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Abstract—Even after the proposal of various solution al-
gorithms, the precise computational complexity of checking
whether a Conditional Temporal Network is Dynamically
Controllable had still remained widely open. This issue gets
settled in this paper which provides constructions, algorithms,
and bridging lemmas and arguments to formally prove that:
(1) the problem is PSPACE-hard, and (2) the problem lies in
PSPACE.

I. INTRODUCTION

In temporal planning and scheduling, a Simple Temporal
Network (STN) [1] consists of a set of tasks to be scheduled
on the time line, and a set of constraints of the form
Y −X ≤ δ, with δ ∈ R, i.e., limiting the difference between
the execution times of tasks X and Y . The STN is said to be
consistent if it admits a schedule of its tasks that satisfies all
the constraints. Some variants of the STN model have been
proposed in the literature to allow and represent some forms
of contingency, that is, the presence of parameters which
are unknown to the planner. For example, a Conditional
Simple Temporal Network (CSTN) [2] comprises also a set
of unknown propositional variables, and some of the tasks
and constraints in the network are to be taken into account
only for specific values of these variables.

When contingency is present, such as in CSTNs, the
notion of consistency is replaced by the notion of con-
trollability, which comes in three flavors: weak, strong,
and dynamic [3], [2]. In all the three variants the question
is whether the planner is able to provide a schedule that
satisfies the constraints; the difference is in how and when
the value of the unknown parameters is disclosed to the
planner. In the weak controllability, the parameters are
revealed before the execution of the plan, so the schedule can
be decided once the value of all the variables (scenario) has
been specified, and the main question is deciding whether a
feasible scheduling exists for all possible scenarios. In the
strong controllability, these values are revealed only after the
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execution of the schedule, so we need a single schedule that
works for every scenario. In the dynamic controllability, the
unknown parameters are revealed progressively during the
execution of the plan, as a consequence of actions performed
by the planner. In the case of CSTNs, each propositional
variable is associated with an observation task, and its value
is revealed precisely when the corresponding observation
task is executed. Here we look for a dynamic execution
strategy: a schedule of the tasks that gets dynamically
decided depending on the partial scenario progressively
observed, such that, whatever scenario possibly emerges, all
the constraints pertinent to that scenario will be respected.
The dynamic controllability1 decision problem for CSTNs
(CSTN-DC) asks to check whether a given CSTN is dy-
namically controllable, and is a major algorithmic problem
associated to CSTNs.

It is known that the consistency of STNs can be decided in
polynomial time, by interpreting the network as a weighted
graph and applying the Floyd-Warshall All-Pairs Shortest
Path algorithm [1]. However, the presence of contingency
might change drastically the algorithmic nature of the
problem. Especially for the dynamic controllability, which
introduces an alternation of quantifiers ∃ (for the choices of
the planner) and ∀ (for the revealed parameters), an increase
in complexity is expected [3]. In the case of Simple Temporal
Networks with Uncertainty (STNUs), another variant of
STNs with contingency (with which a first controllability
issue was posed), the dynamic controllability had been
conjectured to be PSPACE-complete [3]. Subsequently, it
was proven to actually lie in P [4].

For CSTNs, determining the right complexity class of
dynamic controllability is still a widely open question.
Deciding their weak controllability has been proven to
be coNP-complete [2], [5] and, since weak controllability
can easily be reduced to a special case of dynamic con-
trollability, then CSTN-DC is at least coNP-hard [5]. A

1The term “dynamic consistency” is sometimes used in the context of
CSTNs. We prefer to use “dynamic controllability” to emphasize the active
role of the planner and to match the name used in the literature for other
type of temporal networks, such as STNUs.
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first complete algorithmic solution had been proposed in
[6] by reducing CSTN-DC to a time automaton game of
high complexity. Later, a complete constraint propagation
algorithm was achieved with much better performances in
practice [7], based on the sound constraint-propagation rules
provided in [8], [9], [10] for the more general setting of
Conditional Simple Temporal Networks with Uncertainty
(CSTNU). In [5], a worst-case upper bound is obtained,
thanks to an algorithm which requires singly-exponential
time and memory. To the best of our knowledge, no better
bounds are known in the literature.

In this work, we settle this question by sharply improving
both the lower and the upper bound. After providing the
background notions and first basic facts as common to both
developments in Section II, a reduction from Quantified 3-
SAT to CSTN-DC is proposed in Section III, which proves
the latter to be PSPACE-hard. Then, in Section IV, the
first algorithm that solves CSTN-DC using only polynomial
memory is given, hence showing that CSTN-DC lies in
PSPACE. Sections III and IV can be read independently.
Taken together, their negative and positive results show that
CSTN-DC is PSPACE-complete, i.e., the natural complexity
class for the dynamic controllability issue for CSTNs is
PSPACE.

II. BACKGROUND

In this section, Conditional Simple Temporal Networks
(CSTNs) and their dynamic controllability are formally
defined. The definitions are taken from [7].

A. Simple Temporal Networks (STNs)

Definition 1 (Temporal variables, tasks, constraints). Let
T be a finite set of real-valued temporal variables. Each
variable X ∈ T represents the execution time of a task,
also denoted with X . In the following, we use the terms
temporal variable and task interchangeably. A binary dif-
ference constraint over T is a constraint of the form
Y − X ≤ δ, for X,Y ∈ T and δ ∈ R. In this paper,
constraint always denotes a binary difference constraint. The
constraint Y − X ≤ δ can also be expressed, equivalently,
as X − Y ≥ −δ, Y ≤ X + δ or X ≥ Y − δ, as it is more
convenient in the context.

Definition 2 (Schedule, satisfied constraints). A schedule
over T is a total assignment ψ : T → R of the temporal
variables in T . We write [ψ]X instead of ψ(X) to denote the
value assigned by the schedule ψ to the variable X ∈ T . A
schedule satisfies a constraint Y −X ≤ δ if [ψ]Y −[ψ]X ≤ δ.

Definition 3 (Simple Temporal Network). A Simple Tem-
poral Network (STN) is a pair (T , C) where T is a set of
temporal variables and C is a set of constraints over T .

Definition 4 (Feasible schedule). A schedule ψ over T is
feasible for (T , C) if ψ satisfies all the constraints in C.

B. Conditional Simple Temporal Networks (CSTNs)

Definition 5 (Propositional variables, labels). Let P be a
set of propositional (boolean) variables. A label ` over P is
a boolean formula ` = l1 ∧ · · · ∧ lk, obtained as conjunction
of positive or negative literals li ∈ {pi,¬pi} on distinct
variables pi ∈ P . The empty label is denoted with λ and
always evaluates to true. Let P∗ denote the set of labels over
P (including λ).

Definition 6 (Scenario, label evaluation). A scenario s
over P is a total assignment of the propositional variables
s : P → {0, 1} where 0 means false and 1 means true. Let
ΣP denote the set of all the scenarios over P . We write
s � ` if the label ` evaluates to true under the interpretation
given by s.

