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University of Washington

Abstract

Group Testing for Image Compression
by Edwin S. Hong

Chair of Supervisory Committee:

Professor Richard E. Ladner
Department of Computer Science and Engineering

This thesis studies the application of group testing to image compression. Group testing is a
technique used for identifying a few significant items out of a large set. Image compression
studies techniques for making image data take up less storage space. We first explain the
many interesting and deep connections between image compression and group testing, and
then demonstrate the effectiveness of group testing techniques for image compression, from
both practical and theoretical points of view.

In particular, we show that group testing is a generalization of the zerotree coding
method widely used in wavelet-based image compression. We also show the equivalence of
elementary Golomb codes and the binary splitting procedure used in Hwang’s generalized
group testing method. Next, we present new image coding techniques based on transform
coding which apply group testing to the output of different transforms. We present one
new image coder for each type of transform we study, namely: the wavelet transform; the
wavelet packet transform; and block transforms such as the discrete cosine transform and
lapped transforms. Group testing’s flexibility and usefulness is shown in its applicability to
many different transforms. In terms of compression performance, these new algorithms are

competitive with many recent state-of-the-art image coders that use the same transforms on



a wide variety of images.

We also present a study on the theoretical performance of group testing on correlated
Markov sources. We show how images can be modeled by these Markov sources, and
relate these theoretical performance results to the performance of group testing on image

compression.
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Chapter 1

INTRODUCTION

In the past decade, the transmission, storage, and processing of digital images have
become widespread. Although many factors have contributed to the increasing usage of
digital images, one principal factor is the availability of inexpensive hardware that is capa-
ble of displaying, transmitting, and otherwise using digital images. One important factor
making inexpensive hardware capable of using digital images is the use of image compres-
sion algorithms. These algorithms have reduced the size of digital images, thus reducing
the storage and transmission cost. Since digital images take up a lot of storage space (for
example, about 10 million bytes for a standard 4 x 6 inch photograph), image compression
has been instrumental in making the usage of digital images practical and widespread.

The first international digital image compression standard for continuous-tone images
was JPEG [57] (for Joint Photographic Experts Group). This standard was instrumental in
proliferating the use of digital images because manufacturers made sure that their equip-
ment could understand images in the JPEG format. At the time it was defined, the JPEG
standard was competitive with the state of the art image compression methods in terms of

compression performance.

Since the advent of JPEG, much research has significantly improved the amount of
compression attainable on digital images. Shapiro’s embedded zerotree wavelet (EZW)
coder [49] pioneered the zerotree technique; this technique was later refined by Said and
Pearlman’s set partitioning in hierarchical trees (SPIHT) [45] coder. It has proved to be a

computationally simple and effective method for coding wavelet-transformed coefficients



of an image. Many other recent image compression methods have also been inspired by
zerotree coding. This is particularly true of the more recent JPEG-2000 standard [37],
which is a vast improvement upon the original JPEG.

In this thesis, we explain how group testing is intimately related to some methods used
in image compression. Group testing is a technique for identifying a few significant items
out a large pool. First studied by Dorfman [13], group testing has been applied to many
diverse fields due to its generality. The purpose of this thesis is to further explore the ways
in which group testing can be applied to obtain image compression algorithms that have
good performance.

In chapter 2, we first introduce the field of image compression. We explain some goals
that are desired for image coders (such as good compression performance and embedded-
ness), explain some basic techniques used for recent image coders (such as wavelet trans-
form coding, bit-plane coding, and zerotree coding) , review recent image coding algo-
rithms [49, 45, 60, 40, 34, 52], and provide some of the reasons behind the effectiveness of
these image coders.

In chapter 3, we introduce some basic information theory concepts and some basic
methods for losslessly encoding any information. Since many image compression tech-
niques rely on these methods of lossless encoding, understanding these concepts is crucial
to understanding the efficacy of different image compression techniques.

After this background on image compression, we then introduce the group testing prob-
lem in chapter 4, along with some well-known group testing algorithms. Chapter 5 shows
the many ways in which group testing can be applied to image compression. In fact, we
show that group testing is a generalization of zerotree coding. We also show that group
testing can be used as a standard entropy coder for a binary alphabet. This is particularly
interesting because the binary splitting procedure used in Hwang’s generalized group test-
ing method [14] turns out to be equivalent to elementary Golomb codes. Furthermore, these
codes have been used in many recent image compression algorithms.

In chapter 6, we introduce our Group Testing for Wavelets algorithm (GTW), which



explores one particular method in which group testing can be applied to image compression.
GTW basically divides the wavelet-transformed coefficients into different classes, and uses
a different group tester to code each different class. Our results for this a.lgorithrﬁ show
that the resulting image quality is comparable to SPIHT when the compression ratio is the
same. This shows that GTW is an effective image compression technique, and verifies that
group testing is useful for image compression.

In chapters 7 and 8, we introduce several other image coders that rely on the group
testing technique, and compare the results with other existing coders found in the literature.
We apply group testing to coefficients generated from many different transforms, including
the wavelet transform, wavelet packets, the discrete cosine transform, as well as various
versions of lapped transforms. We also discuss experimental results from many different
variations of our technique. When measuring compression performance, our results show
that our image coders are competitive with other recent image techniques when using the
same transform; on some images, our image coding results surpass the results of previous
image coders. We believe the discussion of our methods and results will provide insight on
the benefits and disadvantages of many different image compression techniques.

In chapter 9, we explore the theoretical performance of group testing on images. We
first define some statistical processes that generate data; this data can be used as a model
for an image. One model we explore is the correlated Markov source. We then analytically
determine the performance of different group testing methods on the model data. Because
these methods are related to our image coding algorithms, their performance results provide
insight into the effectiveness of our image coders.

We conclude in chapter 10 by reviewing the topics covered by this thesis, and suggesting

future work.



Chapter 2

IMAGE COMPRESSION BACKGROUND

2.1 Image Compression Problem

In the image compression problem, we are given a digital image, and our goal is to produce
an encoded description that takes up less storage space than the original image, and also
can be decoded to produce the original image. To more formally describe this problem, we
first define images, and then explain the various types of image compression and the goals

desired for image compression algorithms.

2.1.1 Digital Images and Quantization

We can think of an image as a two-dimensional function f such that f(z,y) for any real
numbers z, y is a real number representing the color seen at position (z,y) in the image.
We define a digital image as a discrete approximation (in both position and color value) to
the underlying image. Thus, a digital image is a finite array of integers of some fixed size.
Each integer represents a discrete approximation to the color seen at that position. Any one
element of the array is known as a pixel of a digital image.

In this paper, we will only use 8-bit monochrome images, meaning black and white im-
ages whose pixels are 8-bit integers ranging from 0 to 255. In this case, 0 represents black,
255 represents white, and the numbers in between represent the many different shades of
gray available. Note that compression techniques on 8-bit monochrome images, in general,
can also be applied to color images with an arbitrary number of bits used per pixel; studying
compression of only 8-bit monochrome images is not a huge restriction.

The process of approximating data such as f(z,y) with a fixed-size integer is known



as quantization. Let us assume the color values for f(z,y) ranged continuously from 0
to 1. Then in uniform scalar quantization on f(z,y), we pick a fixed quantization step
size s (such as ﬁ) and approximate f(z,y) by rounding it to the nearest multiple of s. In
effect, we are defining quantization bins; these are intervals of length s such that any value
in that bin will be represented by the midpoint of that interval. We can then number the
quantization bins sequentially and represent f(z,y) by the number of the quantization bin
in which it is contained. In non-uniform scalar quantization, the size of the quantization
bins are not uniform. Quantization is a basic compression technique that can be used any
time data need to be approximated. As another example, we could uniformly quantize a
pixel of an 8-bit monochrome image with step size 8. This means representing the pixel
with a 5-bit integer n ranging from 0 to 31, where 8n represents the approximation to the

value of the original pixel.

2.2 Main Image Compression Goal

An image compression algorithm is defined by a method of encoding the input image into
a compressed description, and a method of decoding the compressed description to recover
the original image. We work in the field of lossy image compression, where the recon-
structed image from the decoding process does not have to be identical to the original
image; we allow some of the original data to be lost in the compression process. In this
framework, encoders can obtain arbitrarily high compression at the expense of lower recon-
struction fidelity. The primary goal is to maximize the fidelity (or minimize the distortion)
of the reconstructed image when given a fixed number of bits with which to encode an

image.

2.2.1 Measures of Image Quality

The two most common objective measures of image quality are mean squared error (MSE)

and peak signal to noise ratio (PSNR). The MSE is simply the mean of the squared error



at each pixel location. Let X = (zi, Z2, ..., Z,) represent the values of the n pixels of
an image, and X' = (z},z}, ..., z}) represent the reconstructed image. Then the MSE
(denoted o?) is defined as

o’ = i(z,- —zl)?/n.

=1

Note that in general, higher values for o2 correspond to lower image quality. The PSNR is

M2
101og;o (‘&2—) )

where M denotes the maximum possible value for any pixel. For 8-bit monochrome im-
ages, M = 255. The PSNR is measured in units of decibels (dB). Note that higher values
for the PSNR usually correspond to better image quality. Most images with a PSNR of 40.0

defined as

dB are of very high quality and are visually identical to the original image; those at 30.0
dB are of medium quality images and have some noticeable degradation; those at 25.0 dB
are of low-quality and have significant degradation. Figure 2.1 shows a cropped version of
the frequently-used Barbara image at different quality settings, generated using the GTW

coder presented in chapter 6.

