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Abstract Model checking is a powerful method widely explored in formal verifica-
tion. Given a model of a system, e.g., a Kripke structure, and a formula specifying
its expected behaviour, one can verify whether the system meets the behaviour by
checking the formula against the model.

Classically, system behaviour is expressed by a formula of a temporal logic, such
as LTL and the like. These logics are “point-wise” interpreted, as they describe how
the system evolves state-by-state. However, there are relevant properties, such as
those constraining the temporal relations between pairs of temporally extended events
or involving temporal aggregations, which are inherently “interval-based”, and thus
asking for an interval temporal logic.

In this paper, we give a formalization of the model checking problem in an interval
logic setting. First, we provide an interpretation of formulas of Halpern and Shoham’s
interval temporal logic HS over finite Kripke structures, which allows one to check
interval properties of computations. Then, we prove that the model checking problem
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for HS against finite Kripke structures is decidable by a suitable small model theorem,
and we provide a lower bound to its computational complexity.

Keywords Interval Temporal Logic · Model Checking · Decidability · Computa-
tional Complexity

1 Introduction

A classical problem in hardware and software system design is to come up with auto-
matic techniques to ensure reliability. In this context, formal methods have provided
structures and algorithms that have been successfully applied in several domains.
One of the most notable techniques is model checking, where a formal specification
of the desired properties of the system is checked against a model of its behaviour [6,
7,24,28]. The solution of the model checking problem, and thus its precise com-
plexity, relies on the particular computational model and specification language we
consider. In finite-state system verification, systems are usually modelled as labelled
state-transition graphs, or Kripke structures, while specifications are formulas of a
suitable (point-based) linear or branching temporal logic. The first attempt in this di-
rection goes back to the late ’70s, when the use of the linear temporal logic LTL in
program verification was proposed by Pnueli [22]. LTL allows one to reason about
changes in the truth value of formulas in a Kripke structure over a linearly-ordered
temporal domain, where each moment in time has a unique possible future. More
precisely, one has to consider all possible paths in a Kripke structure and to analyse,
for each of them, how proposition letters, labelling the states, change from one state
to the next one along the path. The model checking problem for LTL turns out to be
PSPACE-complete [7,23,27].

Propositional interval temporal logics provide an alternative setting for reasoning
about time. They have been applied in a variety of computer science fields, includ-
ing artificial intelligence (reasoning about action and change, qualitative reasoning,
planning, and natural language processing), theoretical computer science (specifi-
cation and verification of programs), and databases (temporal and spatio-temporal
databases) [10]. Interval-based temporal logics take intervals as their primitive tem-
poral entities. Such a choice gives them the ability to express temporal properties,
such as actions with duration, accomplishments, and temporal aggregations, which
cannot be dealt with in standard (point-based) temporal logics.

A prominent position among interval temporal logics is occupied by Halpern and
Shoham’s modal logic of time intervals (HS, for short) [12]. HS features one modality
for each of the 13 possible ordering relations between pairs of intervals (the so-called
Allen’s relations [1]), apart from the equality relation. As an example, the condition:
“the current interval meets an interval over which p holds” can be expressed in HS by
the formula 〈A〉 p, where 〈A〉 is the (existential) HS modality for Allen relation meet.
In [12], it has been shown that the satisfiability problem for HS interpreted over all
relevant (classes of) linear orders is highly undecidable. Since then, a lot of work has
been done on the satisfiability problem for HS fragments, which showed that undecid-
ability rules over them [2,14,17]. However, meaningful exceptions exist, including
the interval logic of temporal neighbourhood and the logic of sub-intervals [3–5,19].
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Here, we focus our attention on the model checking problem for HS. While the
satisfiability problem for HS and its fragments has been extensively and systemati-
cally investigated in the literature [8], a little work has been done on model checking.
The idea is to evaluate HS formulas on finite Kripke structures making it possible
to check the correctness of the behaviour of the system with respect to meaningful
interval properties. To this end, we interpret each finite path of a Kripke structure as
an interval, and we define its labelling on the basis of the labelling of the states that
compose it, according to the homogeneity assumption [25]. Formally, we will show
that finite Kripke structures can be suitably mapped into interval-based structures,
called abstract interval models, over which HS formulas can be interpreted. Since
finite Kripke structures may have loops, (abstract) interval models have, in general,
an infinite domain. In order to devise a model checking procedure for HS over finite
Kripke structures, we prove a small model theorem showing that, given an HS for-
mula ψ and a finite Kripke structure K , there exists a finite interval model which is
equivalent to the one induced by K with respect to the satisfiability of ψ . The main
technical ingredients are (i) the definition of a suitable equivalence relation over finite
paths (sequences) in K , which is parametric in the nesting depth of Allen’s modalities
〈B〉 and 〈E〉 in ψ , and (ii) the proof that the resulting quotient structure is finite and
equivalent to the one induced by K with respect to the satisfiability of ψ .

The rest of the paper is organised as follows. In Section 2, we introduce syntax
and semantics of HS (over interval models), and we establish a suitable connection
between finite Kripke structures and abstract interval models. In Section 3, we in-
troduce the fundamental notion of BEk-descriptor. Next, in Section 4, we prove the
small model theorem. Then, in Section 5, we show that the model checking prob-
lem for HS over finite Kripke structures is EXPSPACE-hard. Finally, in Section 6,
we briefly discuss related work. Conclusions and future work directions are given in
Section 7.

2 Interval temporal logic and Kripke structures

In this section, we give syntax and semantics of Halpern and Shoham’s interval tem-
poral logic HS with respect to (abstract) interval models. Moreover, we provide a
suitable mapping from Kripke structures to interval models that allows us to interpret
HS formulas over Kripke structures and then to define the notion of interval-based
model checking.

2.1 The interval temporal logic HS

An interval algebra to reason about intervals and their relative order was first pro-
posed by Allen in [1]; then, a systematic logical study of interval representation and
reasoning was done by Halpern and Shoham, who introduced the interval temporal
logic HS featuring one modality for each Allen interval relation [12].

Table 1 depicts 6 of the 13 possible binary ordering relations between a pair of
intervals. The other 7 are the equality and the 6 inverse relations (given a generic
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binary relation R , the inverse relation R holds between two elements, bR a, if and
only if aR b).

Table 1 Allen’s interval relations and corresponding HS modalities.

Allen relation HS modality Definition w.r.t. interval structures Example

x y
v z

v z
v z

v z
v z

v z

MEETS 〈A〉 [x,y]RA[v,z] ⇐⇒ y = v
BEFORE 〈L〉 [x,y]RL[v,z] ⇐⇒ y < v

STARTED-BY 〈B〉 [x,y]RB[v,z] ⇐⇒ x = v∧ z < y
FINISHED-BY 〈E〉 [x,y]RE [v,z] ⇐⇒ y = z∧ x < v

CONTAINS 〈D〉 [x,y]RD[v,z] ⇐⇒ x < v∧ z < y
OVERLAPS 〈O〉 [x,y]RO[v,z] ⇐⇒ x < v < y < z

In the table, each Allen relation is shown together with the corresponding HS
(existential) modality. In its original formulation, HS allowed point intervals as well,
that is, intervals consisting of a single point, but that way HS modalities are neither
mutually exclusive nor jointly exhaustive, i.e., more than one relation, or even none,
may hold between any two intervals. In the following, we will consider only strict
intervals, consisting of two or more points (strict semantics).

The language of HS features a set of proposition letters AP , the Boolean connec-
tives ¬ and ∧, the logical constants > and ⊥ (respectively true and false), and a tem-
poral modality for each of the (non trivial) Allen’s relations, namely, 〈A〉,〈L〉,〈B〉,
〈E〉,〈D〉,〈O〉,〈A〉,〈L〉,〈B〉,〈E〉,〈D〉, and 〈O〉.

Formally, HS formulas are defined by the following grammar:

ψ ::= p | ¬ψ | ψ ∧ψ | 〈X〉ψ | 〈X〉ψ, with p ∈ AP .

In the following, we will make use of the standard abbreviations of propositional
logic, e.g., we will write ψ ∨ϕ for ¬ψ ∧¬ϕ , ψ → ϕ for ¬ψ ∨ϕ , and ψ ↔ ϕ for
(ψ → ϕ)∧ (ϕ → ψ). Moreover, for all X , dual universal modalities [X ]ψ and [X ]ψ
are respectively defined as ¬〈X〉¬ψ and ¬〈X〉¬ψ , as usual.

Finally, it can be easily shown that, when the strict semantics is assumed, all HS
modalities can be expressed in terms of modalities 〈A〉, 〈B〉,〈E〉, and the transposed
modalities 〈A〉,〈B〉,〈E〉 as follows:

〈L〉ψ ≡ 〈A〉〈A〉ψ 〈L〉ψ ≡ 〈A〉〈A〉ψ
〈D〉ψ ≡ 〈B〉〈E〉ψ ≡ 〈E〉〈B〉ψ 〈D〉ψ ≡ 〈B〉〈E〉ψ ≡ 〈E〉〈B〉ψ

〈O〉ψ ≡ 〈E〉〈B〉ψ 〈O〉ψ ≡ 〈B〉〈E〉ψ

Given any subset of Allen’s relations {X1, · · · ,Xn}, we denote by HS[X1, · · · ,Xn]
the fragment of HS that features modalities X1, · · · ,Xn only. As an example, we denote
by HS[A,A,B,B,E,E] the HS fragment that features modalities 〈A〉,〈A〉,〈B〉,〈B〉,
〈E〉, and 〈E〉 only (observe that this fragment contains an equivalent formula for every
HS formula).

HS can be viewed as a multi-modal logic with six primitive modalities, namely,
〈A〉, 〈B〉, 〈E〉, and their inverses. Accordingly, HS semantics can be defined over a
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multi-modal Kripke structure, here called abstract interval model, in which (strict)
intervals are treated as atomic objects and Allen’s relations as simple binary relations
between pairs of intervals.

Definition 1 An abstract interval model is a tuple A = (AP ,I,AI,BI,EI,σ), where:

– AP is a finite set of proposition letters;
– I is a possibly infinite set of atomic objects (worlds);
– AI, BI, EI are three binary relations over I;
– σ : I 7→ 2AP is a (total) labeling function, which assigns a set of proposition letters

to each world.

Intuitively, in the interval setting, I is a set of intervals, AI, BI, and EI are interpreted as
Allen’s interval relations A (meets), B (started-by), and E (finished-by), respectively,
and σ assigns to each interval the set of proposition letters that hold over it.

Given an abstract interval model A = (AP ,I,AI,BI,EI,σ) and an interval I ∈ I,
the truth of an HS formula over I is defined by induction on the structural complexity
of the formula as follows:

– A, I |= p iff p ∈ σ(I), for any proposition letter p ∈ AP ;
– A, I |= ¬ψ iff it is not true that A, I |= ψ;
– A, I |= ψ ∨ϕ iff A, I |= ψ or A, I |= ϕ;
– A, I |= 〈X〉ψ , for X ∈ {A,B,E}, iff there exists J ∈ I such that I XI J and A,J |= ψ;
– A, I |= 〈X〉ψ , for X ∈ {A,B,E}, iff there exists J ∈ I such that J XI I and A,J |= ψ .

Satisfiability and validity are defined in the usual way: an HS formula ψ is satis-
fiable if there exists an interval model A and a world (interval) I such that A, I |= ψ .
Moreover, ψ is valid, denoted as |= ψ , if A, I |= ψ for all worlds (intervals) I of any
interval model A .

2.2 Kripke structures and abstract interval models

Finite state systems are usually modelled as finite Kripke structures. In the following,
we first recall the definition of finite Kripke structure and then we define a suitable
mapping from this class of structures to abstract interval models that makes it possible
to specify properties of systems by means of HS formulas.

Definition 2 (Finite Kripke structure) A finite Kripke structure is a tuple K = (AP ,
W,δ ,µ,w0), where AP is a set of proposition letters, W is a finite set of states
(worlds), δ ⊆ W ×W is a left-total relation between pairs of states (accessibility
relation), µ : W 7→ 2AP a total labelling function, and w0 ∈W is the initial state.

For all w ∈W , µ(w) captures the set of proposition letters that hold at that state; δ
is the transition relation that constrains the evolution of the system over time. The
relation δ is left-total because the paths of K are meant to represent system compu-
tations.

