
LTL Satisfiability Checking Revisited

Jianwen Li∗, Lijun Zhang†, Geguang Pu∗, Moshe Y. Vardi‡ and Jifeng He∗
∗Software Engineering, East China Normal University

†State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
‡Computer Science, Rice University

Abstract—We propose a novel algorithm for the satisfiability
problem for Linear Temporal Logic (LTL). Existing approaches
first transform the LTL formula into a Büchi automaton and
then perform an emptiness checking of the resulting automaton.
Instead, our approach works on-the-fly by inspecting the formula
directly, thus enabling finding a satisfying model quickly without
constructing the full automaton. This makes our algorithm
particularly fast for satisfiable formulas. We report on a pro-
totype implementation, showing that our approach significantly
outperforms state-of-the-art tools.

I. INTRODUCTION

Model-checking tools are successfully used for checking
whether systems have desired properties [CGP99]. The appli-
cation of model-checking tools to complex systems involves
a nontrivial step of creating a mathematical model of the
system and translating the desired properties into a formal
specification expressed by means of temporal assertions. When
the model does not satisfy a given assertion, model-checking
tools accompany this negative answer with a counterexample,
which points to an inconsistency between the system and the
desired behaviors.

The success of model checking led to the emergence of
assertion-based design, where one starts the design process by
formalizing designer intent by means of temporal assertions
[FKL04]. Since at that early stage of the design process model
checking cannot be employed, there is a need for techniques
that would debug these assertions, as it is quite likely that such
assertions contain errors [PSC+06]. A basic check is that of
satisfiability [SC85]: checking that each temporal assertion can
be satisfied and the full set of assertions be satisfied together.
(A stronger test is that of realizability [ALW89], but is out of
the scope of this paper.)

An in-depth empirical study of LTL satisfiability was
undertaken by Rozier and Vardi [RV07], [RV10]. A basic
observation underlying their work is that LTL satisfiability
checking can be reduced to model checking. Consider an LTL
formula ϕ over a set Prop of atomic propositions. If a model
M is universal, that is, it contains all possible traces over
Prop, then ϕ is satisfiable precisely when the model M does
not satisfy ¬ϕ. Thus, it is easy to add a satisfiability-checking
feature to LTL model-checking tools.

LTL model checkers can be classified as explicit or sym-
bolic. Explicit model checkers, such as SPIN [Hol97] or SPOT
[DLP04], construct the state-space of the model explicitly
and search for a trace falsifying the assertion [CVWY92].
In contrast, symbolic model checkers, such as CadenceSMV
[McM99] or NuSMV [CCGR00], represent the model and
analyze it symbolically using binary decision diagrams (BDDs)
[BCM+92]. LTL model checkers follow the automata-theoretic

approach [VW86], in which the complemented LTL assertion
is explicitly or symbolically translated to a Büchi automaton,
which is then composed with the model under verification;
see also [Var07]. The model checker checks for nonemptiness,
by searching for a trace of the model that is accepted by the
automaton.

Rozier and Vardi [RV07], [RV10] carried out an extensive
experimental investigation of LTL satisfiability checking via a
reduction to model checking. By using large LTL formulas,
they offered challenging model-checking benchmarks to both
explicit and symbolic model checkers. For symbolic model
checking, they used CadenceSMV and NuSMV. For explicit
model checking, they used SPIN as the search engine, and
tested essentially all publicly available LTL translation tools.
They used a wide variety of benchmark formulas, either
generated randomly, as in [DGV99], or using scalable patterns.

Rozier and Vardi reached two major conclusions. First,
most LTL translation tools are research prototypes and cannot
be considered industrial quality tools. Among all the tools
tested, only SPOT can be considered an industrial quality
tool. Second, when it comes to LTL satisfiability checking, the
symbolic approach is clearly superior to the explicit approach.
Even SPOT, the best LTL translator in our experiments, was
rarely able to compete effectively against the symbolic tools.

The evidence marshalled by Rozier and Vardi for the
conclusion in favor of the symbolic approach is quite com-
pelling, but a close examination shows that it applies only
to satisfiability checking via model checking. That is, if one
chooses to perform satisfiability checking via a reduction to
model checking, then the symbolic approach offers superior
performance. It is conceivable, however, that a direct explicit
approach to satisfiability checking would outperform the sym-
bolic approach. In explicit model checking, it is possible to
perform the nonemptiness test on the fly, that is, by letting
the search algorithm drive the construction of the automaton
[CVWY92]. (In fact, the on-the-fly approach was proposed
also for model checking, but was not adopted by SPIN due to
its software architecture [Hol97]).

In this paper we revisit the LTL satisfiability problem
to examine the advantage of the on-the-fly approach. The
driving intuition is that the on-the-fly approach may be quite
advantageous in satisfiability checking, since it enables finding
a model quickly without constructing the full automaton.
Furthermore, the sole focus on satisfiability checking may
be amenable to various heuristics that are not applicable in
the context of model checking. We report here on a novel
LTL satisfiability checking tool, Aalta, and demonstrate that it
outperforms both SPOT and CadenceSMV.

To substantiate our results we also revisit the experimental

methodology of Rozier and Vardi. Their focus has been on
testing satisfiability of large LTL formulas, either scalable
patterns or random. But typical temporal assertions are rather
small [BAC98]. What makes the LTL satisfiability problem
hard is the fact that we need to check large conjunctions
of small temporal formulas. We describe here a new class
of challenging benchmarks, which are random conjunctions
of specification patterns from [BAC98]. Our conclusions on
the superiority of Aalta are based both on the benchmarks of
Rozier and Vardi and the newly introduced benchmarks.

The organization of the paper is as follows. We provide
preliminary material in Section II. In Section III we describe
the novel algorithm underlying Aalta. In Section IV we detail
our experimental methodology. We describe our experimental
results in Section V. Section VI discusses related work and
Section VII concludes the paper.

II. PRELIMINARIES

A. Linear Temporal Logic

Let AP be a set of atomic properties. The syntax of LTL
formulas is defined by:

ϕ ::= tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕUϕ | ϕR ϕ | Xϕ

where a ∈ AP , ϕ is an LTL formula. We use the usual
abbreviations: Fa = ttUa, and Ga = ffRa.

We say ϕ is a propositional formula if it does not contain
temporal operators X , U or R. We say ϕ is a literal if it is an
atomic proposition or its negation. We use L to denote the set
of literals. We use lower case letters a, b, c to denote literals,
α, β, γ to denote propositional formulas, and ϕ,ψ to denote
LTL formulas.

Note that, w.l.o.g., we are considering LTL formulas in
negation normal form (NNF) – all negations are pushed
down to literal level. LTL formulas are often interpreted over
(2AP)ω . Since we consider LTL in NNF forms, formulas are
interpreted on infinite literal sequences Σ := (2L)ω .

A trace ξ = ω0ω1ω2 . . . is an infinite sequence over Σω .
For ξ and k ≥ 1 we use ξk = ω0ω1 . . . ωk−1 to denote the
prefix of ξ up to its k-th element, and ξk = ωkωk+1 . . . to
denote the suffix of ξ from its (k + 1)-th element. Thus, ξ =
ξkξk. We use η, η0 . . . to denote finite sequences in Σ∗. First,
we need the notion of consistent traces:

Definition 1 (Consistent Trace): We say a literal set A is
consistent iff for all a ∈ A we have that

∧
a 6≡ ff. A trace

ξ = ω0ω1 . . . is consistent iff ωi is consistent for all i.

Let ω ∈ Σ be a consistent set of literals, and α a
propositional formula. We define ω |= α in the standard way:
if α is a literal then ω |= α iff α ∈ ω, ω |= α1 ∧ α2 iff
ω |= α1 and ω |= α2, and ω |= α1 ∨ α2 iff ω |= α1 or
ω |= α2. Moreover, ω |= tt and ω 6|= ff.

The semantics of temporal operators with respect to a
consistent trace ξ is given by:

• ξ |= α iff ξ1 |= α;

• ξ |= X ϕ iff ξ1 |= ϕ;

• ξ |= ϕ1 U ϕ2 iff there exists i > 0 such that ξi |= ϕ2

and for all 0 6 j < i, ξj |= ϕ1;

• ξ |= ϕ1 R ϕ2 iff either ξi |= ϕ2 for all i ≥ 0, or there
exists i ≥ 0 with ξi |= ϕ1 ∧ ϕ2 and ξj |= ϕ2 for all
0 ≤ j < i;

According to the semantics, it holds ϕRψ = ¬(¬ϕU¬ϕ).