Definition 7 (Conditional Simple Temporal Network). A
Conditional Simple Temporal Network (CSTN) is a tuple
Γ = (T ,P, C,L,OT ,O) where
• T is a finite set of temporal variables or tasks,
• P is a finite set of propositional variables,
• C is a finite set of labeled constraints (Y −X ≤ δ, `),

where Y −X ≤ δ is a constraint over T and ` ∈ P∗
is a label,

• L : T → P∗ if a function that assigns a label L(X) to
each task X ∈ T ,

• OT ⊆ T is the set of observation tasks,
• O : P → OT is a bijection that associates each

propositional variable p ∈ P to a unique observation
task O(p).

A task X ∈ T has to be executed only in those scenarios
s ∈ ΣP such that s � L(X), and each constraint (Y −X ≤
δ, `) ∈ C has to be satisfied if s � `. Since the constraint
Y −X ≤ δ only makes sense if both X and Y get executed,
we require the following well-definedness property.

Definition 8 (Restriction WD1). A CSTN satisfies the
restriction WD1 if, for every labeled constraint (Y − X ≤
δ, `) ∈ C, we have `⇒ L(X) ∧ L(Y ).

In the following, WD1 is incorporated in the definition
of CSTN, i.e., it is assumed that any CSTN satisfies this
restriction.
Remark 1. Tsamardinos et al. [2] discussed some sup-
plementary reasonability assumptions that any well-defined
CSTN must satisfy. Subsequently, those conditions have
been analyzed and formalized in [8] introducing the three
restrictions WD1, WD2, and WD3. The restriction WD1
has already been discussed. The restrictions WD2 and WD3
relate the labels on tasks and constraints with the labels on
observation tasks. We avoid entering into the fine details
regarding them, and we rather provide both of our results
in their strongest and most general form, as follows. First,
the reduction in our PSPACE-hardness proof constructs only
CSTNs that comply with all three restrictions vacuously,



having no labels on the tasks. Second, neither WD2 nor
WD3 are required as preconditions for the applicability of
our PSPACE algorithm.2

C. Dynamic controllability of CSTNs

Definition 9 (Projection). The projection of a CSTN over a
scenario s is the STN Γs = (Ts, Cs) where:
• Ts = {X ∈ T | s � L(X)}
• Cs = {Y −X ≤ δ | (Y −X ≤ δ, `) ∈ C and s � `}.

Definition 10 (Execution strategy, viable). Let ΨT denote
the set of schedules ψ over any subset T ′ ⊆ T . For a
schedule ψ ∈ ΨT over T ′ ⊆ T , let Dom(ψ) = T ′. An
execution strategy for Γ is a function σ : ΣP → ΨT that
maps each scenario s ∈ ΣP to a schedule σ(s) for Γs (i.e.
Dom(σ(s)) = Ts). An execution strategy σ is viable if, for
every scenario s ∈ ΣP , the schedule σ(s) is feasible for Γs.

Definition 11 (Partial scenario, history). A partial scenario
over P is a partial assignment h : Dom(h)→ {0, 1} of the
propositional variables, where Dom(h) ⊆ P . Given σ, a
scenario s, and a time point t ∈ R, the history at t in the sce-
nario s with the strategy σ is the partial scenario Hist(t, s, σ)
where Dom(Hist(t, s, σ)) = {p ∈ P | [σ(s)]O(p) < t} and
Hist(t, s, σ)(p) = s(p) for every p ∈ Dom(Hist(t, s, σ)).

Definition 12 (Dynamic execution strategy). An execution
strategy σ is dynamic if, for any scenarios s, s′ ∈ ΣP and
time variable X ∈ Ts, letting t = [σ(s)]X , if Hist(t, s, σ) =
Hist(t, s′, σ), then X ∈ Ts′ and [σ(s′)]X = t.

Definition 13 (Dynamic controllability). A CSTN is dy-
namically controllable if it admits a dynamic viable execu-
tion strategy. The dynamic controllability decision problem
(CSTN-DC) asks to check whether a given CSTN Γ is
dynamically controllable or not.

The following definition and lemma state a useful charac-
terization of dynamic execution strategies: if two scenarios
differ in only one propositional variable, then a dynamic
execution strategy behaves in the same way in the two
scenarios until that propositional variable is observed. This
property has been also proven in [7, Theorem 1], and will
be used several times in this paper to exploit the fact that
an execution strategy is dynamic.

Definition 14. Given a scenario s ∈ ΣP , a propositional
variable p ∈ P and v ∈ {0, 1}, let s[v/p] be the scenario
obtained from s by changing the value of the variable p to
v, i.e., s[v/p](p) = v and s[v/p](q) = s(q) for q ∈ P \ {p}.

Lemma 1. Let σ be a dynamic execution strategy. Let
s ∈ ΣP , p ∈ P , v ∈ {0, 1}, and consider the scenario

2The reader may observe that, without WD2 and WD3, it is possible to
have the corner case of a network which does not admit any dynamic
execution strategy [8]. Such a network is considered not dynamically
controllable since, in particular, it does not admit any viable dynamic
execution strategy. No special handling of this case is needed.

s′ = s[v/p]. For any t ≤ [σ(s)]O(p), the following properties
hold:
(a) Hist(t, s, σ) = Hist(t, s′, σ),
(b) [σ(s)]X ≤ t ⇐⇒ [σ(s′)]X ≤ t for every X ∈ T ,
(c) [σ(s)]X = t ⇐⇒ [σ(s′)]X = t for every X ∈ T

and in particular [σ(s)]O(p) = [σ(s′)]O(p).

Proof: Observe that we only need to check the proper-
ties for those values of t that appear somewhere in σ. Hence,
we can proceed by induction. The properties clearly hold
for a sufficiently small t (less than any value in σ). Take
t < t′ ≤ [σ(s)]O(p), such that [σ(s)]X , [σ(s′)]X /∈ (t, t′)
for every X ∈ T , and assume that the properties hold for
t. Observe that, for s′′ ∈ {s, s′}, Dom(Hist(t′, s′′, σ)) =
Dom(Hist(t, s′′, σ)) ∪ {q ∈ P | [σ(s′′)]O(q) = t} and,
since [σ(s)]O(q) = t ⇐⇒ [σ(s′)]O(q) = t for q ∈ P ,
then Dom(Hist(t′, s, σ)) = Dom(Hist(t′, s′, σ)). Moreover,
p /∈ Dom(Hist(t′, s, σ)) since t < [σ(s)]O(p) by assump-
tion. Hence, Hist(t′, s, σ) = Hist(t′, s′, σ). The other two
properties for t′ are a direct consequence of the fact that σ
is dynamic, and this concludes the induction.

III. PSPACE-HARDNESS

In this section, we prove that CSTN-DC is PSPACE-hard
by showing a reduction from Quantified 3-SAT (Q3SAT).

