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Abstract—

Robust plan execution in uncertain and dynamic environ-
ments is a critical issue for plan-based autonomous systems,
especially when uncertain events coexist with temporal flexibility.
In this regard, many Planning and Scheduling systems model
temporal uncertainty by means of flexible timelines, each of which
describes the behavior of one of the system components, and
consists of a sequence of events whose begin and end times range
within given intervals.

This work enriches a previously proposed formal character-
ization of flexible timelines and plans, considering the difference
between controllable and uncontrollable activities. Two main
sources of uncertainty are considered: i) some components of the
system may depend on an external environment and cannot be
planned by the executive; ii) there may be tasks whose duration
cannot be exactly foreseen in advance. Such notions are formally
defined and the consequent controllability issues are addressed,
focusing, in particular, on dynamic controllability.

Partially controllable flexible plans are given a semantics in
terms of networks of timed game automata (TGA), showing
how they can be encoded into such networks. The translation
allows for exploiting existing verification tools for TGA, such as
UPPAAL-TIGA, in order to check the dynamic controllability
property for flexible plans and, possibly, generate a dynamic
execution strategy that can be used for robust plan execution.
Some preliminary experiments aimed at evaluating the feasibility
of the approach are also presented.

I. INTRODUCTION

Robust plan execution in uncertain and dynamic environ-
ments is a critical issue for plan-based autonomous systems
(see [1] and many others). Once a planner has generated
a temporal plan, it is up to the executive system to de-
cide, at run-time, how and when to execute each planned
activity preserving both plan consistency and controllability.
Such a capability is even more crucial when the generated
plan is temporally flexible, since a flexible temporal plan
is only partially specified. In fact, a flexible plan captures
an envelope of potential behaviors to be instantiated during
the execution taking into account temporal/causal constraints
and controllable/uncontrollable activities and events1. Among
different approaches, the use of flexible timelines in Planning
and Scheduling (P&S) has demonstrated to be successful in

1Uncontrollable events are those that cannot be planned for as they are
decided by Nature – the external environment.

a number of concrete applications, such as, for instance, au-
tonomous space systems [2], [3], [4]. Timeline-based planning
has been introduced in [2], under a modeling assumption
inspired by classical control theory. It pursues the general idea
that P&S for controlling complex physical systems consists
of the synthesis of desired temporal behaviors (or timelines),
each of which corresponds to one of the system components
(state variables). The evolution of the features is described
by some causal laws and limited by domain constraints. In
general, plans synthesized by P&S systems may be temporally
flexible. They are made up of flexible timelines, describing
transition events that are associated with temporal intervals
(with given lower and upper bounds), instead of exact temporal
occurrences, and aimed at facing uncertainty during actual
execution. In this regard, they can be exploited by an executive
system for robust on-line execution.

This work carries on the work started in [5], where a
formal account of flexible timelines and plans is given, without
however addressing controllability issues. This paper refines
and extends the definition of flexible plans, introducing quan-
titative temporal relations as well as taking into account the
difference between controllable and uncontrollable activities.
In this respect, it addresses, in particular, the dynamic control-
lability issue (see for instance [6]). Beyond formally defining
the related main notions for flexible plans, a formal semantics
of flexible plans is given in terms of Timed Game Automata
(TGA) [7]. TGA allow one to model real-time systems and
controllability problems representing uncontrollable activities
as adversary moves within a game between the controller and
the environment. Following the same approach presented in
[8], [9], a verification tool, UPPAAL-TIGA [10], is exploited
to verify whether a flexible plan is dynamically controllable
and to generate a dynamic execution strategy by solving a
reachability game. It is worth pointing out that the encoding
of flexible plans into networks of TGA, allowing one to
synthesize execution strategies that do not require run-time
reasoning, is linear in the size of the plan. In order to evaluate
the feasibility of the proposed approach, some preliminary em-
pirical results are presented, considering a benchmark domain
introduced in [8].

Previous proposals have tackled the issue of robust plan
execution within the Constraint-based Temporal Planning
(CBTP) framework, deploying specialized techniques based
on temporal-constraint networks [11], [12], [13], [14]. Con-
trollability issues have been formalized and investigated for



Simple Temporal Problems with Uncertainty (STPU) in [11],
where basic formal notions are given to the aim of properly
defining dynamic controllability. Several authors (e.g. [13],
[14]) have proposed a dispatchable execution approach, where
a flexible temporal plan is used by a controller that schedules
activities on-line while guaranteeing constraint satisfaction.
Recently, the use of TGA has been considered to address
dynamic controllability in temporal networks with uncertainty
[15] also in the case of disjunctive problems [16]. Since CBTP
systems often rely on temporal networks for their solving
process, such work could be indirectly exploited to furnish a
mapping from flexible plans to TGA, and consequently give a
methodology for synthesizing execution strategies for flexible
plans. However, representing a flexible timeline-based plan
as a STNU entails a sort of simplification of the associated
actual plan structure causing a lost of information on the
“dependencies” among its components which can usefully be
taken into account. As a consequence, we consider it important
to define controllability notions directly for flexible plans,
abstracting away from the concrete representation they can
be internally given, and to give a general methodology which
allows one to map plans into networks of TGA and exploit
such encoding for control synthesis.

A comprehensive and semantically well founded planning
framework is provided in [17], that includes temporal un-
certainty in timeline-based approaches. However, it does not
address time flexibility and focuses only on strong controlla-
bility. Finally, the above notions have also been extended to a
timeline-based framework [8], following an approach similar
to what presented here, i.e. based on model checking with
TGA to check flexible plans against dynamic controllability
and to generate a robust plan controller able to execute flexible
timeline-based plans [9], [18]. The present work advances the
above work on different perspectives: a more comprehensive
approach is presented here, since controllability information
is included in the description of the plan itself, thus avoiding
the need of considering additional information derived from
the specific execution contexts. Moreover, the encoding into
TGA does not require to consider also the specification of
the planning domain (like in the previously cited works), thus
allowing for a more compact and straightforward translation
of plans in terms of TGA. In summary, the whole information
needed to encode and control the flexible plan is contained in
its description. Finally, the present methodology allows also
for the encoding of partially specified plans.