Definition 2 (Satisfiability): We say ϕ is satisfiable, de-
noted by SAT (ϕ), if there exists a consistent trace ξ such
that ξ |= ϕ.

In the remainder of this paper, if not stated explicitly, all
traces considered are assumed to be consistent.

Notation. We define some notation that we use throughout
this paper.

• For a formula ϕ, we use cl(ϕ) to denote the set of
subformulas of ϕ. We denote by APϕ the set of atoms
appearing in ϕ, by Lϕ the set of literals over APϕ,
and by Σϕ the set of consistent literal sets over APϕ.

• Let ϕ =
∧
i∈I ϕi such that the root operator of ϕi is

not a conjunctive. We define the set of conjuncts of ϕ
as CF (ϕ) := {ϕi | i ∈ I}. When ϕ does not include
a conjunctive as a root operator, CF (ϕ) includes only
ϕ itself. The set of disjuncts DF (ϕ) is defined in an
analogous way.

• For a formula ϕ of the form ϕ1Uϕ2 or ϕ1Rϕ2, let
left(ϕ) (right(ϕ)) be left (right) subformulas of ϕ.

• For all propositional formula α appearing in the paper,
we always check first whether α is satisfiable. If not,
we shall replace α by ff.

B. Normal Form Expansion

Our algorithm will extend the given formula based on the
notion of normal form for LTL formulas defined as follows:

Definition 3 (Normal Form): The normal form of an LTL
formula ϕ, denoted as NF (ϕ), is a set defined as follows:

1) NF (ϕ) = {ϕ ∧ X(tt)} if ϕ 6≡ ff is a propositional
formula. If ϕ ≡ ff, we define NF (ff) = ∅;

2) NF (Xϕ) = {tt ∧X(ψ) | ψ ∈ DF (ϕ)};
3) NF (ϕ1Uϕ2) = NF (ϕ2) ∪NF (ϕ1 ∧X(ϕ1Uϕ2));
4) NF (ϕ1Rϕ2) = NF (ϕ1∧ϕ2)∪NF (ϕ2∧X(ϕ1Rϕ2));
5) NF (ϕ1 ∨ ϕ2) = NF (ϕ1) ∪NF (ϕ2);
6) NF (ϕ1 ∧ ϕ2) = {(α1 ∧ α2) ∧ X(ψ1 ∧ ψ2) | ∀i =

1 , 2 . αi ∧X(ψi) ∈ NF (ϕi)};

From the definition it is obvious that if α∧X(ψ) ∈ NF (ϕ),
then α is a conjunctive clause, namely a conjunction of literals.

For a formula ϕ, our algorithm will detect sucessor for-
mulas based on the set NF (ϕ). First, we shall show that the
formula ϕ is logically equivalent to

∨
NF (ϕ), here

∨
NF (ϕ)

represents the formula
∨

1≤j≤k(αj ∧Xϕj) with αj ∧Xϕj ∈
NF (ϕ) and k = |NF (ϕ)|. We note that the empty disjunction
(OR-ing over an empty set of operands) is defined as ff. Then,
we establish the equivalence property:

Lemma 1: For the formula ϕ, it holds ϕ ≡
∨
NF (ϕ).

The lemma below states that along the expansion the set
of subformulas is decreasing (except the constant tt):

Lemma 2: If α ∧ Xψ ∈ NF (ϕ), then CF (ψ) ⊆ cl(ϕ) ∪
{tt}.

III. NEW SATISFIABILITY CHECKING ALGORITHM

We first illustrate the main idea of our methodology. The
key of our on-the-fly-approach is the notion of obligation
set. As we show below, satisfying an obligation set gives
a sufficient condition for satisfying a given formula. For a
given formula, the obligation set contains several possible
obligations, each obligation consists of some literals that
characterize a possible way of satisfying the formula. We give
the flavor of this notion in term of a few examples:

• for the formula aUb or aRb the obligation set is
{{b}}; for the formula

∨
1≤i≤n aiUbi the obliga-

tion set is {{b1}, {b2}, . . . , {bn}}; for the formula∧
1≤i≤n aiUbi the obligation set is {{b1, b2, . . . , bn}}.

For a formula ϕ, if one of its obligations O ⊆ 2L is consistent,
i.e.

∧
a∈O a 6≡ ff, the trace ξ = Oω is consistent, and moreover,

it satisfies the corresponding formula. If there is no consistent
obligation, we construct a Transition System Tϕ for ϕ on-the-
fly. States consist of reachable formulas, and transitions are
obtained by unrolling the current formula according to the
normal form expansion. In our construction we need first to
tag the subformulas such that all the literals are identified by
their positions in until subformulas. We need the notion of
accepting SCCs:

Definition 4: For an SCC B of a transition system (here
it is viewed as a directed graph) we denote by L(B) the set
of all literals appearing in transitions between states in B. We
say B is accepting if L(B) is a superset of some obligation
O ∈ Olg(ψ) and ψ ∈ B.

We show that the formula is satisfiable if an accepting strongly
connected component (SCC) is found that contains a consistent
obligation. Summarizing, combining with the trivial on-the-fly
checking, our approach works as follows:

1) If a consistent obligation is found in the processed
states so far, then the formula is satisfiable;

2) If an accepting SCC is found during the generation
of the transition system, then the formula is also
satisfiable.

3) In the worst case, the formula is unsatisfiable after
exploring on the whole transition system.

Now we present our approach in the following subsections.

A. Obligation Set

The key of our on-the-fly satisfiability algorithm is the
notion of obligation set, defined for the input formula ϕ:

Definition 5 (Obligation Set): For a formula ϕ, we define
its obligation set, denoted by Olg(ϕ), as follows:

1) Olg(tt) = {∅} and Olg(ff) = {{ff}};
2) If ϕ is a literal, Olg(ϕ) = {{ϕ}};
3) If ϕ = Xψ, Olg(ϕ) = Olg(ψ);

4) If ϕ = ψ1 ∨ ψ2, Olg(ϕ) = Olg(ψ1) ∪Olg(ψ2);
5) If ϕ = ψ1∧ψ2, Olg(ϕ) = {O1∪O2 | O1 ∈ Olg(ψ1)∧

O2 ∈ Olg(ψ2)};
6) If ϕ = ψ1Uψ2 or ψ1Rψ2, Olg(ϕ) = Olg(ψ2);

For O ∈ Olg(ϕ), we refer to it as an obligation of ϕ.
Moreover, we say O is a consistent obligation iff

∧
a 6≡ ff

holds, where a ∈ O.

The obligation set Olg(ϕ) enumerates all obligations the
given formula ϕ is subject to. Each obligation O ∈ Olg(ϕ)
characterizes a possible way to resolve the obligations pro-
posed by the formula, in the sense that a formula is satisfiable
if one of its obligation can be resolved accordingly. The
particular obligation {ff} can never be resolved.

The power of this characterization is best explained by the
following theorem:

Theorem 1: Assume O ∈ Olg(ϕ) is a consistent obliga-
tion. Then, Oω |= ϕ.

The theorem can be proven by simple structural induction
over ϕ. We illustrate the usefulness of the theorem by the
following example:

Example 1: • Consider G(aRb). It has only one
obligation {b} which is consistent. Thus, the trace
{b}ω satisfies G(aRb).

• Consider the formula ϕ := GF (a ∧ b) ∧ F (¬a): first,
the obligation {a, b,¬a} is not consistent. Further, the
normal form NF (ϕ) contains ¬a ∧ X(GF (a ∧ b))).
Thus we can reach the formula GF (a ∧ b) along ¬a.
Moreover, GF (a ∧ b) has a consistent obligation set
O = {a, b}. Theorem 1 then provides a trace ξ with:
ξ := {¬a}Oω |= ϕ.

• The opposite direction of Theorem 1 does not hold.
Consider for example the formula F (a)∧G(X¬a). It
has a single obligation {a,¬a} which is not consistent.
However, {a}{¬a}ω is a satisfying trace. Consider
another formula F (a) ∧ G(¬a) which has the same
obligation. This formula is obviously not satisfiable.