We are given a Q3SAT formula Φ = ∃x1∀y1 · · · ∃xn∀ynϕ
where ϕ is a 3CNF over the propositional variables
x1, y1, . . . , xn, yn. I.e., ϕ =

∧m
j=1(lj,1 ∨ lj,2 ∨ lj,3) and

each literal lj,k is either a positive or a negated occurrence
of one of the quantified variables. The formula Φ can be
understood as a game in which the existential player and
the universal player decide in turn the value of the variables
x1, y1, x2, y2, . . . , xn, yn. The existential players wins if,
when all the variables have been set, the formula ϕ is
satisfied by the chosen values. CSTNs can be also seen as
games, where the planner plays against the nature, the first
by scheduling the tasks, the second by choosing the value
of the propositional variables as soon as they are observed.
The planner wins if, eventually, the schedule he executes is
feasible, and the CSTN is dynamically controllable if the
planner has a winning strategy. This interpretation of both
Q3SAT and CSTN-DC as two-player games underlies our
proof of PSPACE-hardness.

We will describe a CSTN ΓΦ which is dynamically
controllable iff Φ ≡ true, that is, iff the existential player
has a winning strategy for Φ. It will be apparent that
O(log(n+m)) internal space suffices in order to construct
ΓΦ out from Φ.

A. Warm-up: the controller can choose some variables

Before addressing CSTN-DC, we consider a more general
problem CSTN+-DC. We define a CSTN+ to be a CSTN in
which the values of a subset P+ ⊆ P of the propositional
variables are actually decided by the controller rather than



by the nature, still each p ∈ P gets determined at the precise
execution time of the corresponding disclosure task O(p). To
ease our exposition, we first construct a CSTN+ Γ+

Φ which
is dynamically controllable iff Φ ≡ true. This will be a much
easier task, but helps in delivering the general idea of the
reduction.

The CSTN+ Γ+
Φ contains all the variables xi, yi as propo-

sitional variables, decided and observed respectively in tasks
Xi = O(xi) and Yi = O(yi). These tasks are subject to
the unlabeled constraints Yi ≥ Xi + 1 (i = 1, . . . , n) and
Xi+1 ≥ Yi+1 (i = 1, . . . , n−1). These constraints connect
the tasks X1, Y1, . . . , Xn, Yn in a chain which enforces that
they are executed in the proper order. Then, we have two
tasks A and B with the following constraints. For every
j = 1, . . . ,m, we have a constraint B ≥ A + 1 with label
`j := ¬lj,1∧¬lj,2∧¬lj,3, defined as the negation of the j-th
clause (lj,1 ∨ lj,2 ∨ lj,3) of ϕ. Finally, there is an unlabeled
constraint A ≥ B + 1.

The network Γ+
Φ is dynamically controllable iff Φ ≡ true.

Indeed, if Φ ≡ true, the controller schedules Xi and Yi
at time 2i and 2i + 1 respectively, and can choose the
propositional value of xi depending on y1, . . . , yi−1 in ac-
cordance to his winning strategy for Φ. Finally, he schedules
B at time 2n + 2 and A at time 2n + 3, and, since every
clause of ϕ is satisfied, none of the constraints B ≥ A+ 1
applies and all the other constraints are fulfilled. Conversely,
assume Φ ≡ false. It is now nature that owns a winning
strategy: since the controller is anyhow forced to reveal
the variables in order, she can choose each propositional
variable yi depending on x1, . . . , xi so that, for at least one
j ∈ {1, . . . ,m}, the clause (lj,1 ∨ lj,2 ∨ lj,3) evaluates to
false. Hence, the constraints A ≥ B + 1 and B ≥ A + 1
necessarily lead to a conflict, no matter when the events A
and B are scheduled.

B. Reduction for CSTNs

The above toy reduction with Γ+
Φ illustrates well the gen-

eral framework, but relies on the strong assumption that the
controller can choose the value of some of the propositional
variables. In CSTNs, the controller cannot force the nature
to choose a particular value for a propositional variable.
However, he can put a lot of pressure on her to choose the
value he wants. Indeed, we next describe a network (in the
standard framework of CSTNs) that allows the controller to
specify the value he desires for a variable xi, by executing
one among two particular actions, one for true and one for
false. The network is built in such a way that, if the value
actually chosen by the nature differs from the prescription
of the planner, then he is able to schedule the rest of
the network easily, satisfying all the remaining constraints.
Thanks to this property, the nature is effectively obliged to
choose the variables as specified by the planner, otherwise
she is doomed to lose the match.

We begin with an informal description of our construc-
tion ΓΦ. Figure 1 shows an example of our construction for
n = 3, and may help the reader in following the exposition.
There are n gadgets G1, . . . , Gn connected in series. The
i-th gadget Gi involves the propositional variables xi, yi
(which are now normal variables chosen by the nature),
and two extra variables c1i and c0i . The purpose of Gi is to
let the controller choose the value of xi, and then observe
the value of yi chosen by the nature. The nodes of Gi are
Ai, Bi, C0

i = O(c0i ), C1
i = O(c1i ), Di, Xi = O(xi) and

Yi = O(yi). Moreover, Gi connects also to the nodes Ai+1

and Bi+1 which, for i < n, belong to the next gadget Gi+1,
while An+1 and Bn+1 are two extra nodes at the end of the
construction. It is here, between An+1 and Bn+1, that the
m clause constraints get lied down. For each j = 1, . . . ,m,
we put a constraint Bn+1 − An+1 ≥ n + 1 with label
`j := ¬lj,1 ∧ ¬lj,2 ∧ ¬lj,3, defined as the negation of the
j-th clause of ϕ, like in the toy reduction of the previous
section.

Before describing the internals of each gadget, we show
how they play together and we focus only on the tasks
Ai and Bi for i = 1, . . . , n + 1. Consider the constraint
Bi − Ai ≥ i − 1 for 1 ≤ i ≤ n + 1, called “activation
constraint”. The gadget Gi is “activated” if the i-th activation
constraint is satisfied, i.e., if the task Bi is executed at most
i − 1 units of time after Ai. For the first gadget G1, the
activation constraint B1 − A1 ≤ 0 is explicitly added to
the network, without labels, enforcing the gadget G1 to be
always activated. Thanks to the internal structure of the
gadgets, the activation constraint is then propagated from
one gadget to the next, as long as the nature chooses the
value of xi according to the prescription of the controller.
If the nature always chooses xi according to the controller,
then all the gadgets are activated and we end up with the
propagated constraint Bn+1 −An+1 ≤ n. At this point, the
controller is able to schedule An+1 and Bn+1 if and only
if all the clauses of ϕ are satisfied, so that the constraints
Bn+1 −An+1 ≥ n+ 1 labeled with `i are all void.

If instead the nature chooses for any xi the opposite value
to the one prescribed, then the activation constraint on Ai
and Bi is not propagated to Ai+1 and Bi+1, the following
gadgets are not activated, and the controller is able to execute
all the other tasks Bi′ , Chi′ and Di′ for i′ > i very far in the
future, without violating any constraint.