Plan of the paper: Section II gives a formalization of flexible
plans, and the associated controllability issues are addressed in
Section III. A sketchy background on TGA is given in Section
IV, and the encoding of flexible plans in terms of networks
of TGA is described in Section V. An empirical evaluation
performed on a benchmark domain derived from a real word
application is presented and discussed in Section VI. Finally,
some remarks conclude the paper in Section VII.

II. FLEXIBLE PLANS

This section briefly summarizes the definition of flexible
timelines and plans given in [5] (with some minor differences),
enriching it with the distinction between controllable and
uncontrollable tasks. The first mandatory requirement a flexible
plan must satisfy is to be valid with respect to the underlying

planning domain. In particular, it must satisfy the synchroniza-
tion rules of the domain, constraining the behavior of some
components in relation to others. However, differently from
[8], [9], plans are defined so that all necessary information
is embedded in the plans themselves, with no need to “look
outside” (i.e. at the domain specifications) in order to check
whether a particular scheduling of a flexible plan satisfies
the domain contraints. Therefore, this presentation focuses on
flexible plans, abstracting away from their relation to planning
domains. The reader is referred to [5] for the structure of
planning domains and the notion of plan validity.

This work considers two sources of uncertainty. On one
hand, the evolution of some components of the system may
be completely outside the control of the executive; such
components are modeled by means of external state variables,
and what the planner and the executive know about them is
only what is specified in the underlying planning problem. The
distinction between external and planned state variables is part
of the description of the planning domain. On the other hand,
some events may be only partially controllable: the system
can decide when to start an activity, but is not allowed to
fix its duration exactly. When the duration of a value cannot
be controlled, it is tagged as uncontrollable, and what the
planner and the executive may assume is only that its duration
is included within given lower and upper bounds.

Apart from the distinction between external and planned
variables, the essential source of uncertainty relevant to the
present work is therefore due to activities whose duration
cannot be controlled exactly by the executive. In fact, an
external state variable is simply a variable whose values are
all uncontrollable, in the above sense.

For the sake of generality, temporal instants and durations
are taken from an infinite set of non negative numbers T,
including 0. Sometimes, ∞ is given as an upper bound to
allowed numeric values, with the meaning that t < ∞ for
every t ∈ T. The notation T∞ will be used to denote T∪{∞}.

A. Timelines

When planning with timelines,2 time flexibility is taken
into account by allowing that the durations of valued intervals,
called tokens, range within given bounds. The main component
of a flexible plan is a set of timelines, and it represents a
whole set of scheduled timelines, i.e. timelines whose tokens
have a fixed duration (within the allowed bounds). In order
to guarantee that every scheduled timeline represented by a
given flexible plan Π is valid w.r.t. the underlying planning
domain, the plan is equipped with additional information about
the temporal relations that have to hold in order to satisfy the
synchronization rules of the domain. Relations are presented in
Section II-A2, while this section is devoted to properly define
the notions of timeline, schedule and flexible plan.

Definition 1. A token is a tuple of the form:
(v, [e, e′], [d, d′], γ), where v is called the value of the
token, e, e′, d, d′ ∈ T, e ≤ e′, d ≤ d′, and γ ∈ {c, u} is the
controllability tag of the token. If γ = c, then the token is
controllable and if γ = u, then it is an uncontrollable token.

2In this work, “timeline” refers to what in [5] is called flexible timeline,
while non-flexible timelines are called “scheduled timelines”. The latter are
defined as particular cases of (flexible) timelines.



A timeline FTLx for the state variable x in the temporal
horizon H is a finite sequence of tokens:

x1, . . . , xk =
(v1, [e1, e

′
1], [d1, d

′
1], γ1), . . . , (vk, [ek, e

′
k], [dk, d

′
k], γk)

where ek = e′k = H , and for all i = 1 . . . k − 1, e′i ≤ ei+1.

If xi = (v, [e, e′], [d, d′], γ) is a token in the timeline
FTLx, the following notations will be used: end_time(xi) =
[e, e′]; start_time(x1) = [0, 0] and start_time(xi+1) =
end_time(xi); duration(xi) = [d, d′].

Intuitively, a token xi represents the set of valued intervals
with start times in start_time(xi), end times in end_time(xi)
and whose durations are in the range duration(xi) (see Defini-
tion 2 below). It is worth pointing out that in [5] (and often in
the literature), a flexible token contains, beyond its value, end
and duration intervals, also a start interval. However, once a
token xi is embedded in a timeline, the time interval to which
its start point belongs (start_time(xi)) can easily be computed
like shown in the definition above. Thus, including it as part
of the token itself is redundant.

When considering sets FTL of timelines, it is always
assumed that they have the same temporal horizon H , that
is also called the horizon of FTL.

1) Schedules: The next definition introduces the notion of
schedule of a timeline. Tokens, timelines and sets of timelines
represent the set of their schedules. In general, TLx and TL
will be used as meta-variables for scheduled timelines and sets
of scheduled timelines, respectively, while FTLx and FTL
as meta-variables for generic (flexible) timelines and sets of
timelines. The schedule of a token corresponds to one of the
valued intervals it represents, i.e. it is obtained by choosing an
exact end point in the allowed interval. A scheduled timeline
is a sequence of scheduled tokens satisfying the duration
requirements. In what follows, an interval of the form [t, t],
consisting of a single time point, will be identified with the
time point t (and, with an abuse of notation, singleton intervals
are allowed as operands of additions, subtractions, comparison
operators, etc.).

Definition 2. A scheduled token is a token of the form
(v, [t, t], [d, d′], γ) – or succintly (v, t, [d, d′], γ). A schedule
of a token xi = (v, [e, e′], [d, d′], γ) is a scheduled token
(v, t, [d, d′], γ), where e ≤ t ≤ e′.