A simple Kripke structure, consisting of two states only, is reported in the follow-
ing example. We will use it as a running example in the rest of the paper.
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Example 1 Figure 1 below depicts a two-state Kripke structure KEquiv (the initial state
is identified by a double circle). Despite its simplicity, it features an infinite number
of different (finite) paths. Formally, KEquiv is defined by the following quintuple:
({p,q},{v0,v1},{(v0,v0),(v0,v1),(v1,v0),(v1,v1)},µ,v0), where µ(v0) = {p} and
µ(v1) = {q}.

v0p
v1q

Fig. 1 The Kripke structure KEquiv.

Definition 3 (Track over K ) A track ρ over a finite Kripke structure K = (AP ,W,δ ,
µ,w0) is a finite sequence of states v0 · · ·vn, with n≥ 1, such that for all i∈{0, · · · ,n−
1}, (vi,vi+1) ∈ δ .

Let TrkK be the (infinite) set of all tracks over a finite Kripke structure K . For
any track ρ = v0 · · ·vn ∈ TrkK , we define:

– |ρ|= n+1;
– ρ(i) = vi;
– states(ρ) = {v0, · · · ,vn} ⊆W ;
– intstates(ρ) = {v1, · · · ,vn−1} ⊆W ;
– fst(ρ) = v0 and lst(ρ) = vn;
– ρ(i, j) = vi · · ·v j, 0≤ i < j ≤ |ρ|−1 is a subtrack of ρ;
– Pref(ρ) = {ρ(0, i) | 1≤ i≤ |ρ|−2} is the set of all proper prefixes of ρ;
– Suff(ρ) = {ρ(i, |ρ|−1) | 1≤ i≤ |ρ|−2} is the set of all proper suffixes of ρ .

If fst(ρ) = w0, where w0 is the initial state of K , ρ is said to be an initial track.
Notice that the length of tracks, prefixes, and suffixes is greater than 1, as they will
be mapped into strict intervals.

An abstract interval model (over TrkK ) can be naturally associated with a finite
Kripke structure by interpreting every track as an interval bounded by its first and last
states.

Definition 4 (Abstract interval model induced by K ) The abstract interval model
induced by a finite Kripke structure K = (AP ,W,δ ,µ,w0) is the abstract interval
model AK = (AP ,I,AI,BI,EI,σ), where:

– I= TrkK ,
– AI = {(ρ,ρ ′) ∈ I× I | lst(ρ) = fst(ρ ′)},
– BI = {(ρ,ρ ′) ∈ I× I | ρ ′ ∈ Pref(ρ)},
– EI = {(ρ,ρ ′) ∈ I× I | ρ ′ ∈ Suff(ρ)},
– σ : I 7→ 2AP such that for all ρ ∈ I,

σ(ρ) =
⋂

w∈states(ρ)
µ(w).
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In Definition 4, relations AI,BI, and EI are interpreted as Allen’s interval relations
A,B, and E, respectively. Moreover, according to the definition of σ , a proposition
letter p∈AP holds over ρ = v0 · · ·vn if and only if it holds over all the states v0, · · · ,vn
of ρ . This conforms to the homogeneity principle, according to which a proposition
letter holds over an interval if and only if it holds over all of its subintervals.

Satisfiability of an HS formula over a finite Kripke structure can be given in terms
of induced abstract interval models.

Definition 5 (Satisfiability of HS formulas over Kripke structures) Let K be a finite
Kripke structure, ρ be a track in TrkK , ψ be an HS formula. We say that the pair
(K ,ρ) satisfies ψ , denoted by K ,ρ |= ψ , if and only if it holds that AK ,ρ |= ψ .

We are now ready to formally state the model checking problem for HS over finite
Kripke structures: it is the problem of deciding whether K |= ψ .

Definition 6 Let K be a finite Kripke structure and ψ be an HS formula. We say that
K models ψ , denoted by K |= ψ , if and only if

for all initial tracks ρ ∈ TrkK , it holds that K ,ρ |= ψ.

We conclude the section by giving some examples of meaningful properties of
tracks that can be expressed in HS. To start with, we observe that the formula [B]⊥ can
be used to select all and only the tracks of length 2. Indeed, given any ρ with |ρ|= 2,
independently of K , it holds that K ,ρ |= [B]⊥, because ρ has not (strict) prefixes. On
the other hand, it holds that K ,ρ |= 〈B〉> if (and only if) |ρ|> 2. Modality 〈B〉 can
actually be used to constrain the length of an interval to be greater than, less than, or
equal to any value k. Let us denote k nested applications of 〈B〉 by 〈B〉k. It holds that
K ,ρ |= 〈B〉k> if and only if |ρ| ≥ k+ 2. Analogously, K ,ρ |= [B]k⊥ if and only if
|ρ| ≤ k+1. Let `(k) be a shorthand for [B]k−1⊥∧〈B〉k−2>. It holds that K ,ρ |= `(k)
if and only if |ρ|= k.

Let us consider now the finite Kripke structure KEquiv of Example 1, depicted in
Figure 1. For the sake of brevity, for any track ρ , we denote by ρn the track obtained
by concatenating n copies of ρ . The truth of the following statements can be easily
checked:

– KEquiv,(v0v1)
2 |= 〈A〉q;

– KEquiv,v0v1v0 6|= 〈A〉q;
– KEquiv,(v0v1)

2 |= 〈A〉 p;
– KEquiv,v1v0v1 6|= 〈A〉 p.

The above statements show that modalities 〈A〉 and 〈A〉 can be used to distinguish
between tracks that start or end at different states.

Modalities 〈B〉 and 〈E〉 can be exploited to distinguish between tracks encom-
passing a different number of iterations of a given loop. This is the case, for instance,
with the following statements:

– KEquiv,(v1v0)
3v1 |= 〈B〉

(
〈A〉 p∧〈B〉(〈A〉 p∧〈B〉〈A〉 p)

)
;

– KEquiv,(v1v0)
2v1 6|= 〈B〉

(
〈A〉 p∧〈B〉(〈A〉 p∧〈B〉〈A〉 p)

)
.
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Finally, HS makes it possible to distinguish between tracks ρ1 = v3
0v1v0 and ρ2 =

v0v1v3
0, which involve the same number of iterations of the same loops, but differ in

the order of loop occurrences: KEquiv,ρ1 |= 〈B〉(〈A〉q∧〈B〉〈A〉 p), but KEquiv,ρ2 6|=
〈B〉(〈A〉q∧〈B〉〈A〉 p).

Example 2 In Figure 2, we provide an example of a finite Kripke structure KSched that
models the behaviour of a scheduler serving three processes which are continuously
requesting the use of a common resource. The initial state is v0: no process is served
in that state. In any other state vi and vi, with i ∈ {1,2,3}, the i-th process is served
(this is denoted by the fact that pi holds in those states). For the sake of readability,
edges are marked either by ri, for request(i), or by ui, for unlock(i). Edge labels do
not have a semantic value, that is, they are neither part of the structure definition, nor
proposition letters; they are simply used to ease reference to edges. Process i is served
in state vi, then, after “some time”, a transition ui from vi to vi is taken; subsequently,
process i cannot be served again immediately, as vi is not directly reachable from
vi (the scheduler cannot serve the same process twice in two successive rounds). A
transition r j, with j 6= i, from vi to v j is then taken and process j is served. This
structure can easily be generalised to a higher number of processes.

v0
/0

v2p2
v1p1

v3p3

v1p1
v2p2

v3p3

r1

r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Fig. 2 The Kripke structure KSched .

We show how some meaningful properties to be checked over KSched can be ex-
pressed in HS. In all formulas, we force the validity of the considered property over all
legal computation sub-intervals by using modality [E] (all computation sub-intervals
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are suffixes of at least one initial track). Moreover, we will make use of the shorthand
wit≥2({p1, p2, p3}) for the formula:

(〈D〉 p1∧〈D〉 p2)∨ (〈D〉 p1∧〈D〉 p3)∨ (〈D〉 p2∧〈D〉 p3),

which states that there exist at least two sub-intervals such that pi holds over the
former and p j over the latter, with i, j ∈ {1,2,3} and j 6= i (such a formula can be
easily generalised to an arbitrary set of proposition letters and to any natural number
k). The truth of the following statements can be easily checked:

– KSched |= [E]
(
〈B〉5>→ wit≥2({p1, p2, p3})

)
;

– KSched 6|= [E]
(
〈B〉10>→ 〈D〉 p3

)
;

– KSched 6|= [E]
(
〈B〉7>→ 〈D〉 p1∧〈D〉 p2∧〈D〉 p3

)
.

The first formula states that in any suffix of an initial track of length greater than
or equal to 7 at least 2 proposition letters are witnessed. KSched satisfies the formula
since a process cannot be executed twice in a row. The second formula states that in
any suffix of an initial track of length at least 12 process 3 is executed at least once in
some internal states. KSched does not satisfy the formula since the scheduler can avoid
executing a process ad libitum. The third formula states that in any suffix of an initial
track of length greater than or equal to 9, p1, p2, p3 are all witnessed. The only way
to satisfy this property is to constrain the scheduler to execute the three processes in
a strictly periodic manner, but this is not the case.

3 The fundamental notion of BEk-descriptor

In the previous section, we have shown that, for any given finite Kripke structure
K , one can find a corresponding induced abstract interval model AK , featuring one
interval for each track of K . Since K has loops (each state must have at least one
successor), the number of its tracks, and thus the number of intervals of AK , is infinite.
In this section, we prove that, given a finite Kripke structure K and an HS formula ϕ ,
there exists a finite abstract interval model, which is equivalent to AK with respect to
the satisfiability of ϕ (in fact, of a class of HS formulas including ϕ).

We start with the definition of some basic notions. The first one is the notion of
BE-nesting depth of an HS formula.

Definition 7 (BE-nesting depth of an HS formula) Let ψ be an HS formula. The BE-
nesting depth of ψ , denoted by NestBE(ψ), is defined by induction on the structure
complexity of the formula as follows:

– NestBE(p) = 0, for any proposition letter p ∈ AP ;
– NestBE(¬ψ) = NestBE(ψ);
– NestBE(ψ ∧ϕ) = max{NestBE(ψ),NestBE(ϕ)};
– NestBE(〈B〉ψ) = NestBE(〈E〉ψ) = 1+NestBE(ψ);
– NestBE(〈X〉ψ) = NestBE(ψ), for X ∈ {A,A,B,E}.
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Making use of the notion of BE-nesting depth of a formula, we can define a
relation of k-equivalence over tracks.

Definition 8 Let K be a finite Kripke structure and ρ and ρ ′ be two tracks in TrkK .
We say that ρ and ρ ′ are k-equivalent if and only if, for every HS-formula ψ , with
NestBE(ψ) = k, K ,ρ |= ψ if and only if K ,ρ ′ |= ψ .

It can be easily proved that k-equivalence propagates downwards.

Proposition 1 Let K be a finite Kripke structure and ρ and ρ ′ be two tracks in TrkK .
If ρ and ρ ′ are k-equivalent, then they are h-equivalent, for all 0≤ h≤ k.

Proof Let us assume that K ,ρ |= ψ , with 0≤ NestBE(ψ)≤ k. Consider the formula
〈B〉k>, whose BE-nesting depth is equal to k. It trivially holds that either K ,ρ |=
〈B〉k> or K ,ρ |= ¬〈B〉k>. In the first case, we have that K ,ρ |= 〈B〉k>∧ψ . Since
NestBE

(
〈B〉k>∧ψ

)
= k, from the hypothesis, it immediately follows that K ,ρ ′ |=

〈B〉k>∧ψ , and thus K ,ρ ′ |= ψ . The other case can be dealt with in a symmetric
way. ut

We are now ready to introduce the notion of descriptor, which will play a funda-
mental role in the definition of finite abstract interval models.

Definition 9 (B-descriptor and E-descriptor) Let K = (AP ,W,δ , µ,w0) be a finite
Kripke structure. A B-descriptor (resp., E-descriptor) is a labelled tree D =(V ,E ,λ ),
where V is a finite set of vertices, E ⊆ V ×V is a set of edges, and λ : V 7→W ×
2W ×W is a node labelling function, that satisfies the following conditions:

1. for all (v,v′) ∈ E , with λ (v) = (vin,S,v f in) and λ (v′) = (v′in,S
′,v′f in), it holds that

S′ ⊆ S, vin = v′in, and v′f in ∈ S (resp., S′ ⊆ S, v f in = v′f in, and v′in ∈ S);
2. for all pairs of edges (v,v′),(v,v′′) ∈ E , if the subtree rooted in v′ is isomorphic to

the subtree rooted in v′′, then v′ = v′′ (here and in the following, we write subtree
for maximal subtree).