Theorem 1 is indeed very useful: it returns an affirmative
answer as far as a consistent obligation is found for the current
candidate. This is often the case for satisfiable formulas. In the
following sections, we exploit this notion to derive an on-the-
fly algorithm for all formulas.

B. Tagging Input Formulas

First, from the discussions and definitions above, we ob-
serve that the obligation set ignores the left subformulas of
until and release operators. If Theorem 1 does not give an
affirmative answer, the left subformulas then play a role in our
construction. As a preparation for the general case, we need
first tag the atoms in the input formula in our approach such
that they can be differentiated. The example below illustrates
why tagging is useful in our construction:

Example 2: Consider ϕ := (a ∨ b)U(Ga), in which the
atom a appears twice. Without tagging, we can see there exists
a transition ϕ a−→ ϕ

b−→ ϕ which forms a SCC B, and L(B) =
{a, b} is a superset of the obligation {a}. However, obviously,
the infinite path through this SCC can not satisfy ϕ.

On the other side, our algorithm first tags the formula to
ϕt = (a1 ∨ b)U(Ga2). Then the transition system for the
tagged formula will be constructed. The tagged SCC B has
label L(B) = {a1, b} which is not a superset of the obligation
{a2}. Thus B is not an accepting SCC, and the infinite path
through SCC ϕ

a1−→ ϕ
b−→ ϕ can not satisfy ϕ.

We need some notations to formalize the tagging process.
For a given input formula ϕ under consideration. For each
atom a appearing in ϕ, we enumerate all occurrences of a
by Sa := {a1, a2, . . . , an}, provided a appears n times in
ϕ. The easiest tagging function is the identity function, i.e.,
we consider all ai syntactically different, but semantically
equivalent. The complexity of our approach will depend on
the number of syntactically different atoms. This tagging is
inefficient: below we give an improved tagging function.

Given a formula ϕ we denote U(ϕ) the set of until
subformulas of ϕ. Then:

Definition 6 (Tagging Formula): Let a ∈ AP be an atom
appearing in ϕ. Then, the tagging function Fa : Sa → 2U(ϕ)

is defined as: ψ ∈ Fa(ai) iff ai appears in right(ψ).

We define the tagged formula ϕt as the formula obtained
by replacing ai by aFa(ai) for each ai ∈ Sa.

Thus, after tagging APϕt will contain more atoms. Note
that all these new copies are semantically equivalent to a, i.e.,
aFa(ai) ≡ a for all aFa(ai). Given a tagging function Fa, two
copies ai, aj are syntactically equivalent iff Fa(ai) = Fa(aj).
More explicitly, a1 = a2 ⇔ Fa(a1) = Fa(a2).

As an example, consider ϕ = aU(a ∧ aU¬a). Let
ψu = aU¬a, and Sa = {a1, a2, a3, a4}. From Definition
6 we know Fa(a1) = ∅, Fa(a2) = Fa(a3) = {ϕ}, and
Fa(a4) = {ϕ,ϕu}. So the tagging function will introduce
three syntactically different copies of a, and we denote ϕt
by a1U(a2 ∧ a2U¬a4). Here even a1, a2, a4 are syntactically
different, they are semantically equivalent. Thus it holds for
example a2 ∧ ¬a4 ≡ ff.

Note the size of subformulas may increase after tagging.
According to Definition 6, the following lemma is obvious:

Lemma 3 (Tagging Cost): Let ϕ be the input formula and
ϕt the formula obtained after tagging ϕ. Then, |cl(ϕt)| ≤
2m · |cl(ϕ)|, where m = |U(ϕ)|.

C. LTL Transition System

First, we note that for all formula ϕ, it holds ϕ ≡ ϕt. This
implies SAT (ϕ) iff SAT (ϕt). As our approach will work with
the tagged formula ϕt, in the remaining of the paper:

• Syntactically: for a given input formula ϕ, all atoms
are ranging over the tagged atoms appearing in ϕt,
thus AP = APϕt , L = Lϕt and Σ = Σϕt = 2L.

• Semantically: tagged atoms are equivalent to the orig-
inal atom. Thus, the notion of consistent traces and
consistent obligations are defined by taking the seman-
tical equivalences of tagged atoms into consideration.

For a given formula ϕ, we shall define below a labelled
transition system Tϕ for it:

Definition 7 (LTL Transition System): Let ϕ be the input
formula and ϕt the tagged formula. The labeled transition
system Tϕ is a tuple 〈Act, Sϕ,−→, ϕt〉 where:

1) ϕt is the initial state,
2) Act is the set of conjunctive formulas over Lϕt .
3) the transition relation −→ ⊆ Sϕ×Act×Sϕ is defined

by: ψ1
α−→ ψ2 iff there exists α ∧X(ψ2) ∈ NF (ψ1);

4) Sϕ is the smallest set of formulas such that ψ1 ∈ Sϕ,
and ψ1

α−→ ψ2 implies ψ2 ∈ Sϕ.

Again, note that the transition system for ϕ is defined by
starting from the tagged formula ϕt. The set of states is the
set of formulas reachable from ϕt, with ϕt as the initial state.
Note between two states there can be more transitions. A state
ϕ has no outgoing transitions iff for all α∧Xψ ∈ NF (ϕ) and
α is equivalent to ff. In this case ϕ is not satisfiable. Now we
introduce the notion of accepting traces:

Definition 8: A run of Tϕ is a (finite or infinite) path r =

ϕ
α0−→ ψ1

α1−→ ψ2
α2−→ . . . in Tϕ. A trace ξ = ω0ω1 . . . ∈ Σω

is accepted by the run r if ωi |= αi for all i.

For ω ∈ Σ, we write ϕ
ω−→ ψ if there exists ϕ α−→ ψ

such that ω |= α. For a finite sequence η = ω0ω1..ωk, we
write ϕ

η−→ ψ iff ϕ ω0−→ ψ1
ω1−→ ψ2

ω2−→ . . .
ωk−−→ ψk+1 = ψ.

More specially, we write ϕ
ξ−→ ϕ iff ξ can be written as ξ =

η0η1η2 . . . such that ηi is a finite sequence and ϕ
ηi−→ ϕ for

all i ≥ 0.

Lemma 2 implies the following properties of |Sϕ|:

Corollary 1: For any formula ϕ, it holds:

1) for all ψ ∈ Sϕ, it holds CF (ψ) ⊆ cl(ϕt) ∪ {tt},
2) |Sϕ| ≤ 2n + 1 where n denotes the number of

subformulas of ϕt.

D. On-the-fly Satisfiability Algorithm

First, we introduce some notations:

• For notational convenience, we fix λ as our input
formula in this section. Let Tλ be the transition system
for the tagged formula λt.

• For all ϕ ∈ Sλ, we denote by STϕ the subsystem of
Tλ consisting all states reachable from ϕ.

Now we present our main theorem:

Theorem 2: Let ϕ ∈ Sλ. Then, SAT (ϕ) iff there exists a
SCC B of STϕ and a state ψ in B such that L(B) is a superset
of some obligation O ∈ Olg(ψ).

Sketch: The full proof is given in the appendix. We sketch
the proof idea here, which is best illustrated in Figure 1. Let
ξ = ω0ω1 . . . be a (consistent) trace such that ξ |= ϕ. Then,
there is a run in STϕ accepting ξ, i.e., we have ϕ ω0−→ ψ1

ω1−→
. . .. After some prefix ξn, since there are only finitely many
states reachable, we will be able to partition the suffix into
η1η2 . . . where all ηi are finite sequences, and all ηi lead from
ψ to ψ itself. Such formula ψ will be referred to as a looping
formula.