A scheduled timeline TLx is a timeline consisting only of
scheduled tokens and such that, if k is the length of the timeline
(i.e. the number of tokens in TLx):

1) for all 1 ≤ i ≤ k−1, if [di, d
′
i] = duration(xi), then

di ≤ end_time(xi)− start_time(xi) ≤ d′i;
2) if x is a planned variable, then also dk ≤

end_time(xk) − start_time(xk) ≤ d′k, where
[dk, d

′
k] = duration(xk).

3) if x is an external variable, then
end_time(xk) − start_time(xk) ≤ d′k, where
[dk, d

′
k] = duration(xk).

A scheduled timeline TLx for the state variable x is a
schedule of FTLx if TLx and FTLx have the same length
k, and for all i, 1 ≤ i ≤ k, the token xi of TLx is a schedule
of the token xi of FTLx.

Let FTL be a set of timelines for the state variables in the
set SV . A schedule TL of FTL is a set of scheduled timelines
for the state variables in SV , where each TLx ∈ TL is a
schedule of the timeline FTLx ∈ FTL.

The two conditions 1 and 2 in the above definition require
that the actual duration of scheduled tokens enforce the corre-
sponding duration requirements, except for the last token of the
timeline for an external variable. In that case, it is only required
that the duration of the scheduled token does not exceed the
allowed duration (condition 3). As a matter of fact, the valued
intervals represented by the token at the very end of a flexible
timeline for an external variable are allowed to violate the
minimal duration requirement and to have an actual end point
which goes beyond the horizon. The reason is that what is only
observed by the system could also continue after the temporal
horizon (that places a cut on the observed evolution of the
uncontrollable part of the world). On the contrary, the actual
durations of the valued intervals represented by any other token
xi (including the last ones of planned variables, which may
model the accomplishment of a planning goal) must be in the
interval duration(xi).

2) Relations: In a planning domain, some constraints may
be set on the temporal evolution of the system components.
Like in [5], a flexible plan contains all the information needed
for its execution, therefore, in particular, it may contain a set of
temporal constraints that the tokens in its timelines are required
to enforce.

In this work, quantitative temporal constraints are consid-
ered (thus extending [5]) and, for the sake of simplicity, a
small set of primitive relations is chosen, all of which are
parametrized by a (single) temporal interval. In what follows,
if b, e ∈ T and b < e, the time interval [b, e] denotes the set
of time points {t | b ≤ t ≤ e}.
Definition 3. A temporal relation between intervals is an ex-
pression of the form A r [lb,ub]B, where A = [bA, eA] and
B = [bB , eB ] are time intervals, with bA, eA, bB , eB ∈ T,
lb ∈ T, ub ∈ T∞, and r ∈ R = { start_before_start,
end_before_end, start_before_end, end_before_start}. The
following table defines when a relation A r [lb,ub]B holds:

the relation holds if
A start_before_start[lb,ub]B lb ≤ bB − bA ≤ ub
A end_before_end[lb,ub]B lb ≤ eB − eA ≤ ub
A start_before_end[lb,ub]B lb ≤ eB − bA ≤ ub
A end_before_start[lb,ub]B lb ≤ bB − eA ≤ ub

A temporal relation between an interval and a timepoint is
an expression of the form A r [lb,ub]t, where A = [b, e] is
a time interval, with b, e ∈ T, r ∈ R′ = {starts_before,
starts_after, ends_before, ends_after}, t, lb ∈ T and ub ∈
T∞. The following table defines when a relation A r [lb,ub]t
holds:

the relation holds if
A starts_before[lb,ub] t lb ≤ t− b ≤ ub
A starts_after[lb,ub] t lb ≤ b− t ≤ ub
A ends_before[lb,ub] t lb ≤ t− e ≤ ub
A ends_after[lb,ub] t lb ≤ e− t ≤ ub



Other constraints, such as those used by systems
like EUROPA [19] and APSI-TRF [20], can be easily
defined in terms of the primitive ones. For instance,
A contains [lb1, ub1][lb2, ub2]B can be defined as the con-
junction of the relations

A start_before_start [lb1, ub1]B and
B end_before_end [lb2, ub2]A

Similarly, A overlaps [lb1, ub1][lb2, ub2]B is equivalent to the
conjunction of

A start_before_start [lb1, ub1]B,
A end_before_end [lb2, ub2]B and
B start_before_end [0,∞]A

A table with the definition of the most commonly used
quantitative temporal relations can be found in [21].

Definition 4. Let t, lb ∈ T, ub ∈ T∞, and xi and yj be sched-
uled tokens, with start_time(xi) = bi, end_time(xi) = ei,
start_time(yj) = bj , end_time(yj) = ej . Expressions of the
form xi r [lb,ub] yj , for r ∈ R, and xi r [lb,ub] t, for r ∈ R′, are
called relations on tokens. The relation xi r [lb,ub] yj holds iff
[bi, ei] r [lb,ub] [bj , ej ] holds. And the relation xi r [lb,ub] t holds
iff [bi, ei] r [lb,ub]t holds. When a relation on tokens holds we
also say that the tokens whose names occur in the relation
satisfy it, and that any set of scheduled timelines containing
such tokens satisfies the relation.

3) Flexible Plans: A flexible plan is made up by a set of
timelines and a set of relations:

Definition 5. A flexible plan Π over the horizon H is a pair
(FTL,R), where FTL is a set of timelines over the same
horizon H and R is a set of relations on tokens, involving
token identifiers in some timelines in FTL.

An instance of the flexible plan Π = (FTL,R) is any
scheduling of FTL that satisfies every relation in R.

Since external state variables are not under the system con-
trol, a well defined planning problem must include information
about their behavior. Such information is given in the form
of a set FTLE of flexible timelines and, when considering a
solution plan Π = (FTL,R), we assume that FTLE ⊆ FTL.
Moreover, obviously, the strucure of the timelines in FTL and
the relations in R must ensure, not only that the plan obeys
the rules of the underlying planning domain, but also that the
planning goals are satisfied. Goal satisfaction can however be
reduced to a set of relations on the tokens of the timelines in
the plan (see [5] for details). The relations R in a solution plan
are consequently assumed to include those which represent
goal satisfaction.

