
ar
X

iv
:1

50
4.

04
70

8v
2

 [
cs

.L
O

]
 2

0
Ju

l 2
01

5

The model checking fingerprints

of CTL operators

Andreas Krebs1, Arne Meier2, and Martin Mundhenk3

1 Universität Tübingen, Sand 13, 72076 Tübingen, Germany,
krebs@informatik.uni-tuebingen.de

2 Leibniz Universität Hannover, Appelstraße 4, 30167 Hannover, Germany,
meier@thi.uni-hannover.de

3 Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany,
martin.mundhenk@uni-jena.de

Abstract The aim of this study is to understand the inherent expressive
power of CTL operators. We investigate the complexity of model check-
ing for all CTL fragments with one CTL operator and arbitrary Boolean
operators. This gives us a fingerprint of each CTL operator. The com-
parison between the fingerprints yields a hierarchy of the operators that
mirrors their strength with respect to model checking.

1 Introduction

Temporal logics are a long used and well-understood concept to model software
specifications and computer programs by state transition semantics. The first
approaches in this currently quite large area of research go back to Arthur N.
Prior [23, 24]. The logics became more prominent in the 70s and 80s due to sig-
nificant effort of Pnueli, Emerson, Halpern, and Clarke [8, 10, 20]. Usually one
distinguishes between three temporal logics: linear time logic LTL, computation
tree logic CTL, and the full branching time logic CTL∗. All these logics are
defined as extensions of (modal) propositional logic to express properties of com-
puter programs by introducing two path quantifiers A and E, resp., five temporal
operators neXt, Until, Future, Globally, and Release. Form a syntatctic point of
view, the three temporal logics differ in the way how the path quantifiers and
temporal operators may be combined. The computation tree logic CTL allows
operators that are combined from one path quantifier directly followed by one
temporal operator. Thus there are ten different CTL operators—e.g., EX or AU.

The most important decision problems related to temporal logics are the
satisfiability problem and the model checking problem. The complexity of these
problems ranges between P and 2EXPTIME and has been classified for the
general cases [7,11,12,22,25–27]. Recently the satisfiability problem for all three
logics has been completely classified with respect to all Boolean and temporal
operator fragments [2, 16], motivated in part by the fundamental work of E.
Post [21] on Boolean functions. In the same way, the model checking problem
for LTL was studied in detail [1]. The model checking problem for CTL has

http://arxiv.org/abs/1504.04708v2

∧,⊕

∧,∨

∧

∨

⊕
¬

id

EX

∧,⊕

∧,∨

∧ ∨

⊕

¬

id

EG

∧,⊕

id

EU

∧,⊕

∧,∨

∧

∨

⊕

¬

id

EF

∧,⊕

∧,∨

∧

∨

⊕
¬

id

ER

P-complete

AC1-hard

LOGCFL-hard

LOGCFL-c.

NL-complete

CTL operator

Figure 1. Overview of complexity results—the model checking fingerprints of the CTL
operators.

been deeper understood in [3] who examined the complexity of CTL fragments
that have arbitrary CTL operators that are combined only with all monotone
Boolean operators. For model checking, there are seven relevant fragments of
Boolean operators [1], but only one of these was considered in [3].

EU ARER AU

EX

AX

EG AF

EF

AG

Figure 2. The mc-strength hierarchy of
CTL operators that relies on their finger-
prints (Fig. 1). Arrows indicate the relation
⊳. Operators X and Y in the same circle
have the same mc-strength (i.e., X ⊳ Y and
Y ⊳ X). The hierarchy is proper under the
common assumptions NL (LOGCFL (P.

We aim to fill this gap by classify-
ing the remaining relevant Boolean op-
erator fragments for the computation
tree logic CTL. More specifically, we
examine the complexity of CTL model
checking for all fragments of formulas
that combine one of the ten CTL op-
erators with one of the seven relevant
fragments of Boolean operators. With
our work one can completely charac-
terize all but four of these combina-
tions. Our classifications—informally
called fingerprints—yield a preorder
expressing how powerful a CTL oper-
ator is. We say a CTL operator T is
mc-stronger than T ′, in symbols T ′ ⊳ T , if for every set B of Boolean operators
the model checking problem for the ({T }∪B)-fragment of CTL is computation-
ally harder than that for the ({T ′} ∪ B)-fragment. The resulting partial order
is shown in Figure 2. It can be seen as a generalization of the notion of express-
iveness of CTL fragments [13]. Whereas the notion of expressiveness deals with
equivalence of formulas from different fragments, our notion of mc-strength deals
with equivalence of model checking instances for different fragments. Expressive-
ness is meaningful from a language theoretic point of view, and mc-strength from
the computational complexity perspective.

The paper is organized as follows. At first we introduce syntax and semantics
of CTL, and we explain the alternating graph accessibility problems that we
use in our hardness proofs (Section 2). We visit each CTL operator and show
its complexity fingerprint (Sections 3.1 and 4). Finally we conclude with the
resulting comparison of the mc-strength of CTL operators and an outlook to
future work (Section 5). The Appendix contains the missing proofs.

2 Preliminaries

2.1 Computation Tree Logic CTL

Let PROP be a set of atomic propositions. Then the set of all well-formed CTL
formulas is ϕ ::= 1 | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊕ ϕ | ¬ϕ | POϕ | ϕPO′ϕ, for
p ∈ PROP, P ∈ {A,E}, O ∈ {X,F,G}, O′ ∈ {U,R}. We say PO are the unary
CTL operators EX, AX, EG, AG, EF, AF and PO′ are the binary CTL operators
EU, AU, ER, AR. A Kripke model (for CTL) is a triple (W,R, ξ), where W is a
finite set of states, R : W → W is a total transition relation (i.e., for all w ∈ W

there is a w′ ∈ W with wRw′), and ξ : W → 2PROP is an assignment function.
The semantics of CTL is defined as follows on states. Let M = (W,R, ξ) be

a Kripke model. Let Π(w) denote the set of infinite paths starting in w ∈ W

through (W,R), i.e., a path π ∈ Π(w) is an infinite sequence π = π[1]π[2] · · ·
with π[1] = w and (π[i], π[i+ 1]) ∈ R for all i ≥ 1.

M, w |= 1 always,
M, w |= p iff p ∈ ξ(w),
M, w |= ¬ψ iff M, w 6|= ψ,

M, w |= ψ ∧ φ iff M, w |= ψ and M, w |= φ,

M, w |= ψ ∨ φ iff M, w |= ψ or M, w |= φ,

M, w |= ψ ⊕ φ iff (M, w |= ψ and M, w 6|= φ) or (M, w 6|= ψ and M, w |= φ),
M, w |= EXϕ iff ∃π ∈ Π(w) : M, π[2] |= ϕ,

M, w |= EFϕ iff ∃π ∈ Π(w) ∃k ≥ 1 : M, π[k] |= ϕ,

M, w |= EGϕ iff ∃π ∈ Π(w) ∀k ≥ 1 : M, π[k] |= ϕ,

M, w |= ψ EUϕ iff ∃π ∈ Π(w) ∃k ≥ 1 : M, π[k] |= ϕ and ∀i < k : M, π[i] |= ψ,

M, w |= ψ ERϕ iff ∃π ∈ Π(w) ∀k ≥ 1 : M, π[k] |= ϕ or ∃i < k : M, π[i] |= ψ.

The remaining CTL operators can be expressed as duals of the above defined
operators. We have the equivalences AXϕ ≡ ¬EX¬ϕ,AFϕ ≡ ¬EG¬ϕ, AGϕ ≡
¬EF¬ϕ, ψARϕ ≡ ¬(¬ψ EU¬ϕ), and ψ AUϕ ≡ ¬(¬ψ ER¬ϕ). Moreover, the
operators EX,EG,EU are a minimal set of CTL operators that together with
the Boolean operators suffice to express any from the others [13], and with
the Boolean operators ∧,⊕ one can express every Boolean function. For a set
T ⊆ {EX, AX, EG, AG, EF, AF, EU, AU, ER, AR, ∧, ∨, ¬, ⊕} of Boolean functions
and CTL operators, a T -formula is a formula that has operators only from T . The
T -fragment of CTL is the set of all T -formulas. The model checking problems
for CTL fragments are defined as follows.

Problem: CTL-MC(T)
Description: The model checking problem for T -fragments of CTL.

Input: A CTL formula φ with operators in T ⊆ {EX, AX, EG,
AG, EF, AF, EU, AU, ER, AR, ∧, ∨, ¬, ⊕}, a Kripke model
M = (W,R, ξ), and a state w0 ∈W .

Question: Does M, w0 |= φ hold?

Usually we will omit the {·} and ∪ in the problem notion for convenience.
Post [21] classified the lattice of all relevant sets of Boolean operators—called

clones—and found a finite base for each clone. The definitions of all clones as
well as the full inclusion graph can be found, for example, in [4]. Whereas in
general there is an infinite set of clones, for model checking luckily there are
only seven different clones [1] depicted in Figure 3, where we describe the clones
by their standard bases. (See, e.g., [15] for more explanations.)

2.2 Computational Complexity

∧,⊕

∧,∨

∧ ∨

⊕

¬

id

Figure 3. The Boolean
clones relevant for model
checking, represented by
their standard bases. id

denotes the clone repres-
ented without operator
(“identity” of an atom).

We will make use of standard notions of complexity
theory [19]. In particular, we will make use of the com-
plexity classes NL,LOGCFL,AC1, and P.

NL is the class of problems decided by non-
deterministic logarithmically space bounded Turing
machines. The typical complete problem is the graph
accessibility problem for directed graphs REACH
(given a directed graph with two nodes s and t, is
there a path form s to t?). LOGCFL is the class of
problems decided by nondeterministic logarithmically
space bounded Turing machines, that are additionally
allowed to use a stack and run in polynomial time.
AC1 is the class of problems decided by alternating
logarithmically space bounded Turing machines with
logarithmically bounded number of alternations. We
will shortly present complete problems for both of
these classes. In order to prove hardness results, we
will make use of logarithmic space bounded many-one
reductions ≤log

m . It is known that NL ⊆ LOGCFL ⊆
AC1 ⊆ P but not whether any inclusion is strict.

Clarke, Emerson, and Sistla [7] showed that model checking for CTL is in P,
and Schnoebelen [25] showed that it is P-hard.

Theorem 1 ([7, 25]). CTL-MC(EX, . . . ,AR,∧,∨,¬,⊕) is P-complete.

How CTL operators compare with respect to the complexity of model check-
ing, was investigated in [3] in the following way. They completely characterize
the complexity of CTL-MC(T,∧,∨) for every set T of CTL operators. They show
that this complexity is either P-complete or LOGCFL-complete. For singletons

S ⊂ {AF,EG,AU,EU,AR,ER} the problems CTL-MC(S,∧,∨) are P-complete,
whereas for all other singletons S ⊂ {AX,EX,EF,AG} CTL-MC(S,∧,∨) is only
LOGCFL-complete.

slice V4 ⊆ V∃: T T T T T

slice V3 ⊆ V∀:

slice V2 ⊆ V∃:

slice V1 ⊆ V∀:

slice V0 ⊆ V∃:
s

Figure 4. An instance 〈G, s, T 〉 of
ASGAP(∀out=2, ∃in=1). The marked edges
indicate the witness for apathG(s, T).

Next, we consider problems that
we will use for reductions in our hard-
ness proofs. The alternating graph ac-
cessibility problem is shown to be P-
complete in [5]. We use the follow-
ing restricted version of this problem
that is very similar to Boolean circuits
with and- and or-gates (and input-
gates). An alternating slice graph [18]
G = (V,E) is a directed bipartite
acyclic graph with a bipartitioning
V = V∃ ∪ V∀, and a further partition-
ing V = V0∪V1∪· · ·∪Vm (m+1 slices,
Vi ∩ Vj = ∅ if i 6= j) where

V∃ =
⋃

i≤m,i even

Vi and V∀ =
⋃

i≤m,i odd

Vi, such that E ⊆
m−1⋃

i=0

(Vi×Vi+1).

(All edges go from slice Vi to slice Vi+1 for i = 0, 1, 2, . . . ,m − 1.) All nodes
excepted those in the last slice Vm have a positive outdegree. Nodes in V∃ are
called existential nodes, and nodes in V∀ are called universal nodes. Notice that
V0 ⊆ V∃ by definition. Alternating paths from node x to nodes in T ⊆ Vm are
defined as follows by the property apathG(x, T).

