm (i.e.,
Gc contains the core set of edges).

Fact 0: If G has a semi-reducible path P from A to
B, then it has a breach-free semi-reducible path P ′ from A
to B in which the depth of nesting of extension sub-paths
is at most K, and such that |P ′|r ≤ |P|r.

Proof 0: Morris proved that if G has a semi-reducible
negative cycle, P , then it has a semi-reducible negative
cycle, P ′, that is breach-free and in which the depth of
nesting of extension sub-paths is at most K. However, his
proof did not depend on the path in question being a cycle.
Thus, it applies equally well to arbitrary semi-reducible
paths. Morris showed that |P ′|r ≤ |P|r, but only used that
fact to ensure that if P were a negative cycle, then P ′ would
also be a negative cycle.

Fact 1: Let E be any edge that is derivable from edges
in G using the edge-generation rules. Then Gc has a path,
P , with the same endpoints as E, such that |P|r ≤ |E|r.
We shall call P the associated core path for E.

Proof 1: Let E be as given above. Let X and Y
be the starting and ending time points for E. Since the
edge-generation rules only generate upper-case or ordinary
edges, E must be an upper-case or ordinary edge and, thus,
constitutes a semi-reducible path. Thus, by Fact 0, G has
a semi-reducible path P ′ from X to Y in which the depth
of nesting of extension sub-paths is at most K, and such
that |P ′|r ≤ |E|r. Since Morris DC-checking algorithm
searches all such extension sub-paths, any lower-case edges
in P ′ can be “reduced away” to ordinary or upper-case edges
generated by Morris’ algorithm. Let P be the path that
results from “reducing away” all of the lower-case edges
in this way. Since all reductions preserve reduced distance,
|P|r = |P ′|r ≤ |E|r. Furthermore, all edges in P are
either original edges from G or edges generated by Morris’
algorithm (i.e., P contains only core edges).

Fact 2: The constraints enforced by the NEW-EX
execution algorithm are at least as strong as those enforced
by the MMV-EX execution algorithm.

Proof 2: The MMV-EX algorithm enforces constraints
corresponding to: (1) ordinary edges from G; (2) ordinary
edges added during execution; (3) ordinary edges derived
from the edge-generation rules; and (4) upper-case edges

PF

F
A

z

X

X ′

T1

Tk

. . .
C:−w

F ′

T2

Figure 8. Reducing PF to the edge F ′

derived from the edge-generation rules—but only for unex-
ecuted contingent time points. The NEW-EX algorithm also
enforces constraints for all edges in categories 1 and 2, but
only for the core edges from categories 3 and 4.

Let E be any derivable ordinary edge (i.e., any edge from
category 3). Let P be the associated core path for E. By
construction, there must be a sequence of reductions, R, that
transforms P to E. If there are any upper-case edges in P ,
they must all eventually be “reduced away” by the reductions
in R. Let F be the first upper-case edge, A←−C:−w X , from
P that gets reduced in this way; let F ′ be the resulting
ordinary edge, A←−z X ′. Let PF be the corresponding
sub-path of P that reduces to the edge F ′, as illustrated in
Fig. 8. Since F is the first upper-case edge to be reduced
away, all of the other edges in PF must be ordinary edges.
In addition, the last reduction that generates F ′ must be an
instance of the Label-Removal rule:

C←−c:x A←−C:z X ′ adds A←−z X ′

(The lower-case edge does not belong to the path PF .) Thus,
the length of F ′ (i.e., z) must satisfy z ≥ −x, where x is
the minimum value for the contingent link from A to C.

Now consider the constraint, A−X ′ ≤ z, represented by
the edge F ′. Since all of the edges in PF are core edges, all
of the ordinary edges in PF are enforced by the NEW-EX
algorithm. The only other edge in PF is F ; however, this
edge is only enforced by the NEW-EX algorithm while C
remains unexecuted. Since A necessarily executes before C,
there are only two relevant cases to consider: (1) X ′ executes
before C; and (2) X ′ executes after C (or simultaneously
with C). In the first case, the execution times of A and
X ′ are fixed before C executes (i.e., while the edge F is
still being enforced by the NEW-EX algorithm). Since F
only involves A and X ′, if it is satisfied when A and X ′

are executed, it is forever satisfied. In the second case, X ′

executes after C. But then, X ′ ≥ C ≥ A+x ≥ A−z, since
C −A ≥ x and z ≥ −x. Thus, A−X ′ ≤ z, as required by
F ′. Thus, in either case, the constraint corresponding to the
edge F ′ is enforced by the NEW-EX algorithm.

Now, if P contains any other upper-case edges, they too
can be “reduced away” in a similar fashion, generating an
ordinary edge that is enforced by the NEW-EX algorithm.
When all of the upper-case edges have been reduced away,
the result is a path P ′ that contains: (1) ordinary edges gen-
erated by the “reducing away” process just described; and
(2) core ordinary edges. Thus, all edges in P ′ are enforced
by the NEW-EX algorithm and |P ′| = |P|r ≤ |E|r. Thus,

the NEW-EX algorithm enforces a constraint that is at least
as strong as that represented by E.