III. CONTROLLABILITY PROPERTIES OF FLEXIBLE PLANS

This section proposes a definition of the various notions of
plan controllability, very much in the style of similar work on
Simple Temporal Network with Uncertainty (STNU), such as
[22], [11], [12]. There is an intuitively obvious correspondence
between a flexible plan and a SNTU, and, in fact, control-
lability issues have been addressed for plans given in that
form. In this section the same concepts are defined directly
for flexible plans, as defined in Section II, independently from

how they are represented. To the best of our knowledge, the
definition of a formal equivalence between flexible temporal
plans and STNUs is still an open issue (and its demonstration
is out the scope of this paper). Nevertheless, as a guideline to
understand the correspondence between plans and SNTU, it
can be observed that token end points correspond to nodes in
the network, while token durations and the temporal constraints
given in the sets of relations R correspond to network edges.
Durations of uncontrollable tokens and relations on the tokens
of external state variables correspond to what are usually called
contingent links in a STNU.

Once a flexible plan Π = (FTL,R) is built, controllability
tags are the important features to be taken into consideration
when facing the controllability problem. In what follows, if
FTL is a set of timelines, tokens(FTL) denotes the set of all
the tokens making up the timelines in FTL, tokensC(FTL)
is the set of controllable tokens occurring in some timeline in
FTL, and tokensU (FTL) contains the uncontrollable tokens
of FTL.

The notion of situation, introduced below, copes with the
temporal uncertainty represented by the uncontrollable tokens
of a set of timelines FTL. A situation is a function assigning a
(legal) value to the duration of each uncontrollable token. The
set of situations defined over a set FTL of timelines represents
all the associated uncontrollable temporal evolutions.

Definition 6. Let FTL be a set of timelines. A situation for
FTL is a total function

ω : tokensU (FTL)→ T
such that if xi ∈ tokensU (FTL) and duration(xi) = [d, d′],
then d ≤ ω(xi) ≤ d′.

The set of all the situations for FTL is called the
space of situations for FTL and is denoted by ΩFTL.

Every situation ω for FTL induces a set of timelines
where the duration of every uncontrollable token xi in FTL
is replaced by the (singleton) value ω(xi). The so obtained
set of timelines is called a projection of FTL: in a projection,
the duration of each uncontrollable token is fixed. Intuitively,
a projection corresponds to one of the possible combinations
of uncontrollable behaviors in FTL.

Definition 7. Let FTLx be a timeline in the set FTL and ω a
situation for FTL. The projection ω(FTLx) is the timeline
obtained from FTLx by replacing the duration of every
uncontrollable token xi with [ω(xi), ω(xi)]. The projection
ω(FTL) is the set {ω(FTLx) | FTLx ∈ FTL}.

In other terms, if xi is an uncontrollable token of the
form (v, [e, e′], [d, d′], u), then it is replaced in ω(FTL) by
(v, [e, e′], ω(xi), u); controllable tokens are left unchanged. It
is worth observing that if (FTL,R) is a flexible plan, then
(ω(FTL),R) is a flexible plan too.

Obviously, there is a one-to-one correspondence between
situations for a given set of timelines and its projections.
Analogously, the set of schedules of a given set FTL of
timelines bears a one-to-one correspondence with the set of
functions assigning a fixed value to each token end time.
Such functions are called scheduling functions and are defined
below.



Definition 8. Let FTL be a set of timelines.
A scheduling function for FTL is a function
θ : tokens(FTL) → T. The set of all the scheduling
functions for FTL is denoted by T FTL.

A scheduling function θ induces the set TLθ of scheduled
timelines obtained from FTL by replacing the end time of each
token xi ∈ tokens(FTL) with [θ(xi), θ(xi)].

Let Π = (FTL,R) be a flexible plan. A scheduling function
θ for FTL is consistent with Π iff the set TLθ of scheduled
timelines induced by θ is an instance of Π.

Intuitively, a scheduling function that is consistent with
the plan Π = (FTL,R) induces a set of scheduled timelines
that satisfy all the duration requirements in FTL and all the
relations in R.

It is worth noticing that, while a situation fixes token
durations (and maybe only indirectly their end times), a
scheduling function assigns values to token end times. More-
over, situations are defined only on uncontrollable tokens,
while scheduling functions are defined for all the tokens in
the set of timelines.

Execution strategies are defined next. An execution strategy
for a given plan Π maps every situation to a scheduling
function: once the duration of the uncontrollable tokens is
known, the strategy decides how to schedule all the token end
points.

Definition 9. If Π = (FTL,R) is a flexible plan, an
execution strategy for Π is a mapping σ : ΩFTL → T FTL.

The execution strategy σ is viable if for each situation ω ∈
ΩFTL, the scheduling function σ(ω) is consistent with the plan
(ω(FTL),R).

A viable strategy for the plan (FTL,R) maps each situ-
ation ω to a scheduling function inducing a set of scheduled
timelines which respects the duration constraints in ω(FTL)
– i.e. the bounds on token durations established by FTL and
the exact durations of uncontrollable tokens given by ω – and
satisfies the relations in R.

In order to define dynamic execution strategies, i.e. strate-
gies which are able to schedule a given event only on the base
of what happened before, partial situations must be considered.

Definition 10. Let FTL be a set of timelines, xi a to-
ken in tokens(FTL) and θ a scheduling function for FTL.
The prehistory of xi w.r.t. θ is the partial function θ≺xi :
tokensU (FTL)→ T such that:

θ≺xi(yj) =

 θ(yj) if θ(yj) < θ(xi) and j = 1
θ(yj)− θ(yj−1) if θ(yj) < θ(xi) and j > 1
undefined if θ(yj) ≥ θ(xi)

The prehistory θ≺xi is a partial situation that is defined
only for the uncontrollable tokens yj such that θ(yj) < θ(xi).
When θ≺xi(yj) is defined, its value is the (exact) duration
of the token yi in the timelines induced by θ: θ≺xi(yj) =
θ(yj) − θ(yj−1), except when j = 1 (yj is the first token of
a timeline), where θ≺xi(y1) = θ(y1). Basically, a prehistory
defines a partial projection of FTL fixing the duration of
uncontrollable tokens occurring before xi according to θ.