(1) for x ∈ Vm apathG(x, T) iff x ∈ T

(2a) for x ∈ V∃ − Vm : apathG(x, T) iff ∃z ∈ V∀ : (x, z) ∈ E and apathG(z, T)

(2b) for x ∈ V∀ − Vm : apathG(x, T) iff ∀z ∈ V∃ : if (x, z) ∈ E then apathG(z, T)

The problem ASGAP is similar to the alternating graph accessibility problem,
but for the restricted class of alternating slice graphs.

Problem: ASGAP
Description: The alternating slice graph accessibility problem.

Input: 〈G, s, T 〉, where G = (V∃ ∪ V∀, E) is an alternating slice
graph with slices V0, V1, . . . , Vm, m even, and s ∈ V0, T ⊆
Vm.

Question: Does apathG(s, T) hold?

We will use also the following variant where the outdegree of ∀-nodes and
the indegree of ∃-nodes is restricted.

Problem: ASGAP(∀out=2, ∃in=1)
Description: The alternating slice graph accessibility problem with

bounded degree.
Input: 〈G, s, T 〉, where G = (V∃ ∪ V∀, E) is an alternating slice

graph with slices V0, V1, . . . , Vm, where every node in V∀
has outdegree 2 and every node in V∃ − V0 has indegree 1,
and s ∈ V0, T ⊆ Vm.

Question: Does apathG(s, T) hold?

ASGAPlog is the set of all elements 〈G, s, T 〉 of ASGAP, where G is a
graph with n nodes and m slices such that m ≤ logn. Similarly, the problem
ASGAP(∀out=2, ∃in=1)log is the subset of ASGAP(∀out=2, ∃in=1) with graphs
of logarithmic depth. The following completeness results are straightforward.

Theorem 2. 1. ASGAP is P-complete [17].
2. ASGAP(∀out=2, ∃in=1) is P-complete.
3. ASGAPlog is AC1-complete [18].
4. ASGAP(∀out=2, ∃in=1)log is LOGCFL-complete.

A Kripke model (W,R, ξ) contains a total graph (W,R). We will use several
methods to transform an alternating graph to a graph that appears as (part of)
a Kripke model.

If G = (V,E) is an alternating graph with slices V0, . . . , Vm, then G♯ =
(V ♯, E♯) is the total graph obtained from G by adding a singleton slice Vm+1 =
{e} and edges from all nodes in Vm ∪ Vm+1 to e. More formally, V ♯ = V ∪ Vm+1

and E♯ = E ∪ ((Vm ∪ {e})× {e}).
For instances of ASGAP(∀out=2, ∃in=1), we will also apply another trans-

formation. Let G = (V,E) with slices V0, . . . , Vm be such an instance. Every
slice Vi ⊆ V∃ − V0 consists of nodes with indegree 1. (Remind that node(s) in
V0 have indegree 0.) Thus Vi ⊆ V∃ − V0 can be considered as being partitioned
into sets V u

i := {v | (u, v) ∈ E} for every u ∈ Vi−1. Then each V u
i consists of

two nodes which can be assumed to be ordered arbitrarily. and we will use the
notation V u

i = {vu,1, vu,2}.

Let V̂i := {v̂ | v ∈ Vi} be a set of nodes that are “copies” of the nodes of
Vi. Similarly as Vi for even i > 0 (i.e. Vi ⊆ V∃ − V0), V̂i is partitioned into sets
V̂ u
i = {v̂u,1, v̂u,2} for all u ∈ Vi−1. The graph G♭ = (V ♭, E♭) obtained from G is

defined as follows. (See also Figure 5 for an example.)

V ♭ := V ∪
⋃m

i=0 V̂i

E♭ := E ∩ V∃ × V∀ (The edges leaving ∃-nodes are as in G.)

∪ {(u, vu,1) | u ∈ V∀} (∀-nodes have an edge to their “first” successor in
G.)

∪ {(vu,1, v̂u,1), (v̂u,1, vu,2), (vu,2, v̂u,2), (v̂u,2, v̂u,2) | u ∈ V∀}

(From each first suc. vu,1 starts a path vu,1, v̂u,1, vu,2, v̂u,2 ending in a loop.)

∪ {(u, û), (û, û) | u ∈ V∀ ∪ V0}

(∀-nodes and V0-nodes u have another edge to û having a loop.)

We will use the notion of slices also for G♭, even though there are edges
between nodes in the same slice. The set of nodes G♭ is partitioned to G♭ =
V ♭
0 ∪ V ♭

1 ∪ . . . ∪ V ♭
m, where slice V ♭

i = Vi ∪ V̂i.

slice V ♭
4 V∃ V̂∃ V∃ V̂∃ V∃ V̂∃ V∃ V̂∃ V∃ V̂∃ V∃ V̂∃

slice V ♭
3 V∀ V̂∀ V∀ V̂∀ V∀ V̂∀

slice V ♭
2 V∃ V̂∃ V∃ V̂∃ V∃ V̂∃ V∃ V̂∃ V∃ V̂∃ V∃ V̂∃

slice V ♭
1 V∀ V̂∀ V∀ V̂∀ V∀ V̂∀

slice V ♭
0 V∃ V̂∃

Figure 5. The graph G♭ obtained from the graph G in Figure 4. The labels in the
nodes indicate to which partition the node belongs. The marked edges indicate infinite
paths whose collection “simulates” the witness for apathG(s, T) in G.

3 Computation Tree Logic CTL

3.1 Existential Until EU

It was shown in [3] that CTL-MC(EU,∧,∨) is P-complete. We improve this result
by showing that the Boolean operators are not necessary for the hardness and
show that CTL-MC(EU) is P-complete (Theorem 3). Since model checking for
formulas with EU as single operator reaches the maximal hardness, EU turns
out to be the hardest CTL operator. We also can conclude that CTL-MC(T) is
P-complete for every set T of Boolean functions and CTL operators that contain
EU.

Technically, the proof of Theorem 3 can be seen as a guide for the P-hardness
proofs for CTL-MC(ER,∨) and for CTL-MC(EG,⊕). Since the latter consider
fragments with a combination of temporal and Boolean operators, their proofs
are technically more involved, but the basic strategies are similar.

Theorem 3. CTL-MC(EU) is P-complete.

Proof. The upper bound P follows from [7]. For the lower bound—P-hardness—
we give a reduction from the P-complete problem ASGAP(∀out=2, ∃in=1). Let
〈G, s, T 〉 be an instance of ASGAP(∀out=2, ∃in=1) with G = (V,E) for V =
V∃ ∪ V∀ with slices V = V0 ∪ . . . ∪ Vm. Let G♭ = (V ♭, E♭) be the graph obtained
from G as described in Section 2.2. Using G♭, we construct a Kripke model
KEU = (V ♭, E♭, ξ) with assignment ξ as follows (see Figure 6 for an example).

V4 ∪ V̂4:
s4
t

ŝ4
s4
t

ê4
s4
t

ŝ4
s4
t

ê4
s4
t

ŝ4 s4 ê4

V3 ∪ V̂3: s3 ê3 s3 ê3 s3 ê3

V2 ∪ V̂2: s2 ŝ2 s2 ê2 s2 ŝ2 s2 ê2 s2 ŝ2 s2 ê2

V1 ∪ V̂1: s1 ê1 s1 ê1 s1 ê1

V0 ∪ V̂0: s0 ê0

Figure 6. Example for the construction of KEU in the proof of Theorem 3. The marked
edges indicate the paths according to Claim 4.

1. t is assigned to every node in T .
2. si is assigned to every node in Vi (for i = 0, 1, . . . ,m).
3. ŝi is assigned to every node v ∈ V̂i with (v, v) 6∈ E♭ (for i = 0, 1, . . . ,m).
4. êi is assigned to every node v ∈ V̂i with (v, v) ∈ E♭ (for i = 0, 1, . . . ,m).

The formulas φi are defined inductively for i = m,m− 1, . . . , 0 as follows.

φi :=

{

t, if i = m,

si EU((ŝi+1 EUφi+1)EU êi+1), if i < m.

The Kripke modelKEU and the formulas φi are constructed in a way that sim-
ulates alternating graphs as follows. Examples for the paths used in the following
Claim are indicated by marked edges in Figure 6.

Claim 4. 1. Let w ∈ Vi ∩ V∃ for some i < m. Then KEU, w |= φi if and only if
there exists a π ∈ Π(w) with π[2] ∈ Vi+1 such that KEU, π[2] |= φi+1.

2. Let w ∈ Vi ∩ V∀ for some i < m. Then KEU, w |= φi if and only if there
exists a π ∈ Π(w) with π[2], π[4] ∈ Vi+1 such that KEU, π[2] |= φi+1 and
KEU, π[4] |= φi+1.

Now we only have to use the relation between G and G♭.

Claim 5. For every i ≤ m and every w ∈ Vi holds: KEU, w |= φi if and only if
apathG(w, T).

The proofs of the above claims can be found in the Appendix. With Claim 5
we get that 〈G, s, T 〉 ∈ ASGAP(∀out=2, ∃in=1) if and only if KEU, s |= φ0. The
CTL-MC(EU) instance 〈KEU, s, φ0〉 can be computed in space logarithmic in the
size of G. Thus we have shown ASGAP(∀out=2, ∃in=1) ≤log

m CTL-MC(EU). ⊓⊔

From Theorems 1 and 3 we immediately get the complete characterization
of the complexity of model checking for fragments with EU—i.e., the model
checking fingerprint of EU.

Theorem 6. CTL-MC(EU, B) is P-complete for every B ⊆ {¬,∧,∨,⊕}.

4 The Remaining Existential Operators: Release ER,

Globally EG, Next EX, and Future EF

Let us first turn to the case of existential next EX as nothing has to be proven.
Its model checking fingerprint actually is already known even though it is not
always stated in the way we do it here.

Theorem 7. Let B ⊆ {¬,∧,∨,⊕}. Then CTL-MC(EX, B) is

1. P-complete for B ⊇ {¬} or B ⊇ {⊕} [25],
2. LOGCFL-complete for B = {∧,∨} or B = {∧} [3], and
3. NL-complete for B ⊆ {∨} (follows immediately from [15, Theorem 3.3]).

For the remainder of the results in this section we have to omit the proofs
due to space constraints. However the details are all presented in the appendix.
This section is structured as follows. We will state a model checking fingerprint
theorem and then start to explain and discuss the results in order to give some
intuition on the proof technique. Also we will mention some connections between
the results, e.g., how the overall picture presents. Let us begin with the finger-
print of ER.

Theorem 8. Let B ⊆ {¬,∧,∨,⊕}. Then CTL-MC(ER, B) is

1. P-complete for B ⊇ {∨} or B ⊇ {¬} or B ⊇ {⊕},
2. LOGCFL-hard for B ⊇ {∧}, and
3. LOGCFL-complete for B = ∅.

The P-completeness of CTL-MC(ER,∧,∨) is shown in [3]. We improve this
result by showing P-hardness already for CTL-MC(ER,∨). The optimality of
this hardness result is witnessed by the LOGCFL-completeness of CTL-MC(ER).
Also observe that this shows that ER is not as powerful as EU. Our results are
completed by the P-hardness of CTL-MC(ER,¬). Concluding, this shows that
ER is strictly simpler than EU (unless LOGCFL = P).

Let us now consider the case of ER with ¬. If s is an atom that is satisfied
only by a node w and all its successors in a Kripke model K, and no successor
of w satisfies s, then K,w |= αER s if and only if K,w |= EXα. One can use this
idea to translate the P-hardness proof of CTL-MC(EX,¬) to a P-hardness proof
of CTL-MC(ER,¬).

We settled complete characterizations of the complexity of CTL-MC(ER, B)
for fragments with ER as only CTL operator for all B ⊆ {¬,∧,∨,⊕} except
B = {∧}. For CTL-MC(ER,∧) we have LOGCFL-hardness and containment in
P (follows from [3]). A result with matching upper and lower bounds yet remains
open.

Turning to the case of existentially globally operator EG, interestingly, this
operator combines an existential and universal quantification in a single operator.
This is worth noting as it proves itself as powerful operator from complexity point
of view.

Theorem 9. Let B ⊆ {¬,∧,∨,⊕}. Then CTL-MC(EG, B) is

1. P-complete for B ⊇ {∧,∨} or B ⊇ {⊕}, and
2. NL-complete for B ⊆ {∧} or B ⊆ {∨} or B ⊆ {¬}.

It was shown in [3] that CTL-MC(EG,∧,∨) is P-complete. We prove that this
result is optimal by showing that CTL-MC(EG,∧) and CTL-MC(EG,∨) are both
NL-complete. Further we obtain the same characterization for CTL-MC(EG) and
CTL-MC(EG,¬). The most intriguing result is the P-completeness of the frag-
ment CTL-MC(EG,⊕). One can reduce from ASGAP(∀out=2, ∃in=1) but it is
quite demanding to explicitly argue on the chosen paths depending on the occur-
ring exclusive-ors ⊕. From the model construction one can easily see similarities
to the one shown in Figure 6 however one needs additional propositions labelled
on the states to ensure having control on the paths.