We now describe the internal mechanism of each gadget.
At the heart of Gi there are the two constraints Di ≤ Bi+1
and Di ≥ Ai + (n + 2), labeled with c1i ∧ c0i and ¬c1i ∧
¬c0i respectively. If the gadget is activated, then these two
constraints cannot be satisfied together (since Bi − Ai ≤
i− 1 ≤ n). Hence, the controller has to observe either c1i or
c0i , in order to decide whether to execute Di early or not (see
Lemma 3). Which of the two variables is observed specifies
the desired value of xi: so, if the planner wants xi to be
true, then he should execute C1

i , and if he wants xi to be
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Figure 1. Reduction from Q3SAT to CSTN-DC for n = 3. A Q3SAT formula Φ = ∃x1∀y1 ∃x2∀y2 ∃x3∀y3
∧m

j=1(lj,1 ∨ lj,2 ∨ lj,3) is transformed
into the network ΓΦ illustrated above, where nodes denote tasks and edges denote constraints. Specifically, a directed edge labeled δ, ` from a node N
to a node M denotes the labeled constraint (M ≤ N + δ, `). The label `j is defined as the negation of the j-th clause of the 3CNF formula, i.e.,
`j := ¬lj,1 ∧ ¬lj,2 ∧ ¬lj,3. The empty label λ is omitted. A label q? beside a node Q indicates that Q = O(q).

false, he should execute C0
i . A constraint Xi ≥ Ai+(n+2)

ensures that the controller can observe xi only after choosing
either C1

i or C0
i . Then, the constraint Yi ≥ Xi + 1 allows

the controller to observe yi only after xi, and the constraint
Ai+1 ≥ Yi + 1 connects to the next gadget.

The propagation of the activation constraint Bi − Ai ≤
i − 1 to the next gadget is achieved by the two constraints
Bi+1 ≤ C1

i + (n + 4) and Bi+1 ≤ C0
i + (n + 4), labeled

with xi and ¬xi respectively. In order for the propagation
to take place, the nature has to choose xi to true if C1

i has
been executed, and to false if C0

i has been executed (see
Lemma 5).

The full construction is provided for reference in Figure 2,
and it is illustrated in Figure 1 for n = 3.

Lemma 2. If Φ ≡ true then ΓΦ is dynamically controllable.

Proof: Assume Φ ≡ true. This means that the exis-
tential player holds a winning strategy for Φ. This strategy
can be expressed as a function f : {0, 1}∗ → {0, 1},
such that ϕ evaluates to true over all truth-assignments
s : {x1, y1, . . . , xn, yn} → {0, 1} in which s(xi) =
f(s(y1), . . . , s(yi−1)) for every i = 1, . . . , n. Taking f
as reference, we provide a viable and dynamic execution
strategy for ΓΦ.

Given a scenario s : P → {0, 1}, let hi(s) =
f(s(y1), . . . , s(yi−1)) for i = 1, . . . , n. Then, define b(s) to
be the smallest index i ∈ {1, . . . , n} such that s(xi) 6= hi(s),
or b(s) = n + 1 if no such index i exists. The value b(s)
represents the first index i in which the nature does not
follow the prescription of the controller in choosing the value
of xi, or b(s) = n+ 1 if she copies until the end.

The execution strategy σ is defined in Figure 3, where
b′(s) := min{b(s), n} and ∞ denotes a sufficiently large
value, say, ∞ := (n+ 4)(n+ 2).

T = {Ai, Bi, C
0
i , C

1
i , Di, Xi, Yi}i=1,...,n ∪ {An+1, Bn+1}

P = {xi, yi, c1i , c0i }i=1,...,n,
L(N) = λ for every N ∈ T ,
C contains the following constraints:

(B1 −A1 ≤ 0, λ),
for i = 1, . . . , n:

(Di ≤ Bi + 1, c0i ∧ c1i ),
(Di ≥ Ai + (n+ 2),¬c0i ∧ ¬c1i ),
(Xi ≥ Ai + (n+ 2), λ),
(Yi ≥ Xi + 1, λ),
(Ai+1 ≥ Yi + 1, λ),
(Bi+1 ≤ C0

i + (n+ 4),¬xi),
(Bi+1 ≤ C1

i + (n+ 4), xi),
for j = 1, . . . ,m:

(Bn+1 −An+1 ≥ n+ 1,¬lj,1 ∧ ¬lj,2 ∧ ¬lj,3),
OT = {Xi, Yi, C

0
i , C

1
i }i=1,...,n,

O(xi) = Xi, O(yi) = Yi, O(c0i ) = C0
i and O(c1i ) = C1

i ,
for i = 1, . . . , n.

Figure 2. Construction of the CSTN ΓΦ = (T ,P, C,L,OT ,O) for a
given Q3SAT formula Φ = ∃x1∀y1 · · · ∃xn∀yn

∧m
j=1(lj,1 ∨ lj,2 ∨ lj,3).

Notice that the value [σ(s)]N for a task N ∈ T and a
scenario s depends on the value s(p) only for those variables
p ∈ P that are observed strictly before the time point
[σ(s)]N . This condition is sufficient to guarantee that σ is
dynamic. In particular, observe that the condition i ≤ b(s)
depends only on the variables x1, y1, . . . , xi−1, yi−1, and
that [σ(s)]Di for i ≤ b′(s) depends on either c0i or c1i ,
whichever has been actually observed at time (n + 4)i in
the scenario s.

One can easily check that σ is viable, by checking that all
the constraints in C are satisfied. In particular, concerning the
constraints (Bn+1 ≥ An+1 + (n+ 1),¬lj,1 ∧ ¬lj,2 ∧ ¬lj,3)
for j ∈ {1, . . . ,m}, there are two possibilities. If b(s) =



[σ(s)]Ai = (n+ 4) i for i = 1, . . . , n+ 1

[σ(s)]Bi = (n+ 4) i for i = 1, . . . , b(s)

[σ(s)]Bi =∞ for i = b(s) + 1, . . . , n+ 1

[σ(s)]Ch
i
= (n+ 4) i for i = 1, . . . , b′(s) and h = hi(s)

[σ(s)]Ch
i
=∞ for i = 1, . . . , b′(s) and h 6= hi(s)

[σ(s)]Ch
i
=∞ for i = b′(s) + 1, . . . , n and h = 0, 1

[σ(s)]Di =

{
(n+ 4) i+ 1 if s(chi(s)

i ) = 1

∞ otherwise

for i = 1, . . . , b′(s)

[σ(s)]Di =∞ for i = b′(s) + 1, . . . , n

[σ(s)]Xi = (n+ 4) i+ n+ 2 for i = 1, . . . , n+ 1

[σ(s)]Yi = (n+ 4) i+ n+ 3 for i = 1, . . . , n+ 1.