Condition (2) of Definition 9 simply states that no two subtrees, whose roots are
siblings, can be isomorphic (notice that λ is taken into account).

For X ∈ {B,E}, the depth of an X-descriptor (V ,E ,λ ) is the depth of the tree
(V ,E ). We call an X-descriptor of depth k ∈ N an Xk-descriptor. An X0-descriptor
D consists of its root only, which is denoted by root(D). A label of a node will
be referred to as a descriptor element. Hereafter, two descriptors will be considered
equal up to isomorphism. The following proposition holds.

Proposition 2 For all k ∈ N, there exists a finite number of possible Bk-descriptors
(resp., Ek-descriptors).

Proof Let us consider the case of Bk-descriptors (the case of Ek-descriptors is anal-
ogous). For k = 0, there are at most |W | · 2|W | · |W | pairwise distinct B0-descriptors.
As for the inductive step, let us assume h to be the number of pairwise distinct B-
descriptors of depth at most k. The number of Bk+1-descriptors is at most |W | ·2|W | ·
|W | ·2h (there are at most |W | ·2|W | · |W | possible choices for the root, which can have
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any subset of the h B-descriptors of depth at most k as subtrees). Moreover, by the
König’s lemma, they are all finite, because their depth is k+1 and the root has a finite
number of children (no two subtrees of the root can be isomorphic). ut

Proposition 2 provides an upper bound to the number of distinct Bk-descriptors (resp.,
Ek-descriptors), and thus to the number of nodes of each Bk+1-descriptor (resp., Ek+1-
descriptors), for k ∈ N, which is not elementary with respect to |W | and k, |W | being
the exponent and k the height of the exponential tower. As a matter of fact, this is a
very rough upper bound, as some descriptors may not have depth k+1 and some of
the “generated” trees might not even fulfil the definition of descriptor.

We show now how B-descriptors and E-descriptors can be exploited to extract
relevant information from the tracks of a finite Kripke structure to be used in model
checking. Let K be a finite Kripke structure and ρ be a track in TrkK . For any k ≥ 0,
the label of the root of both the Bk-descriptor and Ek-descriptor for ρ is the triple
(fst(ρ), intstates(ρ), lst(ρ)). The root of the Bk-descriptor has a child for each prefix
ρ ′ of ρ , labelled with (fst(ρ ′), intstates(ρ ′), lst(ρ ′)). Such a construction is then iter-
atively applied to the children of the root until either depth k is reached or a track of
length 2 is being considered on a node. The Ek-descriptor is built in a similar way by
considering the suffixes of ρ .

In general, B- and E-descriptors do not convey enough information to determine
which track they were built from (this will be clear shortly). However, they can be
exploited to determine which HS formulas are satisfied by the track from which they
have been built:

– to check satisfiability of proposition letters, they keep information about initial,
final, and internal states of the track;

– to deal with 〈A〉ψ and 〈A〉ψ formulas they store the final and initial states of the
track;

– to deal with 〈B〉ψ formulas, the B-descriptor keeps information about all the
prefixes of the track;

– to deal with 〈E〉ψ formulas, the E-descriptor keeps information about all the
suffixes of the track;

– no additional information is needed for 〈B〉ψ and 〈E〉ψ formulas.

Let K be a finite Kripke structure. The Bk-descriptor (resp., Ek-descriptor) for a
track ρ in TrkK is formally defined as follows.

Definition 10 Let K be a finite Kripke structure, ρ be a track in TrkK , and k ∈ N.
The Bk-descriptor (resp., Ek-descriptor) for ρ is inductively defined as follows:

– for k = 0, the Bk-descriptor (resp., Ek-descriptor) for ρ is the tree D = (root(D), /0,
λ ), where

λ (root(D)) = (fst(ρ), intstates(ρ), lst(ρ));

– for k > 0, the Bk-descriptor (resp., Ek-descriptor) for ρ is the tree D = (V ,E ,λ ),
where

λ (root(D)) = (fst(ρ), intstates(ρ), lst(ρ)),

which satisfies the following conditions:
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1. for each prefix (resp., suffix) ρ ′ of ρ , there exists v∈V such that (root(D),v)∈
E and the subtree rooted in v is the Bk−1-descriptor (resp., Ek−1-descriptor)
for ρ ′;

2. for each vertex v ∈ V such that (root(D),v) ∈ E , there exists a prefix (resp.,
suffix) ρ ′ of ρ such that the subtree rooted in v is the Bk−1-descriptor (resp.,
Ek−1-descriptor) for ρ ′;

3. for all pairs of edges (root(D),v′),(root(D),v′′) ∈ E , if the subtree rooted in
v′ is isomorphic to the subtree rooted in v′′, then v′ = v′′.

It can be easily checked that any Bk-descriptor (resp., Ek-descriptor) for some track
of some finite Kripke structure satisfies the conditions of Definition 9 (in particular,
condition (1)), but not vice versa.

Consider, for instance, the B1-descriptor reported in Figure 3. It is built on a set
of states W including at least states v0,v1,v2, and v3, and it satisfies both conditions
of Definition 9. However, no track of a finite Kripke structure can be described by
it, as no track may feature two prefixes to associate with the first two children of the
root.

(v0,{v1,v2},v3)

(v0, /0,v1)(v0,{v1},v2)(v0,{v2},v1)

Fig. 3 An example of a B1-descriptor devoid of a corresponding track (in any Kripke structure).

Example 3 In Figure 4, we depict the B2- and E2-descriptors for the track v0v1v0v0v1
of the Kripke structure KEquiv of Figure 1.

Example 4 In Figure 5, we show the B2-descriptor for the track ρ = v0v1v0v0v0v0v1
of KEquiv. It is worth noticing that there exist two distinct prefixes of track ρ , that
is, the tracks ρ ′ = v0v1v0v0v0v0 and ρ ′′ = v0v1v0v0v0, which have the same B1-
descriptor. Since, according to Definition 9, no tree can occur more than once as a
subtree of the same node (in this example, the root), in the B2-descriptor for ρ pre-
fixes ρ ′ and ρ ′′ are represented by the same tree (the first subtree of the root on the
left). In general, it holds that the root of a descriptor for a track with h proper prefixes
does not necessarily have h children.

Example 5 This example shows that not all of the Bk-descriptors that can be gener-
ated from the set of states of a given finite Kripke structure are Bk-descriptors for
some track of that structure. (The same holds for Ek-descriptors.) Let us consider the
finite Kripke structure K and the B1-descriptor DB1 respectively depicted on the left
and the right of Figure 6. By inspecting DB1 , it can be easily checked that it can be
the B1-descriptor for tracks of the form v0vh

1v2
3, with h ≥ 2, only. However, no track

of this form can be obtained from the unravelling of K .
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(v0,{v0,v1},v1)

(v0, /0,v1)(v0,{v1},v0)

(v0, /0,v1)

(v0,{v0,v1},v0)

(v0, /0,v1)(v0,{v1},v0)

(a) B2-descriptor for the track v0v1v0v0v1 of KEquiv.

(v0,{v0,v1},v1)

(v0, /0,v1)(v0,{v0},v1)

(v0, /0,v1)

(v1,{v0},v1)

(v0, /0,v1)(v0,{v0},v1)

(b) E2-descriptor for the track v0v1v0v0v1 of KEquiv.

Fig. 4 B2- and E2-descriptors for the track v0v1v0v0v1 of KEquiv.

(v0,{v0,v1},v1)

(v0, /0,v1)(v0,{v1},v0)

(v0, /0,v1)

(v0,{v0,v1},v0)

(v0, /0,v1)(v0,{v1},v0)

(v0,{v0,v1},v0)

(v0, /0,v1)(v0,{v1},v0)(v0,{v0,v1},v0)

Fig. 5 The B2-descriptor for the track v0v1v0v0v0v0v1 of KEquiv.

v1

v0

v2

v3

(a) A Kripke structure K .

(v0,{v1,v3},v3)

(v0, /0,v1)(v0,{v1},v1)(v0,{v1},v3)

(b) DB1 : a B1-descriptor not correspond-
ing to any of the tracks of K in figure 6(a).

Fig. 6 Not all of the Bk-descriptors over W are descriptors for some track of K = (AP , W,δ ,µ,w0).
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To check an HS formula against a given finite Kripke structure we actually need
to account for both the started-by and finished-by relations at the same time. To this
end, we introduce BEk-descriptors for tracks. Given a finite Kripke structure K and
a track ρ in TrkK , the BEk-descriptor for ρ can be obtained from a suitable merging
of its Bk-descriptor and Ek-descriptor. It can be viewed as a sort of “product” of the
Bk-descriptor and the Ek-descriptor for ρ , and it is formally defined as follows:

Definition 11 Let K = (AP ,W,δ , µ,w0) be a finite Kripke structure, ρ be a track in
TrkK , and k ∈ N. The BEk-descriptor for ρ is a labelled tree D = (V ,E ,λ ), where
V is a finite set of vertices, E = E B∪E E , with E B ⊆ V ×V the set of “B-edges”,
E E ⊆ V ×V the set of “E-edges”, and E B∩E E = /0, and λ : V 7→W × 2W ×W ,
which is inductively defined on k ∈ N as follows:

– for k = 0, the BEk-descriptor for ρ is D = (root(D), /0,λ ), where

λ (root(D)) = (fst(ρ), intstates(ρ), lst(ρ)).

– for k > 0, the BEk-descriptor for ρ is D = (V ,E ,λ ) with

λ (root(D)) = (fst(ρ), intstates(ρ), lst(ρ))

which satisfies the following conditions:
1a. for each prefix ρ ′ of ρ , there exists v ∈ V such that (root(D),v) ∈ E B and the

subtree rooted in v is the BEk−1-descriptor for ρ ′;
1b. for each vertex v ∈ V such that (root(D),v) ∈ E B, there exists a prefix ρ ′ of

ρ such that the subtree rooted in v is the BEk−1-descriptor for ρ ′;
1c. for all pairs of edges (root(D),v′),(root(D),v′′) ∈ E B, if the subtree rooted in

v′ is isomorphic to the subtree rooted in v′′, then v′ = v′′;
2a. for each suffix ρ ′′ of ρ , there exists v ∈ V such that (root(D),v)∈ E E and the

subtree rooted in v is the BEk−1-descriptor for ρ ′′;
2b. for each vertex v ∈ V such that (root(D),v) ∈ E E , there exists a suffix ρ ′′ of

ρ such that the subtree rooted in v is the BEk−1-descriptor for ρ ′′;
2c. for all pairs of edges (root(D),v′),(root(D),v′′) ∈ E E , if the subtree rooted in

v′ is isomorphic to the subtree rooted in v′′, then v′ = v′′.

From Definition 11, it easily follows that for all (v,v′) ∈ E B, with λ (v) = (vin,S,v f in)
and λ (v′) = (v′in,S

′,v′f in), S′ ⊆ S, vin = v′in, and v′f in ∈ S, and for all (v,v′) ∈ E E , with
λ (v) = (vin,S,v f in) and λ (v′) = (v′in,S

′,v′f in), S′ ⊆ S, v f in = v′f in and v′in ∈ S.

Example 6 In Figure 7, with reference to the finite Krikpe structure KEquiv of Fig-
ure 1, we give an example of a BE2-descriptor. B-edges are represented by solid
lines, while E-edges are represented by dashed lines. It is worth pointing out that
the BE2-descriptor of Figure 7 turns out to be the BE2-descriptor for both the track
ρ = v0v1v3

0v1 and the track ρ ′ = v0v1v4
0v1 (and many others). As we will see very

soon, this is not an exception, but the rule: different tracks of a finite Kripke structures
are described by the same BE-descriptor. Notice also that it features two isomorphic
subtrees for the same node (the root). They both consist of a single node, labelled
with (v0, /0,v1). However, this does not violate Definition 11 since one of them is
connected to the parent via a B-edge and the other via an E-edge.
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Remark 1 It can be easily checked that the BEk−1-descriptor DBEk−1 for a track ρ can
be obtained from the BEk-descriptor DBEk for such a track by removing the nodes at
depth k (if any) and the isomorphic subtrees possibly resulting from such a removal
(see condition (1c) of Definition 11). In the following, we will sometimes denote
DBEk−1 by DBEk |k−1 to make it evident the way in which it is obtained.

Bk and Ek-descriptors can be easily recovered from BEk ones. The Bk-descriptor
DBk for a track ρ can be obtained from the BEk-descriptor DBEk for ρ by pruning
it in such a way that only those vertices of DBEk which are connected to the root
via paths consisting of B-edges only are maintained (the set of edges of DBk and its
labelling function can be obtained by restricting those of DBEk to the nodes of DBk ).
The Ek-descriptor DEk of ρ can be obtained in a similar way.