2.2.2 Rate-Distortion Curves

Rate-distortion curves are used to describe the performance of an image compression al-
gorithm. As shown in figure 2.2, a rate-distortion curve is a plot of the quality of the
reconstructed image that the algorithm achieves at all possible sizes for the compressed
image description. The size of the compressed image is usually given as a bit-rate, which
is simply number of bits taken up by the compressed image divided by the total number of
pixels in the image. Bit-rates are expressed in units of bits per pixel (bpp).

When a rate-distortion curve uses the PSNR as the metric for image quality, we also
call it a PSNR curve. For PSNR curves, the ideal plot is as far up and to the left as possible.
We subjectively say that an algorithm has good rate-distortion performance or good PSNR

performance when its PSNR curves are far enough up and to the left.



Original PSNR=40.0 dB

PSNR=30.0 dB PSNR=25.0 dB

Figure 2.1: A crop of the standard Barbara image and reconstructions at different fidelities.
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Figure 2.2: A typical rate-distortion curve.

As can be seen in figure 2.2, the slope of the PSNR curve increases steeply at bit-rates
near zero; this shows how each bit of the compressed image description for small files is
very important to the reconstruction quality. Intuitively, most of the bit budget for small
files is allocated to describe long, high-contrast edges in the images and overall intensity
levels of large regions in the image; not describing these characteristics would make the
reconstructed image fidelity very low. As the bit-rate gets higher, the PSNR curve starts
leveling out. Intuitively, more of the bit budget is being used to describe small details of
the image, for example, that certain small regions of the image should be slightly lighter or
darker than others. As the rate increases, more of the bit budget is used to describe small
details, and improvements to the image quality become less noticeable. Thus, we expect
the curve to level out because describing one small detail takes roughly the same amount of
information as describing overall characteristics of a large region, but improves the image

quality much less.



2.3 Other Image Compression Goals

2.3.1 Resource Usage

There are many other goals desired for image compression algorithms. For some applica-
tions, the speed of encoding and decoding an image is critical. In other applications, the
amount of memory used by the compression algorithm needs to be minimized to minimize
the cost of the entire system. Clearly, it is desirable for an image compression algorithm to

be both as fast as possible, and to have a memory footprint that is as small as possible.

2.3.2 Training

One issue related to an algorithm’s the practicality is whether or not it needs to be trained
on sample image data. Training algorithms on the specific characteristics of certain types
of images should lead to better rate-distortion curves, but training costs more in terms of

the computation required for training and the ease of implementation.

2.3.3 Embeddedness

Embeddedness is another characteristic often desired for image compression algorithms.
We say that an image compression algorithm is embedded when the data that are more im-
portant for reconstructing the image are stored before less important data in the compressed
image description. If we view the description of the compressed image as a bitstream, then
this means that any prefix of the bitstream represents an efficiently compressed encoding
of the original image. In fact, if we take a long enough prefix of the bitstream we should be
able to get a completely lossless representation of the original image.

An embedded algorithm is useful whenever images are needed at several different qual-
ity settings. Given a request for an image at some particular quality setting, an efficiently
compressed version of the image at that setting can be obtained by simply truncating the
bitstream at the appropriate location. One task that typically uses an embedded image
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coder is progressive image transmission. In this task, an image is transmitted over a slow
network link, and the receiver continually updates the quality of the image on the screen as
it receives more image data.

Another natural use for embedded algorithms is in the context of unequal loss protec-
tion. In this framework, the idea is to vary the amount of error correction applied to each
part of the data; the more important data are protected more strongly than the less impor-
tant data. The protected data can then be sent over a network with the knowledge that a
reasonable description of the image will get through to the other side even in the presence
of lots of unanticipated noise in the network.

Note that it is possible to have an image coder that is not embedded but which still has
good rate-distortion performance. This coder would produce a compressed output bitstream
based on the original image and the target bit-rate. Furthermore, data produced at different
target bit-rates would be completely different from each other, and presumably optimized
for the given target bit-rate. It‘is reasonable to expect non-embedded image coders to have
better rate-distortion performance than embedded image coders because they have more

freedom in organizing their output bits.

2.3.4 Resolution Scalability

The resolution of an image measures the number of vertical or horizontal pixels contained
in an inch of a displayed digital image. The goal of resolution scalability is the ability to
easily display the image at different resolutions. For an algorithm to be resolution scalable,
the beginning of the compressed image bitstream should contain data for reconstructing a
small, low-resolution version of the image. Each successive part of the bitstream, along
with the previous bits, should contain the data for reconstructing a larger, higher-resolution
version of the image. This capability would be very useful in any system that allows multi-
resolution editing of images, or in any system that requires different resolutions of an image

for output to different devices (such as a computer monitor or a laser printer).
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2.3.5 Spatial Accessibility

Spatial accessibility is the ability to easily access an arbitrary cropped portion of the image
without having to decode the entire image. This feature, when combined with resolution
scalability, would be very useful in a multi-resolution image editing scheme. After viewing
a low-resolution overview of the image, a user may want to zoom in on a particular region.
For interactive response times on large images, it should not be necessary to decode the

entire high-resolution image in order to show the high-resolution crop of the user-specified

region.

2.3.6 Identifiable Bitstream

Unfortunately, embeddedness and resolution scalability conflict in that they both require
the bitstream of the compressed image description to be ordered in conflicting ways. Fur-
thermore, spatial accessibility would suggest that the image should be divided into inde-
pendently coded blocks, which also appears to conflict with embeddedness and resolution
scalability. If embeddedness, resolution scalability, and spatial accessibility are all desired,
then one way that makes this partiaily possible is to make the compression algorithm have
an identifiable bitstream. This means that the bitstream is divided into easily identifiable
chunks; each chunk would contain data representing a small improvement in PSNR for a
small block of the image. By using a simple post-processing step on the compressed image,
the chunks could be arbitrarily reordered to form an embedded bitstream, a resolution scal-
able bitstream, or a spatially accessible bitstream. Furthermore, if the image were stored
in an embedded format, but only a low-resolution version of the image were required, then
the decoder could read through the image description in order and decode only the neces-
sary chunks for producing the low-resolution version; it could easily identify and skip all
the unnecessary chunks. Thus, the entire image bitstream need not be decoded in order to
produce the desired parts of the image.
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2.3.7 Entropy and Image Compression

A more theoretical way to study image compression is in terms of entropy. First mathemat-
ically defined by Claude Shannon [48], entropy is a measure of the amount of information
contained in data. Shannon has shown that the entropy of any piece of data is a lower bound
on the number of bits that are required to losslessly encode that data. Since entropy is only
defined for data generated from some probability distribution, studying the entropy of im-
ages requires modeling real images with probabilistic models. The entropy of these models
approximates the amount of information contained in real images. Since the entropy is
a lower bound on the amount of compression attainable, the best any image compression
algorithm can do is to compress images generated from a probabilistic model at a bit-rate
equivalent to the entropy of the model. Studying the entropy of probabilistic models for
images is one way of understanding the limits of the performance of image compression

algorithms. We discuss this concept in more detail in chapter 3.

2.4 Image Coding Techniques

The best image compression algorithms currently all use some form of transform coding.
In this framework, there are three steps in the image encoding process; these three steps are
applied in reverse order to decode an image. This is illustrated in figure 2.3.

The first step is to apply a mathematical transform operation to the image pixels to
reduce the correlation between individual pixels; the data output from the transform are
called transform coefficients. Transforms are used because transform coefficients are more
amenable to compression than image pixels. In order for the original image pixels to be
recoverable, the transform step must be invertible.

Next, the transform coefficients are encoded via a coefficient coding scheme. In lossy
image compression, this transform coefficient coding step is where some data are lost. This
step uses symbols to represent the transformed image as accurately as possible given a

limited budget for the number of symbols. Note that loss occurs because the transform
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Figure 2.3: Diagram of encoder and decoder for an image compression algorithm using
transform coding.

coefficients are quantized (as defined in section 2.1.1).

In the last step, the symbols output from the coefficient coder are losslessly compressed
using a standard entropy code. Note that an entropy code is simply any method capable of
losslessly compressing a sequence of symbols.

We now proceed to describe the typical methods used for the different steps of image
coding. We start with giving an overview of different kinds of transforms, followed by
one example of a transform, the discrete wavelet transform (DWT). Next, we describe
two methods for coefficient coding: bit-plane encoding and zerotree coding. This will
be followed by a short discussion of entropy codes; a much more detailed introduction to
entropy codes can be found in chapter 3. Throughout this section, we will discuss why these
techniques are useful for image compression, and we end this section by summarizing the

statistical properties of images that can help achieve good PSNR performance.

2.4.1 Transform Coding

The only transforms frequently studied are linear transforms. For an image consisting
of m x n pixels, the transform can be represented by an mn x mn matrix, which when

multiplied by the mn pixels, results in mn transform coefficients. Typically, the matrix is
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sparse and repetitive, so that there are much more efficient ways to compute the transform
of an entire image than via matrix multiplication.

Adjacent pixels in an image are almost always correlated, meaning that they have the
same color, or a similar color. The purpose of transforming the data is to decorrelate the
image pixels. There are typically many transform coefficients whose values are zero or
close to zero. This makes the transform coefficients easier to compress because the com-
pression algorithm can assume they are zero unless they are otherwise described. Thus,
many coefficients often need not be described.

The efficacy of a transform depends on the amount of energy compaction the transform
achieves; higher energy compaction corresponds to fewer coefficients with large magnitude
and more coefficients close to zero. There are many different measures of transform effi-
cacy, but one widely used measure is the coding gain [46], which is a ratio of the arithmetic
mean of the variances of the transform coefficients to their geometric means. It can be
shown that the coding gain of a transform is an objective measure of the improvement in
compression performance obtained when quantizing the transform coefficients instead of
directly quantizing the input data [26]. Although much research has gone into designing
transforms for different types of data (including images) and evaluating the transforms with
different efficacy measures, this work is beyond the scope of this paper.