Figure 3. Dynamic and viable execution strategy σ for ΓΦ, when Φ ≡
true. Fixed a winning strategy f for Φ, the execution strategy σ is defined
above, where hi(s) := f(s(y1), . . . , s(yi−1)), b(s) := min{i | s(xi) 6=
hi(s)} ∪ {n+ 1} and b′(s) := min{b(s), n}.

n + 1, then all these constraint are void since each clause
(lj,1∨lj,2∨lj,3) of ϕ is satisfied by the interpretation given by
s. Otherwise, if b(s) ∈ {1, . . . , n}, then they are all satisfied
since [σ(s)]Bn+1

=∞ ≥ [σ(s)]An+1
+(n+1) = (n+4)(n+

1) + n+ 1.
To prove the converse of Lemma 2, we first spot out three

facts detailing out how the gadgets work as intended. First,
if the i-the gadget is activated, then the controller is forced
to execute either C0

i or C1
i early (Lemma 3). Second, the

activation of the i-th gadget and the choice of either C0
i or

C1
i cannot depend on the variables xi, yi, . . . , xn, yn, so the

nature can choose their values “later on” (Lemma 4). Third,
if the nature copies the value selected by the controller,
the activation constraint is propagated to the next gadget
(Lemma 5).

Lemma 3 (The controller has to schedule C0
i or C1

i early).
Let σ be a viable and dynamic execution for ΓΦ. Let s
be any scenario and i ∈ {1, . . . , n}, and suppose that
[σ(s)]Bi

− [σ(s)]Ai
≤ n. Then, for some h ∈ {0, 1}, we

have [σ(s)]Ch
i
≤ [σ(s)]Bi

+ 1.

Proof: Fix a scenario s, let t := [σ(s)]Bi
+ 1, and

suppose by contradiction [σ(s)]Ch
i
≥ t for h = 0, 1. Let

d = 1 if [σ(s)]Di
≥ t and d = 0 otherwise, and take s′ =

s[d/c0i ][d/c
1
i ]. Since t ≤ [σ(s)]Ch

i
for h = 0, 1, we can apply

Lemma 1 obtaining that [σ(s′)]Bi + 1 = t, [σ(s′)]Ch
i
≥ t,

[σ(s′)]Di ≥ t ⇐⇒ [σ(s)]Di ≥ t ⇐⇒ d = 0, and either
[σ(s)]Ai

= [σ(s′)]Ai
< t or both [σ(s)]Ai

, [σ(s′)]Ai
≥ t.

Now, if d = 1, then the constraint Di ≤ Bi + 1 applies in
scenario s′ and is violated by σ(s′). Otherwise, if d = 0,
the constraint Di ≥ Ai + n + 1 applies in scenario s′ and
is violated by σ(s′). In either case, this contradicts the fact
that σ is viable.

Lemma 4 (The nature can choose future variables). Let

σ be a viable and dynamic execution for ΓΦ. Let s be
any scenario and i ∈ {1, . . . , n}. Let s′ = s[v/p] be a
scenario obtained by changing the value of any variable p ∈
{xi, yi, . . . , xn, yn} to any value v ∈ {0, 1}. Then, we have
[σ(s′)]Bi − [σ(s′)]Ai ≤ i − 1 ⇐⇒ [σ(s)]Bi − [σ(s)]Ai ≤
i − 1. Moreover, if [σ(s)]Bi

− [σ(s)]Ai
≤ i − 1 holds, then

[σ(s′)]Ch
i
< [σ(s′)]Bi

+ 1 ⇐⇒ [σ(s)]Ch
i
< [σ(s)]Bi

+ 1
for both h = 0 and h = 1.

Proof: Let t = [σ(s)]Ai + n+ 1. Since σ is viable, the
unlabeled constraints Xi ≥ Ai + (n+ 2), Yi ≥ Xi + 1 and
Ai+1 ≥ Yi+1 imply that t = [σ(s)]Ai

+n+1 ≤ [σ(s)]Xi
≤

[σ(s)]Yi
≤ · · · ≤ [σ(s)]Xn

≤ [σ(s)]Yn
. Since [σ(s)]Ai

≤
[σ(s)]Ai + i−1 ≤ t, Lemma 1 can be applied to obtain that
[σ(s′)]Ai = [σ(s)]Ai and [σ(s)]Bi ≤ [σ(s)]Ai + i− 1 ⇐⇒
[σ(s′)]Bi

≤ [σ(s′)]Ai
+ i− 1 which proves the first part of

the lemma. Now assume [σ(s′)]Bi
≤ [σ(s)]Ai

+ i − 1: we
have

[σ(s′)]Bi
≤ [σ(s′)]Bi

+ 1 ≤ [σ(s′)]Ai
+ (i− 1) + 1

≤ [σ(s′)]Ai
+ n+ 1 = t

so by Lemma 1 we obtain that [σ(s′)]Bi = [σ(s)]Bi and
[σ(s′)]Ch

i
< [σ(s′)]Bi + 1 ⇐⇒ [σ(s)]Ch

i
< [σ(s)]Bi

+ 1.

Lemma 5 (Propagation of the activation constraint). Let σ
be a viable and dynamic execution for ΓΦ. Let s be any
scenario and i ∈ {1, . . . , n}, and suppose that [σ(s)]Bi

−
[σ(s)]Ai ≤ i− 1. Let h = 0 if [σ(s)]C0

i
< [σ(s)]Bi + 1 and

h = 1 otherwise. For s′ = s[h/xi] we have [σ(s′)]Bi+1 −
[σ(s′)]Ai+1

≤ i.

Proof: If h = 1 then [σ(s)]C1
i
< [σ(s)]Bi

+ 1 by
Lemma 3. From Lemma 4 we obtain that [σ(s′)]Bi −
[σ(s′)]Ai ≤ i− 1 and [σ(s′)]Ch

i
< [σ(s′)]Bi + 1. Moreover,

since σ is viable, thanks to the constraint Bi+1 ≤ Chi +n+4,
labeled xi if h = 1 and ¬xi otherwise, we obtain that
[σ(s)]Bi+1 ≤ [σ(s)]Ch

i
+ n + 4 < [σ(s)]Bi + 1 + n + 4 ≤

[σ(s)]Ai
+ i − 1 + 1 + n + 4 ≤ [σ(s)]Ai+1

+ i where
the last inequality follows from the unlabeled constraints
Ai+1 ≥ Yi + 1, Yi ≥ Xi + 1 and Xi ≥ Ai + (n+ 2).

Lemma 6. If Φ ≡ false then ΓΦ is not dynamically
controllable.

Proof: Let f : {0, 1}∗ → {0, 1} be the winning strategy
of the universal player for Φ. Suppose by contradiction that
σ is a viable and dynamic execution strategy for ΓΦ.

We first construct, for I = 0, . . . , n, step by step, a
scenario sI such that
(a) [σ(sI)]BI+1

− [σ(sI)]AI+1
≤ I (activation constraint),

and
(b) sI(yi) = f(s(x1), . . . , s(xi)) for i = 1, . . . , I .

Start with any scenario s0. We have (a) [σ(s0)]B1 −
[σ(sI)]A1

≤ 0 thanks to the constraint B1 − A1 ≤ 0, and
there is nothing to prove for (b). For I = 0, . . . , n − 1,



define sI+1 as follows. Let hI+1 = 0 if [σ(sI)]C0
I+1

<

[σ(sI)]BI+1
+ 1 and hI+1 = 1 otherwise, and define

sI+1 = sI [hI+1/xI+1][f(sI(x1), . . . , sI(xI), hI+1)/yI+1].
By construction (b) is satisfied. We obtain (a) by applying
Lemma 4 and Lemma 5.