We focus now our attention on the relationships between the tracks obtained from
the unravelling of a finite Kripke structure and their BEk-descriptors. A key observa-
tion is that, even though the number of tracks of a finite Kripke structure K is infinite,
for any k ∈ N, the set of BEk-descriptors for its tracks is finite. This is an immediate
consequence of Definition 11 and Proposition 2. Thus, at least one BEk-descriptor
must be the BEk-descriptor for infinitely many tracks. BEk-descriptors naturally in-
duce an equivalence relation of finite index over the set of tracks of a finite Kripke
structure, that we call k-descriptor equivalence relation.

Definition 12 Let K be a finite Kripke structure, ρ,ρ ′ be two tracks in TrkK , and
k ∈ N. We say that ρ and ρ ′ are k-descriptor equivalent, denoted by ρ ∼k ρ ′, if and
only if the BEk-descriptors for ρ and ρ ′ coincide.

The equivalence class of a track ρ will be denoted by [ρ]∼k . In the next section (The-
orem 1), we will prove that, for any given pair of tracks ρ,ρ ′ ∈ TrkK , if ρ ∼k ρ ′, then
ρ and ρ ′ are k-equivalent (see Definition 8).

For all k ∈ N, by exploiting the fact that the set of BEk-descriptors for the tracks
of a finite Kripke structure K is finite (or, equivalently, the equivalence relation ∼k
has a finite index), we can associate a finite abstract interval model with K , called the
quotient induced abstract interval model of depth k, as follows.

Let K be a finite Kripke structure, TrkK be the set of all its tracks, and k ∈ N.
Each class of∼k is identified by a BEk-descriptor DBEk , and it consists of all and only
those tracks in TrkK which have DBEk as their BEk-descriptor. We denote by k -Desc
the set of all BEk-descriptors DBEk such that there exists at least one track ρ in TrkK
which is described by DBEk (we say that DBEk is witnessed by a track in TrkK ).

Allen’s relations A (meets), B (started-by), and E (finished-by) over k -Desc can
be defined as follows.

Definition 13 (Allen’s relations A, B, E over k -Desc) Let DBEk ,D
′
BEk

be two BEk-
descriptors in k -Desc, with DBEk = (V ,E B∪E E ,λ ) and D ′BEk

= (V ′,E ′B∪E ′E ,λ ′).
We say that:

1.
(

DBEk ,D
′
BEk

)
∈ ADesc iff λ

(
root(DBEk )

)
= (vin,S,v f in), λ ′

(
root(D ′BEk

)
)
= (v′in,

S′,v′f in), and v f in = v′in;
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2.
(

DBEk ,D
′
BEk

)
∈ BDesc iff there exists v ∈ V such that

(
root(DBEk),v

)
∈ E B and

the subtree of DBEk rooted in v is isomorphic to D ′BEk
|k−1;

3.
(

DBEk ,D
′
BEk

)
∈ EDesc iff there exists v ∈ V such that

(
root(DBEk),v

)
∈ E E and

the subtree of DBEk rooted in v is isomorphic to D ′BEk
|k−1.

Definition 13 can be read as follows. Item 1 states that, whenever the third com-
ponent (final state) of the label of the root of a BEk-descriptor is equal to the first
component (initial state) of the label of the root of another BEk-descriptor, the two
BEk-descriptor are related by ADesc. This amounts to say that any pair of tracks ρ,ρ ′,
which are described respectively by the former and latter BEk-descriptor, are such
that lst(ρ) = fst(ρ ′), and thus Allen relation A holds between ρ and ρ ′. Item 2 states
that, whenever there exists a subtree of DBEk , linked to the root via a B-edge, which
is isomorphic to the tree obtained from D ′BEk

by removing the nodes at depth k (if
any) and the isomorphic subtrees possibly resulting from such a removal (this is the
case, for instance, with subtrees of D ′BEk

that differ on the labels of nodes at depth k
only), DBEk and DBEk are related by BDesc. As matter of fact, several tracks may be
described by the same BEk-descriptor DBEk . However, whenever a track is described
by (the tree obtained from the pruning of) D ′BEk

, it is a prefix of at least one of the
tracks described by DBEk . Item 3 is analogous to item 2.

The generalisation of Definition 13 to pairs of descriptors belonging to k -Desc
and k′ -Desc, with k 6= k′, is straightforward.

We are now ready to formally define the notion of quotient induced abstract in-
terval model of depth k.

Definition 14 (Quotient induced abstract interval model of depth k) Let K = (AP ,W,
δ ,µ,v0) be a finite Kripke structure, ϕ be an HS formula with BE-nesting depth
k ∈ N, and

Ω =
⋃

h≤k

h -Desc .

The quotient induced abstract interval model of depth k is the finite abstract interval
model A/∼k = (AP ,Ω ,ADesc,BDesc,EDesc,σ), where the valuation function σ : Ω 7→
2AP is such that for all DBE ∈Ω , with λ (root(DBE)) = (vin,S,v f in),

σ(DBE) = µ(vin)∩
⋂

v∈S

µ(v)∩µ(v f in).

4 Decidability of model checking for HS over finite Kripke structures

In this section, we prove the decidability of the model checking problem for HS over
finite Kripke structures (under the homogeneity assumption). The proof makes an
essential use of quotient induced abstract interval models. Formally, we show that,
for any given finite Kripke structure K , the (finite) quotient induced abstract interval
model A/∼k and the (infinite) abstract interval model AK , induced by K , are equiva-
lent with respect to the satisfiability of HS formulas with nesting depth at most k. In
addition, we show that the notions of k-equivalence and k-descriptor equivalence are
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not equivalent (if two tracks are k-descriptor equivalent, they are also k-equivalent,
but not vice versa), and we show how to weaken the notion of k-descriptor equiva-
lence to perfectly match k-equivalence.

4.1 The decidability proof

As a preliminary step, we prove a right extension property. Let K be a finite Kripke
structure, k ∈ N, and ρ and ρ ′ be two tracks in TrkK with the same BEk-descriptor
(and thus, in particular, lst(ρ) = lst(ρ ′)). The property states that if we extend ρ
and ρ ′ “to the right” with the same track ρ in TrkK , with (lst(ρ), fst(ρ))∈ δ , then the
resulting tracks ρ ·ρ and ρ ′ ·ρ (both belonging to TrkK ) have the same BEk-descriptor
as well. An analogous property holds for the extension of the two tracks ρ and ρ ′ “to
the left”, which guarantees that ρ · ρ and ρ · ρ ′ have the same BEk-descriptor (left
extension property). In the proof, we will exploit the fact that if two tracks in TrkK
have the same BEk+1-descriptor, then they also have the same BEk-descriptor (see
Remark 1).

Proposition 3 (Right extension property) Let K = (AP ,W,δ ,µ,v0) be a finite Kripke
structure and let ρ and ρ ′ be two tracks in TrkK with the same BEk-descriptor. For
any track ρ in TrkK , with (lst(ρ), fst(ρ)) ∈ δ , the two tracks ρ ·ρ and ρ ′ ·ρ belong
to TrkK and have the same BEk-descriptor.

Proof The proof is by induction on k ∈ N.

– Base case (k = 0). Since ρ and ρ ′ have the same BE0-descriptor, it holds that
fst(ρ) = fst(ρ ′), intstates(ρ) = intstates(ρ ′), and lst(ρ) = lst(ρ ′) and thus
– fst(ρ ·ρ) = fst(ρ) = fst(ρ ′) = fst(ρ ′ ·ρ);
– lst(ρ ·ρ) = lst(ρ ′ ·ρ) = lst(ρ);
– intstates(ρ ·ρ) = intstates(ρ)∪{lst(ρ), fst(ρ)}∪ intstates(ρ) =

intstates(ρ ′)∪{lst(ρ ′), fst(ρ)}∪ intstates(ρ) = intstates(ρ ′ ·ρ)
This allows us to conclude that ρ ·ρ and ρ ′ ·ρ have the same BE0-descriptor.

– Inductive step (k> 0). Let DBEk =(V ,E B∪E E ,λ ) and DBEk
′
=(V

′
,E B

′∪E E
′
,λ
′
)

be respectively the BEk-descriptors of ρ · ρ and ρ ′ · ρ . We prove that DBEk and
DBEk

′ are equal (up to isomorphism).
As for the roots, the same argument we used for the base case can be exploited to
prove that λ (root(DBEk)) = λ ′(root(DBEk

′
)) (they have the same labelling).

Let us consider now a node v ∈ V such that (root(DBEk),v) ∈ E B (resp., E E ). We
show that there exists a node v′ ∈ V

′
such that (root(DBEk

′
),v′)∈ E B

′
(resp., E E

′
)

and the subtrees rooted in v and in v′ are isomorphic.
– Let us consider the case

(
root(DBEk),v

)
∈ E B. By definition of BEk-descriptor,

there exists a prefix ρ ′′ of ρ ·ρ such that the subtree rooted in v is the BEk−1-
descriptor of ρ ′′. Three cases are possible.
• Case 1: ρ ′′ is a (proper) prefix of ρ . Since ρ and ρ ′ have the same BEk-

descriptor, there is a prefix ρ ′′′ of ρ ′ with the same BEk−1-descriptor as
ρ ′′.
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• Case 2: ρ ′′ = ρ . Since ρ and ρ ′ have the same BEk-descriptor, they have
also the same BEk−1-descriptor (see Remark 1).

• Case 3: ρ ′′ = ρ · ρ̃ , where ρ̃ is a prefix of ρ . As pointed out in Remark
1, we know that ρ and ρ ′ have the same BEh-descriptor, for all h ≤ k.
Then, by the inductive hypothesis, ρ · ρ̃ and ρ ′ · ρ̃ have the same BEk−1-
descriptor.

In all three cases, by Definition 11, we can conclude that there exists a node
v′ ∈ V

′
such that (root(DBEk

′
),v′) ∈ E B

′
and the subtrees rooted in v and in v′

are isomorphic.
– Now, let (root(DBEk),v) ∈ E E . By definition of BEk-descriptor, there exists a

suffix ρ ′′ of ρ ·ρ such that the subtree rooted in v is the BEk−1-descriptor of
ρ ′′. We distinguish two cases.
• Let ρ ′′ be a proper suffix of ρ or ρ ′′ = ρ . Then, ρ ′′ is a suffix of both

ρ ·ρ and ρ ′ ·ρ . Hence, the same BEk−1-descriptor is rooted both in v and
in v′, for some v′ ∈V ′ such that (root(DBEk

′
),v′) ∈ E E

′
.

• Let ρ ′′ = ρ̃ ·ρ , where ρ̃ is a suffix of ρ . If |ρ̃|= 1, ρ ′′ is a suffix of both
ρ ·ρ and ρ ′ ·ρ , as lst(ρ) = lst(ρ ′). Let |ρ̃| ≥ 2. Since by hypothesis ρ and
ρ ′ have the same BEk-descriptor, there is a subtree of depth k−1 in this
descriptor which is associated both with ρ̃ and with a suffix of ρ ′, say,
ρ̃ ′. By inductive hypothesis, ρ ′′ = ρ̃ ·ρ and ρ̃ ′ ·ρ have the same BEk−1-
descriptor. In both cases (|ρ̃|= 1 and |ρ̃| ≥ 2), it immediately follows that
there exists a node v′ ∈ V

′
, which is the root of the subtree for lst(ρ ′) ·ρ

(resp., ρ̃ ′ ·ρ), such that (root(DBEk
′
),v′) ∈ E E

′
and the subtrees rooted in

v and in v′ are isomorphic.
To sum up, we have shown that (i) λ (root(DBEk)) = λ ′(root(DBEk

′
)), (ii) for each

prefix of ρ ·ρ there exists a prefix of ρ ′ ·ρ with the same BEk−1-descriptor, and
(iii) for each suffix of ρ · ρ there exists a suffix of ρ ′ · ρ with the same BEk−1-
descriptor. The converse of conditions (ii) and (iii) holds by symmetry. This al-
lows us to conclude that DBEk and DBEk

′ are isomorphic.
ut

The next theorem proves that k-descriptor equivalent tracks are k-equivalent.