So far, we have been describing non-adaptive transforms, where the transform is fixed
for all input images. In contrast, adaptive transforms can vary depending on the statistical
characteristics of the input image. Varying the transform is equivalent to varying the matrix
that represents the linear transform. Adaptive transforms have a fixed amount of variation
that they allow, and try to choose the best variation that will help image compression the
most. For the decoder to be able to decode the image, a description of exactly which
variation of the transform was used must be contained in the compressed image description.

The transforms described in this thesis include the discrete wavelet transform (section
2.4.2), the wavelet packet transform (section 7.2), the discrete cosine transform (section

8.1.1), and lapped orthogonal and biorthogonal transforms (section 8.1.2). These trans-
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forms have all previously been used for image compression.

2.4.2 Wavelet Transform
Wavelet Transform Overview

The wavelet transform represents its input in terms of functions that are localized in both
time and frequency. Mathematically, the wavelet transform approximates a function by
representing it as a linear combination of two sets of functions: ® and ¥. The set @ is
constructed from a function ¢(t) known as the scaling function, while ¥ is constructed
from a function % (t) known as the mother wavelet. Note that both ¢(t) and 1 (t) are time-
limited, meaning that the values ¢(¢) and 1(t) are non-zero only when ¢ is within a small
interval. Every function f € ® is a translation of ¢(t), meaning f(t) = ¢(¢t — c) for
some real value c. Every function f € V is a translation and/or dilation of 1 (t), meaning
F(t) = ¥(c1t — cp) for some real values co and c;. Once P is specified, then the mother
wavelet 1(t) as well as the set ¥ is completely determined; ¥ must be defined so that the
original function can be reconstructed from the transform coefficients.

The coefficients of the functions in ¢ represent a low-resolution overview of the input
function; the ¥ coefficients represent differences between the low-resolution overview and
the actual input necessary to obtain a better approximation. For a more detailed introduction
on wavelets, see [10]. The scaling function and mother wavelet for the simple Haar wavelet
and Daubechies biorthogonal wavelet [3] are shown in figure 2.4. Note that the Daubechies

biorthogonal wavelet is the wavelet typically used for wavelet-based image compression.

Discrete Wavelet Transform as Filters

The discrete wavelet transform (DWT) is applied to discretely sampled data and is based on
two filters: a low-pass filter that outputs ® coefficients representing low-frequency data, and
a high-pass filter that outputs ¥ coefficients representing high-frequency data. Transform-

ing a one-dimensional input signal of length n produces n/2 low-frequency coefficients
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Figure 2.4: The Haar Wavelet (top) and Daubechies’ Biorthogonal Wavelet (bottom).

from the low-pass filter and n /2 high-frequency coefficients from the high-pass filter. Thus,
the number of input data points in the signal is the same as the total number of output co-
efficients. Note that wavelets are defined so that the output coefficients can be inverted to

exactly reconstruct the original input data.

A filter is defined by a finite set of filter coefficients. If a filter has k filter coefficients,
then it is known as a k-tap filter. The time required to compute the DWT is directly pro-
portional to k. Although higher tap filters are more expensive to compute, they can also be
more efficient at decorrelating the input data. The filter coefficients for the Haar wavelet

and the Biorthogonal Daubechies wavelet are shown in table 2.1. As can be seen, the Haar
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wavelet consists of two very simple 2-tap filters, while the Daubechies biorthogonal wavelet
consists of a 7-tap filter and a 9-tap filter.

Table 2.1: Filter coefficients for the Haar wavelet and Daubechies’ biorthogonal wavelet.

Wavelet Low-pass ﬁilter High-pass ﬁlter
Haar v2/2 v2/2
—v2/2 v2/2

—0.06453888 0.03782846

—0.04068942 | —0.02384947

0.41809227 | -—0.11062440

0.78848562 0.37740286

Biorthogonal 0.41809227 0.85269868
—-0.04068942 0.37740286

—0.06453888 | —0.11062440

—0.02384947

0.03782846

The filters for the Haar wavelet are particularly simple to compute. Given an input
sequence (z,, T2, Z3, - - .), the low-pass filter essentially averages every pair of consecu-
tive numbers, producing the sequence 32@(1:1 + Iy, T3 + T4,T5 + Ts, ---). The high-pass
filter essentially computes the difference between every pair of consecutive numbers, pro-
ducing 3?(1:2 — I,,T4 — T3,T¢ — Ts,--.). Thus, the example sequence (3,8,12,2,7,1)
would be transformed into the low-pass sequence v/2(5.5, 7, 4) and the high-pass sequence
v2(2.5, -5, —3).

More generally, the output of a filter can be computed by a convolution of the filter co-
efficients with the input data followed by subsampling. A convolution of filter coefficients
., ..., ¢y With input data z,, . . ., £, produces output y,, . . . , Y, defined as follows:

m
¥ = Z CiTi+j—[m/2]-
i=1

To make this sum well-defined, we reflect the value of the coefficients at the border: for
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i <0,z; =T_i;1,and for i > n, T; = Tn—i+1. The subsampling halves the number of co-
efficients output by the convolution by keeping only odd-numbered coefficients. Note that
the DWT need not be computed this way; since subsampling removes half the coefficients,
the half of the coefficients output from the convolution that would be removed do not need
to be computed. In fact, in terms of number of arithmetic operations, a very computation-
ally efficient method of computing the DWT, called the lifting method, was presented in
[56].

The Haar wavelet, although very simple to compute and understand, is not an extremely
effective transform for images. Intuitively, representing the input as coefficients from the
Haar scaling function results in an approximation that consists of many stair steps. We
know that adjacent input pixels of images more often vary continuously in intensity, and
less often in discrete jumps. Thus, we might expect a wavelet with a scaling function that
has a smoother slope to be able to represent our input pixels better. Although methods
for designing wavelets are beyond the scope of this paper, [3] shows that the previously
presented 7/9-tap biorthogonal filter is particularly suitable for transforming images.

Subbands and DWT Levels

A subband is the set of transform coefficients output when applying one filter to the input
data points. Thus, after the DWT is applied once to the input data points, there are two
subbands, one representing the low-pass filter output (L;), and the other representing the
high-pass filter output (H,). The DWT is typically applied in a series of levels, where the
2nd level of the transform recursively applies the DWT to the L;, creating two new sub-
bands: a low-pass level 2 subband (L) and a high-pass level 2 subband (H,). In general, L;
(H;) is the low-pass (high-pass) subband created by applying the DWT on L;_,. This pro-
cess is illustrated in figure 2.5. Note that we refer to low-pass subband and low-frequency
subband synonymously; the same is true for high-pass subband and high-frequency sub-
band. Note also that under our definition, L;,, represents lower-frequency content than L;;

similarly, H; represents higher-frequency content than H,,,.
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Figure 2.5: Ilustration of a one-dimensional DWT transform when 3 levels are performed.
Dotted boxes represent data to which the DWT is applied.

Since the low-pass subband data represents a rough overview of the entire data, we
expect the coefficients in this subband to still have significant correlation with their neigh-
bors. Thus, it is useful to reapply the DWT to the low-frequency subband to further reduce
the correlation. Note that the number of coefficients in the low-pass subband is halved
with every level. The low-pass subband is typically decomposed until the number of co-
efficients left in the low-pass subband is small. With only a few coefficients left, applying
an additional level of DWT is typically unable to decorrelate the coefficients further. The
well-known technique of applying filters to input data, and encoding the resultant subbands
is known as subband coding. However, Mallat [32] was the first to apply many levels of
the DWT; this showed that wavelets could be used for subband coding.

DWT on Images

When applied to two-dimensional data such as images, the DWT is applied horizontally to
each row of the image, followed by vertically on each column of the image. One level of the
transform represents applying the DWT once horizontally, then once vertically. Thus, the
first level of the transform consists of four subbands: a horizontally and vertically low-pass
subband (LL), a horizontally low-pass and vertically high-pass subband (LH), a horizontally
high-pass and vertically low-pass subband (HL), and a horizontally and vertically high-pass
subband (HH). These four labels define the orientation of a subband, which describes the
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filters that were applied in each direction to generate the subband. The four subbands of

different orientation from one level of the transform are shown in figure 2.6.

LH HH

Figure 2.6: Subbands of different orientation after applying one level of DWT.

The LL subband represents a low-resolution overview of the image, while the other
subbands represent a high-frequency detail information necessary to reconstruct the image.
In the LH, HL, and HH subbands, most coefficients are close to zero; those that are not
close to zero represent edges in the image. Note that the number of coefficients in each
subband is a factor of 4 less than the number of input pixels.

Each successive level of the transform operates only on the LL subband data produced
by the previous level, which still contains highly-correlated pixels. Figure 2.7 shows three
levels of wavelet transform applied to an image. We use LH; to represent the subband with
orientation LH created by the ith level of the wavelet transform. HL; and HH; are defined
similarly. In an n-level wavelet transform, there will be an LL, subband representing a
small overview of the entire image (this is the lowest-frequency subband), as well as n LH
subbands, n HL subbands, and » HH subbands. Note that any subband in level 7 has a
quarter of the number of coefficients of any subband in level 7 — 1. This particular method
of recursively applying the DWT in a series of levels to the LL subband is known as the
dyadic wavelet decomposition, the pyramidal wavelet decomposition, as well as the octave-
subband wavelet decomposition of an image. It has also been called by the simpler (but
semantically overloaded) term “wavelet transform of an image”.