Consider the scenario sn. We have (a) [σ(sn)]Bn+1
−

[σ(sn)]An+1
≤ n. Moreover, by (b) and the fact that f is

a winning strategy for the universal player, the formula ϕ
is false in the interpretation given by the scenario sn. In
particular, some clause is not satisfied, say, the j-th clause
for some j ∈ {1, . . .m}. So, the constraint Bn+1−An+1 ≥
n+1 labeled with `j applies in scenario sn, but it is violated
since we proved [σ(sn)]Bn+1

− [σ(sn)]An+1
≤ n.

Theorem 1. CSTN-DC is PSPACE-hard.

Proof: Given a Q3SAT formula Φ, the CSTN ΓΦ can be
easily constructed within logarithmic internal memory. By
Lemmas 2 and 6, it is dynamically controllable iff Φ ≡ true.

IV. POLYNOMIAL-SPACE ALGORITHM

A. Relative execution strategies

First, we extend some of the notions for CSTNs to the
case when some of the tasks have already been performed.
This will be crucial to describe our inductive polynomial-
space algorithm.

Definition 15 (Partial schedule, next action, completion). A
partial schedule over T up to time t ∈ R is a schedule ψ
over a subset Dom(ψ) ⊆ T , such that [ψ]X ≤ t for every
X ∈ Dom(ψ). Given a partial schedule ψ up to time t, a
next action for ψ is a pair (tnext , Tnext) where tnext > t is
a time point and Tnext ⊆ T \Dom(ψ) is a non-empty set of
temporal variables not assigned by ψ. Let ψ[tnext/Tnext ] =
ψ ∪ {(X, tnext) | X ∈ Tnext} be the partial schedule, up
to time tnext , obtained from ψ by further executing all the
actions in Tnext at time tnext . Given a partial schedule ψ up
to time t, a completion of ψ is a schedule ψ′ ∈ ΨT such
that [ψ′]X = [ψ]X for every X ∈ Dom(ψ) and [ψ′]X > t
for every X ∈ Dom(ψ′) \ Dom(ψ). Let ΨT [ψ] be the set
of completions of ψ.

Definition 16 (Observation, completion of a partial sce-
nario). Given a partial scenario h and a set of proposi-
tional variables P ′ ⊆ P \ Dom(h) not assigned by h,
an observation of P ′ is a function o : P ′ → {0, 1}, and
h ∪ o is the partial scenario obtained from h by adding
all the assignments given by o. Given a partial scenario h,
a completion of h is a total scenario s ∈ ΣP such that
s(p) = h(p) for every p ∈ Dom(h). Let ΣP [h] denote the
set of completions of h.

Definition 17 (Configuration, initial, terminal). A configu-
ration is a tuple c = (t, ψ, h) consisting of a time point
t ∈ R∪{−∞}, a partial schedule ψ up to time t, and a partial

scenario h : Pc → {0, 1} where Pc = {p ∈ P | O(p) ∈
Dom(ψ)} is the set of propositional variables observed
before or at time t. Let c0 = (−∞, ψ0, h0) be the initial
configuration, where Dom(ψ0) = ∅ and Dom(h0) = ∅. A
configuration c = (t, ψ, h) is terminal if, for every scenario
s ∈ ΣP [h], we have Ts = Dom(ψ).

Definition 18 (Next configuration). Given a configuration
c = (t, ψ, h), a next action (tnext , Tnext) for ψ, and an ob-
servation o : Pnext → {0, 1} of Pnext := {p ∈ P | O(p) ∈
Tnext}, define the next configuration c[tnext/Tnext , o] =
(tnext , ψ[tnext/Tnext ], h ∪ o).

Definition 19 (Relative execution strategies). A relative
execution strategy from a configuration c = (t, ψ, h) is a
function σ : ΣP [h] → ΨT [ψ] that maps each scenario s
which is a completion of h to a total schedule σ(s), over Ts,
which is a completion of ψ. A relative execution strategy σ is
viable if σ(s) is feasible for Γs for every scenario s ∈ ΣP [h].
It is dynamic if, for any scenarios s, s′ ∈ ΣP [h] and time
variable X ∈ Ts, letting t = [σ(s)]X , if Hist(t, s, σ) =
Hist(t, s′, σ) then X ∈ Ts′ and [σ(s′)]X = t. Observe that a
(dynamic, viable) relative execution strategy from the initial
configuration c0 is a (dynamic, viable) execution strategy
and vice-versa.

Definition 20 (Dynamic controllability from a configura-
tion). A CSTN is dynamically controllable from a configu-
ration c if it admits a dynamic and viable relative execution
strategy from c.

The following definition and lemma serve to ensure that,
in a dynamic relative execution strategy from a non-terminal
configuration, there is always a set of actions that is executed
next, all at the same time across all the scenarios.

Definition 21 (Well-defined next action). A relative exe-
cution strategy σ from a configuration c = (t, ψ, h) has
a well-defined next action if there exists a next action
(tnext(σ), Tnext(σ)) for ψ such that, for every scenario
s ∈ ΣP [h], minX∈Ts\Dom(ψ)[σ(s)]X = tnext(σ) and {X ∈
Ts | [σ(s)]X = tnext(σ)} = Tnext(σ). Equivalently, σ has
a well-defined next action if, for every scenario s ∈ ΣP [h],
σ(s) is a completion of ψ[tnext(σ)/Tnext(σ)].

Lemma 7. If σ is a dynamic execution strategy from a
non-terminal configuration c = (t, ψ, h), then σ has a well-
defined next action.

Proof: Since σ is non-terminal there exist some s ∈
ΣP [h] and X ∈ Ts \ Dom(ψ). Therefore, we can de-
fine tnext(σ) = mins∈ΣP [h],X∈Ts\Dom(ψ)[σ(s)]X . Then, we
choose any s0 ∈ ΣP [h] and define Tnext(σ) = {X ∈ Ts0 |
[σ(s0)]X = tnext(σ)}. We prove that Tnext(σ) does not
depend on the choice of s0, using the fact that σ is dynamic,
and this concludes the proof.

Take any s, s′ ∈ ΣP [h], and suppose [σ(s)]X = tnext(σ).



We want to prove that also [σ(s′)]X = tnext(σ). By
definition of tnext(σ), there is no X ′ ∈ T \ Dom(ψ)
with either [σ(s)]X < tnext(σ) or [σ(s′)]X < tnext(σ).
On the other hand, for every X ′ ∈ Dom(ψ), we have
both [σ(s)]X < tnext(σ) and [σ(s′)]X < tnext(σ). Hence,
Hist(tnext(σ), s, σ) = Hist(tnext(σ), s′, σ) = h. Since σ is
dynamic, by applying the definition we obtain [σ(s′)]X =
tnext(σ) as desired.