  1

2

n

10

11

12

m1

21

20

'2m

30

31

32

'3m'

3

Fig. 1. A snapshot illustrating the relation ξ |= ϕ

Looping formulas arising from U and R operators must
be treated differently. For instance aRb b−→ aRb resolves the
obligation {b}, however aUb a−→ aUb does not. To characterize
this difference, we shall memorize atoms appearing along
the edges and check whether the obligation {b} is met.
Interestingly, R operators are easy to handle, but things get
more involved if the same atom appears on both sides of U
operators, such as aUa. Here we make use the fact that we
are working on the tagged formula, and our transition system
is labelled with tagged atoms. Thus we can efficiently check
whether appearing atoms correspond to those obligations for U
formulas or not. With these notions, the theorem can be proven
by the following idea: any edge label is a propositional formula
that is not ff, thus any run in the transition system induces a
consistent trace, which can be proven to satisfy the formula iff
the collected atoms along the trace can produce an obligation.
Thus, the formula is satisfiable if and only if we can find an
SCC B such that O ⊆ L(B).

The above theorem states that the satisfiability of an LTL
formula λ can be checked directly on the transition system Tλ.
Together with Theorem 1, we arrive at the following on-the-fly
algorithm, which we refer to as OFOA(λ):

1) We first tag the formula and get λt. Then we construct
Tλ, where we explore the states in an on-the-fly
manner, by performing nest depth-first [CVWY92],

2) Whenever a formula is found, we compute the obliga-
tion set. In case that it contains a consistent obligation
set, we return true because of Theorem 1,

3) If a SCC B is reached, ϕ ∈ B, and L(B) is a superset
of some obligation set O ∈ Olg(ϕ), we return true,

4) If all SCCs are explored, and all do not have the
property in step 3, we return false.

We discuss briefly the complexity of the proposed algo-
rithm. First, we remark that the worst case senario happens if
all extended formulas do not contain any consistent sets, which
happens for instance for the formula GF (a)∧GF (¬a). Given
the input formula λ, we first construct λt. By Lemma 3, we
have |cl(λt)| ≤ 2m · |cl(λ)|, where m = |U(λ)| is the number
of until subformulas of λ. By Corollary 1, the number of states
is bounded by |Sϕ| ≤ 2n + 1, where n = 2m · |cl(λ)|. In
addition, for each reachable state ϕ, we compute the obligation
Olg(ϕ), which is exponential in the number of conjunctions
in ϕ, but linear in other operators.

IV. EXPERIMENTAL METHODOLOGY

We have implemented our algorithms in a tool called
Aalta1. We denote Theorem 1 as the obligation acceleration
technique (OA, for short). Similarly, we refer to the technique
that underlie Theorem 2 as the on-the-fly technique (OF, for
short). In the tool we have the following two configurations: (i)
OF: On-the-fly checking without OA, (ii) OFOA: On-the-fly
checking with OA (default).

1) Testing tools: In default Aaltais implelmented with the
on-the-fly plus obligation acceleration (OFOA) techniques. In
this paper we compare the performance of Aalta with two other
LTL satisfiability solvers: PANDA+CadenceSMV [RV11] and
SPOT [DLP04]. SPOT is considered as the best explicit LTL-
to-Büchi translator [RV07], [RV10]. Its most recent version
(1.0.2) has an integrated emptiness checking implementation
(with ”-e” flag) and it is considerably improved since the
benchmarking in [RV07], [RV10]. That benchmarking showed
the superiority of CadenceSMV for LTL satisfiability checking,
and this has been further improved in PANDA+CadenceSMV
[RV11]. Thus, we benchmarked all three tools. (Since PANDA
consists of 30 different symbolic encodings, we run all these
encodings in parallel and chose the best result among them.)

2) Platform: We conducted our benchmarking on the
SUG@R cluster in Rice University2. SUG@R is an Intel Xeon
compute cluster. It contains 134 SunFire x4150 nodes from
Sun Microsystems. Each node has two quad-core Intel Xeon
processors running at 2.83GHz, yielding a system-wide total
of 1064 processor cores. In our experiments, each test is run
on a single core with a timeout of 10 minutes for each test
formula. The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel.
Times are measured using the Unix time command. All time
measurements are “end-to-end”; we measure the time starting
from formula input to the satisfiability-checking result (SAT
or UNSAT).

3) Input Formulas: We use here the benchmarks from
[RV07], [RV10], [RV11]. These include random, pattern and
counter formulas. We tested over 60,000 random formulas
and all eight kinds of pattern (lengths varying from 1 to
1000) and four counter formulas (lengths varying from 1 to
20). These benchmarks are suitable for testing satisfiability of
large formulas. Typical temporal assertions are, however, quite
small in practice [BAC98]. What makes the LTL satisfiability
problem hard is the fact that we need to check large conjunc-
tions of small temporal formulas, as we need to check that
the conjunction of all input assertions is also satisfiable. We
introduce here a novel class of challenging LTL benchmarks,
which are random conjunctions of specification patterns from
[BAC98].

Random Conjunction Formulas: Formally, a random
conjunction formula RC(n) has the form: RC(n) =∧

1≤i≤n Pi(v1, v2, . . . , vk), where n is the number of conjuncts
elements and Pi(1 ≤ i ≤ m) is a randomly chosen property
pattern formula used frequently in practice [BAC98]. The
propositions {v1, v2, . . . , vk} used in these formulas are also
chosen randomly. More precisely, we generate the class of
random conjunction formulas in the following way:

1www.lab205.org/aalta
2http://www.rcsg.rice.edu/sugar/

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

A
v
e
ra

g
e
 C

h
e
c
k
in

g
 T

im
e
 (

s
)

Formula Length

Average Best PANDA+CadenceSmv vs SPOT
 vs Aalta checking time

Aalta
PANDA+CadenceSmv

SPOT

Fig. 2. Experimental results for random formulas with 3 variables.

 0

 5

 10

 15

 20

 0 50 100 150 200 250

C
h
e
c
k
in

g
 t
im

e
 (

s
)

Variable numbers

Best PANDA+CadenceSmv vs SPOT vs Aalta
 checking for R pattern formulas

Aalta
PANDA + CadenceSmv

SPOT

Fig. 3. Experimental results for R(n) =
∧

i=1
n(GFpi ∨ FGpi+1).

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

C
h

e
c
k
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

Variable numbers

Best PANDA+CadenceSmv vs SPOT vs Aalta
 checking for S pattern formulas

Aalta
PANDA + CadenceSmv

SPOT

Fig. 4. Experimental results for S(n) =
∧

1≤i≤nGpi.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14

A
v
e

ra
g

e
 C

h
e

c
k
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

Number of conjunctive elements

Best PANDA+CadenceSmv vs SPOT vs Aalta
 checking for random conjunction formulas

Aalta
PANDA + CadenceSmv

SPOT

Fig. 5. Experimental results for random conjunctive formulas.

1) We extract all pattern formulas3.
2) For a formula in RC(n), we conjoin n pattern for-

mulas selected randomly. In each pattern formula, we
instantiate the variables as random literals (positive or
negative) over a set of six atomic propositions.

3) In our experiments we generated 500 random formu-
las for each n.

4) Correctness: To test Aalta’s correctness, we assume that
the results from PANDA+CadenceSMV and SPOT are correct
and we compare the results Aalta’s. Aalta successfully passes
all the tests.

3http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

V. EXPERIMENTAL RESULTS

In this section we analyze the experimental results. Gener-
ally speaking, our results demonstrate that Aalta outperforms
both SPOT and PANDA+CadenceSMV.

A. Aalta performs best for random formulas.

We first compare the three tools on random benchmarks.
We use here three atomic propositions and formula length of
up to 200. In total, we tested 20,000 formulas. Fig. 2 shows
performance results for the three tools, where for each length
we report average running time on 500 formulas. We can see
that Aalta outperforms the other tools on random formulas.
In fact, Aalta significantly outperforms the other tools; for

 0

 5

 10

 15

 20

 0 50 100 150 200

A
v
e
ra

g
e
 c

h
e
c
k
in

g
 t
im

e
 (

s
)

formula length

Average checking time for random formulas
 from Aalta with OFOA and OF

Aalta with OFOA
Aalta with OF

Fig. 6. Experimental results for 3-variable random formulas from Aalta
with OFOA and OF.

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
v
e
ra

g
e
 c

h
e
c
k
in

g
 t
im

e
 (

s
)

formula length

Average checking time for random conjuncition
 formulas from Aalta with OFOA and OF

Aalta with OFOA
Aalta with OF

Fig. 7. Experimental results for random conjunction formulas from
Aalta with OFOA and OF.