The dyadic wavelet decomposition is useful for image compression because it hierarchi-
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Figure 2.7: Subbands formed with 3-level wavelet transform.

cally decomposes the data into many subbands. This structure efficiently represents edges
in the high-frequency subbands, as well as smooth regions in the low frequency subbands.
Note that edges in an image typically correspond to larger magnitude coefficients in the
high-frequency subbands. Images with lots of edges tend to have more larger magnitude
coefficients in their high-frequency subbands. As an example, the Barbara image (figure
2.1) has lots of edges due in part to the many stripes in Barbara’s clothes; transform co-
efficients for this image tend to have larger magnitude coefficients in the high-frequency
subbands than than those for the typical image without many edges. Recent image coders
have shown that the dyadic wavelet composition is an efficient representation that can lead

to good rate-distortion performance.

2.4.3 Bit-plane Encoding

The bit-plane encoding approach was first applied to data generated by a space probe in
[47]. Instead of sending the values of each data point as it is generated, this scheme first
buffers a large block of k data points and sends the most significant bit of each data point
in the block. This is followed by the next most significant bit of each data point, and so on,
down to the least significant bit of each data point of the block.

Bit-plane encoding has also been applied to progressive image transmission (see [41]).

In this scheme, an image is sent in a series of bit-planes, where bit-plane  represents the ith
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most significant bit of all the pixels in the image. Thus, receiving the first bit-plane results
in a black and white overview of the entire image, receiving the second bit-planes refines
the picture with two additional shades of gray, and receiving further bit-planes increases
the number of shades of gray represented, improving the accuracy of the received image.
To obtain compression, standard compression techniques are applied to the bits within each
bit-plane before they are sent.

Bit-plane encoding has also more recently been applied to wavelet-transformed image
coefficients. If we normalize the transform coefficients so that their magnitudes are less
than 1, then bit-plane 7 consists of the ith most significant bit of the magnitude of all coef-
ficients written in binary. The bit-planes are coded in order, so that, in general, no bit from
bit-plane ¢ is coded before all bits from bit-plane i — 1 have been coded.

The bit-plane ordering represents successive refinement of a simple scalar quantization
(see section 2.1.1) of the coefficients. With each additional bit-plane, the quantization bins
get smaller and the known precision of each coefficient increases. We say a coefficient
is significant when enough bit-planes have been coded so that its value is known to be
nonzero. A coefficient is insignificant or a zero coefficient when it is still indistinguishable
from zero. Coefficients large in magnitude will become significant after a few bit-planes
have been coded; smaller coefficients will become significant later.

Since the wavelet coefficients can be positive or negative, the sign of each coefficient
must also be encoded. The sign is typicaily encoded when a coefficient is discovered to be
significant. This way, no sign bit needs to be encoded for coefficients that are zero.

This bit-plane approach has been proven to be an effective method for generating an
embedded bitstream. Said and Pearlman [45] show that greater magnitude coefficients in
the wavelet transform domain affect the quality of the image more than the coefficients of
lesser magnitude. This means that to get the highest quality image quickly, first code the
information from the largest coefficients. This suggests that the successive refinement strat-
egy of bit-plane encoding is the best way to generate an embedded bitstream. Also note

that the sign of a coefficient will convey no information while the coefficient is insignif-
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icant, but that the sign is very important once the coefficient becomes significant. Thus,
sending the sign bit immediately after a coefficient becomes significant helps produce a
good embedded bitstream.

Although many recent image coders encode the wavelet-transformed coefficients in a
bit-plane by bit-plane fashion, they all differ in the method of compressing a bit-plane.
Some of the methods used in compressing a bit-plane will be discussed in the following

subsection.

2.4.4 Significance and Refinement Passes

Wavelet image coding methods typically code each bit-plane with a refinement pass and a
significance pass. The refinement pass of the algorithm sends one more bit for each already
significant coefficient, refining it further. The significance pass codes the other coefficients
by identifying the coefficients that will become significant at this bit-plane. The two passes
represent a division of the coefficients into two groups: one containing coefficients that
became significant in a previous bit-plane, and one containing coefficients not yet known
to be significant.

This division is important because the probability that a refinement bit is a one is much
different from the probability that a significance pass bit is one. Most significance pass bits
are expected to be zero because many wavelet coefficients are near zero. In contrast, the
refinement bits should have roughly an equal chance of being one or zero. This division

leads to better rate-distortion performance.

2.4.5 Fractional Bit-planes

The fractional bit-plane method is a generalization of the significance and refinement
passes; it was introduced in [40]. In this method, a bit-plane is coded with many passes
(typically four passes) instead of just a significance pass and a refinement pass. The first
pass codes the bits that are most likely to become significant according to some statistical
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criteria. The next pass codes bits that are slightly less likely to become significant. This
proceeds, with each successive pass coding bits that are even less likely to become signif-
icant. The last pass is typically the refinement pass. The idea behind this method is that
coding bits with a higher probability to be significant is more likely to be beneficial to the
overall image quality than coding other bits.

2.4.6 Zerotrees

Shapiro [49] pioneered the use of zerotrees in its significance pass to predict the insignifi-
cance of coefficients. A zerotree is a set of zero coefficients from many different subbands
of similar orientation that represent the same spatial location in the image. This set is
organized in a tree, where each coefficient not in the lowest-frequency subband has four
children coefficients in the next higher-frequency subband of similar orientation (assuming
it exists). These children always represent the same spatial location, as illustrated in figure
2.8. Coefficients in the lowest frequency subband have children in the subbands of different
orientations at the same transform level. Although Shapiro’s EZW and Said and Peariman’s
SPIHT [45] both used these trees, the exact assignment of children to the lowest frequency
subband was slightly different in the two algorithms.

parent
[c]chila

Figure 2.8: Illustration of two parents connected to their children in a 3-level wavelet trans-
form.

The zerotree method places all the coefficients into large tree structures, and tests
whether the trees are significant. A tree is significant if any coefficient in that tree is sig-



nificant; a tree is insignificant if all its coefficients are insignificant (i.e. if it is a zerotree).
Each tree is coded with a single symbol. Only the significant trees must be subdivided
into smaller subtrees which are then tested for significance and coded; the values of all
coefficients in an insignificant tree are known after coding it as a zerotree.

This method was based on the following zerotree property, which Shapiro discovered
was generally true: if a coefficient is found to be insignificant in a given bit-plane, then
all its descendants (its children, children’s children, etc.) are also likely to be insignificant.
The significance pass uses this property by representing an entire zerotree with a single
symbol. This takes advantage of the zerotree property by using one symbol to represent the
value of many insignificant coefficients.

Another key idea in this technique is that only the results of the tests for significance
need be encoded; it is not necessary to use symbols to encode which trees of coefficients
were tested. This is because the encoder and decoder can agree on a deterministic algorithm
that chooses which trees to test based only on the test results seen so far.

The advantages of this zerotree technique are that it is simple, easy to implement, rela-
tively fast, and that it requires no training. It also performs well in terms of rate-distortion

performance.

2.4.7 Entropy Coding

Recall that entropy coding is the term used to describe any method used to losslessly com-
press an input sequence of symbols. Non-adaptive entropy coding assumes knowledge of
some statistical characteristics of the input, e.g. knowing the expected frequency distribu-
tion of the input symbols. Adaptive entropy coding assumes the statistical characteristics of
the input sequence will change over time, and tries to adapt to the changing characteristics.
Adaptive entropy coding techniques typically try to estimate the frequency distribution of
the input as more symbols are coded. These methods change their method of encoding
whenever a symbol appears more often than previously statistical estimates would suggest.

Adaptivity works well with small alphabets because the changing probabilities of the source
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can be quickly estimated.

Entropy coding can compress efficiently when a lot of correlation between source sym-
bols remains in the source. As mentioned before, we know that the transform coefficients
of an image are often near zero. Thus, we expect the leading bit-planes of the significance
pass coefficients to be mostly zero. With this distribution skewed towards zero, we would
expect any entropy coding technique to be able to obtain a high amount of compression on
these bits.

One important idea in entropy coding is the notion of contexts. When encoding a se-
quence of symbols, often the symbols are correlated in that the conditional statistical distri-
bution of the next symbol given different previous values are vastly different. For example,
in English text, we know that ‘q’ is always followed by ‘u’; If ‘q’ is the previous symbol,
then the next symbol should be encoded with a different method than if ‘x’ were the previ-
ous symbol. A context, then, is simply the set of values for previous symbols with which
you choose a particular method of encoding the next symbol. Thus, the method used or the
statistical characteristics assumed about the next symbol depends on the current context.

Two entropy codes used in image compression algorithms are arithmetic coding and
elementary Golomb codes. We will describe these two entropy codes and give a more

detailed introduction to entropy coding in chapter 3.

2.5 Statistical Characteristics of Images

Compression works by finding how the input data are correlated, and then by removing this
correlation so that the data can be represented in fewer bits. To explain why a particular
wavelet image coder performs well, we need to understand some of the statistical charac-
teristics of natural images so that we can see how the image coder exploits them. Since
we study compression algorithms that use the DWT, this section describes the statistical
characteristics of wavelet-transformed coefficients.

Two statistical characteristics of wavelet-transformed coefficients have been previously
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mentioned: Section 2.4.2 mentions that the values of the transform coefficients are typically
zero or close to zero. This means that few coefficients have a large magnitude. In addition,
the coefficients typically obey Shapiro’s zerotree property (section 2.4.6); this implies that
zerotrees occur frequently.