Theorem 10. Let B ⊆ {¬,∧,∨,⊕}. Then CTL-MC(EF, B) is

1. P-complete for B ⊇ {∧,⊕},
2. AC1-hard for B ⊇ {⊕}, and
3. LOGCFL-complete for {∧} ⊆ B ⊆ {∧,∨}, and
4. NL-complete for B ⊆ {∨} or B ⊆ {¬}.

In [3] it is shown that CTL-MC(EF,∧,∨) is LOGCFL-complete. Since their
hardness proof does not use ∨, it follows that CTL-MC(EF,∧) is LOGCFL-
complete, too. Moreover, CTL-MC(EF,AG,∧,∨) is shown to be P-complete in
[3]; we get P-completeness for CTL-MC(EF,∧,⊕). We classified almost all re-
maining cases. We show that the cases CTL-MC(EF), CTL-MC(EF,¬), and
CTL-MC(EF,∨) are all NL-complete. However the most interesting result is
the AC1-hardness of CTL-MC(EF,⊕). There are only very few problems known
for which AC1 is the best shown lower bound. In fact, Cook [9] asks for natural
AC1-complete problems, i.e., problems where the AC1-completeness is not forced
by some logarithmic bounds in the problem definition. Chandra and Tompa [6]
show an AC1-complete two-person-game that has AC1 as a straightforward up-
per bound and continue to ask for “less straightforward” AC1-complete problems.
One such problem is the model checking problem for intuitionistic logic with one
atom [18]. The model checking problem for the {EF,⊕}-fragment is a very hot
candidate. Anyway, it seems to be a very challenging question to show whether
this problem belongs to Cook’s list.

5 Conclusion

In this paper we aimed to present a complete complexity classification of all
fragments of CTL with one CTL operator and arbitrary Boolean functions. An
overview of the complexity results is given in Figure 1. We stated all our res-
ults for CTL operators that start with the existential path quantifier E. But
our classification easily generalizes to the remaining CTL operators starting
with the universal path quantifier A through the well-known dualities. Simply
said, if CTL-MC(T,B) is complete (resp. hard) for a complexity class C, then
CTL-MC(dual(T), dual(B)) is complete (resp. hard) for the complement co-C of

C. Thus, e.g., from the AC1-hardness of CTL-MC(EF,⊕) (Theorem 10) we imme-
diately obtain AC1-hardness of CTL-MC(AG,⊕), and from LOGCFL-complete-
ness of CTL-MC(EX,∧) (Theorem 7) we obtain LOGCFL-completeness of the
corresponding CTL-MC(AX,∨). Our results can directly be rewritten to deal
not only with Boolean operators but in a more generalized view with Boolean
clones as, e.g., in the work of Bauland et al. and Beyersdorff et al. [1, 3].

The only open cases for which we yet cannot prove matching upper and
lower bounds are CTL-MC(ER,∧) and CTL-MC(EF,⊕) and, of course, their
duals CTL-MC(AU,∨) and CTL-MC(AG,⊕). Although we could not achieve an
AC1 upper bound for CTL-MC(EF,⊕), we are convinced that such a result seems
closer than proving P-hardness (or some stronger hardness result than AC1).

Our classifications can be applied to compare the expressiveness of single
CTL operators with respect to the complexity of the induced model checking
problems.

Definition 11. Let S and T be a set of CTL operators. We say that T is mc-
stronger than S (abbreviated as S ⊳ T), if for all sets B of Boolean functions
holds CTL-MC(S,B) ≤log

m CTL-MC(T,B).

The reflexive and transitive relation ⊳ for mc-strength compares what we
informally called the model checking fingerprints of CTL operators. Our fin-
gerprint theorems (Theorems 6–10) yield the hierarchy of mc-strength of CTL
operators shown in Figure 2. The notion of mc-strength generalizes the notion
of expressiveness [13] of CTL operators. For example, since EGα ≡ 0ERα, ER
is more expressive than EG. With our notion we obtain also EG ⊳ER. But our
notion yields more information about differences between several operators. For
example, EX and EU have incomparable expressiveness, but we obtain EX ⊳EU.

A strength-relation like ⊳ can also be defined with respect to the satisfiab-
ility problem—call it sat-strength. Whereas for model checking the set of CTL
operators is partitioned into seven sets with different mc-strength (see Figure 2),
from [14, 16] it follows that the comparison by sat-strength yields only the fol-
lowing three partitions with increasing strength: {AF,EG}, {EX,AX,EF,AG},
and {AU,EU,ER,AR}. The three notions expressiveness, sat-strength, and mc-
strength intuitively compare as follows. Expressiveness relies on equivalence of
formulas, sat-strength relies on equisatisfiability of formulas, and mc-strength on
equisatisfaction of model checking instances.

Further work should solve the exact complexity of CTL-MC(EF,⊕), which
seems to be a very challenging problem. Moreover, one should study the mc-
strength of other temporal logics or of pairs of CTL operators.

References

1. M. Bauland, M. Mundhenk, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer.
The tractability of model checking for LTL: The good, the bad, and the ugly
fragments. TOCL, 12(2):26, 2011.

2. M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer. The complexity
of generalized satisfiability for Linear Temporal Logic. LMCS, 5(1):1–21, 2009.

3. O. Beyersdorff, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and H. Vollmer.
Model checking CTL is almost always inherently sequential. LMCS, 7(2), 2011.

4. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part I: Post’s lattice with applications to complexity theory. SIGACT, 34(4):38–52,
2003.

5. A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM,
28:114–133, 1981.

6. A. K. Chandra and M. Tompa. The complexity of short two-person games. Discrete

Applied Mathematics, 29(1):21–33, 1990.
7. E. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. TOPLAS, 8(2):244–
263, 1986.

8. E. M. Clarke and E. Allen Emerson. Design and synthesis of synchronisation
skeletons using branching time temporal logic. In Logic of Programs, volume 131
of LNCS, pages 52–71. Springer Verlag, 1981.

9. S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information

and Control, 64(1-3):2–21, 1985.
10. E. Allen Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On

branching versus linear time. Journal of the ACM, 33(1):151–178, 1986.
11. E. Allen Emerson and C. S. Jutla. The complexity of tree automata and logics of

programs. SIAM Journal of Computing, 29(1):132–158, February 2000.
12. M. J. Fischer and R. E. Ladner. Propositional modal logic of programs. JCSS,

18:194–211, 1979.
13. F. Laroussinie. About the expressive power of CTL combinators. IPL, 54(6):343–

345, 1995.
14. A. Meier. On the Complexity of Modal Logic Variants and their Fragments. PhD

thesis, Leibniz Universität Hannover, Institut für Theoretische Informatik, 2011.
15. A. Meier, J.-S. Müller, M. Mundhenk, and H. Vollmer. Complexity of model

checking for logics over Kripke models. Bull. EATCS, 108:50–89, 2012.
16. A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. The complexity of satisfiab-

ility for fragments of CTL and CTL∗. IJFCS, 20(05):901–918, 2009.
17. M. Mundhenk and F. Weiß. The complexity of model checking for intuitionistic

logics and their modal companions. In Proc. RP’10, volume 6227 of LNCS, pages
146–160. Springer, 2010.

18. M. Mundhenk and F. Weiß. An AC1-complete model checking problem for intu-
itionistic logic. Computational Complexity, 23(4):637–669, 2014.

19. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
20. A. Pnueli. The temporal logic of programs. In Proc. 18th FOCS, pages 46–57.

IEEE Computer Society Press, 1977.
21. Emil Post. The two-valued iterative systems of mathematical logic. Annals of

Mathematical Studies, 5:1–122, 1941.
22. V. R. Pratt. A near-optimal method for reasoning about action. JCSS, 20(2):231–

254, 1980.
23. Arthur N. Prior. Time and Modality. Clarendon Press, Oxford, 1957.
24. Arthur N. Prior. Past, Present, and Future. Clarendon Press, Oxford, 1967.
25. P. Schnoebelen. The complexity of temporal logic model checking. In AiML, pages

393–436. King’s College Publications, 2002.
26. M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal

logics of programs: Preliminary report. In STOC ’85, LNCS, pages 240–251, 1985.
27. M. Y. Vardi and L. Stockmeyer. Lower bound in full

(2EXPTIME-hardness for CTL⋆-SAT). Online, available at
http://www.cs.rice.edu/~vardi/papers/ctl_star_lower_bound.pdf , 1985.

http://www.cs.rice.edu/~vardi/papers/ctl_star_lower_bound.pdf

6 Appendix

6.1 EU

Proofs for Theorem 3: CTL-MC(EU) is P-complete.

The basic semantical property of EU that we will use is

K,w |= α EUβ if and only if

(i) K,w |= β or (ii) K,w |= α and K, v |= αEUβ for a successor v of w. (1)

Claim 12. For all i < m, all nodes w ∈ V ♭
i , and all j > i holds: KEU, w 6|= φj .

Proof. Let i < m and w ∈ V ♭
i . We proceed by induction on j = m,m −

1, . . . , i + 1. The base case is clear since t 6∈ ξ(w) and thus KEU, w 6|= t(=
φm). For j < m, we have KEU, w 6|= φj+1 as inductive hypothesis. Assume
KEU, w |= sj EU((ŝj+1 EUφj+1)EU êj+1) (= φj). The next steps use (1). From
sj 6∈ ξ(w) follows KEU, w |= (ŝj+1 EUφj+1)EU êj+1. From êj+1 6∈ ξ(w) then fol-
lows KEU, w |= ŝj+1 EUφj+1, and from ŝj+1 6∈ ξ(w) we conclude KEU, w |= φj+1.
This contradicts the inductive hypothesis. Thus KEU, w 6|= φj . ✸

The Kripke model KEU and the formulas φi are constructed in a way that
simulates alternating graphs as follows.

Claim 4:
1. Let w ∈ Vi∩V∃ for some i < m. Then KEU, w |= φi if and only if there exists

a π ∈ Π(w) with π[2] ∈ Vi+1 such that KEU, π[2] |= φi+1.
2. Let w ∈ Vi ∩ V∀ for some i < m. Then KEU, w |= φi if and only if there

exists a π ∈ Π(w) with π[2], π[4] ∈ Vi+1 such that KEU, π[2] |= φi+1 and
KEU, π[4] |= φi+1.

Proof of (1). For the proof direction from left to right, assume KEU, w |= φi.
Since si ∈ ξ(w) and si 6∈ ξ(v) for all successors v of w, it follows from (1)
that KEU, v |= (ŝi+1 EUφi+1)EU êi+1 for some successor v of w. For v′ ∈ V ♭

i

holds ŝi+1, êi+1 6∈ ξ(v) and KEU, v
′ 6|= φi+1 (Claim 12), and using (1) we get

KEU, v
′ 6|= (ŝi+1 EUφi+1)EU êi+1. Thus there is a successor v ∈ Vi+1 of w with

KEU, v |= (ŝi+1 EUφi+1)EU êi+1. Since ŝi+1, êi+1 6∈ ξ(v), this means KEU, v |=
φi+1.

For the other proof direction assume KEU, π[1] |= si and KEU, π[2] |= φi+1

for some π ∈ Π(w) with π[2] ∈ Vi+1. Using (1) it follows that KEU, π[2] |=
ŝi+1 EUφi+1. Moreover, π[2] has a successor u ∈ V̂i+1 with KEU, u |= êi+1. Thus
from (1) follows KEU, π[2] |= (ŝi+1 EUφi+1)EU êi+1. Since π[2] is a successor of
π[1](= w) and si ∈ ξ(w), we get KEU, w |= si EU((ŝi+1 EUφi+1)EU êi+1).

Proof of (2). This can be shown using similar arguments as above. ✸

Claim 5: For every i ≤ m and every w ∈ Vi holds: KEU, w |= φi if and only if
apathG(w, T).

Proof. The proof proceeds by induction on i. The base case for nodes in slice
i = m is straightforward.

For the inductive step, we consider i < m and w ∈ Vi.
First, consider w ∈ V∃. By Claim 4, we have that KEU, w |= φi if and only if

w has a successor v ∈ Vi+1 with KEU, v |= φi+1. Since v is also a successor of w
in G, using the inductive hypothesis, the latter is equivalent to apathG(v, T) for
a successor v of w in G. Since w ∈ V∃, this means apathG(w, T).