60% of the formulas, Aalta returns in a few millisecond,
while SPOT and PANDA+CadenceSMV takes tens of seconds.
In fact, Aalta completes checking all 20,00 formulas in one
hour, where neither SPOT nor PANDA+CadenceSMV were
able to complete in 40 hours. The superiority of Aalta stems
from the fact that 95% of the test formulas turn out to be
satisfiable; furthermore, 80% of them are checked using the
obligation acceleration technique. Indeed, on unsatisfiable for-
mulas PANDA+CadenceSMV is faster than Aalta, performing
nearly twice as fast as than Aalta. Overall, however, Aalta’s
heuristics for quick satisfiability testing do pay off.

B. Aalta performs best for most of the pattern formulas.

Our experiments show that Aalta performs best for all
pattern formulas except the S-pattern formula, where SPOT
performs best, For example, Fig. 3 displays the comparing
results for the R-pattern formulas, where SPOT scales expo-
nentially with formula length, while PANDA+CadenceSMV
is quicker, and Aalta performs the best. Here it is clear that
SPOT pays the price for not performing the automaton non-
emptiness test on the fly, as the automata scale exponentially.
In fact, even Aalta scales exponentially for R-pattern formulas
without the obligation acceleration technique.

For S-pattern formulas, the results are shown in Fig.
4. Here, all three tools scale polynomially, since automata
size scales linearly. SPOT performs better than Aalta, as its
automaton construction is faster.

C. Aalta performs best for random conjunction formulas.

Checking satisfiability of random conjunction formulas is
quite challenging, but Aalta still performs best. The results
are shown in Fig. 5. The number of conjuncts extends only
to 15 (with average formula length of 100) and all tools
time out for larger formulas. The advantage of Aalta here
is less marked; it performs about twice as fast as SPOT and
PANDA+CadenceSMV.

1) The number of cases that can be checked by the obli-
gation acceleration technique is much smaller here.
For random conjunction, less than 20% cases can
be checked by the obligation acceleration, and only
about 30% can be checked by finding an accepting
SCC;

2) The fraction of unsatisfiable formulas is higher here;
about 50% of the formulas are satisfiable, so Aalta’s
advantage in quick satisfiability finding is reduced.

Checking satisfiability for random-conjunction formulas
emerges as a challenging problem, requiring further research.
It would be interesting to combine Aalta with the abstraction
technique of [CRST07].

D. The obligation acceleration enhances on-the-fly checking.

One of the effective heuristics of Aalta is the OA technique:
a consistent obligation implies satisfiability directly. Now we
compare here the results from Aalta implemented with the
OFOA and pure OF strategies in checking random and random
conjunction formulas. Fig. 6 and Fig. 7 indicate that OA
indeed plays a key role. For random formulas the OFOA
strategy performs much faster than the pure OF strategy.
Moreover, the OFOA strategy can be even exponentially better
for special cases, such as the R pattern formulas mentioned
above. Although the advantage declines for random conjunc-
tion formulas, the OFOA strategy is still twice as fast as the
OF strategy.

VI. RELATED WORK

The classical approach to LTL satisfiability checking is
by reduction to model checking. This can be implemented
using either explicit-state techniques or symbolic techniques.
Rozier and Vardi [RV07], [RV10] studied this approach and
benchmarked several tools. They concluded that the combi-
nation of SPIN [Hol97] and SPOT [DLP04] yields the best

performance for the explicit-state approach, but symbolic tools
such as CadenceSMV [McM99] or NuSMV [CCG+02] yield
better performance. In follow-up work [RV11], Rozier and
Vardi studied several symbolic encodings of automata for
LTL formulas and described a tool, PANDA, built on top of
CadenceSMV, which implements a portfolio approach, running
many symbolic encodings in parallel and selecting the best
performing one.

Several authors described direct approaches to LTL satis-
fiability checking, including Wolper [Wol85] and Schwendi-
mann [Sch98]. Wolper’s algorithm uses multiple-pass incre-
mental tableau procedure, while Schwendimann’s requires only
one pass. Although, theoretically, the multiple-pass algorithm
works in EXPTIME and the worst complexity of the one-
pass works in 2EXPTIME, Goranko, Kyrilov, and Shkatov
[VGS10] showed that, in practice, the one-pass procedure
is more efficient than the multiple-pass one. Yet another
approach to LTL satisfiability is based on temporal resolu-
tion [FDP01]. Cimati et al. described a Boolean abstraction
technique for LTL satisfiability, which can be combined with
different satisfiability-checking techniques [CRST07]. De Wulf
et al. [DDMR08] described a semi-symblic approach based on
anti-chains.

Schuppan and Darmawan [SD11] performed a comprehen-
sive experimental evaluation of LTL satisfiability solvers. They
considered a wide range of solvers implementing three major
classes of algorithms, based on model checking, tableau, and
temporal resolution. They concluded that no solver dominates
or solves all instances, and recommend a portfolio approach,
similar to that of [RV11].

Our tool, Aalta, is closest in spirit to the model-checking
approach, but it combines automaton generation and nonempti-
ness checking in an on-the-fly approach. In this paper we
demonstrate its performance advantage over model-checking-
based tools. We leave comprehensive comparison in the style
of [SD11] to future work.

VII. CONCLUSIONS

In this paper, we proposed a novel on-the-fly satisfiability
checking approach for LTL formulas. Our approach exploits
the notion of obligation set, which provides efficient ways for
identifying many satisfiable formulas. We have implemented a
tool, Aalta, and run experiments using existing and new bench-
marks. In most of the cases, Aalta significantly outperforms
existing model-checking-based LTL satisfiability solvers.

REFERENCES

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable
concurrent program specifications. In Proc. 25th Int. Colloq. on
Automata, Languages, and Programming, volume 372 of Lecture
Notes in Computer Science, pages 1–17. Springer, 1989.

[BAC98] M. Dwyer B, G.S. Avrunin, and J.C. Corbett. Property specifica-
tion patterns for finite-state verification. In Proc. 2nd workshop
on Formal methods in software practice, pages 7–15. ACM, 1998.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic model checking: 1020 states and beyond.
Information and Computation, 98(2):142–170, 1992.

[CCG+02] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2: An
opensource tool for symbolic model checking. In Proc. 14th Int’l
Conf. on Computer Aided Verification, Lecture Notes in Computer
Science 2404, pages 359–364. Springer, 2002.

[CCGR00] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV:
a new symbolic model checker. It’l J. on Software Tools for
Technology Transfer, 2(4):410–425, 2000.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, 1999.

[CRST07] A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta. Boolean
abstraction for temporal logic satisfiability. In Proc. 15th Int’l
Conf. on Computer Aided Verification, volume 4590 of Lecture
Notes in Computer Science, pages 532–546. Springer, 2007.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis.
Memory efficient algorithms for the verification of temporal
properties. Formal Methods in System Design, 1:275–288, 1992.

[DDMR08] M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains:
Alternative algorithms for ltl satisfiability and model-checking. In
Proc. 14th Int’l Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 4963 of Lecture Notes in
Computer Science, pages 63–77. Springer, 2008.

[DGV99] N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata
generation for linear temporal logic. In Proc. 11th Int. Conf. on
Computer Aided Verification, volume 1633 of Lecture Notes in
Computer Science, pages 249–260. Springer, 1999.

[DLP04] A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model
checking library using transition-based generalized büchi au-
tomata. In Proc. 12th Int’l Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, pages
76–83. IEEE Computer Society, 2004.

[FDP01] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution.
ACM Trans. Comput. Log., 2(1):12–56, 2001.

[FKL04] H.D. Foster, A. Krolnik, and D.J. Lacey. Assertion-Based Design.
Springer, 2004.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[McM99] K. McMillan. The SMV language. Technical report, Cadence
Berkeley Lab, 1999.

[PSC+06] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and
A. Cimatti. Formal analysis of hardware requirements. In Proc.
43rd Design Automation Conference, pages 821–826. ACM, 2006.

[RV07] K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking. In Proc.
14th International SPIN Workshop, volume 4595 of Lecture Notes
in Computer Science, pages 149–167. Springer, 2007.

[RV10] K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking. Int’l J. on
Software Tools for Technology Transfer, 12(2):1230–137, 2010.