Another property of wavelet coefficients is that the magnitude of a child coefficient
is usually less than that of its parent. This implies that coefficients in a lower-frequency
subband are more likely to become significant before coefficients in a higher-frequency
subband. This knowledge was used in deciding the testing order for the trees and the
method of subdividing the trees in the zerotree methods. As an example, Shapiro’s EZW
algorithm always subdivides a significant tree into several parts, where the first part is the
former root coefficient of the significant tree. This root coefficient is always checked for
significance before the other parts of the significant tree, because it is more likely to be
significant than the other parts.

The key observation about wavelet coefficients in Said and Pearlman’s SPIHT algorithm
[45] was the following: if a coefficient becomes significant in bit-plane k, then it is likely
that its siblings (those other coefficients having the same parent) will become significant in
bit-plane k or became significant in a previous bit-plane. By exploiting this fact in the way
it subdivided its trees, SPIHT improved upon EZW in terms of rate-distortion performance.

More recent work ([40, 60, 52, 7]) has shown that significant coefficients are likely to
be found in clusters that are close together. This is similar to the property that SPIHT ex-
ploited, but more general because it implies an adjacent neighbor of a significant coefficient
in any subband is likely to be significant, regardless of whether the two coefficients share
the same parent. This can be exploited by altering the strategy of coding a coefficient based
on the values of its neighboring coefficients.

In general, the more correlation between coefficients that an algorithm can exploit, the
better its rate-distortion performance. We can see the basic trend in obtaining better com-
pression is to find some property of wavelet coefficients that was not previously accounted

for, and then exploit it to obtain better compression.
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2.6 Recent Wavelet-based Image Compression Algorithms

The image compression algorithms we present all use the wavelet transform and bit-plane
encoding. The main way in which they differ is how they code each bit-plane. We now

explain some recent algorithms and point out some of their key ideas and contributions.

2.6.1 EZW

Wavelet-based image compression has received much attention ever since Shapiro pro-
posed his EZW [49] algorithm. This algorithm was significant because it was embedded
and it had excellent rate-distortion performance. Its rate-distortion performance was bet-
ter than or competitive with virtually all previously known image compression techniques,
including those that were not embedded. Furthermore, the algorithm was fast at encod-
ing and decoding. In fact, it was much faster than some previous techniques that had worse
PSNR performance. The EZW algorithm codes a bit-plane with significance and refinement
passes, where the significance pass uses zerotrees. Both passes use an adaptive arithmetic
coder for entropy coding.

One of the most important ideas that came out of the EZW paper was that the method
of coding the significance pass is crucial to the effectiveness of the algorithm. Using a
simplified model for the wavelet-transform coefficients, Shapiro used an entropy argument
to show the following bounds for an ideal transform coding system on a simple image
model using non-uniform scalar quantization: When encoding an image at 0.5 bpp, the
probability that a coefficient will be quantized to zero is at least 95%, and the cost of
encoding the significance pass is 54% of the bit budget. Furthermore, as the target bit-rate
decreases, the probability of zero increases, and the percentage of the bit budget allocated
to the significance pass increases as well.

Because almost all of the coefficients are insignificant in the first few bit planes, ze-
rotrees effectively encode these initial bit planes; this is one reason EZW produces very

good images at low bit-rates. As the bit-rate gets higher, more and more coefficients be-
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come significant, and the zerotree property starts to hold less often. Comparing EZW to
other work, it seems that the zerotree idea was important not in and of itself, but because it
showed that you could relate the coefficients in one subband to coefficients in other related

subbands, and use this relation to predict coefficient values.

2.6.2 SPIAT

Said and Peariman’s SPIHT [45] coder improved upon EZW by using a different wavelet,
a different way of organizing coefficients into zerotrees, and a different arithmetic coder
with context. Otherwise, it was roughly the same as EZW. One important characteristic of
SPIHT is its fast run-time performance. Some of the algorithmic differences between EZW
and SPIHT serve to make SPIHT somewhat faster than EZW. SPIHT codes its trees in such
a way that whenever a single coefficient is checked for significance, all of its not-yet-coded
siblings are also checked for significance immediately. This helps improve performance

since siblings are highly correlated.

Said and Pearlman analyzed the PSNR performance of SPIHT with arithmetic coding
(SPIHT-AC), as well as SPIHT without arithmetic coding (SPIHT). Interestingly enough,
the PSNR performance improvement in adding arithmetic coding was only about 0.3 dB
at a wide range of bit-rates. This shows that if execution speed is valued over PSNR per-
formance, the arithmetic coding step could be omitted without paying too much in PSNR
performance. SPIHT-AC uses an adaptive arithmetic coder with several contexts; the con-
text for a coefficient consists of the number of its siblings already found to be significant.

SPIHT-AC obtained PSNR performance that was about 1.0 dB better than EZW on
average. As previously mentioned in section 2.5, the key observation that helped SPIHT

obtain this level of performance was in realizing that adjacent coefficients are correlated.
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2.6.3 ECECOW

Wu’s embedded conditional entropy coding of wavelet coefficients (ECECOW) (60] pushed
the envelope of rate-distortion performance. Instead of zerotrees, ECECOW uses the more
traditional context modeling approach to code a bit-plane. The context defined for a given
coefficient consists of all the bits known so far for its neighbors. Every coefficient has about
8 neighbors, including some of the adjacent coefficients in the same subband, the parent
coefficient, coefficients adjacent to the parent coefficient, and coefficients representing the
same spatial location but in the neighboring subband of different orientation. The exact
number of neighbors as well as the particular neighbors used depended on the orientation
of the subband containing the coefficient. In this context modeling approach, coefficients in
different contexts are coded with a different entropy coder. This is because coefficients with
the same context are likely to have the same probability of being significant. ECECOW uses

an adaptive arithmetic coder to code each context.

Since this algorithm has many contexts, it suffers from the context dilution problem:
many coefficients will only have a few other coefficients that share the same context and
the adaptive coder cannot effectively estimate the probabilities required to adapt to the
characteristics of the context. To overcome this, ECECOW uses training to determine

which contexts have similar characteristics, and merges them together.

ECECOW is based on the idea that in coding any coefficient, one should ideally use
all the information that has already been coded to predict its value. With a perfect model
containing information about the dependencies for every coefficient, we would be able to
encode the image perfectly, at its entropy. Following this approach, ECECOW uses as many
bits as are computationally feasible in the context. Instead of using just whether or not the
neighbors of a coefficients are significant yet, ECECOW’s context includes the complete
value for neighbors. This method also shows that a coefficient exhibits dependencies with

its surrounding neighbors, and not just with its siblings.

Another important idea in ECECOW is that the sign-bit of the wavelet coefficients
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exhibits some correlation with surrounding coefficients. Unlike EZW or SPIHT, ECECOW
also defines contexts for encoding the sign bit; this results in improved PSNR performance.
In fact, Deever and Hemami [12] show experimentally that properly encoding the sign bits
yields an average of 0.3 dB increase in PSNR performance over a wide range of bit-rates
and images.

ECECOW and its variants were shown to have the best rate-distortion curves so far;
improvements of 0.4 to 1.3 dB over SPIHT were obtained on standard test images at various
bit-rates. This is at the cost of high complexity, slow run-time performance, and training

required.

2.6.4 Ordentlich et al.’s Algorithm

Ordentlich et al. [40] defined an algorithm (which we call OWS) that aimed more for sim-
plicity than for best rate-distortion performance. Like ECECOW, this method uses context
modeling; however, its contexts are much simpler. There are only four contexts used: one
for the refinement pass coefficients; one for coefficients with a significant neighbor; one
for coefficients with a significant parent and no significant neighbors; and one for coeffi-
cients with no significant parent or neighbors. The neighbors are the eight spatially adjacent
coefficients to the given coefficient. This algorithm uses fractional bit-planes to code the
coefficients. Four passes are made through the bit-plane, one pass for each of the four con-
texts. The passes are ordered so that passes with coefficients more likely to be significant
are done earlier than those with coefficients less likely to be significant. Each pass is coded
with a different adaptive elementary Golomb coder.

This paper brings up an interesting issue. There are two goals in deciding the order
in which to code the bits of a bit-plane: code the bits that reduce the distortion most (i.e.,
those most likely to be significant), or code the bits that will give you the most informa-
tion, enabling more accurate predictions of the not yet coded bits. It is interesting that
OWS gives preference to the bits that reduce distortion. OWS achieves rate-distortion per-

formance comparable to SPIHT, although it is a little worse (on average approximately
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0.05 dB worse). However, it is fairly simple. The elementary Golomb coder is part of its

simplicity.

2.6.5 PWC

Malvar’s progressive wavelet coder (PWC) [34] algorithm was different in that it was de-
signed for resolution scalability, good rate-distortion performance, as well as speed.

Note that the wavelet transform technique naturally produces a multi-resolution image;
the reconstructed LL subbands from each level of the transform represent the original image
at different resolutions. Thus, to be completely resolution scalable, it is necessary to first
encode all the bits of the coefficients for reconstructing the lowest frequency LL, subband
followed by all the bits for reconstructing the LL,_; subband, and so on. Following this
ordering would mean that the bit-plane by bit-plane ordering is not strictly followed; this
results in a noticeable loss in embedded performance, at the gain of resolution scalability.