Note that, despite the notation used for prehistories, θ≺xi

is not a (partial) scheduling function, but a partial situation: it
assigns values to the durations of uncontrollable tokens.

Definition 11. If Π = (FTL,R) is a flexible plan, a
dynamic execution strategy (DES) for Π is an execution strat-
egy σ for Π such that, for all situations ω, ω′ ∈ ΩFTL and
every controllable token xi ∈ tokensC(FTL), if σ(ω) = θ and
σ(ω′) = θ′, then

θ≺xi = θ′≺xi implies θ(xi) = θ′(xi)

Finally, the controllability properties considered for STNUs
can be defined on flexible plans.

Definition 12. Let Π = (FTL,R) be a flexible plan for the
planning problem P . The plan Π is weakly controllable if there
is a viable execution strategy for Π.

The plan Π is strongly controllable if there is a viable
execution strategy σ such that, for all situations ω, ω′ ∈ ΩFTL,
if σ(ω) = θ and σ(ω′) = θ′, then for every controllable token
xi ∈ tokensC(FTL): θ(xi) = θ′(xi)

The flexible plan Π is dynamically controllable if there
exists a viable DES for Π.

The definition above characterize a flexible plan with
respect to its executability. In simple terms, if the executor
of a weakly controllable plan can know in advance how the
uncontrollable events will evolve (i.e. the complete situation
ω), it can safely adopt the decisions induced by the scheduling
function associated to ω. If the events turn out to be like
modeled by ω, such decisions lead to a successful execution
of the plan. But in case actual events evolve differently from
ω, the executor might be unable do adapt its strategy to the
new situation. Therefore, the higher the level of uncertainty in
the plan, the higher is the probability to fail while executing
it. When, on the contrary, a plan is strongly controllable, its
executor is on a safe side: whichever the uncontrollable events
turn out to be, it can take the same decisions (posted by a
fixed scheduling function) to face the situation and success-
fully complete the execution of the plan. Unfortunately, few
plans are strongly controllable, especially in highly dynamic
domains. Finally, when a plan is dynamically controllable, its
executor has to monitor what is happening in the world step by
step, and decide what to do accordingly. However, it is always
sure to be able to adapt its schedules: at each step, whatever
happened in the past, there is a decision that can be taken for
the next controllable event, in such a way that the plan will at
the end be executed successfully. As a consequence, the desired
goals can be achieved for any possible turnout of uncon-
trollable events. Dynamic controllability constitutes a highly
desirable property for a flexible plan Π. As a matter of fact, the
associated viable DES can be exploited to endow a timeline-
based control architecture ensuring robust plan execution (see
for instance [18]). Although weak and strong controllability
have been defined above for the sake of completeness, this
paper focuses only on dynamic controllability.

IV. TIMED GAME AUTOMATA

This section is devoted to an informal presentation of
Timed Game Automata (TGA), as they are implemented in



the UPPAAL-TIGA system, a well known model checking tool
which is able to solve games based on TGA with respect to
reachability and safety properties [23], [24]. The formalism of
UPPAAL-TIGA is based on [7], with some useful extensions.
Here, attention is restricted to those features that are used to
model flexible plans.

A timed automaton (TA) [25], [26] is an automaton with a
set of real-valued variables called clocks. Clocks are initialized
with zero when the system is started, and then increased
synchronously with the same rate. The transitions of the
automaton can reset some clocks and may be constrained by
clock values: a transition may be taken only if the current
values of the clocks satisfy the associated constraints. TGA
extend timed automata by partitioning transitions into control-
lable and uncontrollable ones.

If C is a finite set of clocks, the set B(C) denotes the set of
constraints ϕ generated by the grammar ϕ ::= x ∼ c | x−y ∼
c | ϕ ∧ ϕ, where c ∈ Z, x, y ∈ C, and ∼∈ {<,≤,=,≥, >}.

A TGA A is defined by a finite set L of locations, the
initial location l0 ∈ L, a finite set Σ of actions (split into two
disjoint sets, Σc the set of controllable actions and Σu the set
of uncontrollable ones), a finite set C of clocks and a finite
set of transitions. Locations can be labeled by invariants: if
l ∈ L, Inv(l) ∈ B(C) is the invariant of l, that, intuitively,
represents a constraint that must be satisfied by the runs of the
automaton while staying in location l. A transition connects
two locations. A transition is labelled by an action and can
be then either controllable or uncontrollable according to the
action type (i.e. either in Σc or Σu). A transition is possibly
labelled also by a guard and clock updates. The guard of a
transition is an element of B(C) and represents a constraint
that must hold when a run takes the transition. An update
affecting the clock x has a side-effect: when a run takes the
transition, the clock x is reset to 0.3

A run of a timed automaton A is a sequence of transitions
between states, where a state consists of the current location
and the current clock values, represented by a clock assigment,
i.e. a function u mapping clocks to non-negative reals. From
a state 〈l, u〉, a run ρ of A can take either a time transition or
a discrete transition. When ρ takes a time transition, it just let
time progress, i.e. the values of all the clocks increase of the
same amount δ. However, when a run stays in the location l
the values of the clocks (both the old and the increased ones)
must satisfy the invariants of l. If there is a transition in A
from the location l to l′, the run can take a discrete transition
from the state 〈l, u〉 to 〈l′, u′〉, thus reaching the new location
l′. The clock assignment u′ assigns every clock x the value
u(x), except for those that are reset by the transition. The
discrete transition from 〈l, u〉 to 〈l′, u′〉 can be taken only if
u satisfies the guard of the transition from l to l′ in A and
the new clock assignment u′ satisfy the invariant of l′. A run
of the automaton is a finite or infinite sequence of alternating
time and discrete transitions.

In what follows, attention will be restricted to runs starting
from the initial state 〈l0,~0〉, where l0 is the initial location of
A and ~0 assigns 0 to every clock. If ρ is one of such runs,
and ti is the time elapsed since the run has been started when

3UPPAAL-TIGA allows clocks to be set also to non-zero values.