[RV11] K.Y. Rozier and M.Y. Vardi. A multi-encoding approach for LTL
symbolic satisfiability checking. In Proc. 17th Int’l Symp. on
Formal Methods, volume 6664 of Lecture Notes in Computer
Science, pages 417–431. Springer, 2011.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional
linear temporal logic. Journal of the ACM, 32:733–749, 1985.

[Sch98] S. Schwendimann. A new one-pass tableau calculus for pltl. In
Proceedings of the International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods, TABLEAUX
’98, pages 277–292. Springer-Verlag, 1998.

[SD11] V. Schuppan and L. Darmawan. Evaluating ltl satisfiability solvers.
In Proceedings of the 9th international conference on Automated
technology for verification and analysis, AVTA’11, pages 397–
413. Springer-Verlag, 2011.

[Var07] M.Y. Vardi. Automata-theoretic model checking revisited. In Proc.
8th Int. Conf. on Verification, Model Checking, and Abstract In-
terpretation, volume 4349 of Lecture Notes in Computer Science,
pages 137–150. Springer, 2007.

[VGS10] A. Kyrilov V. Goranko and D. Shkatov. Tableau tool for testing
satisfiability in ltl: Implementation and experimental analysis.
Electr. Notes Theor. Comput. Sci., 262:113–125, 2010.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In Proc. 1st IEEE Symp. on Logic
in Computer Science, pages 332–344, 1986.

[Wol85] P. Wolper. The tableau method for temporal logic: An overview.
Logique et Analyse, 110–111:119–136, 1985.

APPENDIX

In this appendix we provide all of the missing proofs in
the main paper.

A. Proofs of Lemma 1

Proof: We prove it by structural induction over ϕ:

• The case that ϕ is propositional formula or a next
formula is trivial by definition.

• If ϕ = ϕ1 ∨ ϕ2, then applying induction hypothesis
we have ϕ ≡ ϕ1 ∨ ϕ2 ≡

∨
NF (ϕ1) ∨

∨
NF (ϕ2) ≡∨

(NF (ϕ1) ∪NF (ϕ2)) ≡
∨
NF (ϕ1 ∨ ϕ2).

• If ϕ = ϕ1 ∧ ϕ2, then applying induction hypothesis
we have ϕ ≡ ϕ1 ∧ϕ2 ≡ (

∨
NF (ϕ1))∧ (

∨
NF (ϕ2)).

By inspection, this is equivalent to
∨
NF (ϕ1 ∧ ϕ2).

• If ϕ = ϕ1Uϕ2, then by Definition 3 we know
NF (ϕ) = NF (ϕ2) ∪ NF (ϕ1 ∧ Xϕ), and that ϕ ≡
ϕ2 ∨ (ϕ1 ∧ Xϕ). By induction hypothesis we have
that ϕ2 ≡

∨
NF (ϕ2). Moreover, we also proved

previously that ϕ1∧Xϕ ≡
∨
NF (ϕ1∧Xϕ). Thus we

can prove that ϕ ≡ ϕ2 ∨ (ϕ1 ∧Xϕ) ≡
∨

NF (ϕ2) ∨∨
NF (ϕ1 ∧Xϕ) ≡

∨
NF (ϕ);

• The case ϕ = ϕ1Rϕ2 is similar to the case when ϕ
is a Until formula.

B. Proof of Lemma 2

Proof: First, CF (ψ) ⊆ cl(ϕ) by structural induction over
ϕ. The base cases ϕ = tt,ff and propositional formulas are
trivial. Otherwise:

1) If ϕ = ϕ1 ∨ϕ2. Then NF (ϕ) = NF (ϕ1)∪NF (ϕ2).
So α ∧ Xψ ∈ NF (ϕi) with i = 1 or i = 2. By
induction hypothesis we have CF (ψ) ⊆ cl(ϕi) ⊆
cl(ϕ).

2) If ϕ = Xϕ1. In this case we have NF (ϕ) = {tt ∧
Xϕ′ | ϕ′ ⊆ DF (ϕ1)}. Since CF (ϕ′) ⊆ cl(ϕ1) ⊆
cl(ϕ), so we have CF (ψ) ⊆ cl(ϕ).

3) If ϕ = ϕ1 ∧ ϕ2, then we know for every α ∧
Xψ ∈ NF (ϕ) there exists α1 ∧ Xψ1 ∈ NF (ϕ1)
and α2 ∧ Xψ2 ∈ NF (ϕ2) such that α = α1 ∧ α2

and ψ = ψ1 ∧ ψ2. Since by induction hypothesis we
know CF (ψ1) ⊆ cl(ϕ1) and CF (ψ2) ⊆ cl(ϕ2), so
CF (ψ) ⊆ cl(ϕ) holds.

4) If ϕ = ϕ1Uϕ2. We have two cases. Either we have
the right expansion α ∧ Xψ ∈ NF (ϕ2), in which
case CF (ψ) ⊆ cl(ϕ2) ⊆ cl(ϕ) follows directly by
induction hypothesis. For the left expansion case, we
have α ∧Xψ ∈ NF (ϕ1 ∧Xϕ), implying that there
exists α1∧Xψ1 ∈ NF (ϕ1) such that ψ = ψ1∧ϕ. So
CF (ψ) ⊆ cl(ϕ) follows by exploiting the induction
hypothesis that CF (ψ1) ⊆ cl(ϕ1) ⊆ cl(ϕ).

5) If ϕ = ϕ1Rϕ2, then we can prove similarly as the
case when ϕ = ϕ1Uϕ2.

C. Proof of Theorem 1

Proof: We prove by structural induction over ϕ. The basic
cases when ϕ is either tt,ff and or any literal are trivial. For
the induction step we consider:

• If ϕ = Xψ then we have O ∈ Olg(ϕ) = Olg(ψ). By
inductive hypothesis we have Oω |= ψ. Thus, Oω |= ϕ
as well;

• If ϕ = ϕ1Uϕ2 then we have O ∈ Olg(ϕ2), according
to the definition of obligation set. By inductive hy-
pothesis we have Oω |= ϕ2. Moreover according to
LTL semantics we know Oω |= ϕ as well;

• The case ϕ = ϕ1Rϕ2 is similar to previous case;

• If ϕ = ϕ1 ∨ ϕ2, we have O ∈ Olg(ϕ1) or O ∈
Olg(ϕ2). Assume O ∈ Olg(ϕ2) without loss of
generality. By inductive hypothesis we have Oω |= ϕ2,
implying Oω |= ϕ as well;

• If ϕ = ϕ1 ∧ ϕ2 then there exist O1 ∈ Olg(ϕ1) and
O2 ∈ Olg(ϕ2) such that O = O1 ∪ O2. Since O is
consistent so both O1 and O2 must be consistent. By
inductive hypothesis we have Oω1 |= ϕ1 and Oω2 |= ϕ2.
Again since O is consistent have Oω |= ϕ1 ∧ ϕ2.

D. Proof of Corollary 1

Proof: The first clause follows by a simple induction over
the path from ϕt to ψ. Note the constant 1 is due to the
possibility of producing tt along the expansion.

E. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. We
organize the proof as follows. We first introduce the notion
of looping formulas and discuss their properties. We then
continue with the soundness and completeness proofs of the
theorem.

Assumption. Throughout the section, we have the follow-
ing assumptions:

• λ denotes the fixed input formula, Tλ is the transition
system for λ.

• all traces are over Σω ⊆ 2Lλt , i.e., the set of consistent
literals over Lλt .

• all formulas appearing in this section are taken from
the set of states Sλ, i.e., ϕ,ψ... ∈ Sλ. Thus, all
formulas in this appendix will be ranging over tagged
atoms appearing in λt.

1) Looping Formulas and Their Properties: We start with
a simple lemma about the relation between satisfiability and
the transitions:

Lemma 4: Let ξ ∈ Σω be a trace. Then, for all n ≥ 1,
there exists ψ such that ξ |= ϕ⇔ ϕ

ξn−→ ψ ∧ ξn |= ψ.

Proof: Let ξ = ω0ω1 We prove the lemma by
induction over the number n.