Next, consider w ∈ V∀. By Claim 4, we have that KEU, w |= φi if and only if
there exists a path π ∈ Π(w) with π[2], π[4] ∈ Vi+1 such that KEU, π[2] |= φi+1

and KEU, π[4] |= φi+1. Since π[2] and π[4] are all successors of w in G, using the
inductive hypothesis, the latter is equivalent to apathG(v, T) for all successors v
of w in G. Since w ∈ V∀, this means apathG(w, T). ✸

6.2 ER

V4 ∪ V̂4:

s4
s3
t

ŝ3

s4
s3
t3
t

s4
s3
t

ŝ3

s4
s3
t3
t

s4
s3
t

ŝ3

s4
s3
t3

V3 ∪ V̂3:
s3
s2

s3
s2

s3
s2

V2 ∪ V̂2:
s2
s1

ŝ1

s2
s1
t1

s2
s1

ŝ1

s2
s1
t1

s2
s1

ŝ1

s2
s1
t1

V1 ∪ V̂1:
s1
s0

s1
s0

s1
s0

V0 ∪ V̂0: s0

Figure 7. Kripke model K(ER,∨) obtained from the ASGAP(∀out=2,∃in=1) instance
in Figure 4.

Theorem 13. CTL-MC(ER,∨) is P-complete.

Proof. Containment in P follows from [7]. In order to show P-hardness, we
logspace reduce from ASGAP(∀out=2, ∃in=1). Let 〈G, s, T 〉 be an instance of
ASGAP(∀out=2, ∃in=1), where G = (V,E) and V = V∃ ∪ V∀ consists of slices
V0, V1, . . . , Vm with s ∈ V0 and T ⊆ Vm. Let G♭ = (V ♭, E♭) be the graph ob-
tained from G as described in Section 2.2. In order to obtain the Kripke model
K(ER,∨) = (V ♭, E♭, ξ), it remains to define the assignment ξ of atoms to sets of

nodes of G♭.

1. t is assigned to every node in T .
2. s0 is assigned to every node in V0.

3. si and si−1 are assigned to every node in Vi for i > 0.
4. ti−1 is assigned to every node v ∈ V∃∩Vi (i > 0) that is the second successor
v = vu,2 of a node u ∈ V∀ ∩ Vi−1.

5. ŝi−1 is assigned to every v ∈ V̂i (i > 0) such that v = v̂u,1 is the copy of the
first successor of a node u ∈ V∀ ∩ Vi−1.

Nothing is assigned to nodes v̂u,2 and to nodes in V̂∀. Notice that all infinite
paths in G♭ must eventually loop in a state v̂u,2 that satisfies no atom at all. See
Figure 7 for an example.

The formulas φi are defined inductively as follows, for i = m,m− 1, . . . , 0.

φi :=







t, if i = m,

φi+1 ER si, if i < m and even (slice with ∃-nodes),

ti ER((φi+1 ER si) ∨ ŝi), if i < m and odd (slice with ∀-nodes).

The following claim states that apathG(x, T) corresponds to the satisfaction
of formulas in the corresponding nodes in the constructed Kripke model.

Claim 14. For every l ≤ m and every v ∈ Vl holds: apathG(v, T) if and only if
K(ER,∨), v |= φl.

Proof. The proof proceeds by induction on l. The base case for slice l = m is
straightforward. For the inductive step, consider l < m. First consider even l

(slice of ∃-nodes), take a node v ∈ Vl ∩ V∃, and assume

K(ER,∨), v |= φl, i.e. K(ER,∨), v |= φl+1 ER sl. (2)

Remind that φl+1 = tl+1 ER((φl+2 ER sl+1) ∨ ŝl+1). Since sl+1, ŝl+1 6∈ ξ(v), it
follows that K(ER,∨), v 6|= φl+1. Since sl ∈ ξ(v), it follows that (2) is equivalent
to

there exists a successor z of v with K(ER,∨), z |= φl+1 ER sl. (3)

The successor v̂ ∈ V̂l of v does not satisfy sl. Thus (3) is equivalent to

there exists a successor z ∈ Vl+1 of v with K(ER,∨), z |= φl+1 ER sl. (4)

All successors z ∈ Vl+1 of v satisfy sl and do not have a successor that satisfies
sl. Thus (4) is equivalent to

there exists a successor z ∈ Vl+1 of v with K(ER,∨), z |= φl+1. (5)

By the inductive hypothesis and the construction of the Kripke model, this
means that v has a successor z in G with apathG(z, T). Since v ∈ V∃, this is
equivalent to apathG(v, T).

Now consider odd l (slice of ∀-nodes), take a node u ∈ Vl ∩ V∀, and assume

K(ER,∨), u |= φl, i.e. K(ER,∨), u |= tl ER((φl+1 ER sl) ∨ ŝl). (6)

There is no infinite path in Π(u) that satisfies sl or ŝl in every node. Thus,
(6) can only be witnessed by an infinite path that passes through a node that
satisfies tl. Every such path in Π(u) has the finite prefix u, vu,1, v̂u,1, vu,2. Thus
(6) is equivalent to

every node in the path u, vu,1, v̂u,1, vu,2 satisfies (φl+1 ER sl) ∨ ŝl. (7)

For v̂u,1 this holds, since ŝl ∈ ξ(v̂u,1).
K(ER,∨), u |= sl, but K(ER,∨), u 6|= φl+1 because K(ER,∨), u 6|= sl+1. Thus

K(ER,∨), u |= (φl+1 ER sl) ∨ ŝl if and only if K(ER,∨), vu,1 |= φl+1 ER sl and
K(ER,∨), vu,2 |= φl+1 ER sl. Since K(ER,∨), vu,i |= sl and no successor v̂u,i of
vu,i satisfies sl, it follows that K(ER,∨), vu,i |= φl+1 ER sl is equivalent to hav-
ing K(ER,∨), vu,i |= φl+1 (for i = 1, 2). This yields that (7) is equivalent to

K(ER,∨), vu,1 |= φl+1 and K(ER,∨), vu,2 |= φl+1. (8)

By the inductive hypothesis and the construction of the Kripke model, this means
that apathG(v, T) holds for all successors v of u in G. The latter is equivalent to
apathG(u, T). ✸

With Claim 14 we get that 〈G, s, T 〉 ∈ ASGAP(∀out=2, ∃in=1) if and only if
K(ER,∨), s |= φ0. The CTL-MC(ER,∨) instance 〈K(ER,∨), s, φ0〉 can be computed
in space logarithmic in the size of G. Thus ASGAP(∀out=2, ∃in=1) logspace
reduces to CTL-MC(ER,∨). ⊓⊔

Theorem 15. CTL-MC(ER,¬) is P-complete.

Proof. Containment in P follows from [7]. In order to show P-hardness, we give
a reduction from ASGAP. Let 〈G, s, T 〉 be an instance of ASGAP, where G =
(V,E) for V = V∃∪V∀ with slices V0, V1, . . . , Vm. Let G♯ = (V ♯, E♯) be the graph
obtained from G as described in Section 2.2. In order to define the Kripke model
K(ER,¬) = (V ♯, E♯, ξ), we must give a definition of the assignment function ξ.

– t is assigned to all nodes in T .
– si and si−1 are assigned to all nodes in Vi for i = 0, 1, . . . ,m.

The formulas φi are defined inductively for i = m,m− 1, . . . , 0 as follows.

φi :=







t, if i = m,

φi+1 ER si, if i < m is even (slice of ∃-nodes),

¬(¬φi+1 ER si), if i < m is odd (slice of ∀-nodes).

Notice that in the new node e, no atom is satisfied, and therefore no φi is
satified.

Claim 16. For all i ≤ m and all v ∈ Vi holds: K(ER,¬), v |= φi if and only if
apathG(v, T).

The induction base i = m is straightforward. For the induction step we
consider i < m and v ∈ Vi. We first consider even i. Since K(ER,¬), v 6|= si+1 and
on all paths π ∈ Π(v), si is satisfied only in π[1] = v and π[2], it follows that
K(ER,¬), v |= φi+1 ER si is equivalent to K(ER,¬), w |= φi+1 for some successor w
of v. By the inductive hypothesis we obtain this to be equivalent to apathG(v, T).

Next we consider odd i. AssumeK(ER,¬), v |= ¬(¬φi+1 ER si), i.e.K(ER,¬), v 6|=
¬φi+1 ER si. Since K(ER,¬), v |= ¬φi+1 and for all π ∈ Π(v) holds that si is
satisfied only in π[1] = v and π[2], it follows that K(ER,¬), v 6|= ¬φi+1 ER si is
equivalent to K(ER,¬), w 6|= ¬φi+1 for all successors w of v. The latter means that
K(ER,¬), w |= φi+1 for all successors w of v. Using the inductive hypothesis, we
obtain apathG(v, T). ✸

The mapping from ASGAP-instances 〈G, s, T 〉 to CTL-MC(ER,¬)-instances
〈K(ER,¬), s, φ0〉 can be computed in logarithmic space. With Claim 16 this yields
that ASGAP logspace reduces to CTL-MC(ER,¬).

V5:

e

V4 ⊆ V∃:

s4
sl3
t

s4
sr3
t

s4
sl3

s4
sr3
t

s4
sl3
t

s4
sr3

V3 ⊆ V∀:
sl3
sr3
s2

sl3
sr3
s2

sl3
sr3
s2

V2 ⊆ V∃:
s2
sl1

s2
sr1

s2
sl1

s2
sr1

s2
sl1

s2
sr1

V1 ⊆ V∀:
sl1
sr1
s0

sl1
sr1
s0

sl1
sr1
s0

V0 ⊆ V∃: s0

s

Figure 8. Kripke model KER obtained from the ASGAP instance in Figure 4.

Theorem 17. CTL-MC(ER) is LOGCFL-hard.

Proof. We ≤log
m -reduce from the LOGCFL-complete ASGAP(∀out=2, ∃in=1)log.

Let 〈G, s, T 〉 be an instance of ASGAP(∀out=2, ∃in=1)log, where G = (V,E) with

V = V∃ ∪ V∀ and slices V0, . . . , Vm for m ≤ log |V |. Let G♯ = (V ♯, E♯) be the
graph obtained from G as described in Section 2.2. In order to define the Kripke
model KER = (V ♯, E♯, ξ) (see Figure 8 for an example), we need to specify the
assignment function ξ.

1. t is assigned to all nodes in T .
2. si is assigned to every node in V∃ ∩ Vi.
3. si−1, s

l
i, and s

r
i are assigned to every node in V∀ ∩ Vi.

4. For u ∈ V∀ ∩Vi, the two successors vl and vr of u have u as only predecessor.
Then sli is assigned to vl and s

r
i is assigned to vr.

Notice that V∃ ∩ Vi is partitioned into two sets: one to which sli is assigned
and the other to which sri is assigned.

The formulas φi are defined inductively for i = m,m− 1, . . . , 0 as follows.

φi :=







t, if i = m,

φi+1 ER si, if i < m is even (slice of ∃-nodes),

(φi+1 ER s
r
i)ER(φi+1 ER s

l
i), if i < m is odd (slice of ∀-nodes).

Claim 18. For every i ≤ m and every v ∈ Vi holds: KER, v |= φi if and only if
apathG(v, T).

The proof of the claim can be found in the Appendix. With Claim 18 we
get that 〈G, s, T 〉 ∈ ASGAP(∀out=2, ∃in=1)log if and only if 〈KER, s, φ0〉 ∈
CTL-MC(ER). Since the transformation can be computed in logarithmic space,
it follows that ASGAP(∀out=2, ∃in=1)log logspace reduces to CTL-MC(ER).

Theorem 19. CTL-MC(ER) is LOGCFL-complete.

Proof. From Theorem 17 we have LOGCFL-hardness, hence only membership
must be shown.

A right form of an {ER}-formula ψ is a sequence 〈α1, . . . , αm, β〉 of {ER}-
formulas such that ψ = α1 ER(α2 ER(α3 ER(· · · (αm ERβ)) · · ·))). For example,

ψ = (aER b)ER((cER d)ER(eER f))

has, amongst others, the forms

– 〈aER b, (cER d)ER(eER f)〉
– 〈aER b, cER d, eER f〉
– 〈aER b, cER d, e, f〉.

The third right form with β = f is called atomic right form, because f is an
atom.

Claim 20. Let π be a path through a Kripke model K. The following statements
are equivalent.

1. ∀i ≥ 1 : K,π[i] |= β
2. ∀i ≥ 1 : K,π[i] |= 〈α1, . . . , αm, β〉

The proof of the Claim proceeds by induction on m. The base case m = 0 is
clear, because β = 〈β〉. For the inductive step m > 0, the following holds.