ρ takes a discrete transition, thus passing from a state 〈l, u〉
to 〈l′, u′〉 (i.e. ti is the sum of the increases of the clocks in
the time transitions taken before), then we say that ρ takes the
discrete transition at time ti, exiting the location l and entering
l′.

A network of TGA (nTGA) is a finite set N of TGA
(that may share some global clocks), evolving in parallel with
a CCS style semantics for parallelism [27]. Essentially, the
parallel composition of a set of automata is the product of the
automata and a run of a nTGA consists of the parallel runs of
the automata in the network.

TGA can be used to model two-player games between an
agent (the controller), controlling the controllable transitions,
and the environment, that controls the uncontrollable ones. In
a pure reachability game the agent’s goal is to move the nTGA
from the initial state Init to a state satisfying a given winning
condition Goal. The game consists in finding a strategy f such
that the nTGA starting from Init and supervised by f generates
winning runs, i.e. runs that finally reach a state satisfying Goal.
A strategy tells the controller when to take the controllable
transitions that will guarantee that the system, regardless of
when and if the opponent chooses to take uncontrollable
transitions, will eventually end up in a state satisfying Goal. In
a given state, the strategy can suggest the controller to either
do a particular controllable action or do nothing at this point
in time, just wait (only so-called memoryless strategies need
be considered here).

A pure reachability game is therefore given by defining,
beyond the nTGA, the winning condition Goal. If the game
can be won, UPPAAL-TIGA generates a winning strategy for
the game. Otherwise, it can be asked to generate a counter-
strategy, i.e. a strategy for the opponent that would lead the
controller to loose the game.

V. ENCODING OF FLEXIBLE PLANS AS NETWORKS OF
TIMED GAME AUTOMATA

This section is devoted to give a short description of the
encoding of plans as networks of TGA. Let Π = 〈FTL,R〉
be a flexible plan and N the network of automata modeling
Π. The encoding establishes an injective mapping µ from
tokens of FTL to locations of automata in N , such that for
every token xi, the location µ(xi) has exactly one incoming
edge (transition) and one outgoing edge. A correspondence
between runs of the automata and scheduled timelines can
be established via the mapping µ, according to the following
definition.

Definition 13. If ρ is a run of the nTGA N modeling Π =
〈FTL,R〉 and TL is an instance of FTL, then ρ corresponds
to TL, and vice-versa, if, for every token xi in TL, ρ enters
µ(xi) at time t = start_time(xi) and exits µ(xi) at time
t = end_time(xi).

The encoding can be shown to be correct and complete:

Theorem 1. Let Π = 〈FTL,R〉 be a flexible plan, and
let N be the nTGA modeling Π. Then every instance of Π
corresponds to a run of N , and every run of N corresponds
to an instance of Π.



Moreover, for every token xi of FTL, xi is uncontrollable if
and only if the transition exiting from µ(xi) is uncontrollable.

The UPPAAL-TIGA winning conditions specified in the
sequel define the reachability game where every run of the
nTGA encoding the plan Π reaches the state corresponding to
end of the final token of every timeline of Π. Therefore, an
UPPAAL-TIGA winning strategy is a viable DES for the plan
encoded by the nTGA.

A detailed description of the encoding can be found in
[21], where arguments are also given, step by step, showing
that Theorem 1 holds. The encoding allows also for modeling
“partial plans”, where timelines may have undefined temporal
slots, i.e. tokens without value and possibly with no associated
duration. This allows for the UPPAAL-TIGA tool being in-
volved also during the plan construction phase, thus interacting
with the planner and possibly suggesting to abandon on search
routes that would lead to plans that cannot be executed (like
in, e.g., CIRCA [28]). This feature is however not described
here.

If Π = 〈FTL,R〉 is the plan to be encoded and N is the
nTGA modeling Π, each automaton in N models a timeline
in FTL. The main properties of the TGA Ax modeling the
timeline FTLx are:

1) the states of Ax are {start, finish} ∪ {µ(xi) | xi is
a token of FTLx};

2) the initial state of Ax is start;
3) every state of Ax has exactly one incoming edge,

except for start, that has none;
4) every state of Ax has exactly one outgoing edge,

except for finish, that has none;
5) there is an edge in Ax from start to µ(x1), where

x1 is the first token of FTL and there is an edge in
Ax from µ(xk) to finish, where xk is the last token
of FTL;

6) for every pair of consecutive tokens xi and xi+1 in
FTL, there is an edge from µ(xi) to µ(xi+1) in
Ax. Moreover, if xi is uncontrollable (which holds,
in particular, if x is an external variable), then the
transition from µ(xi) to µ(xi+1) is uncontrollable,
too.

Therefore, every automaton has a “final state”, finish, and
the pure reachability game is specified by a goal of the form
Ax1 .finish∧ · · · ∧Axk

.finish, where N = {Ax1 , . . . ,Axk
}

whichever the behaviour of uncontrollable components, the
automata in N can reach their final states (at the same time).

Clocks are used to enforce token durations and start/end
times: the set of global clocks of the nTGA includes a clock
plan_clock, whose value corresponds to the time elapsed since
the beginning, and is used to constrain transitions so that they
respect the start and end times of tokens. Moreover, each
automaton Ax has a local clock clockx, that is reset to zero
on the incoming edge of every location and checked on the
outgoing ones, in order to enforce the corresponding token
duration. Its value when a run exits a location µ(xi) represents
in fact the time elapsed since it entered µ(xi) (i.e. the duration
of the corresponding scheduled token).

For instance, if xi = (v, [100, 120], [30, 40], c), then the
invariant of the location µ(xi) is plan_clock ≤ 120∧clockx ≤

40, and the guard of the transition from µ(xi) to µ(xi+1)
includes plan_clock ≥ 100 ∧ clockx ≥ 30.