• For the base case we let n = 1. Then: ξ |= ϕ ⇔
ξ |=

∨
NF (ϕ)⇔ ∃α∧Xψ ∈ NF (ϕ) · ξ |= (α∧Xψ)

⇔ ∃α∧Xψ ∈ NF (ϕ)·ξ1 |= ψ∧ω0 |= α⇔ ∃ψ ·ϕ ξ1−→
ψ ∧ ξ1 |= ψ.

• For the induction step, we assume the lemma holds
for all n = 1, 2, . . . , k and prove that it holds for
n = k+ 1 as well. Applying the induction hypothesis

on k, we have: ξ |= ϕ ⇔ ϕ
ξk−→ ψ ∧ ξk |= ψ holds.

Further, for ξk |= ψ we apply the induction hypothesis
with respect to the base case and obtain ξk |= ψ ⇔
ψ

ξ1k−→ ψ′ ∧ ξk+1 |= ψ′, so we can conclude that ξ |=
ϕ⇔ ϕ

ξk+1

−−−→ ψ′ ∧ ξk+1 |= ψ′. The proof is done.

Essentially, ξ |= ϕ is equivalent to that we can reach a
formula ψ along the prefix ξn such that the suffix ξn satisfies
ψ. Thus, if ξ |= ϕ holds, then ξ will be accepted by a run in
STϕ.

Now we introduce the notion of looping formulas:

Definition 9 (Looping formula): We say ϕ is a looping
formula iff there exists a trace ξ ∈ Σω which can be written
as an infinite sequence ξ = η0η1η2 . . . such that ηi is a finite
sequence and ϕ

ηi−→ ϕ for all i ≥ 0. We write ϕ
ξ−→ ϕ in this

case, and say ϕ is a looping formula with respect to ξ.

The following corollary is a direct consequence of Lemma
4 and the fact that we have only finitely many formulas in Sϕ:

Corollary 2: If ξ |= ϕ, then there exists n ≥ 1 such that
ϕ

ξn−→ ψ and ξn |= ψ and ψ
ξn−→ ψ.

Proof: From Lemma 4 ξ |= ϕ implies there is an infinite
expansion path σ = ϕ

ω0−→ ψ1
ω1−→ ψ2

ω2−→ . . . such that
ξi |= ψi for all i ≥ 1. Since we have only finitely states, there
must exist a ψ reachable from ϕ such that it appears infinitely
often along this path. Obviously, this formula ψ is a looping
formula as required.

This corollary gives the hint that after a finite prefix we
can focus on the satisfiability of looping formulas. Now we
give a lemma stating a nice property for the release operator:

Lemma 5: If ϕ = ϕ1Rϕ2 and ϕ
ξ−→ ϕ, then ξ |= ϕ.

Proof: Since ϕ
ξ−→ ϕ, so we have ∃n ·ϕ ξn−→ ϕ∧ϕ ξn−→ ϕ.

Let ηi = ωiωi+1 . . . ωn(0 ≤ i ≤ n). Here all expansions for
the formula ϕ along the path must be from the right subformula
ϕ2 of ϕ, i.e., α ∧ Xψ ∈ NF (ϕ2 ∧ Xϕ). Since ϕ

ξn−→ ϕ, we
have that ∀0 ≤ i ≤ n · ϕ2

ηi−→ tt, which implies ξj |= ϕ2 for
all 0 ≤ j ≤ n. Inductively for ϕ

ξn−→ ϕ we can get the same
property. So ∀j ≥ 0 we have ξ |= ϕ2, implying ξ |= ϕ.

Finally, we shall introduce an order on formulas to identify
structural properties of looping formulas. We propose the
following order for formulas:

Definition 10 (Poset on Formulas): For formulas ϕ,ψ, we
write ϕ ≺ ψ iff ϕ ∈ cl(ψ).

The order ≺ is obviously a partial order. For a looping
formula ϕ, the set CF (ϕ) posses at least one minimal element
(w.r.t. the order ≺). Below we prove that all minimal elements
of the set expand either to tt or themselves.

Lemma 6: If ϕ
η−→ ϕ then for all minimal element ψ ∈

CF (ϕ) we have ψ
η−→ tt or ψ.

Proof: Let ψ be a minimal element in CF (ϕ). Since ϕ
η−→

ϕ and ψ ∈ CF (ϕ), there must exist ψ′ such that ψ
η−→ ψ′ and

CF (ψ′) ⊆ CF (ϕ) or ψ′ = tt. If ψ′ 6= tt, then according
to Lemma 2 we know CF (ψ′) ⊆ cl(ψ). However, cl(ψ) ∩
CF (ϕ) = {ψ} because of the minimality of ψ. Thus ψ′ = ψ.

2) Soundness Proof of Theorem 2: We first introduce the
relation |=f :

Definition 11: Let η = ω0ω1 . . . ωn (n ≥ 0). Then, we
say the finite sequence η satisfies the formula ϕ, denoted by
η |=f ϕ, iff there exists O ∈ Olg(ϕ) such that O ⊆ η. Here
O ⊆ η is an abbreviation for O ⊆ ∪ni=0ωi.

Please note that the relation is defined by checking syntac-
tic inclusion. Thus, assuming the input formula is aUa, which
is a1Ua2 after tagging. According to the above definition,
{a1} 6|=f a2. The reader shall bear this in mind in the
remaining of this section.

Below we present some simple properties of the relation
|=f which will be useful later:

Lemma 7: 1) Assume η |=f ϕ, then η |=f ϕ ∨ ψ.
2) Assume η |=f ϕ and η |=f ψ, then η |=f ϕ ∧ ψ.

Proof: Let η = ω0ω1 . . . ωn. We consider the first case:
η |=f ϕ implies that there exists O ∈ Olg(ϕ) such that O ⊆ η.
Since O ∈ Olg(ϕ) ⊆ Olg(ϕ∨ψ), we have η |=f ϕ∨ψ. For the
second case: η |=f ϕ implies that there exists O1 ∈ Olg(ϕ)
such that O1 ⊆ η. Similarly, η |=f ψ implies that there exists
O2 ∈ Olg(ψ) such that O2 ⊆ η. Since we have O1 ∪ O2 ∈
Olg(ϕ ∧ ψ) and O1 ∪O2 ⊆ η, we have η |=f ϕ ∨ ψ.

The following lemma corresponds to Lemma 5 for until
formulas with respect to the finite satisfaction relation:

Lemma 8: Let ϕ = ϕ1Uϕ2 and ϕ
η−→ ϕ. Then, η 6|=f ϕ.

Proof: Let η = ω0ω1 . . . ωn and we rewrite ϕ
η−→ ϕ as

ϕ
ω0−→ ψ1

ω2−→ . . .
ωn−−→ ϕ. Note it is apparent that ϕ ω0−→

(ϕ ∧ ϕ′1) with ϕ1
ω0−→ ϕ′1. Thus, by induction one can show

that along the path ϕ ω0−→ ψ1
ω1−→ ψ2 . . . it holds ϕ ∈ CF (ψi)

for all i. Since the transition for conjunctive formula ψi is
obtained by combining transitions for each ψ′ ∈ CF (ψi), the
transition for the subformula ϕ ∈ CF (ψi) must be from left
subformula ϕ1, i.e., α∧Xψ ∈ NF (ϕ1∧Xϕ). As a result, for
each i, the label ωi must be a superset of CF (αi), and CF (αi)
contains the literals from ϕ1. Moreover, the tagging function
has been used to classify the atoms. According to Definition
6 the atoms in ϕ1 and ϕ2 are never tagged the same – this is
because the atoms in ϕ2 will tag ϕ while those in ϕ1 will not.
So ϕ1 and ϕ2 still don’t have common atoms, thus CF (αi)
contains no obligation literals from ϕ2;

According to the definition 5, the obligation literals of ϕ
are all from those of ϕ2. Thus, from the definition of |=f

(Definition 11), we know η 6|=f ϕ.

The following lemma says that if there exists a partitioning
ξ = η1η2... that makes ϕ expanding to itself by each ηi and
ηi |=f ϕ holds, then ξ |= ϕ.

Lemma 9: Given a looping formula ϕ and a trace ξ, let
ξ = η1η2 . . . · if ∀i ≥ 1 · ϕ ηi−→ ϕ ∧ ηi |=f ϕ, then ξ |= ϕ.