Theorem 1 (k-descriptor equivalence implies k-equivalence) Let ψ be an HS for-
mula, with NestBE(ψ) = k, K be a finite Kripke structure, ρ and ρ ′ be two tracks in
TrkK , and AK be the abstract interval model induced by K . If ρ and ρ ′ have the same
BEk-descriptor, then

AK ,ρ |= ψ ⇐⇒ AK ,ρ ′ |= ψ

Proof The proof is by induction on the structural complexity of ψ .

– ψ = p: AK ,ρ |= p iff p ∈ ⋂w∈states(ρ) µ(w). Since ρ and ρ ′ have the same BEk-
descriptor, they consist of occurrences of the same set of states of K , that is,
states(ρ) = states(ρ ′), witnessed by the root of the BEk-descriptor. Therefore,
AK ,ρ |= p iff AK ,ρ ′ |= p.

– ψ = ¬ϕ: AK ,ρ |= ψ iff AK ,ρ 6|= ϕ iff (by inductive hypothesis) AK ,ρ ′ 6|= ϕ iff
AK ,ρ ′ |= ψ .
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– ψ = ϕ1∧ϕ2: let us assume that NestBE(ϕ1) = NestBE(ψ) = k and NestBE(ϕ2)≤
k. By the inductive hypothesis, AK ,ρ |= ϕ1 iff AK ,ρ ′ |= ϕ1. Since any pair of
tracks that have the same BEk-descriptor have also the same BEk′ -descriptor, for
all k′≤ k (see Remark 1), by the inductive hypothesis, AK ,ρ |=ϕ2 iff AK ,ρ ′ |=ϕ2.
Hence, if AK ,ρ |= ψ , then AK ,ρ |= ϕ1 and AK ,ρ |= ϕ2, and thus AK ,ρ ′ |= ψ . As
for the converse, if AK ,ρ ′ |= ψ , then AK ,ρ ′ |= ϕ1 and AK ,ρ ′ |= ϕ2, and thus
AK ,ρ |= ψ .

– ψ = 〈A〉ϕ: AK ,ρ |= ψ iff there exists ρ ∈ TrkK such that lst(ρ) = fst(ρ) and
AK ,ρ |=ϕ . Analogously, AK ,ρ ′ |=ψ iff there exists ρ ′ ∈TrkK such that lst(ρ ′) =
fst(ρ ′) and AK ,ρ ′ |= ϕ . Since ρ and ρ ′ have the same BEk-descriptor, it holds that
lst(ρ) = lst(ρ ′). Hence, we can choose ρ = ρ ′, so that AK ,ρ |= ϕ iff AK ,ρ ′ |= ϕ .

– ψ = 〈A〉ϕ: analogous to the previous case.
– ψ = 〈B〉ϕ: NestBE(ψ) = 1+NestBE(ϕ) = k. If AK ,ρ |= ψ , then there exists ρ ∈

Pref(ρ) such that AK ,ρ |= ϕ . Let DBEk = (V ,E B∪E E ,λ ) be the BEk-descriptor
for ρ . By definition of BEk-descriptor, there exists an edge (root(DBEk),v) ∈ E B
such that the subtree rooted in v is the BEk−1-descriptor for ρ . Since, by hypoth-
esis, ρ and ρ ′ have the same BEk-descriptor, there exists a prefix ρ ′ of ρ ′ such
that the subtree rooted in v is the BEk−1-descriptor for ρ ′. Now, by the inductive
hypothesis, AK ,ρ ′ |= ϕ , and thus AK ,ρ ′ |= ψ . Exactly the same argument allows
us to conclude that if AK ,ρ ′ |= ψ , then AK ,ρ |= ψ .

– ψ = 〈B〉ϕ: if AK ,ρ |= ψ , then there exists ρ in TrkK such that ρ ∈ Pref(ρ) and
AK ,ρ |= ϕ . We can express ρ as ρ · ρ̃ for some ρ̃ in TrkK such that (lst(ρ), fst(ρ̃))
∈ δ . Now, since ρ and ρ ′ have the same BEk-descriptor, it holds that lst(ρ) =
lst(ρ ′). By Proposition 3, the tracks ρ = ρ · ρ̃ and ρ ′ · ρ̃ have the same BEk-
descriptor. By the inductive hypothesis, AK ,ρ ′ · ρ̃ |= ϕ , and thus AK ,ρ ′ |= ψ .
Exactly the same argument allows us to conclude that if AK ,ρ ′ |=ψ , then AK ,ρ |=
ψ .

– ψ = 〈E〉ϕ and ψ = 〈E〉ϕ are symmetric to ψ = 〈B〉ϕ and ψ = 〈B〉ϕ , respec-
tively.

ut

Since k-descriptor equivalence preserves satisfiability of HS formulas, testing
whether K ,ρ |= ψ can be reduced to checking whether A/∼k, [ρ]∼k |= ψ .

Corollary 1 Let ψ be an HS formula, with NestBE(ψ) ≤ k, K be a finite Kripke
structure, and ρ be a track in TrkK . It holds that

K ,ρ |= ψ ⇐⇒ A/∼k, [ρ]∼k |= ψ.

Proof By Definition 5, K ,ρ |= ψ if and only if AK ,ρ |= ψ . The proof of the left-
to-right implication (if AK ,ρ |= ψ , then A/∼k, [ρ]∼k |= ψ) is by induction on the
structural complexity of ψ , and it basically makes use of Definition 13 and Definition
14. The proof of the opposite implication is straightforward. ut

By exploiting Corollary 1, we can reduce the model checking problem for HS
against finite Kripke structures to the model checking problem for multi-modal, finite
Kripke structures, whose nodes are all possible (witnessed) descriptors, with depth up
to k, and there is a distinct accessibility relation for each one of the HS modalities A,



Checking Interval Properties of Computations 21

B, E, A, B, and E. Since the model checking problem for multi-modal, finite Kripke
structures and formulas is decidable (in [9,13], it has been shown that the model
checking problem for multi-modal Kripke structures and formulas is decidable in
polynomial time with respect to both the size of the Kripke structure and the length
of the formula), decidability of the model checking problem for HS against finite
Kripke structures immediately follows.

Theorem 2 The model checking problem for HS against finite Kripke structures is
decidable (with a non-elementary algorithm).

Proof Let K be a finite Kripke structure and let ϕ be the HS formula to check, with
NestBE(ϕ) = k. We first prove that, in order to select the BEh-descriptors, with 0 ≤
h ≤ k, witnessed by some track in K , we can restrict ourselves to tracks devoid of
prefixes associated with the same BEk-descriptor.

Let ρ ∈ TrkK and let ρ ′,ρ ′′ be two prefixes of ρ , with |ρ ′′| < |ρ ′| ≤ |ρ| (notice
that we allow ρ ′ to coincide with ρ). Moreover, let ρ = ρ ′ · ρ̃ , for some ρ̃ with |ρ̃| ≥ 1
(in case |ρ| = |ρ ′|, ρ = ρ ′). If the BEk-descriptors for ρ ′ and ρ ′′ are the same, then,
by Proposition 3, it holds that the BEk-descriptor for ρ ′′ · ρ̃ is equal to the one for
ρ ′ · ρ̃ = ρ . Hence, we can safely replace ρ by the k-descriptor equivalent shorter
track ρ ′′ · ρ̃ . We can iterate such a contraction process until there are no more pairs of
prefixes with the same BEk-descriptor1.

Proposition 2 provides a non-elementary upper bound α to the number of distinct
BEh-descriptors, with 0 ≤ h ≤ k (as well as to their size), with respect to the size of
K and the nesting depth k of ϕ . A bound on the length of the tracks in TrkK that we
need to consider in order to determine the witnessed BEh-descriptors in an effective
way immediately follows (it is equal to 1+α , where 1 must be added because the
length of any track is greater than or equal to 2).

Hence, in order to generate all the witnessed BEh-descriptors, with 0 ≤ h ≤ k, it
suffices to list, for all states v of K , all the tracks starting from v, ordered by length,
until the above bound is reached, and then to build the corresponding BEh-descriptors,
with 0≤ h≤ k.

This allows us to conclude that the derived model checking problem for multi-
modal, finite Kripke structures has to be solved over a model whose size has a non-
elementary upper bound. ut

4.2 k-equivalence and corresponding BEk-descriptors

In the previous section (Theorem 1), we proved that k-descriptor equivalence is a suf-
ficient condition for k-equivalence, that is, if two tracks are k-descriptor equivalent,
then they are k-equivalent. However, it is not a necessary one. To show that the con-
verse does not hold, consider once more the finite Kripke structure KEquiv in Figure

1 As a matter of fact, the same argument can be given by referring to suffixes instead of prefixes.
Anyway, as one can easily see, making use of both the right extension and the left extension properties
does not allow us to improve the claimed bound.
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1. The tracks v5
0 and v6

0 of KEquiv have the same BE2-descriptor, but not the same BE3-
descriptor, yet there exists no formula ψ , with NestBE(ψ) ≤ 3, such that K ,v6

0 |= ψ
and K ,v5

0 6|= ψ . Intuitively, since these two tracks are made of a different number of
occurrences of the same state, the only way to distinguish them is by means of the
formula 〈B〉4>, or similar ones, for which K ,v6

0 |= 〈B〉4> and K ,v5
0 6|= 〈B〉4>, but

these formulas have a BE-nesting depth higher than 3.
In the following, we introduce the notion of corresponding BEk-descriptors, and

we prove that it provides a necessary and sufficient condition for k-equivalence. Such
a notion allows us to rephrase equivalence between tracks in terms of more abstract
characteristics of their descriptors, in a stronger way than Theorem 1. As an example,
by exploiting the correspondence among descriptors it defines and the statement of
Theorem 3 below, it will be possible to prove that v5

0 and v6
0 are actually 3-equivalent.

We start by providing some definitions.

Definition 15 Let K = (AP ,W,δ ,µ,w0) be a finite Kripke structure, DBEk be a BEk-
descriptor associated with a track of K , and (vin,S,v f in) be the label of the root of
DBEk .

– Let ρ be a track of K with fst(ρ) = v f in. We say that the BEk-descriptor for ρ is
an A-successors of DBEk .

– Let ρ̃ be a track of K associated with DBEk and ρ be a track of K with (v f in, fst(ρ))
∈ δ . We say that the BEk-descriptor for ρ̃ ·ρ is a B-successor of DBEk

2.

The definitions of A-successors and E-successors can easily be obtained by sym-
metry. Since, in a finite Kripke structure, every state has (at least) a successor with
respect to δ , BEk-descriptors always have both A-successors and B-successors. On
the contrary, BEk-descriptors may have no A-successors or E-successors, because a
state does not necessarily have a predecessor with respect to δ .

The set of descriptors witnessed by some tracks of K and their successor relations,
corresponding to the various HS modalities, allow us to define a graph structure.

Definition 16 (Graph G of the BE-descriptors for the tracks of K ) Let K = (AP ,W,
δ ,µ,w0) be a finite Kripke structure. The graph G of the BE-descriptors of depth
at most k, with k ≥ 0, witnessed by some tracks of K , is a pair (V G ,E G ), where
E G ⊆ V G ×V G is a set of labelled edges, such that:

– V G contains a node for each BEh-descriptor, with 0≤ h≤ k, witnessed by some
track of K ;

– edges in E G are labelled with X ∈ {A,B,E,A,B,E} according to the following
criteria:
– (v,v′) ∈ E G is an X-edge, with X ∈ {A,A,B,E}, whenever the descriptor of

v′ is an X-successor of the descriptor of v;
– (v,v′) ∈ E G is a B-edge whenever the descriptors associated with v and v′ are

DBEh and D ′BEh−1
, respectively (for some h≥ 1), and D ′BEh−1

is isomorphic to
a subtree of DBEh connected to the root of DBEh via a B-edge;

2 If a track ρ was considered in place of ρ̃ , with the same BEk-descriptor DBEk as ρ̃ , by the right
extension property, both ρ̃ ·ρ and ρ ·ρ are associated with the same descriptor as well.
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– (v,v′) ∈ E G is an E-edge whenever the descriptors associated with v and v′

are DBEh and D ′BEh−1
, respectively (for some h≥ 1), and D ′BEh−1

is isomorphic
to a subtree of DBEh connected to the root of DBEh via an E-edge.

The set of nodes V G is finite and the out-degree of every node is finite as well.
Moreover, V G can be partitioned into k sets, according to the depth of the descriptors
associated with its nodes. A node associated with a descriptor of depth h can be
connected to a node associated with a descriptor of depth h−1, with 0 < h≤ k, only
by B- or E-edges. The number of proper prefixes (resp., suffixes) of short enough
tracks can indeed be less than k. In such a case, the actual height of BEk-descriptors
is less than the nominal height k, and thus it may happen that the BEi-descriptor and
BE j-descriptor, with i 6= j, for a track are isomorphic. When collecting all the BEi-
descriptor, for 0≤ i≤ k, isomorphic descriptors of different depths will be considered
as distinct nodes of V G .