∀i ≥ 1 : K,π[i] |= 〈α1, α2, . . . , αm, β〉

⇔ ∀i ≥ 1 : K,π[i] |= 〈α2, . . . , αm, β〉 (semantics of ER)

⇔ ∀i ≥ 1 : K,π[i] |= β (by the inductive hypothesis)

✸

Claim 21. Let π be a path through a Kripke model K, and let k be an integer.
The following statements are equivalent.

1. ∀i ≤ k : K,π[i] |= 〈α1, . . . , αm, β〉
2. K,π[k] |= 〈α1, . . . , αm, β〉 and ∀i ≤ k : K,π[i] |= β.

The proof of the Claim proceeds by induction on m. The base case m = 0 is
clear, because β = 〈β〉.

For the inductive step m > 0, we consider both proof directions separately.
“⇒”:

∀i ≤ k : K,π[i] |= 〈α1, . . . , αm, β〉

⇒∀i ≤ k ∃π′ ∈ Π(π[i])

(1)∀j ≥ 1 : K,π′[j] |= 〈α2, . . . , αm, β〉 or

(2)∃l ≥ 1 : K,π′[l] |= α1 & ∀q ≤ l : K,π′[q] |= 〈α2, . . . , αm, β〉

(semantics of ER)

⇒∀i ≤ k ∃π′ ∈ Π(π[i])

(1)∀j ≥ 1 : K,π′[j] |= β or (Claim)

(2)∃l ≥ 1 : K,π′[l] |= α1 & (ind. hypoth.)

∀q ≤ l : K,π′[q] |= β & K,π′[l] |= 〈α2, . . . , αm, β〉

⇒∀i ≤ k : K,π[i] |= β (since π′[1] = π[i])

“⇐”:

K,π[k] |= 〈α1, . . . , αm, β〉 and ∀i ≤ k : K,π[i] |= β

⇒∀i ≤ k : K,π[i] |= β and ∃π′ ∈ Π(π[k]) :

(1)∀j ≥ 1 : K,π′[j] |= 〈α2, . . . , αm, β〉 or

(2)∃j ≥ 1 : K,π′[j] |= α1 & ∀q ≤ j : K,π′[q] |= 〈α2, . . . , αm, β〉

⇒∃ρ ∈ Π(w) (where ρ = π[1] · · ·π[k](= π′[1])π′[2] · · ·) :

(1)∀j ≥ 1 : K, ρ[j] |= β (using the above Claim) or

(2)∃k′ ≥ k : K, ρ[k′] |= α1 & ∀i ≤ k′ : K, ρ[i] |= 〈α2, . . . , αm, β〉 (ind. hyp.)

⇒∀i ≤ k : K,π[i] |= 〈α1, . . . , αm, β〉

✸

The atomic right form of an {ER}-formula is unique.

Claim 22. Let ϕ be an {ER}-formula with atomic right form (α1, . . . , αm, β) and
m ≥ 1, K = (W,R, ξ) be a Kripke model, and w ∈ W . Then K,w |= ϕ if and
only if there exists a finite path π through (W,R) starting in w with length
|π| ≤ |W |+ 1 such that

1. K,π[i] |= β for all i = 1, 2, . . . , |π|, and
2. (a) |π| = |W |+ 1, or

(b) – K,π[|π|] |= α1, and
– K,π[|π|] |= α2 ER(α3 ER(· · ·ER(αm ERβ) · · ·)) (i.e. the formula

with atomic right form 〈α2, . . . , αm, β〉).

K,w |= 〈α1, . . . , αm, β〉 is defined as

∃π ∈ Π(w) ∀i ≥ 1 : K,π[i] |= 〈α2, . . . , αm, β〉 or (9)

∃π ∈ Π(w) ∃k ≥ 1 : K,π[k] |= α1 & ∀j ≤ k : K,π[j] |= 〈α2, . . . , αm, β〉 (10)

By Claim 20 we get that (9) is equivalent to the following.

∃π ∈ Π(w) ∀i ≥ 1 : K,π[i] |= β (11)

Since β is an atom, (11) is equivalent to

there exists a finite path π starting in w with length |π| = |W |+ 1

such that K,π[i] |= β for all i = 1, 2, . . . , |π|.

This covers the first half (i.e. 2.a) of the claim.

Now consider (10). Using Claim 21 we get that (10) is equivalent to

∃π ∈ Π(w) ∃k ≥ 1 : π[k] |= α1 & ∀j ≤ k : π[j] |= β & π[k] |= 〈α2, . . . , αm, β〉
(12)

It is clear that if such a k exists, then k can be chosen to be < |W | + 1. This
covers the second half (i.e. 2.b) of the claim. ✸

Algorithm 1.1 implements this algorithm according to Claim 22. It is easily
seen to work in logarithmic space. The stack is used for the recursive calls. Since
essentially every subformula causes one recursive call, the algorithm runs in
polynomial time. Thus it is an LOGCFL algorithm.

6.3 EG

Theorem 23. CTL-MC(EG,⊕) is P-complete.

Algorithm 1.1. LOGCFL machine that decides CTL-MC(ER)

Procedure : check
Input : Kripke s t ru c tu r e K = (W,R, ξ) , i n i t i a l s t a t e w0 ∈ W ,

formula φ with only ER operator s .
Output : t rue i f f K,w0 |= φ .

l e t 〈α1, . . . , αm, β〉 be the atomic r i gh t form of φ

i f β 6∈ ξ(w0) the re tu rn f a l s e
guess ℓ ≤ |W |+ 1
i := 1
s := w0

whi le i ≤ ℓ do
s := guessed successor of s
i f β 6∈ ξ(s) then re tu rn f a l s e
i := i+ 1

i f ℓ = |W |+ 1 or m = 0 then re tu rn t rue
e l s e r e tu rn check(K, s, α1) & check(K, s, 〈α2, . . . , αm, β〉)

V4 ∪ V̂4:
s4
t

s4
ŝ4

s4
t

s4
ŝ4

s4
t

s4
ŝ4

s4
t

s4
ŝ4

s4
t

s4
ŝ4

s4
s4
ŝ4

V3 ∪ V̂3: s3
s3
ŝ3

s3
s3
ŝ3

s3
s3
ŝ3

V2 ∪ V̂2: s2
s2
ŝ2

s2
s2
ŝ2

s2
s2
ŝ2

s2
s2
ŝ2

s2
s2
ŝ2

s2
s2
ŝ2

V1 ∪ V̂1: s1
s1
ŝ1

s1
s1
ŝ1

s1
s1
ŝ1

V0 ∪ V̂0: s0
s0
ŝ0

Figure 9. Kripke model K(EG,⊕) obtained from the ASGAP(∀out=2,∃in=1) instance
in Figure 4.

Proof. The upper bound P follows from [7]. For the lower bound—P-hardness—
we give a reduction from ASGAP(∀out=2, ∃in=1). Let 〈G, s, T 〉 be an instance
of ASGAP(∀out=2, ∃in=1) with G = (V,E) for V = V∃ ∪ V∀ with slices V =
V0 ∪ . . . ∪ Vm. Let G♭ = (V ♭, E♭) be the graph obtained from G as described in
Section 2.2. Using G♭, we construct a Kripke model K(EG,⊕) = (V ♭, E♭, ξ) with
assignment ξ as follows (see Figure 9 for an example).

1. si is assigned to all nodes in V ♭
i .

2. ŝi is assigned to all nodes V̂i.
3. t is assigned to all nodes in T .

The formulas ϕi (i = m,m− 1, . . . , 0) are inductively defined as follows.

ϕi =

{

t, if i = m

EG(si ⊕ si+2 ⊕ ŝi ⊕ ŝi+1 ⊕ ϕi+1), if i < m

We have the following easy-to-see properties of the model K(EG,⊕) and the
formulas ϕi.

Claim 24. 1. For all i ≤ m, all nodes w ∈ V ♭
i , and all j > i holds K(EG,⊕), w 6|=

ϕj .

2. For all i ≤ m and all nodes z ∈ V̂i holds K(EG,⊕), z 6|= ϕi.

3. For all i ≤ m and all u ∈ V̂i with (u, u) ∈ E♭ holds K(EG,⊕), u |= ϕi−1.

We sketch the proof. For 1: K(EG,⊕), w 6|= ϕj since no atoms that appear in
ϕj are assigned to node w in slice i < j.

For 2: By the definition of ξ we have z ∈ ξ(si) and z ∈ ξ(ŝi), and z 6∈ ξ(si+2)
and z 6∈ ξ(ŝi+1). With case 1 we also have K(EG,⊕), z 6|= ϕi+1. Thus K(EG,⊕), z 6|=
si ⊕ si+2 ⊕ ŝi ⊕ ŝi+1 ⊕ ϕi+1, and consequently K(EG,⊕), z 6|= ϕi.

For 3: For ϕi−1 = EG(si−1 ⊕ si+1 ⊕ ŝi−1 ⊕ ŝi ⊕ ϕi), we have that ŝi ∈ ξ(u)
and si−1, si+1, ŝi−1 6∈ ξ(u). From 2 we get K(EG,⊕), u 6|= ϕi. Thus, K(EG,⊕), u |=
si−1 ⊕ si+1 ⊕ ŝi−1 ⊕ ŝi ⊕ϕi. Since all infinite paths π ∈ Π(u) only loop through
u (e.g. π[k] = u for all k ≥ 1), it follows that K(EG,⊕), u |= ϕi−1. ✸

Claim 25. For all i ≤ m, all nodes w ∈ V ♭
i , and all j ≤ i− 2 holds: K(EG,⊕), w 6|=

ϕj .

The proof is by induction on i.

– Base case i = m. Consider w ∈ V ♭
m. Notice that every infinite path π ∈ Π(w)

eventually loops in a node uw ∈ V̂m with (uw, uw) ∈ E♭. Since K, v |= EGα

if and only if K, v |= α and K, v′ |= EGα for some successor v′ of v, it
suffices to show that K(EG,⊕), uw 6|= ϕj . We proceed by induction on j, where
j = m − 2 is the base case. Since K(EG,⊕), uw |= ϕm−1 (Claim 24(3)), it
follows that K(EG,⊕), uw 6|= sm−2 ⊕ sm ⊕ ŝm−2 ⊕ ŝm−1 ⊕ ϕm−1, and thus
K(EG,⊕), uw 6|= ϕm−2. (Generally, a formula EGα is satisfied in a node u if
and only if u |= α and v |= EGα for some successor v of u.)
For j < m− 2, we have the inductive hypothesis K(EG,⊕), uw 6|= ϕj+1. Since
K(EG,⊕), uw 6|= sj⊕sj+2⊕ ŝj⊕ ŝj+1, it follows that K(EG,⊕), uw 6|= sj⊕sj+2⊕
ŝj ⊕ ŝj+1 ⊕ ϕj+1 and thus K(EG,⊕), uw 6|= ϕj .

– Inductive step i < m. Consider node w ∈ V ♭
i . Again we proceed by induction

on j.
• Base case j = i− 2 for ϕj = EG(sj ⊕ sj+2 ⊕ ŝj ⊕ ŝj+1 ⊕ ϕj+1). Since no
states in slices ≥ i satisfy sj , ŝj , and ŝj+1, and K(EG,⊕), w |= sj+2(= si),
it follows that K(EG,⊕), w |= ϕj iff K(EG,⊕), w |= EG(sj+2 ⊕ ϕj+1). By

inductive hypothesis we have K(EG,⊕), v 6|= ϕj+1 for all v ∈ V ♭
i+1. These

nodes v do not satisfy sj+2. Therefore K(EG,⊕), w |= EG(sj+2 ⊕ ϕj+1)

only holds, if it is witnessed by a path that stays in slice V ♭
i . This path

eventually loops in a node uw ∈ Vi with (uw, uw) ∈ E♭. By Claim 24(3)
we know K(EG,⊕), uw |= ϕj+1 (since j + 1 = i − 1). Consider ϕj =
EG(sj ⊕ sj+2 ⊕ ŝj ⊕ ŝj+1 ⊕ ϕj+1). We have that sj+2 and ϕj+1 are
the only “parts” of ϕj that are satisfied in uw. Thus K(EG,⊕), uw 6|=
sj ⊕ sj+2 ⊕ ŝj ⊕ ŝj+1 ⊕ ϕj+1, and therefore K(EG,⊕), uw 6|= ϕj .
Since every path from w that stays in slice i ends in such a node uw, we
get that K(EG,⊕), w 6|= ϕj .