Definition 22 (Child configurations and strategies). Sup-
pose σ has a well-defined next action. Let Pnext(σ) =
{p ∈ P | O(p) ∈ Tnext(σ)} be the set of propositional
variables observed at time tnext(σ) and o : Pnext(σ) →
{0, 1} be any outcome for the observations. Define the
child configuration next(σ, o) = c[tnext(σ)/Tnext(σ), o] =
(tnext(σ), ψ[tnext(σ)/Tnext(σ)], h ∪ o). Since, for every
s ∈ ΣP [h], the schedule σ(s) is a completion of
ψ[tnext(σ)/Tnext(σ)], a relative execution strategy from
next(σ, o) is obtained simply restricting σ to the scenarios
that are completions of h ∪ o. Denote this strategy with
child(σ, o) := σ|ΣP [h∪o].

Lemma 8. If σ is dynamic then also child(σ, o) is dynamic.

Proof: Since child(σ, o) is a restriction of σ, there are
less pairs s, s′ ∈ ΣP that need to be checked in order for
child(σ, o) to be dynamic.

Lemma 9. Let σ be a relative execution strategy from a
non-terminal configuration c = (t, ψ, h). If σ has a well-
defined next action and child(σ, o) is dynamic for every
o : Pnext(σ)→ {0, 1}, then σ is dynamic.

Proof: Let s, s′ ∈ ΣP [h], X ∈ Ts, with t = [σ(s)]X
and Hist(t, s, σ) = Hist(t, s′, σ). We need to prove that
[σ(s′)]X = t. If t < tnext(σ), then X ∈ Dom(ψ) so
[σ(s)]X = [ψ]X = [σ(s′)]X = t. If t = tnext(σ), then
X ∈ Tnext(σ) so [σ(s′)]X = tnext(σ) = [σ(s)]X = t.
If t > tnext(σ), then for any p ∈ Pnext(σ), we have
[σ(s)]O(p) = tnext(σ) < t. So, p ∈ Dom(Hist(t, s, σ)) and,
since Hist(t, s, σ) = Hist(t, s′, σ) by hypothesis, we have
s(p) = s′(p). Take o : Pnext(σ) → {0, 1} so that o(p) =
s(p) = s′(p) for every p ∈ Pnext(σ). Since child(σ, o) is
dynamic by hypothesis, and both s, s′ ∈ ΣP [h ∪ o], by the
definition of dynamic strategy we get [σ(s′)]X = t.

Lemma 10. Let σ be a dynamic relative execution strategy
from a non-terminal configuration c. Then, σ is viable iff
child(σ, o) is viable for every o : Pnext(σ)→ {0, 1}.

Proof: σ =
⋃
o : Pnext (σ)→{0,1} child(σ, o).

Lemma 11. A CSTN Γ is dynamically controllable from a
terminal configuration c = (t, ψ, h) iff, for every scenario
s ∈ ΣP [h], the schedule ψ is feasible for Γs.

Proof: There exists only one execution strategy σ from
c, defined by σ(s) = ψ for every s ∈ ΣP [h]. It is clearly

dynamic, and, by definition, it is viable iff, for every scenario
s ∈ ΣP [h], the schedule ψ is feasible for Γs

Lemma 12. A CSTN Γ is dynamically controllable from a
non-terminal configuration c = (t, ψ, h) iff there exist a next
action (Tnext , tnext) from ψ such that, for every observation
o : Pnext → {0, 1} (where Pnext = {p ∈ P | O(p) ∈
Tnext}), Γ is dynamically controllable from c[tnext/Tnext , o].

Proof: ( =⇒ ) Let σ be a dynamic and viable execution
strategy from c. It is sufficient to apply Lemma 7 and take
tnext = tnext(σ) and Tnext = Tnext(σ). Then, for every
o : Pnext → {0, 1}, the strategy child(σ, o) is dynamic
and viable from c[tnext/Tnext , o], thanks to Lemma 8 and
Lemma 10.

(⇐= ) For every o : Pnext → {0, 1}, let σo be a dynamic
and viable execution strategy from c[tnext/Tnext , o]. Then,
define the strategy σ =

⋃
o : Pnext→{0,1} σo from the configu-

ration c. Observe that σ has a well-defined next action, and in
particular tnext(σ) = tnext and Tnext(σ) = Tnext . Moreover,
for every o : Pnext → {0, 1}, we have child(σ, o) = σo
which is dynamic and viable by assumption. Thanks to
Lemma 9 and Lemma 10, σ is dynamic and viable.

Lemma 11 (base case) and Lemma 12 (inductive case)
suggest a recursive approach to solve CSTN-DC. In the
inductive case, we need to consider all the possible choices
of tnext and Tnext . However, this is still not possible since
tnext is, a priori, an unbounded real number. In the following
we show that, under suitable assumptions, we can choose
tnext among a finite set of possibilities.

B. Discrete strategies for CSTNs

We assume to work on CSTNs whose constraint bounds
are discrete, and can be expressed with a finite number of
bits in fixed-point precision. This is stated in the following
definition.

Definition 23 (Discrete CSTN). Let w ∈ R and W ∈ N.
A CSTN is (w,W )-discrete if, for every labeled constraint
(Y ≤ X + δ, `) ∈ C, we have δ = kw for k ∈
{−W, . . . ,+W}. We call Discrete CSTN-DC the variant
of CSTN-DC where the input CSTN is (w,W )-discrete for
some w ∈ R and W ∈ N.

We prove that, for discrete CSTNs, one can always
restrict her attention to discrete execution strategies, whose
execution times are expressible with a number of bits at
most polynomial in the size of the input. Our proof is a
generalization of an argument given in [5].

Definition 24 (Discrete execution strategy). Let µ ∈ R and
M ∈ N. A (relative) execution strategy σ is (µ,M)-discrete
if [σ(s)] = kµ, with k ∈ {1, . . . ,M}, for every scenario
s ∈ ΣP and time variable X ∈ Ts.

Lemma 13 (Discrete CSTNs admit discrete strategies).
Consider a (w,W )-discrete CSTN Γ. If Γ is dynamically



controllable, then Γ admits a (µ,M)-discrete viable dy-
namic execution strategy, for µ := w/K, M := 2 ·K2 ·W
and K := 2|P| · |T |.

Proof: Let σ be a viable dynamic strategy for Γ. For
each s ∈ ΣP and X ∈ Ts, write [σ(s)]X as

[σ(s)]X = as,X ·W · w + bs,X · w + cs,X

for as,X ∈ Z, bs,X ∈ {0, . . . ,W − 1} and cs,X ∈ [0, w).
Let A = {as,X , as,X + 1 | s ∈ ΣP , X ∈ Ts} and C =
{cs,X | s ∈ ΣP , X ∈ Ts}. Then, let αs,X ∈ {0, . . . , 2K−1}
be the 0-based rank respectively of as,X in A and γs,X ∈
{0, . . . ,K − 1} the 1-based rank of cs,X in C. Define the
strategy σ′ as follows

[σ′(s)]X = αs,X ·W · w + bs,X · w + γs,X · w/K.