The PWC algorithm codes transform coefficients block by block for resolution scala-
bility and spatial accessibility. Within each block, coefficients are coded bit-plane by bit-
plane with a significance and a refinement pass. After reordering coefficients of ablock in a
complicated but fixed way, PWC makes a significance pass over the reordered coefficients,
using Langdon’s adaptive elementary Golomb coder (discussed in section 3.3.4) to code the
bits. The refinement pass bits are not entropy coded. The reordering was defined to make
the zero bits more likely to be closer together; this improves Golomb coding performance.
The rate-distortion performance of PWC is comparable to SPIHT at high (around 1.0 bpp)
bit rates. Although rate-distortion performance of PWC at low bit-rates was not published,
it would almost surely be somewhat worse than SPIHT because embeddedness was traded
for resolution scalability.

This algorithm does not use the dependencies between neighbors or between a parent
and its children at all, unlike the previous algorithms. That makes this method the simplest
so far. The lack of dependencies also allows for the blocks of wavelet coefficients to be

independently coded.
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Note that ECECOW and OWS could be easily modified for resolution scalability be-
cause it is easy to apply these algorithms to code a block of wavelet-transformed coef-
ficients. This is not possible with the zerotree techniques because a block of wavelet-

transformed coefficients may not contain any trees.

2.6.6 EBCOT and JPEG-2000

Taubman’s embedded block coding with optimized truncation (EBCOT) coder [52] was
significant because it introduced the idea of identifiable bitstreams (see section 2.3.6) and
demonstrated an image coder with that capability. EBCOT also showed that identifiable
bitstreams are possible without too much complexity or loss in overall rate-distortion per-
formance. His coder featured the capabilities of embeddedness, resolution scalability, and
spatial accessibility through the use of identifiable bitstream.

EBCOT divides each subband into relatively small code-blocks (32 x 32 or 64 x 64).
Code-blocks are then coded independently, in bit-plane order. To construct an identifiable
bitstream, code-blocks are tagged with information so that they can be split into k£ chunks
each with some specified quality metric. An embedded bitstream can be produced by or-
dering the bit stream so that the first chunk from each code-block comes first (forming layer
1), followed by the second chunk from each code-block (forming layer 2), and so on down
to the last chunk from each code-block. Since the code-blocks are relatively small, and the
multi-resolution wavelet transform method is used, this coder is also spatially accessible
and resolution scalable.

Code-blocks are encoded in bit-plane order, with a zerotree-like method. The code-
blocks are subdivided into sub-blocks, typically of size 16 x 16. A quad-tree structure is
placed over the sub-blocks; we can view the encoding method as a typical zerotree coding
method except that when a sub-block is found to be significant, then the bit-plane of that
sub-block is encoded with a specialized sub-block coding method. The coefficients of a
significant sub-block are coded by an arithmetic coder with 18 different contexts. A coef-

ficient’s context depends on its significance status (i.e. if it is a significance or refinement
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bit) and on the significance status of its eight adjacent neighbors. Furthermore, there are
also five additional contexts for encoding the sign bits of coefficients that just became sig-
nificant. Like the OWS algorithm, the bit-plane of a sub-block is coded sequentially in a
series of four passes using the fractional bit-plane method.

EBCOT can be anywhere from 0.0 dB to 1.1 dB better than SPIHT depending on the
actual image and encoding bit-rate. Over a wide variety of images and bit-rates, PSNR
performance improvement over SPIHT averages out to be about 0.4 dB.

The EBCOT algorithm is the basis for the JPEG-2000 standard; the main differences
of JPEG-2000 help improve the execution speed at the expense of an average loss of 0.2
dB in PSNR performance when compared to EBCOT. These changes include using a low
complexity, less-effective arithmetic coder, reducing the size of the sub-blocks to 4 x 4, and
reducing the number of fractional bit-plane passes to three. With these changes, the exe-
cution speed of a heavily optimized version of JPEG-2000 coder is comparable to SPIHT
for small images, and significantly faster for large images. In large images, SPIHT suffers

from inherently non-local memory accesses that slow it down.



35

Chapter 3

ENTROPY CODING AND INFORMATION THEORY

Entropy coding losslessly compresses an input sequence of symbols by representing it
with a more compact sequence of output symbols. Although the alphabet for the output
symbols could be arbitrarily large, for simplicity, we assume the output symbols are bits,
(i.e., they come from the binary alphabet).

To effectively compress the input sequence, we should represent input symbols that
are more likely to occur with fewer bits than symbols that are less likely to occur. This
illustrates the necessity of having a statistical model for the occurrence of the input symbols.
The effectiveness of an entropy code depends not only on the method of encoding the input
sequence, but also on the probability that any particular input symbol is likely to occur.

We first proceed to give a mathematical description of entropy codes. To measure their
effectiveness, we define the bit-rate of an entropy code that represents the amount of bits
per source symbol that a particular code uses. We then give a brief introduction to infor-
mation theory, defining the concept of entropy. Since the entropy of a source is a lower
bound on the bit-rate of any entropy code on the source, the entropy is used to judge the
effectiveness of entropy codes. Lastly, we discuss some specific entropy codes used in im-
age compression, in particular, arithmetic coding and Golomb codes, as well as their the

effectiveness in terms of entropy.

3.1 Introduction to Entropy Codes

When studying the theoretical performance of entropy codes, we are concerned with en-

coding symbols from an m-symbol input alphabet & = {a,,a,,...,a,,} that are gener-
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ated from some source S. We think of S as generating an infinite sequence of symbols
T1, T3, T3, - - - according to some statistical process; the z;’s are not necessarily generated

independently. For any string s = s; 82 - - - 3, from alphabet ¥, we define
Pr[s] =Pr[:z;1 = 81,T3 = 82,T3 = S3y--.,Tn =3n]-

An entropy code encodes a source S by representing the input symbols with output bits
from the binary alphabet £, = {0, 1}. We will use £" to denote the set of strings of length
n from alphabet £, and £* to denote the set of all strings from 2. Thus, 5 denotes the set
of all binary strings.

An entropy code is basically a map from input strings in X* to output strings in 3. This
mapping is represented by the encoding function f : ¥* — 3. For the code to be uniquely
decodable, f must be injective.

The main goal in defining entropy codes is to minimize their bit-rate, the average num-
ber of bits required to encode one source symbol. The bit-rate R(f,S) of a code with

encoding function f on source S is defined as follows:

R(f,5) = lim = 3~ Pris] I (s)I @D

sEL™
The summation represents the expected length of encoding an input string of length n

by f. The division by n makes this represent the expected length of the encoding of one

source symbol.

3.2 Introduction to Information Theory

C. E. Shannon [48], founder of the field of information theory, introduced an important
quantitive measure of information. He defined the self-information of an event as follows:
Suppose we have a sample space S, and suppose A is an event in S that can occur with

probability Pr[A]. Then the self-information associated with event A occurring is

1
log, PriA] log, Pr(A4].



37

The logarithm is typically taken base 2, making the units of information bits.
The entropy of a system is simply the expected amount of self-information in an exper-

iment. That is, suppose (A;) are independent events of sample space S such that
Uai=s.
Then the entropy of .S, denoted H(S), is given by
H(S) =~ _Pr{A{]log, Pr(A)].
i

If Pr[A;] = 0 in the above definition, then we omit it from the calculation, in effect defining
that O - log, 0 = 0. This will also be true of the entropy definitions below.

3.2.1 Entropy of Sources

In the context of entropy coding, we are concerned with coding sources that generate an

infinite number of symbols from some input alphabet 2. The entropy of source S is defined

as follows:
.1
H(S) = lim ~ (— D_ Pris]log, Pr[s]) (3.2)
sen
The first-order entropy of a source S that generates strings s,5253 - - - is given by
1 n
H(S) = nli_ggo . 1 (— ZG;Pr[z = s;] log, Pr{z = s,-]) . (3.3)
= 4

The first-order entropy of a source (equation 3.3) is simply the average of the entropy
of generating each source symbol independently; it represents a simple approximation to
the entropy of the source (equation 3.2). When the symbols of a source are independent,
the first-order entropy is the same as the entropy. In general, the first-order entropy is an
upper bound on the entropy of a source. Intuitively, this is because independently generated
symbols have more self-information than symbols that have dependencies. With dependent
symbols, learmning the values of some symbols makes the values of other symbols easier to

predict, meaning there is less overall information content.
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The typical model for a source is one in which the symbols generated are all indepen-
dently and identically distributed (i.i.d.), these sources are known as i.i.d. sources. Note
that for i.i.d. sources, the first-order entropy is equivalent to the entropy. For an i.i.d. source

S, the entropy can be calculated as:

H(S) = - ) _ Pria]log, Pria] . (3.4)
a€L
One of the important contributions made by Shannon was showing that the entropy of
a source is a measure of the average number of bits needed to encode one source symbol.
In fact, Shannon proved that for any encoding scheme f on source S, the bit-rate R(f, S)
satisfies R(f, S) > H(S).

3.3 Examples of Entropy Codes

3.3.1 Simple Example

As an example, suppose we want to encode an i.i.d. source S that generates three symbols,
a, b, and ¢, where each symbol is generated independently with probability 3, 3, and 1 of
occurring, respectively. Since a occurs more frequently, we encode it with the string 0. We
encode occurrences of b and ¢ with 10 and 11, respectively. We use f to denote our simple

encoding scheme.

Bit-rate of Example

We use equation 3.1 to calculate the bit-rate. Starting with n = 1, we get our first approxi-

mation to the bit-rate as

ZPr[st(s)l=%-1+%-2+%-2=1.5.
sex
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Since the symbols occur independently, we see that for n > 1,

S Prslifs) = > ) Prlssa]lf(ssn)l

seLn s€Xn—1 s, €X

= D > Pris|Pr(sa] (If(s)] + | f(s)])
s€eXnr—1 sa€X

= 3 Yo PrisiPrisaIfG)+ Y. 3 Pris| Prisa] [ £(sn)l
scn—1 s, €X sern—1 sa€X

= 3 Pris]ifs) Y Prisa] + > Prisa] [f(sa)| > Prs]
seEn—1 sn€XT €T sezn-!