The notion of corresponding BEk-descriptors up to depth n is defined as follows.

Definition 17 Let K = (AP ,W,δ ,µ,w0) be a finite Kripke structure, DBEk and D ′BEk
be two BEk-descriptors associated with some of its tracks, and (vin,S,v f in) and (v′in,
S′,v′f in) be the labels of the root of DBEk and D ′BEk

, respectively. We say that DBEk and
D ′BEk

are corresponding BEk-descriptors up to depth n if and only if:

– the two roots are labelled by the same set of propositions, that is,
⋂

w∈{vin}∪S∪{v f in}
µ(w) =

⋂

w′∈{v′in}∪S′∪{v′f in}
µ(w′);

– if n > 0:
– for any track ρ ∈ TrkK , with fst(ρ) = v f in, there is a track ρ ′ ∈ TrkK , with

fst(ρ ′) = v′f in, such that ρ and ρ ′ are associated with corresponding BEk-
descriptors up to depth n−1, and vice versa;

– for any track ρ ∈ TrkK , with lst(ρ) = vin, there is a track ρ ′ ∈ TrkK , with
lst(ρ ′) = v′in, such that ρ and ρ ′ are associated with corresponding BEk-
descriptors up to depth n−1, and vice versa;

– given two tracks ρ̃ and ρ̃ ′ associated with DBEk and D ′BEk
, respectively, for

any track ρ , with (v f in, fst(ρ))∈ δ , there is a track ρ ′, with (v′f in, fst(ρ ′))∈ δ ,
such that both ρ̃ ·ρ and ρ̃ ′ ·ρ ′ belong to TrkK , and they are associated with
corresponding BEk-descriptors up to depth n−1, and vice versa;

– given two tracks ρ̃ and ρ̃ ′ associated with DBEk and D ′BEk
, respectively, for

any track ρ , with (lst(ρ),vin) ∈ δ , there is a track ρ ′, with (lst(ρ ′),v′in) ∈ δ ,
such that both ρ · ρ̃ and ρ ′ · ρ̃ ′ belong to TrkK , and they are associated with
corresponding BEk-descriptors up to depth n−1, and vice versa;

– whenever k > 0, for any subtree of depth k−1 in DBEk , whose root is linked to
the root of DBEk via a B-edge (resp. E-edge), there is a subtree of depth k−1
in D ′BEk

, whose root is linked to the root of D ′BEk
via a B-edge (resp., E-edge),

corresponding up to depth n−1, and vice versa.

It can be easily checked that the correspondence between descriptors is an equiva-
lence relation (reflexivity and symmetry are straightforward, while transitivity can be
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proved by induction on n ≥ 0). Definition 17 expresses a form of (bounded) bisim-
ulation among (the nodes associated with) the BEk-descriptors in the graph G with
respect to the defined relations of A-successor, A-successor, B-successor, E-successor,
and B- and E-subtrees.

For technical reasons, we need to introduce a variant of a previously-defined con-
cept, the nesting depth of formulas, to take into consideration the nesting of all HS
modalities (not only B and E as in Definition 7).

Definition 18 The nesting depth of an HS formula ψ , denoted by Nest(ψ), is induc-
tively defined on the structure of ψ as follows:

– Nest(p) = 0, for any proposition letter p ∈ AP ;
– Nest(¬ψ) = Nest(ψ);
– Nest(ψ ∧ϕ) = max{Nest(ψ),Nest(ϕ)};
– Nest(〈X〉ψ) = 1+Nest(ψ), with X ∈ {A,B,E,A,B,E}.

It trivially holds that NestBE(ψ)≤ Nest(ψ) for all HS formulas ψ .
We are now ready to state a couple of auxiliary lemmas preparatory to Theorem

3, whose proofs are given in the Appendix.

Lemma 1 Let K = (AP ,W,δ ,µ,w0) be a finite Kripke structure and ρ,ρ ′ be two
tracks in TrkK . For all n,k ∈ N, with k ≤ n, if K ,ρ |= ϕ ⇐⇒ K ,ρ ′ |= ϕ for all HS
formulas ϕ with NestBE(ϕ)≤ k and Nest(ϕ)≤ n, then the BEk-descriptors of ρ and
ρ ′ are corresponding up to depth n.

Lemma 2 Let K = (AP ,W,δ ,µ,w0) be a finite Kripke structure. For all n,k ∈ N,
with k ≥ 1, if two descriptors DBEk and D ′BEk

are corresponding up to depth n, then
DBEk |k−1 and D ′BEk

|k−1 are corresponding up to depth n as well.

As the last preparatory step, we provide a general definition of corresponding
descriptors, where we remove the dependency on a specific depth n.

Definition 19 Let K be a finite Kripke structure and let DBEk and D ′BEk
be two BEk-

descriptors associated with some of its tracks. We say that DBEk and D ′BEk
are corre-

sponding BEk-descriptors if and only if they are corresponding up to depth n, for all
n ∈ N.

It can be easily seen that it is an equivalence relation. Moreover, it is possible to show
that two descriptors are corresponding if and only if the associated nodes in the graph
G are bisimilar. Thus, the definition of correspondence between descriptors could be
equivalently expressed in terms of a standard notion of bisimilarity among nodes of
G .

Theorem 3 Let K be a finite Kripke structure, k ∈ N, and ρ,ρ ′ ∈ TrkK . The tracks
ρ and ρ ′ are k-equivalent if and only if ρ and ρ ′ are associated with corresponding
BEk-descriptors.

Proof (⇒) Let us first show that if ρ and ρ ′ are k-equivalent, then they are associated
with corresponding BEk-descriptors. The proof directly follows from Lemma 1. Since
ρ and ρ ′ are k-equivalent, that is, K ,ρ |= ψ ⇐⇒ K ,ρ ′ |= ψ for all HS formulas



Checking Interval Properties of Computations 25

ψ with NestBE(ψ) ≤ k and no bound on Nest(ψ), then their BEk-descriptors are
corresponding, with no bound on the depth of such a correspondence.

(⇐) We now prove that, for any HS formula ψ , with NestBE(ψ) = k, if ρ and ρ ′ are
associated with corresponding BEk-descriptors, then they are k-equivalent, that is,
K ,ρ |= ψ ⇐⇒ K ,ρ ′ |= ψ . The proof is by induction on the structure of the formula.

– Let K ,ρ |= p, for some p ∈ AP . Since the roots for the BE-descriptors of ρ and
ρ ′ are labelled with the same set of proposition letters, it immediately follows that
K ,ρ ′ |= p.

– Let K ,ρ |= ψ1 ∧ψ2. Then, K ,ρ |= ψ1 and K ,ρ |= ψ2. Let NestBE(ψ1) = k and
assume w.l.o.g. that NestBE(ψ2) = h ≤ k. By Definition 17 and Lemma 2, it im-
mediately follows that if ρ and ρ ′ have corresponding BEk-descriptors, then they
also have corresponding BEh-descriptors, with h ≤ k. Hence, by the inductive
hypothesis, K ,ρ ′ |= ψ1 and K ,ρ ′ |= ψ2, and, as a consequence, K ,ρ ′ |= ψ1∧ψ2.

– Let K ,ρ |= ¬ψ . Then, K ,ρ 6|= ψ . By the inductive hypothesis, K ,ρ ′ 6|= ψ , and
thus K ,ρ ′ |= ¬ψ .

– Let K ,ρ |= 〈A〉ψ . Then, there exists a track ρ ∈ TrkK , with fst(ρ) = lst(ρ),
such that K ,ρ |= ψ . Since the BEk-descriptors for ρ and ρ ′ are corresponding,
there exists, in particular, a track ρ ′ ∈ TrkK , with fst(ρ ′) = lst(ρ ′), such that
the BEk-descriptors for ρ and ρ ′ are corresponding. By the inductive hypothe-
sis, K ,ρ ′ |= ψ , so K ,ρ ′ |= 〈A〉ψ . The 〈A〉 case is symmetric (notice that, due to
the correspondence of the BEk-descriptors for ρ and ρ ′, there exists ρ ∈ TrkK ,
with lst(ρ) = fst(ρ), if and only if there exists ρ ′ ∈ TrkK , with lst(ρ ′) = fst(ρ ′)).

– Let K ,ρ |= 〈B〉ψ . Then, there exists a track ρ , with (lst(ρ), fst(ρ)) ∈ δ and ρ ·
ρ ∈ TrkK , such that K ,ρ · ρ |= ψ . Since the BEk-descriptors for ρ and ρ ′ are
corresponding, there exists, in particular, a track ρ ′, with (lst(ρ ′), fst(ρ ′)) ∈ δ ,
such that ρ · ρ and ρ ′ · ρ ′ ∈ TrkK have corresponding BEk-descriptors. By the
inductive hypothesis K ,ρ ′ · ρ ′ |= ψ , and thus K ,ρ ′ |= 〈B〉ψ . The 〈E〉 case is
symmetric (a remark similar to the one for the 〈A〉 case can be done).

– Let K ,ρ |= 〈B〉ψ . Then, there exists a track ρ ∈ Pref(ρ) such that K ,ρ |= ψ .
Since the BEk-descriptors for ρ and ρ ′ are corresponding, the subtree of depth
k−1 for ρ , in the BEk-descriptor for ρ , corresponds to a subtree of depth k−1,
in the BEk-descriptor for ρ ′. By definition of descriptor, there exists a track ρ ′ ∈
Pref(ρ ′) associated with the latter subtree. By the inductive hypothesis, K ,ρ ′ |=
ψ , and thus K ,ρ ′ |= 〈B〉ψ . The 〈E〉 case is symmetric, and thus its analysis is
omitted.

This concludes the proof. ut

We started the section by illustrating the case of the two tracks v5
0 and v6

0 of KEquiv.
They have the same BE2-descriptor (it is shown in Figure 8(a)), but not the same BE3-
descriptor (the BE3-descriptor for v5

0 is shown in Figure 8(b)). The BE3-descriptor for
v6

0, indeed, features one more subtree, that is, the BE2-descriptor for v5
0, which is not

present in Figure 8(b). However, such a subtree corresponds to the BE2-descriptor for
v4

0. Symmetrically, the same happens for the suffix v5
0 of v6

0. Thus, v5
0 and v6

0, which
have corresponding BE3-descriptors, are 3-equivalent by Theorem 3. On the other
hand, the BE4-descriptors for v5

0 and v6
0 are not corresponding. In Figure 9, a part of
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the graph G of the BE-descriptors for the tracks of KEquiv is shown. As it is evident
from the figure, there exists a path consisting of 4 B-edges starting from the node of
the BE4-descriptor for v6

0, whereas there is no a path of the same length starting from
the node of the BE4-descriptor for v5

0. Hence, v5
0 and v6

0 are not 4-equivalent (as we
already pointed out, K ,v6

0 |= 〈B〉4>, while K ,v5
0 6|= 〈B〉4>).

5 EXPSPACE-hardness

We conclude the paper by proving that the model checking problem for HS, against
finite Kripke structures, is EXPSPACE-hard. As a preparatory work, we introduce a
succinct encoding of HS formulas, according to which we write 〈B〉k ψ for

〈B〉〈B〉 · · · 〈B〉︸ ︷︷ ︸
k times

ψ,

and we represent k in binary (the same for all the other HS modalities). As we will
prove, if we exploit this encoding, the model checking problem for HS is EXPSPACE-
hard, otherwise—using the standard unary notation—it is PSPACE-hard.

Theorem 4 The model checking problem for HS against finite Kripke structures is
EXPSPACE-hard (under a LOGSPACE reduction), if formulas are succinctly en-
coded, otherwise it is PSPACE-hard.

Proof Let us consider a language L decided by a deterministic one-tape Turing ma-
chine M (w.l.o.g.) that, on an input of size n, requires no more than 2nk −3 symbols
on its tape (we are assuming a high enough constant k ∈ N). Hence, L belongs to
EXPSPACE. Let Σ and Q be respectively the alphabet and the set of states of M, and
let # be a special symbol, which does not belong to Σ , used as separator for configu-
rations (in the following, we let Σ ′ = Σ ∪{#}). The alphabet Σ is assumed to contain
the blank symbol t. As usual, a computation of M is a sequence of configurations of
M, where each configuration fixes the content of the tape, the position of the head on
the tape, and the internal state of M.