• Inductive step j < i − 2. Consider ϕj = EG(sj ⊕ sj+2 ⊕ ŝj ⊕ ŝj+1 ⊕
ϕj+1). By inductive hypothesis we know K(EG,⊕), w 6|= ϕj+1. Moreover,
sj , sj+2, ŝj , ŝj+1 6∈ ξ(w). Therefore K(EG,⊕), w 6|= ϕj . ✸

Claim 26. For every i ≤ m and every w ∈ Vi holds: K(EG,⊕), w |= ϕi if and only
if apathG(w, T).

The proof proceeds by induction on i. The base case i = m is straightforward.
For the inductive step i < m, consider w ∈ Vi.
K(EG,⊕), w |= EG(si⊕si+2⊕ ŝi⊕ ŝi+1⊕ϕi+1)(= ϕi) if and only if there exists

an infinite path π ∈ Π(w) such that K(EG,⊕), π[j] |= si ⊕ si+2 ⊕ ŝi ⊕ ŝi+1 ⊕ ϕi+1

(=: αi) for all j. Notice that this is equivalent to K(EG,⊕), π[j] |= ϕi for all j.
Assume that such a π exists. Since K(EG,⊕), w |= si and K(EG,⊕), w 6|=

si+2, ŝi, ŝi+1, ϕi+1, it holds that π[1] |= αi. For the “right neighbour” v ∈ V̂i
of w holds K(EG,⊕), v 6|= ϕi (Claim 24(2)). This means that π[2] ∈ Vi+1. Then
si+1 ∈ ξ(π[2]) and si, si+2, ŝi, ŝi+1 6∈ ξ(π[2]). Therefore, K(EG,⊕), π[2] |= αi if and
only if K(EG,⊕), π[2] |= ϕi+1.

Since no node in layer V ♭
i+2 satisfies ϕi (Claim 25), we conclude that π[3],

π[4], . . . must be in slice V ♭
i+1. If (π[3], π[3]) ∈ E♭, we are done as K(EG,⊕), π[3] |=

ϕi by Claim 24(3). Otherwise, π[3] is a node in V̂i+1. By Claim 24(2) we have
K(EG,⊕), π[3] 6|= ϕi+1. Since si, si+2, ŝi 6∈ ξ(π[3]) and ŝi+1 ∈ ξ(π[3]), we get
K(EG,⊕), π[3] |= αi.

Now, π[q] for even q ≥ 4 can be dealt like π[2], and π[r] for odd r ≥ 5 can
be dealt like π[3]. Let π[1], π[2], . . . , π[5] be the finite prefix of π that ends in
the node through which π eventually loops. We have seen that K(EG,⊕), w |= ϕi

if and only if K(EG,⊕), π[2] |= ϕi+1 and K(EG,⊕), π[4] |= ϕi+1. By the inductive
hypothesis this is equivalent to apathG(π[2], T) and apathG(π[4], T). Since π[2]
and π[4] are all the successors of π[1] = w in G, the latter is equivalent to
apathG(w, T). ✸

With Claim 26 we get that 〈G, s, T 〉 ∈ ASGAP(∀out=2, ∃in=1) if and only if
K(EG,⊕), s |= ϕ0. The CTL-MC(EG,⊕) instance 〈K(EG,⊕), s, ϕ0〉 can be computed

in space logarithmic in the size of G. Thus ASGAP(∀out=2, ∃in=1) logspace
reduces to CTL-MC(EG,⊕).

Lemma 27. CTL-MC(EG) is NL-hard.

Proof. We give a logspace reduction from the NL-complete graph accessibility
problem. Let (G, s, t) be the given GAP instance with G = (V,E). Let V ′ =
{(u, i) | u ∈ V, 1 ≤ i ≤ |V |} be a set consisting of |V | copies of every node in
|V |, and E′ be a set of edges on V ′ similar to E, such that an edge (u, v) ∈ E

leads to edges from the ith copy of u to the (i + 1)st of v, plus reflexive edges
for all |V |th copies, i.e., E′ = {((u, i), (v, i + 1)) | (u, v) ∈ E, 1 ≤ i < |V |} ∪
{((u, |V |), (u, |V |)) | u ∈ V }. The assignment ξ assigns a to all nodes (u, i) ∈ V ′

with i < |V | or u = t. Let M = (V ′, E′, ξ) be a Kripke model. It is clear that G
has an s-t-path if and only if M, (s, 1) |= EG a.

Lemma 28. CTL-MC(EG) and CTL-MC(AF) are in NL.

Proof. First note that EG · · ·EG p ≡ EG p.

The algorithm for CTL-MC(EG) gets input 〈(W,R, ξ), w0,EG
k p〉. If k = 0

(i.e. the formula to check equals p), it checks whether w0 ∈ ξ(p) and decides
accordingly. If k > 0, the algorithm must verify whether (W,R) has an infinite
paths starting in w0 on which p is satisfied in every point. The existence of
such a path is equivalent to the existence of two paths w0 = v1, v2, . . . , vm and
vm = u1, u2, . . . , uq = vm for some m, q ≤ |W | such that p is satisfied by all
vi and ui. Both paths together form an ultimately periodic infinite path that is
searched for. The algorithm first guesses vm and q, and then stepwise guesses
the paths and verifies that p is satisfied always. This is clearly an NL-algorithm.

Since K,w0 |= AF p iff K,w0 6|= EG¬p, the above CTL-MC(EG)-algorithm
can be used to decide CTL-MC(AF). Since NL is closed under complement,
CTL-MC(AF) is in NL, too.

Lemma 29. CTL-MC(EG,∧) is in NL.

Proof. We first notice that EG(α∧EG β) ≡ EG(α∧β). (1) IfK,w |= EG(α∧EG β),
then there exists a path starting in w on which everywhere α∧β is satisfied. (2) If
K,w |= EG(α∧β), then there exists a path π starting in w on which everywhere
α∧β is satisfied. ThenK,π[m] |= EGβ (witnessed by πm) for everym. Therefore
K,w |= EG(α ∧ EGβ).

Due to EGEGα ≡ EGα and the above equivalence, every {EG,∧}-formula
can be transformed to an equivalent formula of the form α ∧

∧

ℓ=1,2,...,k EG βℓ,
where α and all βℓ are conjunctions of atoms. The satisfaction K, s |= EG βℓ can
be checked nondeterministally within logspace by guessing the relevant prefix
of a looping infinite path that satisfies βℓ in every node. Doing this for all EG-
subformulas yields an NL-algorithm for CTL-MC(EG,∧).

Lemma 30. CTL-MC(EG,∨) is in NL.

Proof. Every {EG,∨}-formula can be transformed into an equivalent formula of
the form α ∨

∨

ℓ=1,2,...,k EG βℓ (∗), where α is a disjunction of atoms and every
βℓ is a formula of the form (∗) (for k = 0, such a formula is a disjunction of
atoms).

Claim 31. Let K = (W,R, ξ) be a Kripke model, α be a disjunction of atoms,
and βℓ be formulas of the form (∗). Then K, s |= EG(α ∨

∨

ℓ=1,2,...,k EG βℓ) if
and only if

1. there is a path v1, . . . , vm through K starting in s and of length m = |W |+1
such that K, vi |= α for i = 1, 2, . . . ,m, or

2. there is a path v1, . . . , vm through K starting in s and of length 1 ≤ m ≤
|W |+ 1 such that K, vi |= α for i = 1, 2, . . . ,m− 1 and K, vm |= EG βq for
some q.

Proof. The implication from left to right is straightforward. Consider the other
proof direction. If 1 happens, then R contains an edge from vm to some prede-
cessor on the path. Using this loop we get an infinite path that satisfies α on every
of its nodes. If 2 happens, then let u1, u2, . . . be the infinite path starting with
vm = u1 such thatK,ui |= βq for all i ≥ 1. ThenK,ui |= EG βq for all i ≥ 1. Con-
sequently, on every node of the infinite path v1(= s), . . . , vm(= u1), u2, . . . the for-
mula α∨

∨

ℓ=1,2,...,k EG βℓ is satisfied. ThereforeK, s |= EG(α∨
∨

ℓ=1,2,...,k EG βℓ).
✸

Using this claim, an NL-algorithm can proceed as follows. On input K, s, α∨
∨

ℓ=1,2,...,k EG βℓ, it accepts if K, s |= α. Otherwise, it guesses an i and goes to
check K, s |= EG βi where βi = α′∨

∨

ℓ=1,2,...,k EG β′
ℓ). For this, it guesses which

of the two cases of the Claim has to be fulfilled. Case 1 can be verified straight-
forwardly. For case 2, it guesses the relevant m and q, guesses vi and checks
that K, vi |= α′ for i = 1, 2, . . . ,m− 1 and eventually recursively checks whether
K, vm |= EG β′

j for some j. Since this is a tail recursion whose depth is bounded
by the depth of the input formula, it can be performed nondeterministically
within logspace.

Lemma 32. CTL-MC(EG,¬) is in NL.

Proof. The following equivalences hold for EG and its dual AF.

1. EG EG α ≡ EG α

2. AF AFα ≡ AF α

3. EG AF EG α ≡ AF EG α

4. AF EG AF α ≡ EG AF α

Proof of 3: If K,w |= EG AF EG α, then clearly K,w |= AF EG α. For
the other direction, assume K,w |= AF EG α. Take some π ∈ Π(w). Then
K,π[k] |= EGα for some “smallest” k with K,π[i] 6|= EGα for i = 1, 2, . . . , k − 1.
SinceK,π[1] |= AF EG α, it follows thatK,π[i] |= AF EG α for i = 1, 2, . . . , k−1.
Moreover, let ρ be a path that witnesses K,π[k] |= EGα. Then ρj witnesses

K, ρ[j] |= EG α for all j ≥ 1, and fromK, ρ[j] |= EG α followsK, ρ[j] |= AF EG α.
Concluding we have for the infinite path λ = (π[1](= w), π[2], . . . , π[k−1], ρ[1](=
π[k]), ρ[2], . . .) that K,λ[i] |= AF EG α for all i, what means that λ is a witness
for K,w |= EG AF EG α.

The proof of 4 follows from 3 by the duality of AF and EG.

These equivalences yield that every {EG,¬}-formula with atom p is equivalent
to EG AF p or AF EG p, or to EG p or AF p, or to p, or to one of these formulas
where p is replaced by ¬p. For a given {EG,¬}-formula it can be checked in
logarithmic space to which of these cases the formula belongs.

We first describe an algorithm for the EG AF p case.

The algorithm gets input 〈(W,R, ξ), w0,EGAF p〉. It must verify whether
(W,R) has an infinite paths starting in w0 on which AF p is satisfied in every
point. The existence of such a path is equivalent to the existence of two paths
w0 = v1, v2, . . . , vm and vm = u1, u2, . . . , uq = vm for some m, q ≤ |W | such
that AF p is satisfied by all vi and ui. Both paths together form an ultimately
periodic infinite path that is searched for. The algorithm first guesses vm and
q, and then stepwise guesses the paths and verifies that AF p is satisfied always.
This is done by guessing the next vi (resp. ui), and then starting the (slightly
modified) NL-algorithm for CTL-MC(AF) with input 〈(W,R, ξ), vi,AF p〉. If it
reaches an accepting configuration, then the next vi (resp. ui) is guessed etc.

This also yields an NL-algorithm.

The algorithms for the other cases are constructed in the same way. Since
NL is closed under complement, all algorithms are NL-algorithms.

6.4 EF

Theorem 33. CTL-MC(EF) and CTL-MC(EF,∨) are NL-complete.

Proof. It suffices to show NL-hardness of CTL-MC(EF) and containment in NL
of CTL-MC(EF,∨).

NL-hardness of CTL-MC(EF) follows by a reduction from the directed graph
accessability problem as follows. Let 〈(V,E), s, t〉 be an instance of the graph
accessability problem—i.e. we want to decide whether graph (V,E) has an s-
t-path. Let Ê be the reflexive closure of E. Then (V, Ê) is a total graph, and
it has an s-t-path if and only if (V,E) has some. Define the assignment ξ as
ξ(t) = {p} and ξ(w) = ∅ for w 6= t. Then (V,E) has an s-t-path if and only if
(V, Ê, ξ), s |= EF p.

For CTL-MC(EF,∨) ∈ NL, note that EF(α ∨ EFβ) ≡ EF(α ∨ β) and EFα ∨
EFβ ≡ EF(α ∨ β). Thus, every {EF,∨}-formula can be transformed into an
equivalent formula of the form α ∨ EF β, where α and β are disjunctions of
atoms. This transformation can be done in logarithmic space. The NL algorithm
on input 〈K,w0, φ〉 verifies whether K,w0 |= α or guesses a reachable v and
verifies K, v |= β.