The transition from start to µ(x1) is constrained by a
guard (plan_clock = 0) that forces runs to enter µ(x1) at time
0 = start_time(x1). If x is an external variable, the guard of
the last transition of the automaton Ax, from µ(xk) to finish
(where xk is the last token of FTLx), does not require that
clockx has reached the least duration value allowed for xk, thus
mirroring the fact that the last token of an external timeline is
allowed not to respect the least duration requirement.

We now turn to give a sketchy description of how relations
are modeled. Relations between a token and a time point are
quite simple to be encoded by use of the plan clock. For
instance, the relation xi starts_before[lb,ub] t is encoded by
adding the guard plan_clock ≤ t− lb ∧ plan_clock ≥ t− ub
to the transition entering µ(xi).

In order to model relations between two tokens, a global
clock is defined for each of them. A relation R of the
form xn r [lb,ub] yk is enforced by resetting the clock cR
associated to R on the edge entering/exiting µ(xn) and
checked by the guard on the edge entering/exiting µ(yk).
Whether the incoming or outgoing edges are concerned de-
pends on the particular relation r . For instance, if R =
xn start_before_end[lb,ub] y

k, then the clock cR is reset on
the edge entering µ(xn) and checked on the edge exiting
µ(yk).

The encoding of relations exploits the possibility offered by
UPPAAL-TIGA of setting clocks to non-zero values. It must in
fact be guaranteed that guards concerning a relation clock cR
are not satisfied when the relation is not. So, a value H greater
than the plan horizon is used to reset relation clocks (without
explicit assignment no clock could reach H during any run).
In the example above (R = xn start_before_end[lb,ub] y

k),
the clock cR is assigned the value H on the edge entering
µ(xn) and the guard on the edge exiting µ(yk) is conjoined
with H + lb ≤ cR and (if ub 6=∞) cR ≤ H + ub.

The encoding of a flexible plan Π = 〈FTL,R〉 in terms
of a network of TGA is clearly linear in the size of the plan,
measured in terms of the number of tokens making up the
timelines of FTL and the number of relations in R.

VI. EXPERIMENTAL RESULTS

This section investigates the practical feasibility of the
approach and presents some preliminary experiments carried
out by using a case study as a benchmark. Our aim is to test
the performances of the verification process and the generation
of a control strategy in a real world scenario to check whether
on-line control synthesis is viable and compatible with the
latencies of a planning and execution cycle. In particular, the
experimental analysis considers a benchmark domain presented
in [8] and inspired by a Space Long Term Mission Planning
problem [29]. The mission consists of a remote satellite oper-
ating around a target planet. The satellite can either point to
the planet and use its devices to produce scientific data or point
towards a communication station (e.g. an Earth ground station)
and communicate previously produced data. The satellite is
endowed with a set of scientific devices or payloads (e.g. stereo
cameras, altimeters, spectrometers, etc.) whose activities are to



be planned during planet-pointing phases taking into account
some physical constraints. The satellite is controlled by a plan-
ner and an executive system to accomplish required tasks, i.e.,
scientific observations and communication. A set of operative
constraints are to be satisfied: the satellite has to point towards
the planet, thus allowing observations of the planet surface and
Science operations by means of devices; the satellite has to
point to Earth for transmitting data and communication with
Earth must occur within a ground-station availability window.
Communication opportunities are not under the system control,
and consequently the availability window is represented by an
external state variable. Moreover, the exact duration of the
communication activity is uncertain, and can range in some
given temporal interval. The same happens for the processing
time of the satellite devices.

An example of mission for such a domain may be consti-
tuted by an action sequence in which the satellite is pointing
to Earth and starts slewing towards the target planet. When
a scientific target is locked, the satellite starts making some
scientific operations using the available scientific devices such
as infrared camera to take pictures. Once such operations
are completed, the satellite slews back to Earth in order to
communicate the collected data. When the Earth is locked and
the ground station is available, the satellite is finally able to
transfer the scientific results to the Earth ground-station.

It is worth pointing out that the introduction of multiple sci-
entific payloads considered here (and introduced in [8]) entails
an increasing complexity of the real world planning problem
described in [29] as it introduces a significant combinatorial
effect on the alternation of scientific operations to be planned.

The flexible plans used in the experiments were generated
by the EPSL (Extensible Planning and Scheduling Library)
tool [30], [31], used as a CBTP Domain Independent Planner,
run on the specifications of the planning domains and goals.
The planner (that has suitably been modified in order to fit the
needs of the present work) generates its results in the form
of text files describing flexible plans, i.e. a set of flexible
timelines and a set of relations on their tokens as defined
in Section II. The generated plans include information on
uncontrollable tokens and the distinction between planned and
external timelines. The translation of plans into UPPAAL-TIGA
systems and queries, according to the encoding described
in Section V, was accomplished by PLAN2TIGA, that can
be found at http://cialdea.dia.uniroma3.it/plan2tiga. Finally,
the files generated by the encoding were processed by the
UPPAAL-TIGA verifier for the synthesis of control strategies.

In general, this tool and methodology can be used by any
planner, provided that it outputs the generated plans in a text
file obeying the general syntax accepted by the program.

In order to empirically check the feasibility of our ver-
ification method, we deployed it in different configurations
of the benchmark domain. In this way we analyzed various
executive contexts both for checking dynamic controllability
and synthesizing a winning strategy. The performances of
the tool have been analyzed in different planning/execution
scenarios obtained by varying the problem complexity along
the following dimensions: i) the number of available scientific
devices; ii) the number of goal requests; iii) the degree of
temporal uncertainty. The different classes of problems were

designed so that the impact of the following three dimensions
could be evaluated: the number of timelines in the plan, their
length (number of tokens) and the width of the duration
intervals of uncontrollable tokens.

More specifically:

• Number of scientific devices, determining the number
of timelines in the plan. The satellite can be endowed
with different sets of scientific devices. We considered
configurations from 1 to 4 devices. Each device is
considered as a component of the system, thus, vary-
ing the number of devices affects the number of state
variables (each for each device plus two others, for
the overall system and the Earth visibility window)
and synchronization constraints in the planning model
and, as a consequence, the size of the generated plans
to be checked, in terms of number of timelines and
relations.