We exploit a standard encoding for computations, called computation table (or
tableau) (see [21,26] for further details). Each configuration of M is a sequence over
the alphabet Γ = Σ ′∪ (Q×Σ). A symbol (q,c) ∈Q×Σ occurring at the i-th position
encodes the fact that the machine has an internal state q and its head is currently on
the i-th position of the tape (obviously, there is exactly one occurrence of a symbol
in Q×Σ in each configuration).

Since M uses no more than 2nk − 3 symbols on its tape, the size of a configura-
tion is 2nk

(we need 3 occurrences of the special symbol #, two for delimiting the
beginning of the configuration and one for the end; additionally, M never overwrites
delimiters #). If a configuration is actually shorter than 2nk

, it is padded with t sym-
bols to reach length 2nk

(which is a fixed number, once the input length is known).
The computation table is a matrix of 2nk

columns, where the i-th row records the
configuration of M at the i-th computation step.
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Fig. 9 Part of the graph G of the BEt -descriptors (t ≤ 4) for the tracks of KEquiv. In each node, we report
the depth of the descriptors they are associated with (top) and a witness track for the descriptor (bottom).

# # (q0,c0) c1 c2 · · · · · · cn−1 t t ·· · · · · t #
# # c′0 (q1,c1) c2 · · · · · · cn−1 t t ·· · · · · t #
...

...
. . .

. . .
...

...
...

. . .
. . .

...
# # · · · · · · (qyes,ck) · · · · · · · · · · · · · · · · · · · · · · · · #
︸ ︷︷ ︸

2nk

Fig. 10 An example of a computation table.

An example of a table is given in Figure 10. In the first configuration (row), the
head is in the leftmost position (to the right of the delimiters #) and M is in state q0.
In addition, the string symbols c0c1 · · ·cn−1 are padded with occurrences of t’s to
reach length 2nk

. In the second configuration, the head has moved one position to the
right, c0 has been overwritten with c′0, and M is in state q1. From the first two rows,
we can deduce that the tuple (q0,c0,q1,c′0,→) belongs to the transition relation δM ⊆
Q×Σ ×Q×Σ ×{→,←,•} of M, with the standard meaning for the components
(the first one gives the current state, the second the symbol on tape currently read, the
third the next state, the fourth the symbol replaced in the current position, the fifth
the move of the head to right, left, or stay). Being M deterministic , δM is actually a
function of Q×Σ .

Following [21,26], we introduce the notion of (legal) window. A window is a
2× 3 matrix, in which the first row represents three consecutive symbols of a pos-
sible configuration. The second row represents the three symbols which are placed
exactly in the same position in the next configuration. A window is legal when the
changes from the first to the second row are coherent with δM in the obvious sense.
Actually, the set of legal windows, which we denote by Wnd ⊆

(
Γ 3
)2, is a suitable

tabular representation of the transition relation δM . For instance, two legal windows
associated with the table of the previous example are:

# (q0,c0) c1
# c′0 (q1,c1)

(q0,c0) c1 c2
c′0 (q1,c1) c2

Formally, a pair ((x,y,z),(x′,y′,z′)) ∈Wnd can be represented as follows:

x y z
x′ y′ z′

with x,x′,y,y′,z,z′ ∈ Γ ,
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where the following constraints must be satisfied:

1. if all x,y,z ∈ Σ ′ (x, y, z are not state-symbol pairs), then y = y′;
2. if one among x, y, and z belongs to Q×Σ , then x′, y′ and z′ are univocally deter-

mined by δM;
3. (x = #⇒ x′ = #)∧ (y = #⇒ y′ = #)∧ (z = #⇒ z′ = #).

As we already said, M never overwrites an occurrence of #; we can assume that the
head never visits a cell labelled with # as well (see [21]). As a matter of fact, in some
window, condition 2 would require to move the head right (or left) overwriting # (or
just visiting it), while 3 does not allow one to replace an occurrence of # with another
symbol (notice that (qi,#) does not belong to Γ for any state qi of M). In such a case,
the window is not valid and thus it is discarded (it does not belong to Wnd).

q0
(a,b,c)

(a,b,c),c
q1
(a,b,c)

(a,b,c),c
q2
(a,b,c)

/0
...

...

...

Fig. 11 An instance of the gadget for (a,b,c) ∈ Γ 3.

In the following, we define a finite Kripke structure K = (AP ,W,δ ,µ,w0) and
an HS[A,A,B,B,E,E] formula ψ such that K |= ψ if and only if M accepts its input
string c0c1 · · ·cn−1. The set of proposition letters is AP =Γ ∪Γ 3∪{start}. The finite
Kripke structure K is obtained by suitably composing a basic pattern, called gadget
(see Figure 11). Any instance of the gadget is associated with a triple of symbols
(a,b,c) ∈ Γ 3, that is, a sequence of three adjacent symbols in a configuration, and it
consists of 3 states q0

(a,b,c), q1
(a,b,c), and q2

(a,b,c) such that

µ(q0
(a,b,c)) = µ(q1

(a,b,c)) = {(a,b,c),c} and µ(q2
(a,b,c)) = /0.

Moreover,
δ (q0

(a,b,c)) = {q1
(a,b,c)} and δ (q1

(a,b,c)) = {q2
(a,b,c)}.

The underlying idea is that a gadget associated with (x,y,z) ∈ Γ 3 “records” the
current proposition letter z and the two “past” (immediately preceding) proposition
letters x and y.

The finite Kripke structure K has (an instance of) a gadget for every (x,y,z)∈Γ 3,
and for all (x,y,z),(x′,y′,z′) ∈ Γ 3, it holds that q0

(x′,y′,z′) ∈ δ (q2
(x,y,z)) if and only if

x′ = y and y′ = z. Moreover, K has some additional (auxiliary) states w0, · · · ,w6,
whose relationships are described in Figure 12, and δ (w6) = {q0

(#,#,x) | x ∈ Γ }. It is
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worth noticing that the overall size of K only depends on |Γ | and it is constant with
respect to the input string c0c1 · · ·cn−1 of M.

w0
start

w1
start,#

w2
#

w3
/0

w4
#

w5
#

w6
/0

...

...

...

Fig. 12 Initial part of K .

Now, we want to decide whether or not an input string belongs to the language
L by solving the model checking problem K |= start → 〈A〉ξ , where ξ is satisfied
only by those tracks which represent a successful computation of M. Since the only
(initial) track which satisfies start is w0w1 (see Figure 12), we are actually verifying
the existence of a track which begins with w1 and satisfies ξ .

As for ξ , it basically requires that a track ρ , with fst(ρ) = w1, for which K ,ρ |=
ξ , mimics a successful computation of M. First, every interval ρ(i, i + 1), with i
mod 3 = 0, satisfies the proposition letter p ∈ AP if and only if the i

3 -th character
of the computation represented by ρ is p (notice that as a consequence of the gadget
structure, only subtracks ρ = ρ(i, i+ 1), with i mod 3 = 0, of ρ can satisfy some
proposition letters). A symbol of a configuration is mapped to an occurrence of an
instance of a gadget in ρ; in turn, ρ encodes a computation of M through the con-
catenation of the first, second, third. . . rows of the computation table (two consecutive
configurations are separated by 3 occurrences of #, which require 9 states overall).

Let us now formally define the HS formula ξ :

ξ = ψaccept ∧ψinput ∧ψwindow.

The first conjunct

ψaccept = 〈B〉〈A〉
∨

a∈Σ
(qyes,a)

requires a track to contain an occurrence of the accepting state of M qyes.
The second conjunct ψinput is a bit more involved. It requires that the subtrack

corresponding to the first configuration of M actually “spells” the input c0c1 · · ·cn−1,
suitably padded with occurrences of t and ended by a # (we recall that the formula
`(k), which has been introduced in Section 2, is satisfied only by those tracks whose
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length equals k, with k ≥ 2, and it has a binary encoding of O(logk) bits):

ψinput = [B](`(7)→ 〈A〉(q0,c0))∧ [B](`(10)→ 〈A〉c1)∧ [B](`(13)→ 〈A〉c2)∧
...

[B](`(7+3(n−1))→ 〈A〉cn−1)∧

[B](〈B〉5+3n>∧ [B]3·2nk−6⊥→ 〈A〉((`(2)∧
∧

a∈Γ
¬a)∨t))∧

[B](`(3 ·2nk −2)→ 〈A〉#).

Finally, the third conjunct ψwindow enforces the window constraint: if the propo-
sition (d,e, f ) ∈ Γ 3 is witnessed by a subinterval (of length 2) in the subtrack of ρ
corresponding to the j-th configuration of M, then, at the same position of (the sub-
track of ρ associated with) configuration j−1, there must be some (a,b,c)∈Γ 3 such
that ((a,b,c),(d,e, f )) ∈Wnd.

ψwindow = [B](〈B〉3(2nk
+2)+1>→

∧

(d,e, f )∈Γ 3

(〈A〉(d,e, f )→ [E](`(3 ·2nk
)→

∨

((a,b,c),(d,e, f ))∈Wnd

〈A〉(a,b,c)))).

The subformula 〈B〉3(2nk
+2)+1> guarantees that we are not considering the (subtrack

associated with the) first configuration. Moreover, if some prefix ρ̃ of ρ satisfies

(〈B〉3(2nk
+2)+1> and) 〈A〉(d,e, f ), for some (d,e, f ) ∈ Γ 3, then it holds that K , ρ̃ |=

[E](`(3 ·2nk
)→∨

((a,b,c),(d,e, f ))∈Wnd 〈A〉(a,b,c))). This amounts to say that the suffix

ρ̂ of ρ̃ of length 3 ·2nk
is such that K , ρ̂ |= ∨((a,b,c),(d,e, f ))∈Wnd 〈A〉(a,b,c), that is, ρ̂

is the subtrack between (the prefixes of ρ corresponding to) the same position (same
column) in two adjacent configurations (rows of the table), and it is forced to begin
with an occurrence of q1

(a,b,c) and to end with q0
(d,e, f ), for some ((a,b,c),(d,e, f )) ∈

Wnd.
It is immediate to check that all the integers which need to be stored in the for-

mula are less than or equal to 3 · 2nk
+ 7, and thus O(nk) bits suffice. This allows us

to conclude that the formula can be generated in polynomial time (and logarithmic
working space).

If we do not allow the binary encoding of the exponents, the model checking
problem for HS formulas is PSPACE-hard (under a LOGSPACE reduction): the proof
is the same as before, but in order for the formula ξ to be generated in polynomial
time, we must restrict ourselves to computations of Turing machines using at most
polynomial space. ut
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6 Related work

While the satisfiability problem for interval temporal logics has been extensively and
systematically investigated in the literature [2,8,11,12,14,20,29], a little work has
been done on model checking.

In [18], Montanari et al. give a first characterization of the model checking prob-
lem for full HS, interpreted over finite Kripke structures (under the homogeneity
assumption). In that paper, the authors provide the basic elements of the general pic-
ture, namely, the interpretation of HS formulas over (abstract) interval models, the
mapping of finite Kripke structures into (abstract) interval models, the notion of track
descriptor, and a small model theorem proving the decidability of the model check-
ing problem for full HS against finite Kripke structures. However, due to space con-
straints, technical details of the proofs are not fully worked out. Moreover, they do
not provide any lower bound to the complexity of the problem (no hardness result is
given), and the outlined model checking procedure for the fragments HS[A,A,B,B]
and HS[A,A,E,E], based on the notion of compact track descriptor, is flawed.

In [15,16], Lomuscio and Michaliszyn address the model checking problem for
some fragments of HS extended with epistemic modalities. Their semantic assump-
tions differ from those made in [18], making it difficult to compare the outcomes of
the two research directions. In both cases, formulas of interval temporal logic are
evaluated over finite paths/tracks obtained from the unravelling of a finite Kripke
structure. However, in [18] the authors state that a proposition letter holds over an
interval (track) if and only if it holds over all its states (homogeneity principle), while
in [15,16] truth of proposition letters is defined over pairs of states (the endpoints of
tracks/intervals).

In [15], the authors focus their attention on the HS fragment HS[B,E,D] (since
modality 〈D〉 is easily definable in terms of modalities 〈B〉 and 〈E〉, HS[B,E,D] is ac-
tually as expressive as HS[B,E]), extended with epistemic modalities. They consider
a restricted form of model checking, which verifies the given specification against a
single (finite) initial computation interval. Their goal is indeed to reason about a given
computation of a multi-agent system, rather than on all its admissible computations.
The authors prove that the considered model checking problem is PSPACE-complete.
Moreover, they show that the same problem restricted to the purely temporal fragment
HS[B,E,D], that is, the one obtained by removing epistemic modalities, is in PTIME.
These results do not come as a surprise as they trade expressiveness for efficiency:
modalities B and E allow one to access only sub-intervals of the initial one, whose
number is quadratic in the length (number of states) of the initial interval.