= 3 Pris]if(s)|+ Y Prsa] |£(sa)l.
secxn—1 Sn€EX

By induction, this implies that
>_ Pris]|f(s) =n)_Prs] |f(s)]-
sEL"® P13
This shows that the bit-rate of our system by equation 3.1 is simply

R(f,5) = lim =" Prls] |f(s)| = L.

sET
Comparison to Entropy

The entropy of the source S can be calculated by equation 3.4. We get

1 1 1 1 1
+ Zlogz Z) = —'(—5 - § - 5) = 1.5.

1 1

1 1
H(s) = —('2' log, 3t71 log, 1

By Shannon’s theorem, our encoding function f happens to be optimal for the source

since the bit-rate of f equals the entropy of the source.

3.3.2 Block Codes

One important class of codes is defined by a one-to-one mapping f’ from a finite set I of
input strings to a finite set O of binary strings. Strings in set I are called input messages,
and string in set O are called output codewords. To encode a string s € £*, s is parsed into



a sequence of input messages, and each input message is mapped via f' to form a sequence
of output codewords. The encoding is the concatenation of the output codewords. Note
that care must be taken when defining I and O so that it is possible to correctly encode any
string, and so that any encoding can be correctly decoded.

If all the input messages are of the same length, and all output codewords are of the
same length, then the code is known as a block-to-block (B-B) code. If all input messages
are of the same length but output codeword lengths vary, then the code is known as a
block-to-variable-length (B-V) code. In contrast, variable-length-to-block (V-B) codes and
variable-length-to-variable-length (V-V) codes are those where the input messages vary in
length. V-B codewords all have the same length, while V-V codewords can vary in length.

Tunstall [55] proves that the bit-rate R(f’, S) of block code f’ on an i.i.d. source S can
be simply calculated as follows:

2 oco P"[f I_.l (0)] lo| ) (3.5)
2 ier Pr(i] [i]

This is basically the expected codeword length divided by the expected input message

length. This method of calculation was used in [16]. Note that the simple example of

R(f',5) =

section 3.3.1 was a simple B-V code.

3.3.3 Arithmetic Coding

Arithmetic codes work by allocating fewer output bits to symbols that occur more fre-
quently. The basic idea is to represent every possible length m sequence of symbols by
a fixed interval [a,b) where 0 < a < b < 1. The size of the interval [a,b) is propor-
tional to the probability that the corresponding sequence of symbols can occur. Encoding
is achieved by choosing a number z in [a, b) and writing down its sufficiently long prefix of
z (in binary) so that z is known to be in [a, b). Decoding is achieved by using z to identify
[a, b). For more details on practical implementations, see [46]. See [59] for an example of
an adaptive arithmetic code. It can be shown that the bit-rate R(f, S) for any arithmetic
code f on an i.i.d. source S satisfies R(f, S) = H(S).
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3.3.4 Golomb Codes

Golomb codes were originally defined in [18] to compress sources that generate non-
negative integers from a geometric probability distribution. Let S;, be one of these sources,
where integer 7 is generated independently with probability (1 — p)p’. This source is con-
ceptually equivalent to the binary i.i.d. source S, where each bit b is generated to be 0 with
probability p, in the following manner: Given S,, form a sequence of non-negative integers
(20, 21, . . .) where zg is the number of zero bits between the beginning of S, and the first
one bit, and z; is the number of zero bits between the ith one bit and the (¢ + 1)th one
bit in S,. We can see that this generated sequence of non-negative integers has the same
probability distribution as S,. Basically, run-length encoding a binary source S, produces a
geometrically distributed source S, that has infinitely many symbols. Thus, source S, can
be efficiently compressed via run-length encoding followed by Golomb codes; codes that

use this process are called elementary Golomb codes.

The elementary Golomb code of order k£ (EG;) is a simple V-V code which maps
variable-length input messages into variable-length binary output codewords as follows:
If k is a power of 2, then the input message 0* is mapped to codeword 0, and the string 0°1
for 0 < i < k is mapped to a codeword of length 1 +1log, k. When k is not a power of 2, the
mapping is only slightly more complicated: 0 is still mapped to codeword 0. The string
0'1 for 0 < i < k' is mapped to a codeword of length 1 + |log, k], and the string 01 for
k' < i < k is mapped to a codeword of length 1 + [log, k], where k' = 2lleg2kl+1 _ g As
an example, table 3.1 shows the code EGg. Rice [44] independently discovered elementary
Golomb codes of order 2¢ for integral i; thus these codes are also known as Golomb-Rice

codes.

By definition, the concatenation of input messages of a block code can generate any
infinitely long string; this ensures that any source generating infinitely many symbols can
be parsed into input messages. However, when block codes are used to encode strings of

finite length, the string may not be representable by a concatenation of input messages; for
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Table 3.1: Elementary Golomb code of order 8 (EGg).

input message | output codeword

00000000 0

00000001 1000

0000001 1001

000001 1010

00001 1011

0001 1100

001 1101

01 1110

1 1111

example, the string 100 cannot be represented by a concatenation of input messages from
EGjg. However any finite string can be represented in the form s;8; - - - s,, where each s;
for i < n is an input message (s,, may not be an input message). If the string to be encoded
is of this form where s,, is not an input message, then some alternate method must be used
to code s,,. Since the bit-rate is defined in terms of the limiting behavior for infinitely long

strings, the exact method of encoding s,, does not affect the bit-rate of the block code.

For the elementary Golomb codes, a simple method to encode any finite-length string
would be to add a 1 to the end of any string to be encoded, and then use the elementary
Golomb code to encode this slightly modified string. The ending 1 ensures that the input
string is a concatenation of input messages. After decoding a string, the trailing 1 can be
removed. Under this method, the input string 000 encoded using EGg would be coded with
1100, and the input string 00000000 would be coded with a 01111.

Note that Golomb codes are extremely simple computationally; they can be imple-
mented by using simple table lookup operations. Also note that unlike previously defined
codes, elementary Golomb codes can only be used when the input alphabet is a binary
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alphabet.

Effectiveness of Golomb Codes

Gallager and Van Voorhis [17] studied the effectiveness of Golomb codes in terms of en-
tropy, for geometrically distributed sources. If we recast their results to apply to elementary
Golomb codes on binary i.i.d. sources, then they can be stated as follows: To minimize the
bit-rate of the elementary Golomb code, the order k of the code should be the unique integer
satisfying the following:

PF+ptt <1<t +pF L (3.6)

We let k*(p) denote the unique integer k satisfying inequalities 3.6. If we pick the
optimal order k*(p) for an i.i.d. source S,, then the bit-rate R(EGg-(), Sp) of the resulting
elementary Golomb code satisfies H(S,) < R(EGg-(p), Sp) < H(Sp) + 0.04. It can also
be shown that as p — 1, R(EGg-(p), Sp) — H(Sp).

Comparison with Arithmetic Coding

One advantage of Golomb coding over arithmetic coding is that it is computationally sim-
pler. Although both Golomb codes and arithmetic codes are linear time algorithms in the
size of the input, arithmetic codes are slower in practice. For each input bit is processed,
arithmetic coding requires computing the new interval [a, b) that will represent the previous
input string extended with the new bit; this requires some arithmetic operations. In Golomb
coding, only string comparisons are needed.

Since the bit-rate for an arithmetic coding system on an i.i.d. source can achieve the
entropy of the source, it would appear to be more efficient than elementary Golomb codes.
In practice, however, symbols from sources are rarely independent. Furthermore, typically
adaptive codes are used in practice; these theoretical results apply only to the non-adaptive
versions of the codes. Thus, one should keep in mind that the effectiveness of codes in prac-

tical applications such as image compression may not match up exactly with the theoretical



results.

Even if elementary Golomb codes perform worse than arithmetic codes in practice, el-
ementary Golomb codes still have the advantage of being simpler and easier to implement.
In addition, we would expect the amount of compression achievable by Golomb codes to

be fairly close to that of arithmetic codes.

Adaptive Elementary Golomb Coding

Adaptive methods for Golomb codes must choose an appropriate value of k, the order of
the code, when given the input sequence so far. A simple adaptive Golomb coding scheme
for choosing k was defined by Langdon [29]. It starts out with £ = 1. From then on, k
adapts according to whether 0F was found in the input. If so, double k; otherwise, halve
k (although k never drops below 1). This simple strategy was meant to adapt extremely
quickly to the input source, as well as to be very inexpensive computationally. Note that
the decoder can detect when the value of k changes based on the values of the bits already
decoded.

A simple alternate adaptive strategy for choosing k is initially start out with £ = 1, and
to double k as long as no 1 bits are found. Once a 1 bit is found, use the ratio of the number
of 1 bits seen so far to the total number of bits seen as an approximation for p, and choose
the order to be k*(p). In this strategy, the decoder can still compute the proper value of &k
based on the values of the bits already decoded.
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Chapter 4

GROUP TESTING

4.1 Group Testing Problem

Group testing identifies a few significant items out of a large pool of items. This field was
first studied by Dorfman [13], who was trying to find an efficient method of identifying
Army recruits who were infected with syphilis [14]. In this scenario, a laboratory blood
test could detect the presence or absence of syphilitic antigen. Instead of testing the recruits
individually, the blood samples of several men could be pooled together and tested. A lack
of the antigen would imply none of these men has syphilis; its presence would imply at
least one of these men has syphilis. If the percentage of infected recruits is small, then

pooling the bloods samples can greatly reduce the required number of laboratory tests.