By construction, σ′ is (µ,M)-discrete for µ := w/K and
M := 2 · K2 · W . We show that σ′ is viable and dy-
namic, thus proving the statement. Observe that [σ′(s)]X <
[σ′(s′)]Y ⇐⇒ [σ(s)]X < [σ(s′)]Y , for every s ∈ ΣP and
X ∈ Ts.

(Viable.) Let (Y ≤ X + kw, `) be a constraint of Γ and
s ∈ ΣP a scenario such that s � `. We have [σ(s)]Y −
[σ(s)]X ≤ kw by the assumption that σ is viable. We prove
that [σ′(s)]Y − [σ′(s)]X ≤ kw, distinguishing among the
following cases.

1) Case |as,Y − as,X | ≥ 2.
Then also |αs,Y −αs,X | ≥ 2, since we added both αs,Z
and αs,Z+1 to A, for Z ∈ {X,Y }. Hence, |[σ′(s)]Y −
[σ′(s)]X | > W and, since |k| ≤W , we have [σ′(s)]Y −
[σ′(s)]X ≤ kw.

2) Case as,Y − as,X ∈ {−1, 0,+1}.
We have as,Y − as,X = αs,Y − αs,X .

a) Case (as,Y ·W + bs,Y )− (as,X ·W + bs,X) ≤ k− 1.
Then, [σ′(s)]Y − [σ′(s)]X < (k − 1) · w + w ≤ kw.

b) Case (as,Y ·W + bs,Y )− (as,X ·W + bs,X) = k.
Then cs,Y ≤ cs,X , so also γs,Y ≤ γs,X and
[σ′(s)]Y − [σ′(s)]X ≤ kw + (γs,Y − γs,X) ≤ kw.

(Dynamic.) The fact that an execution strategy is dynamic
depends only on the relative order (in R) of the values of
[σ(s)]X , which is preserved by our transformation to σ′.

C. The algorithm

We first adapt Lemma 12 to relative execution strategies.

Definition 25 (Discrete configuration). A configuration
c = (t, ψ, h) is (µ,M)-discrete if [ψ]X = kµ, with
k ∈ {1, . . . ,M}, for every time variable X ∈ Dom(ψ).

Lemma 14. A CSTN Γ admits a (µ,M)-discrete dynamic
and viable execution strategy from a non-terminal (µ,M)-
discrete configuration c = (t, ψ, h), iff there exist a next
action (Tnext , tnext) from ψ, with tnext = knext µ > t
and knext ∈ {1, . . . ,M}, such that, for every observation
o : Pnext → {0, 1} (where Pnext = {p ∈ P | O(p) ∈

Tnext}), Γ admits a (µ,M)-discrete dynamic and viable
execution strategy from the (µ,M)-discrete configuration
c[tnext/Tnext , o].

Proof: Trivial adaptation of the proof of Lemma 12.
The polynomial-memory algorithm is a mere application

of Lemma 13, Lemma 11 and Lemma 14. The pseudo-code
is shown in Algorithm 1.

Lemma 15. Algorithm 1 can be implemented using at most
O(|T | · (log |W |+ log |T |)) space.

Proof: To implement the recursive procedure, it is suffi-
cient to maintain a stack of triples (T1, k1, o1) · · · (Tl, kl, ol)
containing the choices of Tnext , knext and o at each level
of the recursion. Indeed, the parameters ψ and h can be
reconstructed from this stack. To represent the sequence
k1, . . . , kl, we need O(|T | log |M |) = O(|T |(log |W | +
log |T |)) bits, while T1, . . . , Tl and o1, . . . , ol require only
O(|T | log |T |) bits.

As a consequence we get the following.

Theorem 2. Discrete CSTN-DC is in PSPACE.

D. Extending to real-valued CSTNs

It is possible to extend our polynomial algorithm so that
it works without making any assumption on how the input
numbers are encoded. Since Lemma 13 does not apply, we
need a different way to limit the choice of tnext to a finite
set. We verified that it is sufficient to take tnext among those
linear combinations of the input numbers, having integer
coefficients with a number of bits polynomial in the size of
the network. A formal proof of this statement, as well as
the extension of this positive result to CSTNUs, is subject
of future work.

V. CONCLUSION

Our first result is a reduction from Q3SAT to CSTN-DC,
which shows that checking the dynamic controllability of
CSTNs is PSPACE-hard. Our reduction relies on the close
interplay between labeled constrains and observation tasks,
which allows the planner to effectively impose her choice
on some of the propositional variables. This interplay seems
to be the reason why CSTN-DC is difficult. On the other
hand, the topology of the network plays very little role.
Indeed, in our construction, the topology of the network is
planar and extremely simple: there is only one directed cycle
(observe that, if there was no directed cycle, then it would
be trivially and strongly controllable), and removing a single
edge, from A1 to B1, we get an acyclic graph, and actually
an inward arborescence (a directed rooted tree, where all
edges point towards the root) when disregarding the parallel
edges between An and Bn.

Our second result is an algorithm for CSTN-DC that uses
only polynomial space, proving that CSTN-DC ∈ PSPACE.



Algorithm 1: Discrete CSTN-DC in polynomial space.

Function DC(Γ)
Input : Γ is a (w,W )-discrete CSTN
Returns: true if Γ is dynamic controllable,

false otherwise

c0 := (0, ∅, ∅) . Initial configuration
return DC-From(Γ, c0)

Recursive Function DC-From(Γ, c)
Input : Γ is a (w,W )-discrete CSTN

c = (kµ, ψ, h) is a (µ,M)-discrete
configuration, for µ := w/K,
M := 2K2 ·W and K := 2|P| · |T |.

Returns: true if Γ is dynamic controllable from c,
false otherwise

if Terminal-And-DC(Γ, c) then
return true

. Enumerate all the possible next actions (∃-step)
foreach Tnext ⊆ T \Dom(ψ) not empty and
foreach knext ∈ {k + 1, . . . ,M} do

tnext := knext µ
ψ′ := ψ[tnext/Tnext ]
Pnext := {p ∈ P | O(p) ∈ Tnext}
. Enumerate all the possible observations

(∀-step)
AllChildrenAreDC ← true
foreach o : Pnext → {0, 1} do

h′ := h ∪ o
c′ := (tnext , ψ

′, h′)
if not DC-From(Γ, c′) then . Recursion

AllChildrenAreDC ← false

if AllChildrenAreDC then
return true

return false

Function Terminal-And-DC(Γ, c)
Input : CSTN Γ, and configuration c = (t, ψ, h)
Returns: true if c is a terminal configuration and

Γ is dynamic controllable from c,
false otherwise

foreach s ∈ ΣP [h] do
if Dom(ψ) 6= Ts then

return false . Not terminal

if ψ is not feasible for Γs then
return false . Not DC

return true

This PSPACE algorithm actually searches for a viable dy-
namic execution strategy and can be easily implemented
as to return the one found. However, since our algorithm
works by brute force, guessing the execution times among a
finite but large set of possibilities, it does not seem suitable
to be applied in practice. Nevertheless, by showing that
polynomial space is sufficient to solve this problem, we open
up the challenge of finding a practical algorithm, that only
requires polynomial memory in the worst case.
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