In [16], they show that the picture drastically changes with other fragments of
HS, that allow one to access infinitely many tracks/intervals. In particular, they prove
that the model checking problem for the HS fragment HS[A,B,L] (since modality 〈L〉
is easily definable in terms of modality 〈A〉, HS[A,B,L] is actually as expressive as
HS[A,B]), extended with epistemic modalities, is decidable, with a non-elementary
upper bound. Notice that, thanks to modalities 〈A〉 and 〈B〉, formulas of this logic
can possibly refer to infinitely many (future) tracks/intervals.
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7 Conclusions and future work

In this paper, we devised a non-elementary model checking algorithm for full HS.
Its cornerstone is the notion of BEk-descriptor, which allows us to obtain a finite
representation of a possibly infinite set of equivalent tracks. Since the number of
BEk-descriptors is always finite, the decidability of the model checking problem for
HS over finite Kripke structures easily follows. In addition, we proved that such a
problem is EXPSPACE-hard, provided that a succinct encoding of formulas is used
(otherwise, we can only prove that it is PSPACE-hard).

We are exploring the possibility of obtaining (much) more efficient model check-
ing algorithms by restricting to suitable fragments of HS. In particular, we are study-
ing the effects of the removal of the modality E (resp., B) from HS. More precisely,
we are thinking of the possibility of applying to HS[A,A,B,B,E] and HS[A,A,E,E,B]
a contraction method to restrict the verification of the formula to a finite subset of
tracks of bounded size. Other HS fragments of interest are HS[A,A,B, E], that we
conjecture to be PSPACE-complete, and the “orthogonal” fragment HS[A,A,B,E].
Another interesting fragment is HS[A,A] (the logic of temporal neighbourhood): it
can easily be shown that its model checking problem is NP-hard, but we can only
think of PSPACE algorithms.

Last but not least, it is worth exploring the model checking problem for HS and
its fragments under other semantic interpretations (relaxing the homogeneity assump-
tion). Moreover, we are thinking of the possibility of replacing finite Kripke structures
by richer computational models such as game-theoretic and/or infinite state struc-
tures. These models have been extensively exploited in formal verification with clas-
sical temporal logics, and we expect them to be quite beneficial in the interval setting.
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Appendix

Proof of Lemma 1.

Proof The proof is by induction on n≥ 0. Let DBEk and D ′BEk
be the BEk-descriptors

for ρ and ρ ′, respectively.
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Base case (n = 0). Since K ,ρ |= p ⇐⇒ K ,ρ ′ |= p, for any p ∈ AP , the roots of
DBEk and D ′BEk

are labelled by the same set of proposition letters and the descriptors
are corresponding up to depth 0.

Inductive step (n≥ 1). We preliminarily show that if K ,ρ |=ϕ ⇐⇒ K ,ρ ′ |=ϕ for
all HS formulas ϕ with NestBE(ϕ)≤ k and Nest(ϕ)≤ n, then for any track ρ ∈ TrkK ,
with fst(ρ)= lst(ρ), there is a track ρ ′ ∈TrkK , with fst(ρ ′)= lst(ρ ′), such that, for all
HS formulas ψ , with Nest(ψ)≤ n−1 and NestBE(ψ)≤ k, K ,ρ |= ψ ⇐⇒ K ,ρ ′ |=
ψ . The proof is by contradiction. Suppose that there exists a track ρ ∈ TrkK , with
fst(ρ) = lst(ρ), such that, for all tracks ρ ′ ∈ TrkK , with fst(ρ ′) = lst(ρ ′), there exists
a formula ψ , with Nest(ψ) ≤ n− 1 and NestBE(ψ) ≤ k, such that K ,ρ |= ψ and
K ,ρ ′ 6|= ψ . Let H be the set of those tracks ρ̂ such that fst(ρ̂) = lst(ρ ′). H can be
partitioned into a finite number of classes, say s≥ 1, each one containing k-descriptor
equivalent tracks of H (remind that k-descriptor equivalence is an equivalence relation
of finite index). Now, let {ρ ′1,ρ ′2, . . . ,ρ ′s} be a set of track representatives, chosen one
for each equivalence class induced by ∼k on H (for all 1≤ i < j ≤ s, ρ ′i and ρ ′j have
distinct BEk-descriptors). By Theorem 1, tracks which are k-descriptor equivalent
satisfy the same set of formulas ψ ′, with NestBE(ψ ′) ≤ k. So there are formulas
ψ1, . . . ,ψs such that, for all 1≤ i≤ s, Nest(ψi)≤ n−1, NestBE(ψi)≤ k, K ,ρ |= ψi,
and K ,ρ ′i 6|= ψi. It easily follows that K ,ρ |= ψ1 ∧ψ2 ∧ ·· · ∧ψs and, for all 1 ≤
i ≤ s, K ,ρ ′i |= ¬ψ1 ∨¬ψ2 ∨ ·· · ∨¬ψs. Hence, K ,ρ |= 〈A〉(ψ1 ∧ψ2 ∧ ·· · ∧ψs) and
K ,ρ ′ |= [A](¬ψ1∨¬ψ2∨·· ·∨¬ψs), that is, K ,ρ ′ 6|= 〈A〉(ψ1∧ψ2∧·· ·∧ψs), which
is a contradiction.

Thus, we have proved that for any track ρ ∈ TrkK , with fst(ρ) = lst(ρ), there
exists a track ρ ′ ∈ TrkK , with fst(ρ ′) = lst(ρ ′), such that, for all HS formulas ψ , with
Nest(ψ) ≤ n− 1 and NestBE(ψ) ≤ k, K ,ρ |= ψ ⇐⇒ K ,ρ ′ |= ψ . By the inductive
hypothesis, ρ and ρ ′ are associated with corresponding BEk-descriptors up to depth
n−1. Symmetrically, we can show that for any track ρ ′ ∈TrkK , with fst(ρ ′)= lst(ρ ′),
there exists ρ ∈ TrkK , with fst(ρ) = lst(ρ), such that ρ ′ and ρ are associated with
corresponding BEk-descriptors up to depth n− 1. In this way, we have proved the
condition for modality A of Definition of 17. The conditions for modalities A, B,
and E can be proved in a very similar way. In particular, as a consequence of the
fact that K ,ρ |= ϕ ⇐⇒ K ,ρ ′ |= ϕ for all HS formulas ϕ with NestBE(ϕ) ≤ k and
Nest(ϕ)≤ n, with n≥ 1, it holds that K ,ρ |= 〈A〉> ⇐⇒ K ,ρ ′ |= 〈A〉>. It follows
that DBEk has an A-successor if and only if D ′BEk

has one. The same holds for E-
successors.

Let us now consider the condition for modality B of Definition of 17.
First of all, we show that for any track ρ ∈ Pref(ρ), there exists a track ρ ′ ∈

Pref(ρ ′) such that for all HS formulas ψ , with Nest(ψ)≤ n−1 and NestBE(ψ)≤ k−
1, K ,ρ |= ψ ⇐⇒ K ,ρ ′ |= ψ . The proof is again by contradiction. Suppose that there
exists a track ρ ∈ Pref(ρ) such that, for all tracks ρ ′ ∈ Pref(ρ ′), there exists a formula
ψ , with Nest(ψ)≤ n−1 and NestBE(ψ)≤ k−1, such that K ,ρ |= ψ and K ,ρ ′ 6|= ψ .
Now, let us consider the tracks ρ ′1,ρ

′
2, · · · ,ρ ′s (for some s ∈ N) which are prefixes of

ρ ′ and are associated with distinct subtrees of depth k−1 of the BEk-descriptor for ρ ′
(the number of these tracks is obviously finite). So there are formulas ψ1, . . . ,ψs such
that, for all 1≤ i≤ s, Nest(ψi)≤ n−1, NestBE(ψi)≤ k−1, K ,ρ |= ψi, and K ,ρ ′i 6|=
ψi. Thus, K ,ρ |= ψ1 ∧ψ2 ∧ ·· · ∧ψs and for all i, K ,ρ ′i |= ¬ψ1 ∨¬ψ2 ∨ ·· · ∨ ¬ψs.
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Hence K ,ρ |= 〈B〉(ψ1∧ψ2∧·· ·∧ψs) and K ,ρ ′ |= [B](¬ψ1∨¬ψ2∨·· ·∨¬ψs), that
is K ,ρ ′ 6|= 〈B〉(ψ1∧ψ2∧·· ·∧ψs), which leads to a contradiction.

We have proved that for any track ρ ∈ Pref(ρ), there exists a track ρ ′ ∈ Pref(ρ ′)
such that, for all HS formulas ψ , with Nest(ψ) ≤ n− 1 and NestBE(ψ) ≤ k− 1,
K ,ρ |= ψ ⇐⇒ K ,ρ ′ |= ψ . By the inductive hypothesis, ρ and ρ ′ are associated with
corresponding BEk−1-descriptors up to depth n−1. Symmetrically, we can show that
for any track ρ ′ ∈ Pref(ρ ′), there exists a track ρ ∈ Pref(ρ) such that ρ ′ and ρ are
associated with corresponding BEk−1-descriptors up to depth n−1.

In this way, we have proved the condition for modality B of Definition of 17. The
condition for modality E can be proved in a symmetrical way. ut

Proof of Lemma 2.

Proof The proof is by induction on n≥ 0.
Base case (n = 0). Consider the descriptors DBEk , D ′BEk

, DBEk |k−1, and D ′BEk
|k−1.

Since the roots of DBEk and D ′BEk
are labelled by the same set of proposition letters,

the roots of DBEk |k−1 and D ′BEk
|k−1 are labelled by the same set of proposition letters

as well.
Inductive step (n > 0). Let ρ,ρ ′ ∈ TrkK be two witnesses for DBEk and for D ′BEk

,
respectively (and thus for DBEk |k−1 and and D ′BEk

|k−1, respectively). Consider a track
ρ̃ ∈ TrkK , with fst(ρ̃) = lst(ρ). The BEk-descriptor ˜DBEk for ρ̃ is an A-successor
of DBEk , and ˜DBEk |k−1 is an A-successor of DBEk |k−1. Since DBEk and D ′BEk

are corre-
sponding up to depth n, there exists a track ρ ∈ TrkK , with fst(ρ) = lst(ρ ′), described
by DBEk , such that ˜DBEk and DBEk are corresponding up to depth n−1. By the induc-
tive hypothesis, ˜DBEk |k−1 and DBEk |k−1 are corresponding up to depth n− 1 (and,
obviously, DBEk |k−1 is an A-successor of D ′BEk

|k−1).
Let us consider now a track ρ̂ , with (lst(ρ), fst(ρ̂)) ∈ δ and ρ · ρ̂ ∈ TrkK . The

BEk-descriptor ˆDBEk of ρ · ρ̂ is a B-successor of DBEk and ˆDBEk |k−1 is a B-successor
of DBEk |k−1. Since DBEk and D ′BEk

are corresponding up to depth n, there exists a track
ρ̌ such that (lst(ρ ′), fst(ρ̌)) ∈ δ , ρ ′ · ρ̌ is described by ˇDBEk , and ˆDBEk and ˇDBEk are
corresponding up to depth n−1. By the inductive hypothesis, ˆDBEk |k−1 and ˇDBEk |k−1
are corresponding up to depth n− 1 (and, obviously, ˇDBEk |k−1 is a B-successor of
D ′BEk
|k−1).

Finally (only for cases with k≥ 2), let us consider a subtree of depth k−2 linked
to the root of DBEk |k−1 via a B-edge. In this case, there exists (at least) a subtree
of DBEk , say Sk−1, such that Sk−1|k−2 is the considered subtree of DBEk |k−1. Since
DBEk and D ′BEk

are corresponding up to depth n, there exists a subtree S ′k−1 of D ′BEk
,

connected to the root of D ′BEk
via a B-edge, corresponding to Sk−1 up to depth n−1.

By the inductive hypothesis Sk−1|k−2 and S ′k−1|k−2 are corresponding up to depth n−1
(the latter is a subtree of D ′BEk

|k−1 connected to the root of D ′BEk
|k−1 via a B-edge).

The remaining cases can be dealt with analogously. ut