Proof: We enumerate the set CF (ϕ) = {ϕ1, ϕ2, . . . , ϕn},
and we shall prove ξ |=

∧
CF (ϕ). Let S0 denote the minimal

elements of CF (ϕ) with respect to the partial order ≺. More-
over, we define Si+1 = Si∪{ψ′ ∈ CF (ϕ) | ∃ψ ∈ Si.ψ ≺ ψ′}.
Obviously, there is a finite index k such that Sk = CF (ϕ).
We proceed with induction over the index:

1) Basic step: Let ψ ∈ S0. By Lemma 6 if ϕ
ηi−→ ϕ, then

ψ
ηi−→ tt or ψ

ηi−→ ψ. If ∃ηi · ψ
ηi−→ tt holds, ξ |= ψ

follows from Lemma 4. Otherwise we have ψ
ηi−→ ψ

for all i ≥ 1. According to LTL semantics ψ must be
either until or release formula. Applying Lemma 8 we
know that ψ cannot be an Until formula, and thus be a
Release formula. Then Lemma 5 implies that ξ |= ψ,
and therefore ξ |=

∧
S0.

2) For induction step we assume ξ |=
∧
Sk. Consider

arbitrary ηi: let ψ ∈ Sk+1 \Sk and assume ψ
ηi−→ ψ′.

Since ϕ
ηi−→ ϕ, we have CF (ψ′) ⊆ CF (ϕ). By the

construction of the set Si, CF (ψ′) does not contain
any other elements in Sk+1, thus we have CF (ψ′) ⊆
{ψ}∪Sk. First we assume CF (ψ′) ⊆ Sk. Then from
the induction hypothesis we know ηi+1ηi+2 . . . |= ψ′

so ηiηi+1 . . . |= ψ (From Lemma 4), thus ξ |= ψ.
Now consider the case ψ ∈ CF (ψ′):ψ

ηi−→ ψ implies
that ψ must be a Release formula. Then Lemma 5
implies again that ξ |= ψ, and therefore ξ |=

∧
Sk+1.

Now we are ready to prove the soundness part of the
theorem:

Lemma 10 (Soundness): Let ϕ ∈ Sλ. Assume that there
exists a SCC B of STϕ such that ψ ∈ B and L(B) is a
superset of some obligation set O ∈ Olg(ψ). Then, SAT (ϕ).

Proof: As B is a SCC, we have a path δ := ψ(ψ1)
ω1−→

ψ2
ω2−→ . . .

ωk−1−−−→ ψ such that η visits all states in B and all
transitions between states in B (η = ω1ω2 . . . ωk−1). Since all
states in STϕ are reachable from ϕ, there must exist a finite
sequences η0 such that ϕ

η0−→ ψ. We construct ξ := η0η
ω . By

assumption there exists O ∈ Olg(ψ) such that O ⊆ L(B) =
∪k−1i=1 ωi. So according to the definition of |=f we have η |=f ψ.
Thus from Lemma 9 we have ξ |= ϕ. So ϕ is satisfiable.

3) Completeness Proof of Theorem 2:

Lemma 11: ξ |= ϕ⇒ ∃n · ξn |=f ϕ.

Proof: We prove it by structural induction over the
formula ϕ. For the base case assume ϕ is tt or a literal,
ξ1 |=f ϕ by definition. Moreover, ϕ can not be ff. Now we
consider the induction step:

• If ϕ = Xψ, then ξ |= ϕ ⇒ ξ1 |= ψ. By induction
hypothesis we know ∃n·ξ1n |=f ψ holds, so ξn+1 |=f

ϕ holds.

• If ϕ = ϕ1 ∧ ϕ2, then ξ |= ϕ1 ∧ ξ |= ϕ2. By induction
hypothesis we have ∃n1 ·ξn1 |=f ϕ1 and ∃n2 ·ξn2 |=f

ϕ2 hold. Observe that ξn |=f ϕ implies ξm |=f ϕ for
all m ≥ n. Now from Lemma 7 we have that ξn |=f ϕ
with n := max(n1, n2).

• If ϕ = ϕ1 ∨ ϕ2, then ξ |= ϕ1 ∨ ξ |= ϕ2. By induction
hypothesis we have ∃n1 · ξn1 |=f ϕ1 or ∃n2 · ξn2 |=f

ϕ2 holds. Without loss of generality, assume ∃n1 ·
ξn1 |=f ϕ1. Lemma 7 implies then ξn1 |=f ϕ1 ∨ ϕ2.

• If ϕ = ϕ1Uϕ2, ξ |= ϕ1Uϕ2 implies that there exists
i ≥ 0 such that ξi |= ϕ2. By induction hypothesis
we have ∃n · ξin |=f ϕ2 hold, thus there exists an
obligation O ∈ Olg(ϕ2) such that O ⊆ ξi

n. This
implies O ⊆ ξi+n, thus ξi+n |=f ϕ holds.

• If ϕ = ϕ1Rϕ2, we observe first that ξ |= ϕ2 must
hold. By induction hypothesis we know ∃n·ξn |=f ϕ2.
According to Definition 11 we have that ξn |=f ϕ
holds as well.

Lemma 12: Let ϕ be a looping formula, and assume ϕ
ξ−→

ϕ and ξ |= ϕ hold. Then there exists a partitioning ξ = η1η2 . . .

and ∀i ≥ 0 · ϕ ηi−→ ϕ ∧ ηi |=f ϕ holds.

Proof: Assume ϕ
ξ−→ ϕ∧ ξ |= ϕ. We first prove that there

exist n such that ϕ
ξn−→ ϕ ∧ ξn |=f ϕ ∧ (ϕ

ξn−→ ϕ ∧ ξn |= ϕ).
From Lemma 11 ξ |= ϕ implies that there exists k such that
ξk |=f ϕ. Since ϕ is a looping formula with respect to ξ, we

can find the n ≥ k such that ϕ
ξn−→ ϕ and ϕ

ξn−→ ϕ hold.
For n ≥ k, ξn |=f ϕ holds as well. Now we apply Lemma 4:

ξ |= ϕ implies that ϕ
ξn−→ ϕ and ξn |= ϕ.

Since ϕ
ξn−→ ϕ ∧ ξn |= ϕ, applying the arguments above

inductively yields the lemma.

The above lemma states that if ϕ
ξ−→ ϕ as well as ξ |= ϕ,

we can find a partitioning η1η2 . . . that makes ϕ expend to
itself by each ηi and ηi |=f ϕ holds. Combining Lemma 6,
Lemma 7 and Corollary 1, we have our central theorem:

Lemma 13 (Completeness): Let ϕ ∈ Sλ. Then, SAT (ϕ)
implies that there exists a SCC B of STϕ and such that ψ ∈ B
and L(B) is a superset of some obligation set O ∈ Olg(ψ).

Proof: Since SAT (ϕ), let ξ such that ξ |= ϕ. Then by
Corollary 2 there exists n ≥ 0 and ψ ∈ Sϕ such that ϕ

ξn−→ ψ,
ψ

ξn−→ ψ and ξn |= ψ. Moreover, by Lemma 12, there exists
a partition ξn = η1η2 . . . such that for every finite sequence
ηi we have ψ

ηi−→ ψ as well as ηi |=f ψ. As the state ψ
is visited infinitely often, there must be a SCC B such that
ψ ∈ B. According to the definition of |=f we know that there
exists O ∈ Olg(ψ) such that O ⊆ η1. Obviously, ψ

η1−→ ψ
is contained in some SCC B, thus η ⊆ L(B), implying O ⊆
L(B).

	Introduction
	Preliminaries
	Linear Temporal Logic
	Normal Form Expansion

	New Satisfiability Checking Algorithm
	Obligation Set
	Tagging Input Formulas
	LTL Transition System
	On-the-fly Satisfiability Algorithm

	Experimental Methodology
	Testing tools
	Platform
	Input Formulas
	Correctness

	Experimental Results
	Aalta performs best for random formulas.
	Aalta performs best for most of the pattern formulas.
	Aalta performs best for random conjunction formulas.
	The obligation acceleration enhances on-the-fly checking.

	Related Work
	Conclusions
	References
	Appendix
	Proofs of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Looping Formulas and Their Properties
	Soundness Proof of Theorem 2
	Completeness Proof of Theorem 2