Theorem 34. CTL-MC(EF,¬) is NL-complete.

Proof. NL-hardness follows from that of CTL-MC(EF) (Theorem 33).
Every {EF,¬}-formula can be rewritten as a formula with EFs and AGs fol-

lowed by a literal p or ¬p. It is clear that EFEFα ≡ EFα and AGAGα ≡ AGα.
Thus every such formula can be rewritten as one having a prefix of alternating
EFs and AGs. With the equivalences of the following claim we can reduce this
prefix to length ≤ 3.

Claim 35. Let K be a Kripke model, w be a node ofK, and α be a CTL-formula.

1. K,w |= EFEFα if and only if K,w |= EFα.
2. K,w |= AGAGα if and only if K,w |= AGα.
3. K,w |= EFAGEFAGα if and only if K,w |= EFAGα.

(1) and (2) are straightforward. For (1), notice that K,w |= α implies K,w |=
EFα. For (3), we consider both proof directions separately.

K,w |= EFAGEFAGα

⇒ ∃π ∈ Π(w) ∃k ≥ 1 ∀ρ ∈ Π(π[k])
∀j ≥ 1 : K, ρ[j] |= EFAGα (semantics . . .)

⇒ ∃π ∈ Π(w) ∃k ≥ 1 ∀ρ ∈ Π(π[k]) : K, ρ[1] |= EFAGα (take j = 1)
⇒ ∃π ∈ Π(w) ∃k ≥ 1 : K,π[k] |= EFAGα (ρ[1] = π[k])
⇒ K,w |= EFEFAGα (semantics of EF)
⇒ K,w |= EFAGα (part (1))

For the other direction, we use (2) and the fact that K,w |= β implies
K,w |= EFβ.

K,w |= EFAGα

⇒ K,w |= EFAGAGα

⇒ K,w |= EFAGEFAGα ✸

By Claim 35 follows that every formula in the {EF,¬}-fragment has an equi-
valent formula in the {EF,AG}-fragment with atomic negation, whith a prefix
of at most three temporal operators. Since CTL-MC(EF) and CTL-MC(AG) are
in NL (follows from Theorem 33 and the closure of NL under complement),
similar as in the proof of Lemma 32, an NL-algorithm can be composed that
combines the CTL-MC(EF) and CTL-MC(AG) algorithms in order to evaluate
the bounded number of alternations of temporal operators.

Theorem 36. CTL-MC(EF,⊕) is AC1-hard.

Proof. We give a reduction from the AC1-complete problem ASGAPlog. Let
〈G, s, T 〉 be an instance of ASGAPlog, where V = V∀ ∪ V∃ consists of slices
V = V0 ∪ V1 ∪ . . . ∪ Vℓ. W.l.o.g. we assume that Vℓ ⊆ V∀.

Next we describe the construction of a Kripke model KEF,⊕ that bases on G.
In order to ease the readability of the proof, we prefer to use the indices of the
slices in reverse order. Let W ′

0 = Vℓ (the slice with nodes without successors),
W ′

1 = Vℓ−1,W
′
2 = Vℓ−2, . . . ,W

′
ℓ = V0. By the above convention, W ′

0 consists of
∀-nodes. Thus V∀ =

⋃

i evenW
′
i and V∃ =

⋃

i oddW
′
i . Eventually, we add 2(ℓ+1)

new nodes and define Wi =W ′
i ∪ {ai, bi} for i = 0, 1, . . . , ℓ. We will call each Wi

as layer i, and W =
ℓ⋃

i=0

Wi is the set of nodes of KEF,⊕.

Next we consider the edges. We take all edges from E, and add loops (u, u)
for all u ∈ W0. The new ai nodes form a path {(ai, ai−1) | i = ℓ, ℓ − 1, . . . , 1},
and the new bi nodes form a path Eb = {(bi, bi−1) | i = ℓ, ℓ−1, . . . , 1}. Moreover,
for odd i every node u ∈ Wi has an edge (u, ai−1) to ai−1, and for even i ≥ 2
every node u ∈Wi has an edge (u, bi−1) to bi−1. Let E

′ denote this set of edges.
We complete the description of KEF,⊕ with the assignment ξ. It marks each

layerWi with an individual atom zi. Moreover, the nodes in T and b0 are marked
with t.

ξ(w) =

{

{z0, t}, if w ∈W0 ∩ (T ∪ {b0})

{zi}, if w ∈Wi ∩ T ∪ {b0}

The Kripke model KEF,⊕ constructed from G is defined as KEF,⊕ = (W,E′, ξ).
Figure 10 shows an example for the construction. (This example does not have
logarithmic depth, but gives a good insight into the construction.)

W0: z0, t z0, t z0 z0 a0 z0, t b0

W1: z1 z1 z1 z1 a1 z1 b1

W2: z2 z2 z2 z2 a2 z2 b2

W3: z3 z3 z3 z3 a3 z3 b3

W4: z4

s

z4 a4 z4 b4

Figure 10. Kripke model KEF,⊕ constructed from an alternating graph.

For i = 0, 1, 2, . . . , ℓ, we inductively define formulas ϕi as follows. Here we use
AGα as abbreviation for s⊕EF(s⊕α) for a new atom s that is satisfied in every
node of the Kripke model. Under this condition, s⊕EF(s⊕α) ≡ ¬EF¬α ≡ AGα.

ϕi =







t, if i = 0

EF

(
⊕

z∈α(i)

z ⊕
i−1⊕

j=0

ϕj

)

, if i > 0 and odd (layer i: ∃-nodes)

AG

(
⊕

z∈α(i)

z ⊕
i−1⊕

j=0

ϕj

)

, if i > 0 and even (layer i: ∀-nodes)

where each α(i) is a subset of {z0, z1, . . . , zi} defined as follows. Let #A denote
the number of elements of the set A.

– for odd i and j < i− 1 :
zj ∈ α(i) iff
#{m ∈ {0, 1, 2, . . . , j − 1} | m odd}+#{m ∈ {j + 2, . . . , i− 1} | m even}

is odd
– for odd i and j ∈ {i− 1, i} :
zj ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i− 2} | m odd} is odd

– for even i and j < i− 1 :
zj ∈ α(i) iff
#{m ∈ {0, 1, 2, . . . , j − 1} | m odd}+#{m ∈ {j + 2, . . . , i− 1} | m even}

is even
– for even i and j ∈ {i− 1, i} :
zj ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i− 2} | m odd} is odd

As examples, we write down ϕ0, ϕ1, ϕ2, and ϕ3.

– ϕ0 = t.
– For ϕ1: z0, z1 6∈ α(1) since #{m ∈ ∅ | m odd} = 0 is even.

Thus, ϕ1 = EF t.
– For ϕ2: z0 ∈ α(2) since #{m ∈ ∅ | m odd}+#{m ∈ ∅ | m even} = 0 is even.
z1, z2 6∈ α(2) since #{m ∈ {0} | m odd} = 0 is even.
Thus ϕ2 = AG(z0 ⊕ t⊕ EF t).

– For ϕ3: z0 ∈ α(3) since #{m ∈ ∅ | m odd} + #{m ∈ {2} | m even} = 1 is
odd. z1 ∈ α(3) since #{m ∈ {3} | m odd} +#{m ∈ ∅ | m even} = 1 is odd.
z2, z3 ∈ α(3) since #{m ∈ {0, 1} | m odd} = 1 is odd.
Thus ϕ3 = EF(z0 ⊕ z1 ⊕ z2 ⊕ z3 ⊕ t⊕ EF t⊕ AG(z0 ⊕ t⊕ EF t)).

The following claim contains the crucial properties of Kripke model KEF,⊕

and the formulas ϕi.

Claim 37. For every j = 0, 1, . . . , ℓ and every node wj ∈ Wj the following holds.

(A) KEF,⊕, wj |= ϕj if and only if KEF,⊕, wj |= ϕj+1.
(B) For all i ≥ j + 2 holds KEF,⊕, wj |= ϕi if and only if i is even.
(C) KEF,⊕, bj |= ϕj and KEF,⊕, aj 6|= ϕj .
(D) For wj ∈ V ∩Wj : KEF,⊕, wj |= ϕj if and only if apathG(wj , T).

Proof. Throughout the proof, we will use the following straightforward connec-
tion between sums of zi and their satisfaction in different layers. By the construc-
tion of the Kripke model KEF,⊕, each zj is satisfied exactly in nodes of layer Wj .
Therefore for all i ≥ j and

for every wj ∈Wj holds: zj ∈ α(i) if and only if KEF,⊕, wj |=
⊕

z∈α(i)

z. (13)

The proof of the Claim proceeds by induction on j.
The induction base is j = 0. For case (A), we have to consider ϕ0 = t and

ϕ1 = EF t. In layer W0, all nodes only have itself as successor, and therefore t is
satisfied in a node of layer W0 if and only if EF t is satisfied by this node.

For case (C), clearly KEF,⊕, b0 |= t and KEF,⊕, a0 6|= t.
For case (D), KEF,⊕, w0 |= t if and only if KEF,⊕, w0 ∈ T if and only if

apathG(w0, T).
For case (B), we proceed by induction on i. First, notice that for every w0

in layer 0, KEF,⊕, w0 |= EF(ψ) iff KEF,⊕, w0 |= ψ, and KEF,⊕, w0 |= AG(ψ) iff
KEF,⊕, w0 |= ψ.

The base case is i = 2. Every node in layerW0 satisfies, ϕ2 = AG(z0⊕t⊕EF t).
For the inductive step, consider a node w0 ∈ W0. Notice thatKEF,⊕, w0 6|= ϕ0⊕ϕ1

(part (A)). By the inductive hypothesis, all formulas ϕq for even q with 2 ≤ q < i

are satisfied in w0, and all formulas ϕr for odd r with 2 ≤ r < i are not satisfied
in w0. By the semantics of ⊕ we can conclude

KEF,⊕, w0 |=
i−1⊕

l=0

ϕl if and only if #{m ∈ {2, 3, . . . , i− 1} | m even} is odd.

(14)

We have to consider the cases for odd resp. even i separately, and we start
with i > 2 being odd. By the definition of α(i) we have

z0 ∈ α(i) if and only if #{m ∈ {2, 3, . . . , i− 1} | m even} is odd. (15)

From (14) and (15) being equivalences with the same right-hand side, and ap-
plying (13) for w0 in layer j = 0, we get

KEF,⊕, w0 |=
⊕

z∈α(i)

z if and only if KEF,⊕, w0 |=
i−1⊕

l=0

ϕl,

and therefore

KEF,⊕, w0 6|=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, yielding KEF,⊕, w0 6|= EF

(⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl

)

︸ ︷︷ ︸
=ϕi

.

For even i > 2, we have

z0 ∈ α(i) if and only if #{m ∈ {2, 3, . . . , i− 1} | m even} is even. (16)

From (14) and (16), and applying (13) for w0 in layer j = 0, we get

KEF,⊕, w0 |=
⊕

z∈α(i)

z if and only if KEF,⊕, w0 6|=
i−1⊕

l=0

ϕl.

Therefore,

KEF,⊕, w0 |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, yielding KEF,⊕, w0 |= AG

(⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl

)

.

This concludes the proofs of the base cases.

For the induction step, consider j > 0. We start with some essential obser-
vations for nodes wj ∈Wj . For even i > j, the formula ϕi has the form AG(. . .),
and by the semantics of AG, we have that KEF,⊕, wj |= ϕi holds if and only if

KEF,⊕, wj |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, and (17)

for all successors v of wj holds KEF,⊕, v |= ϕi. (18)

Since every successor v of wj is in layer j − 1, and i ≥ (j − 1)+ 2, from part (B)
of the induction hypothesis follows that KEF,⊕, v |= ϕi for all v in layer j − 1.
Therefore, KEF,⊕, wj |= ϕi is equivalent to (17). Similarly, for odd i > j holds
KEF,⊕, wj |= ϕi if and only if

KEF,⊕, wj |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, or

for some successor v of wj holds KEF,⊕, v |= ϕi.

Since every successor v of wj is in layer j − 1, and i ≥ (j − 1)+ 2, from part (B)
of the induction hypothesis follows that KEF,⊕, v 6|= ϕi. Therefore we obtain the
first observation

for i > j : KEF,⊕, wj |= ϕi if and only if KEF,⊕, wj |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl. (19)

By the inductive hypothesis (C) we know that KEF,⊕, br |= ϕr for all r < j.
For all odd r < j it holds that br is reachable from wj . Since for odd r, the
formula ϕr has the form EF(. . .), it follows that KEF,⊕, wj |= ϕr for all odd
r < j. The inductive hypothesis (C) also yields that KEF,⊕, aq 6|= ϕq for all even
q < j. Since all such aq are reachable from wj , and for even q the formula ϕq

has the form AG(. . .), it follows that KEF,⊕, wj 6|= ϕq for all even q < j. Both
together yield for every t < j,

KEF,⊕, wj |=
t⊕

l=0

ϕl if and only if #{m ∈ {0, 1, 2, . . . , t} | m odd} is odd.