Next, suppose that E is a category 4 edge (i.e., any
derivable upper-case edge) whose corresponding contingent
time point is C. Then the MMV-EX algorithm only enforces
E while C is unexecuted. As before, let P be the core path
for E. If P contains any other core upper-case edges for C,
then those edges are enforced by the NEW-EX algorithm
whenever E is enforced by the MMV-EX algorithm. If P
contains any upper-case edges corresponding to some other
contingent time point, C ′, then the same line of argument
used for the case where E was an ordinary edge can be
used to reduce away those upper-case edges from P such
that the resulting ordinary edges will also be enforced by
the NEW-EX algorithm. Thus, while C is unexecuted, the
NEW-EX algorithm enforces a constraint that is at least as
strong as that represented by E.

Corollary A: Since the edges enforced by the NEW-
EX algorithm are a subset of those enforced by the MMV-
EX algorithm, the constraints enforced by the MMV-EX
algorithm are at least as strong as those enforced by the
NEW-EX algorithm. Thus, in view of Fact 2, the sets of
constraints enforced by the two algorithms are equivalent.

Corollary B: Since the MMV-EX and NEW-EX algo-
rithms both execute executable time points as soon as they
have satisfied all of their lower-bound constraints, whether
derived from ordinary edges or upper-case edges associated
with unexecuted contingent time points, the execution de-
cisions generated by the two algorithms must be the same.
Since the MMV-EX algorithm guarantees the consistency of
the network throughout the execution, then so too does the
NEW-EX algorithm.

III. CONCLUSIONS AND FUTURE WORK

This paper presented an O(N4)-time incremental exe-
cution algorithm that guarantees the successful execution
of any STNU that has passed Morris’ O(N4)-time DC-
checking algorithm. The NEW-EX algorithm makes the
same execution decisions as those generated by the MMV-
EX algorithm, but without requiring in advance the com-
plete set of derivable edges generated by the O(N5)-time
MM DC-checking algorithm. Furthermore, the NEW-EX
algorithm’s O(N4)-time computations are spread out over
the entire time the network is being executed: N iterations
at O(N3) per iteration. The most expensive O(N3) com-
putations can be done while the agent waits for the next
execution event to occur; the time-critical computations are
only O(N2) per iteration.

The careful distinction between upper-case and ordinary
edges that is maintained by the MMV and MM algorithms
is useful for managing the subsequent execution, but comes
at too high a computational cost. The NEW-EX algorithm
avoids this distinction and manages the execution incremen-
tally, for a total cost of O(N4).

Another corollary to Fact 2 is that the AllMax matrices
computed by the three DC-checking algorithms are identical.
Each contains shortest-path information for semi-reducible
paths in G. The consistency of these matrices is the critical
factor because, as Morris proved, an STNU is dynamically
controllable if and only if it has no negative semi-reducible
cycles. The incrementally updated matrix used by the NEW-
EX algorithm also contains shortest-path information for
semi-reducible paths, but only for those whose upper-case
edges correspond to unexecuted contingent time points.

In prior work, Morris sketched an O(N4) procedure
for generating, in advance of execution, all of the upper-
case and ordinary edges that are derivable from the MM
edge-generation rules. As shown by MMV, these edges are
sufficient to generate a dynamic execution strategy for a
dynamically controllable network. It is left to future work
to flesh out the details of Morris’ proposed algorithm, prove
its correctness, and then compare the real-time performance
of that algorithm with the incremental NEW-EX algorithm
presented in this paper.

REFERENCES

[1] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint net-
works,” Artificial Intelligence, vol. 49, pp. 61–95, 1991.

[2] L. Hunsberger, “A practical temporal constraint management
system for real-time applications,” in Proceedings of the 18th
European Conference on Artificial Intelligence (ECAI-2008),
M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris,
Eds. Amsterdam: IOS Press, 2008.

[3] N. Muscettola, P. Morris, B. Pell, and B. Smith, “Issues
in temporal reasoning for autonomous control systems,” in
Proceedings of the Second International Conference on Au-
tonomous Agents. ACM, 1998, pp. 362–368.

[4] P. Morris, N. Muscettola, and T. Vidal, “Dynamic control of
plans with temporal uncertainty,” in Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI-01), 2001,
pp. 494–499.

[5] P. H. Morris and N. Muscettola, “Temporal dynamic controlla-
bility revisited,” in Twentieth National Conference on Artificial
Intelligence (AAAI-2005), 2005, pp. 1193–1198.

[6] P. Morris, “A structural characterization of temporal dynamic
controllability,” in Principles and Practice of Constraint Pro-
gramming (CP 2006), ser. Lecture Notes in Computer Science.
Springer, 2006, vol. 4204, pp. 375–389.

[7] L. Hunsberger, “Fixing the semantics for dynamic controllabil-
ity and providing a more practical characterization of dynamic
execution strategies,” in Proceedings of the 16th Interna-
tional Symposium on Temporal Representation and Reasoning
(TIME-2009). IEEE Computer Society, 2009.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. MIT Press, 2009.

[9] A. Gerevini, A. Perini, and F. Ricci, “Incremental algorithms
for managing temporal constraints,” IRST, Tech. Rep. IRST-
9605-07, 1996.