• Goal requests, determining the complexity (number
of tokens) in the timelines representing devices. Each
goal consists of using some device to perform its
scientific activity, consisting of the following sequence
of tasks: warm-up, process, turn-off. The available
devices are used in a cycling sequence, so that, when
the number of goals is greater than the number of
available devices, some of them perform their se-
quence of tasks more than once. Conversely, if there
are more devices than goals to be accomplished, some
devices are unused and rest in their idle status all the
time.

• Temporal uncertainty, determining the width of the
time intervals constraining the duration of uncon-
trollable activities. For each uncontrollable activity
(i.e., the devices process phase, communication and,
obviously, the activities of the ground-station visibil-
ity window) we set a minimal a-priori known dura-
tion, but allow temporal flexibility on its termination,
namely, we considered a tolerance of either 10 or 30
time units. This temporal interval represents the degree
of temporal uncertainty in the system.

In principle, among all the generated problem instances, the
ones with higher number of devices and goals as well as larger
temporal uncertainty are the hardest ones to be both planned
and controlled. In these scenarios, we collected and compared
the running times for planning and verification/strategy synthe-
sis, the overhead of the encoding process being neglectable. In
these scenarios, we collected and compared the running times
for planning (EPSL), on one hand, and verification/strategy
synthesis (UPPAAL-TIGA), on the other. The overhead of the
encoding process is neglectable.

The experiments were run on a PC endowed with an Intel
Core i7 (2.80GHz) processor and 6GB RAM, and a timeout
of 10 minutes was given to both systems. In what follows the
reported timings are in seconds.

The diagram in Figure 1 plots the EPSL planning times for
solving problems with 1 to 4 devices against the number of
goals, considering the case of maximum temporal flexibility,
i.e., 30. The problems with either 3 or 4 devices and more
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Fig. 1. Planning time for problems with temporal flexibility 30.

than 6 goals could not be solved by the planner, and the
corresponding points are not plotted in the chart.

Figure 2 shows the corresponding diagram plotting the
running times of UPPAAL-TIGA verifying the plans generated
by EPSL. The plans with 4 devices could not be verified by
UPPAAL-TIGA in the allowed 10 minutes time, but for the
simpler ones (one and two goals, respectively in 93 and 269
seconds). The line corresponding to the plans with 4 devices
is not plotted at all in the diagram. The points corresponding
to plans with 3 devices and more than 6 goals are missing
because EPSL did not generate them.
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Fig. 2. Verification time for plans with temporal flexibility 30.

Temporal flexibility seems not to affect the performances of
UPPAAL-TIGA while verifying plans and generating execution
strategies. In fact, comparing the running times for the prob-
lems with temporal flexibility 10 and 30, the average difference
in speed is about 6 seconds. This is mainly due to the fact that
UPPAAL-TIGA is specifically tailored for verifying temporal
properties on timed game automata.

On the other hand, while the planning system seems to
be negatively influenced by the presence of many tokens on
the same timeline (due to different scientific requests on the
same device), the verification process is strongly affected by
the number of devices, determining in turn the number of
timelines to be checked, i.e. the automata making up the
network. Indeed, UPPAAL-TIGA is able to promptly check
plans in the case of 1 or 2 devices regardless the number
of goals. While its performances degrade when addressing
scenarios with more devices, up to the case of 4 devices, where
only two plans were successfully verified.

These preliminary experiments show that the performances
of the verification process are comparable with planning costs
when considering few devices for the satellite (i.e. up to 3)
and, thus, also compatible with its deployment in on-line
planning and execution control architectures. In general, the
tool can be exploited to support off-line planning tools where a
formal certification of robust execution properties (i.e. dynamic
controllability, and the consequent generation of an execution
strategy) is more important than fast computation times.

VII. CONCLUSIONS

This paper presents a formal account of flexible timelines
and plans in the presence of uncertain and exogenous events,
specifically addressing the dynamic controllability issue. Car-
rying on the work started in [5], the definition of flexible plans
is extended introducing quantitative temporal relations as well
as taking into account the difference between controllable and
uncontrollable activities. Beyond formally defining the related
main notions for flexible plans, a formal semantics is given
of flexible plans in terms of Timed Game Automata (TGA).
Similarly to [8], [9], UPPAAL-TIGA is exploited to verify
whether a flexible plan is dynamically controllable and to
generate a dynamic execution strategy by solving a reachability
game. An initial empirical assessment shows the feasibility of
the proposed approach when deployed in a benchmark domain
derived from a real world context.

The contribution presented in this paper advances the work
in [8], [9] on different perspectives. First of all, a more
comprehensive approach is presented here, since controllability
information is included in the description of the plan itself,
thus avoiding the need of considering additional information
derived from the specific execution contexts. Moreover, the
encoding into TGA does not require to consider also the
specification of the planning domain (like in the previously
cited works) allowing for a more compact and straightforward
translation of plans in terms of TGA. In summary, the whole
information needed to encode and control the flexible plan is
contained in its description. Furthermore, the present method-
ology allows also for the encoding of partially specified plans,
thus making it possible to exploit the controllability check
also during the planning process: during plan construction,
the planner could query the TGA verifier about the current
partial plan and check whether some planning decisions are
affecting its dynamic controllability. The verifier can then
provide suitable feedback to the planner so as to allow it to
discard potential solution plans that, though consistent (with
respect to the planning domain and problem), do not guarantee
dynamic controllability.

In order to assess the feasibility of the proposed method-
ology, the preliminary empirical investigation presented and
discussed in the paper is to be carried on more systematically,
considering multiple and more complex domains and execution
scenarios. A thorough experimental analysis can be of help in
figuring out which are the crucial features of both planning
problems and solution plans affecting the performances of
the verification process, thus giving general guidelines for
modeling planning domains. Moreover, the implementation of
a tool translating the UPPAAL-TIGA strategy into executable
code and the actual deployment of the whole approach in a real



P&S control architecture (e.g. APSI-TRF) would constitute a
natural and valuable future work.
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