(20)

Now back to the inductive step. We start with the inductive step for part
(A). Let wj ∈ Wj for j > 0. By (19) we get

KEF,⊕, wj |= ϕj+1 if and only if KEF,⊕, wj |=
⊕

z∈α(j+1)

z ⊕

j
⊕

l=0

ϕl. (21)

Because zj ∈ α(j + 1) if and only if #{m ∈ {0, 1, 2, . . . , j − 1} | m odd} is odd,
it follows with (13) and (20) that

KEF,⊕, wj |=
⊕

z∈α(j+1)

z if and only if KEF,⊕, wj |=

j−1
⊕

l=0

ϕl

and therefore

KEF,⊕, wj 6|=
⊕

z∈α(j+1)

z ⊕

j−1
⊕

l=0

ϕl.

Adding ϕj we get

KEF,⊕, wj |=
⊕

z∈α(j+1)

z ⊕

j
⊕

l=0

ϕl

︸ ︷︷ ︸

=(
j−1⊕

l=0

ϕl)⊕ϕj

if and only if KEF,⊕, wj |= ϕj . (22)

(21) and (22) yields KEF,⊕, wj |= ϕj if and only if KEF,⊕, wj |= ϕj+1.
This also proves

for all j: KEF,⊕, wj 6|= ϕj ⊕ ϕj+1. (23)

We continue with the induction step for case (B) for j > 0, and proceed
by induction on i. The base case is i = j + 2. By (19) we have

KEF,⊕, wj |= ϕj+2 if and only if KEF,⊕, wj |=
⊕

z∈α(j+2)

z ⊕

j+1
⊕

l=0

ϕl. (24)

With (23) we get

KEF,⊕, wj |=
⊕

z∈α(j+2)

z ⊕

j+1
⊕

l=0

ϕl iff KEF,⊕, wj |=
⊕

z∈α(j+2)

z ⊕

j−1
⊕

l=0

ϕl. (25)

We consider the cases for even resp. odd j+2 separately. First, we consider odd
j+2. Since #{m ∈ {j+2, . . . , (j+2)−1} | m even} = 0, we get that zj ∈ α(j+2)
iff #{m ∈ {0, 1, 2, . . . , j − 1} | m odd} is odd. With (20) we get

KEF,⊕, wj |=
⊕

z∈α(j+2)

z if and only if wj |=

j−1
⊕

l=0

ϕl

and thus

KEF,⊕, wj 6|=
⊕

z∈α(j+2)

z ⊕

j−1
⊕

l=0

ϕl. (26)

From (24), (25), and (26) we get wj 6|= ϕj+2 for odd j.
For even j + 2, we proceed similarly. Since #{m ∈ {j + 2, . . . , (j + 2)− 1} |

m even} = 0, we get that zj ∈ α(j +2) iff #{m ∈ {0, 1, 2, . . . , j− 1} | m odd} is
even. With (20) we get

KEF,⊕, wj |=
⊕

z∈α(j+2)

z if and only if KEF,⊕, wj 6|=

j−1
⊕

l=0

ϕl

and thus

KEF,⊕, wj |=
⊕

z∈α(j+2)

z ⊕

j−1
⊕

l=0

ϕl. (27)

From (24), (25), and (27) we get KEF,⊕, wj |= ϕj+2 for even j.
Now for the inductive step i > j + 2. From (19) we have

KEF,⊕, wj |= ϕi if and only if KEF,⊕, wj |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl. (28)

By the inductive hypothesis, we know for r < i holds

KEF,⊕, wj 6|= ϕr for odd r ≥ j + 2 and KEF,⊕, wj |= ϕq for even q ≥ j + 2.

This means

KEF,⊕, wj |=
i−1⊕

l=j+2

ϕl if and only if #{m ∈ {j + 2, . . . , i− 1} | m even} is odd.

(29)

With (20) we get

KEF,⊕, wj |=

j−1
⊕

l=0

ϕl ⊕
i−1⊕

l=j+2

ϕl iff

#{m ∈ {0, 1, . . . , j − 1} | m odd}+#{m ∈ {j + 2, . . . , i− 1} | m even} is odd.

And with (23) wj 6|= ϕj ⊕ ϕj+1 we eventually get

KEF,⊕, wj |=
i−1⊕

l=0

ϕl iff #{m ∈ {0, 1, . . . , j − 1} | m odd}

+#{m ∈ {j + 2, . . . , i− 1} | m even} is odd. (30)

For odd i, we have zj ∈ α(i) iff #{m ∈ {0, 1, . . . , j − 1} | m odd} +#{m ∈
{j + 2, . . . , i− 1} | m even} is odd. With (30) follows

KEF,⊕, wj 6|=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl (for odd i).

With (28) follows KEF,⊕, wj 6|= ϕi for odd i > j + 2.
For even i, we have zj ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , j−1} | m odd}+#{m ∈

{j + 2, . . . , i− 1} | m even} is even. With (30) follows

KEF,⊕, wj |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl (for even i).

With (28) follows KEF,⊕, wj |= ϕi for even i > j+2. This concludes the proof of
the inductive step for (B).

Now we consider the inductive step for part (C). We start with even
i > 0 and the state bi. By the semantics of AG we get

KEF,⊕, bi |= ϕi iff KEF,⊕, bi |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl and KEF,⊕, bi−1 |= ϕi. (31)

Part (A) of the general inductive hypothesis yields that KEF,⊕, bi−1 |= ϕi

is equivalent to KEF,⊕, bi−1 |= ϕi−1, and the latter holds due to the inductive
hypothesis. Thus from (31) remains

KEF,⊕, bi |= ϕi if and only if KEF,⊕, bi |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl. (32)

We now consider the right-hand side of (32). With (20) we get

KEF,⊕, bi |=
i−1⊕

l=0

ϕl if and only if #{m ∈ {0, 1, 2, . . . , i− 1} | m odd} is odd.

(33)

We have zi ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i − 2} | m odd} is odd. Since i − 1 is
odd, we get zi ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i− 2, i− 1} | m odd} is even. With
(33) we get

KEF,⊕, bi |=
⊕

z∈α(i)

z iff KEF,⊕, bi 6|=
i−1⊕

l=0

ϕi, hence KEF,⊕, bi |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl.

(34)

From (34) and (32) follows KEF,⊕, bi |= ϕi (for even i).
For even i and state ai, we have KEF,⊕, ai |= ϕi if and only if

KEF,⊕, ai |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, and

KEF,⊕, bi−1 |= ϕi, and

KEF,⊕, ai−1 |= ϕi. (35)

Since (35) is equivalent to KEF,⊕, ai−1 |= ϕi−1 (part (A) of the general in-
ductive hypothesis), and KEF,⊕, ai−1 6|= ϕi−1 (inductive hypothesis), it follows
that KEF,⊕, ai 6|= ϕi.

Now consider odd i > 0 and state bi. By semantics of EF we getKEF,⊕, bi |= ϕi

if and only if

KEF,⊕, bi |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, or

KEF,⊕, bi−1 |= ϕi, or (36)

KEF,⊕, ai−1 |= ϕi.

Part (36) follows from part (A) of the general inductive hypothesis and the
inductive hypothesis KEF,⊕, bi−1 |= ϕi−1. Thus KEF,⊕, bi |= ϕi is proven.

For odd i > 0 and state ai, we have KEF,⊕, ai |= ϕi if and only if

KEF,⊕, ai |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, and

KEF,⊕, ai−1 |= ϕi.

From the inductive hypothesis KEF,⊕, ai−1 6|= ϕi−1 and from part (A) of the
general inductive hypothesis follows KEF,⊕, ai−1 6|= ϕi. Thus

KEF,⊕, ai |= ϕi if and only if KEF,⊕, ai |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl (37)

With (20) we have

KEF,⊕, ai |=
i−1⊕

l=0

ϕl if and only if #{m ∈ {0, 1, 2, . . . , i− 1} | m odd} is odd.

(38)

But zi ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i − 2} | m odd} is odd. Since i − 1 is even,
we have zi ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i− 2, i− 1} | m odd} is odd. Thus

KEF,⊕, ai |=
⊕

z∈α(i)

z iff ai |=
i−1⊕

l=0

ϕl, what yields KEF,⊕, ai 6|=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl.

(39)

From (39) and (37) follows KEF,⊕, ai 6|= ϕi.
For the inductive step of part (D), let wi ∈ Wi ∩ V be a node in layer

i > 0. We start with even i > 0 and formula ϕi of the form AG(. . .). By the
semantics of AG we have KEF,⊕, wi |= ϕi if and only if

KEF,⊕, wi |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, and (40)

for all successors v of wi holds KEF,⊕, v |= ϕi. (41)

Since all successors v of wi are in layer i−1, with the general inductive hypothesis
(A) we get that (41) is equivalent to

for all successors v of wi holds KEF,⊕, v |= ϕi−1. (42)

Since for the successor bi−1 of wi, the general inductive hypothesis part (C)
yields KEF,⊕, bi−1 |= ϕi−1, we get that (42) is equivalent to

for all successors v ∈ V ∩Wi−1 of wi holds KEF,⊕, v |= ϕi−1. (43)

Since zi ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i−2} | m odd} is odd, and i−1 is odd,
we get zi ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i − 2, i − 1} | m odd} is even. With (20)
follows

KEF,⊕, wi |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl.

Thus (40) holds, and with the equivalence of (41) and (43) we get

KEF,⊕, wi |= ϕi iff for all successors v ∈ V ∩Wi−1 of wi KEF,⊕, v |= ϕi−1.

By the inductive hypothesis and the construction of KEF,⊕ from G we get

KEF,⊕, wi |= ϕi iff for all successors v ∈ V ∩Wi−1 of wi in G apathG(v, T).

Since i is even, wi is an ∀-node. This yields what we look for, namely

KEF,⊕, wi |= ϕi if and only if apathG(wi, T) (for even i).

Next we consider odd i > 0. Then ϕi has the form EF(. . .). From the semantics
of EF we get that KEF,⊕, wi |= ϕi if and only if

KEF,⊕, wi |=
⊕

z∈α(i)

z ⊕
i−1⊕

l=0

ϕl, or (44)

for some successor v of wi holds KEF,⊕, v |= ϕi. (45)

Since zi ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i − 2} | m odd} is odd, and i − 1 is
even, we get zi ∈ α(i) iff #{m ∈ {0, 1, 2, . . . , i− 2, i− 1} | m odd} is odd. With
(20) follows

KEF,⊕, wi 6|=
⊕

z∈α(i)

z ⊕
i−2⊕

l=0

ϕl. (46)

what shows that (44) does not hold. Thus from (44) and (46) we get

KEF,⊕, wi |= ϕi iff for some successor v of wi holds KEF,⊕, v |= ϕi−1.

For successor ai−1 of wi holds KEF,⊕, ai−1 6|= ϕi (general inductive hypothesis
(C), (A)). Therefore

KEF,⊕, wi |= ϕi iff for some successor v ∈ V ∩Wi−1 of wi KEF,⊕, v |= ϕi−1.

By the inductive hypothesis and the construction of KEF,⊕ from G we get

KEF,⊕, wi |= ϕi iff for some successor v ∈ V ∩Wi−1 of wi in G apathG(v, T).

Since i is odd, wi is an ∃-node. This concludes the proof of the Claim with

KEF,⊕, wi |= ϕi if and only if apathG(wi, T) (for odd i).

✸

We now have that 〈G, s, T 〉 ∈ ASGAPlog if and only if 〈KEF,⊕, s, ϕℓ〉 ∈
CTL-MC(EF,⊕). In order to estimate the size |ϕi| of formula ϕi, let |ϕi| be
the number of appearances of atoms in ϕ. Then |ϕ0| = 1, and |ϕi+1| ≤ (i+ 1)+
∑i−1

j=0 |ϕj |. This yields |ϕi+1| ≤ 2 · |ϕi|+1. Since the depth ℓ of G is logarithmic
in the size of G, we get that ϕl has size polynomial in the size of G. Thus the
reduction function described above can be computed in logarithmic space. Since
ASGAPlog is AC1-complete, it follows that CTL-MC(EF,⊕) is AC1-hard under
logspace reducibility.

	The model checking fingerprints of CTL operators