4.1.1 Problem Definition

The general group testing problem can thus be defined as follows: Given n items, s of
which are significant, what is the best way to identify the s significant items? It is assumed
that items can be identified as significant or insignificant only through group tests. A group
test is the process of picking a subset of the n items and determining whether there is a
significant item in that set. There are two possible outcomes of a group test on set K:
either K is insignificant (meaning all items in K are insignificant), or K is significant
(meaning there is at least one significant item in K).

There are many different fields of group testing, each defined by a different formulation
of the group testing problem. In combinatorial group testing, it is assumed that s, the num-

ber of significant items, is known at the beginning. Furthermore, the goal is to minimize the
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total number of group tests that can occur in a worst-case scenario. In competitive group
testing, s is not assumed to be known. Furthermore, the goal is to minimize the competitive
ratio. This is the worst-case ratio of the number of group tests required by a given algorithm
compared to the number of tests needed by the best group testing algorithm that knows s in
advance. Algorithms for combinatorial group testing and competitive group testing can be
found in Du and Hwang’s book [14]. In probabilistic group testing literature (see [51, 25]),
a probability distribution is put over the set of items specifying each item’s probability of

significance, and the objective is to minimize the expected number of group tests.

4.1.2 Issues

The basic decision a group testing algorithm has to make is the number of items that should
be tested together. On one hand, if a large set is found to be insignificant, then a lot of
information is learned because all items in that set must be insignificant. However, if the
large set is significant, then not that much information is learned: none of the items in the
set is yet fully known, and the significant item(s) could be located anywhere in the set. In
fact, when a small set is found to be significant, more information is learned than when a
large set is found to be significant. This is because there is more uncertainty about the exact
location of the significant item in the larger set.

To maximize the amount of information learned, one would like to perform group tests
on large sets in case the set is insignificant. However, one would also like the sets tested
to be small in case the set is significant. The actual test size must be chosen to balance
these conflicting goals; intuitively, the size is chosen so that the amount of information one
would learn from finding an insignificant set is about the same as the amount learned from
finding a significant set.

Group testing will be much better than individual testing when the ratio between sig-
nificant items and insignificant items is small. With a small ratio, it is possible to test larger

sets and mark many items as insignificant with just one test.
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4.1.3 Applicability

Group testing has been found to be widely applicable to problems in many different areas.
Besides screening for disease, applications have been found in areas as diverse as industry
(for identifying defective Christmas lights), graph theory, and fault tolerant computing. In
fact, group testing can also be used for data compression, if we view compression in the
following manner:

Given a binary bitstream as input, think of each input bit as an item, where 1’s represent
significant items, and 0’s represent insignificant items. Now let an encoder use a group
testing algorithm to identify the significant items (the 1’s in the bitstream). As output, it
would send binary bits representing the outcomes of the group tests performed: 0 for an
insignificant set, and 1 for a significant set. As long as the method of choosing the input bits
for each group test is deterministic, a decoder could infer the input bitstream based solely
on the output.

Now that we have an encoding/decoding scheme, the obvious next step is to deter-
mine the compression performance of this scheme. Since group testing algorithms try to
minimize the number of group tests, in our scenario, that is equivalent to minimizing the
number of bits in the encoder’s output. Since this is exactly what a good compression
scheme should do, we expect good group testing algorithms to also be good at compressing

data.

4.2 Group Testing Algorithms

4.2.1 Hwang's Generalized Binary Splitting Algorithm

One of the first group testing algorithms was proposed by Hwang in 1972 [24]. It solved
the combinatorial group testing problem, where, as input, the algorithm is given n items
and the knowledge that s of these n items are significant. The algorithm identifies the s
significant items by repeatedly performing the binary splitting procedure, a well-known
technique for identifying one significant item out of a set. We first describe binary splitting,
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followed by Hwang’s algorithm.

Binary Splitting

The binary splitting procedure (procedure 4.1) works on an input set K, with K assumed
to be significant (so that at least one item in K is significant). It uses a recursive, binary-
search-like process to identify one significant item in K using [log, | K|] tests. In addition
to finding one significant item z, the binary splitting process will also identify a set I of
insignificant items, where I C K. Thus, the set K — (I U {z}) contains those items whose

significance status remains unknown after the procedure.

Procedure 4.1 Binary Splitting

Initially, K is the significant set given as input, and / = @ represents the items identified
as insignificant.

e Base Case: |K| = 1. One significant item has been found. Retumn it along with 7.

e Inductive step: |K| > 1.

1. Partition K into two sets K; and K,, where there are no more than 21082 [K[1-1
items in either set.
2. Perform a group test on K;.

If K, is significant, then recursively look for a significant item in K].

If K, is insignificant, then we know K, must be significant. Set ] — I U K,
and recursively look for a significant item in K.

In step 1, the binary splitting algorithm divides K into two smaller sets K; and K,.
Note that this step has been intentionally incompletely specified in that exact sizes for sets
K and K are not given. In the worst case, it will take [log, max(]|K}|, | K>|)] tests to find
a significant item. Thus, as long as K is partitioned into sets of size at most 2(log2¥1/2,
binary splitting will still have the same worst-case behavior. Thus, from the perspective of

solving the combinatorial group testing problem, the exact sizes, as long as they are within
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the constraints given in step 1, are not relevant. The special case of the binary splitting
method where K is split into two sets of size | |K|/2] and [|K|/2] is known as halving.

Hwang’s Generalized Binary Splitting

It is easy to see that s applications of binary splitting on the input set of size n will find all
s significant items, and will cost at most s [log, n] group tests. Clearly this method is not
optimal because we are requiring each significant item to take roughly log, n group tests to
find. If we performed binary splitting on groups of size £k < n, and we expected there to be
at least one significant item in each group of size k, then we could get away with finding all
significant items with about s log, & total group tests. This could be significantly smaller
than s [log, n]. Roughly speaking, this is the main idea behind Hwang’s generalized binary
splitting algorithm (procedure 4.2). In this algorithm, Hwang chose k& to be roughly n/s;
on average, there exists one significant item in every n/s items. Note that k is chosen
adaptively as the significance status of more items are determined.

We say a group iteration of size k is the process of performing a group test on a set K
of size k, and then, if necessary, performing binary splitting to identify a significant item in
K. This is basically one application of step 3 in procedure 4.2. Generalized binary splitting
simply performs group iterations repeatedly until all significant items are found.

The choice of the group iteration size k and the associated set K of size k can drasti-
cally affect the effectiveness of the group tester. As mentioned previously in section 4.1.2,
choosing k involves trading off using small k to quickly identify significant items and us-
ing large k to quickly identify insignificant items. In generalized binary splitting, k is
chosen to be a power of 2 to simplify the binary splitting. Note that when roughly half the
unidentified items are significant, £ = 1 and individual testing is performed. With so many
significant items, testing groups is not worthwhile. In the other case when less than half
the unidentified items are significant, k is chosen to be roughly |U|/¢ rounded to a power
of 2, where U is the set of remaining unidentified items, and £ is the number of remaining

significant items. This number is approximately the size for which you would expect to
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Procedure 4.2 Hwang’s Generalized Binary Splitting

We are given n items, s of which are known to be significant.

Let U, S, and I, represent the current set of unidentified items, significant items, and
insignificant items, respectively.

Initially, U is the initial set of n items, S = @,and I = .
While |S| # s repeat the following:

1. Let £ = s — |S| be the number of significant items remaining left to be found.

2. Letk =
{2‘*, where a = I.logz M:fij , otherwise.

3. Pick aset K of k items from U, and test K for significance.
e If K is insignificant, thensetU — U — K,and I — JU K.

e If K is significant, then perform binary splitting on K to identify one
significant item z, as well as a set I’ of insignificant items. Set U <«
U-({z}url'),andI — ITUTI.

I « I'UU. (The remaining items in U are insignificant because after exiting the while
loop, all significant items have been found).
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find one significant item.
Hwang proved the following performance bound on his generalized binary splitting
algorithm [14]:

Theorem 1 Let M (s, n) be the worst-case number of group tests required by the general-
ized binary splitting algorithm when given n. total items, s of which are significant. Then
n, Jorn < 2s —2,
M(s,n) =
(a+2)s+p—1, forn>2s-—2,
where a = |log,(2=2t!)|, and p < s is a non-negative integer uniquely defined in the

equationn — s+ 1 = 2%s2%p + 6, for 0 < 0 < 2°.

Group Testing Example

Consider a binary source with 1000 bits, 80 of which are known to have value 1 (i.e., 80
items are significant). If we apply procedure 4.2, then the initial group iteration size would
be k£ = 8 via the formula in step 2. For this example, we assume that when k items are
chosen, they are the first & bits in the source that are not yet coded. We also assume that
whenever a set K is partitioned into two sets, the first set tested (X) will contain the bits
of the first half of K, in the order that the bits were in the input source.

We will first examine two cases, one where the first 8 input bits are 00000000 and the
other where they are 00000110. We will use ? to denote bits whose value are not yet coded.
Figure 4.1 shows the sequence of group tests performed, and the resulting output bits for
the two example cases.

We can calculate the output produced by a group iteration of size 8 by examining all
possible cases; the result is shown in table 4.1. If the 8 input bits are all O, then one group
test (and thus one output bit) is used to describe all 8 bits. In all other cases, the first output
bit signifies that the set of input bits is significant, and the remaining 3 output bits indicate
the position of the first significant input bit. The value of the input bits represented with a



52

State of Input | Output Bit

CaseI:
29999999 0

00000000

Case II:
29999999

[2229]2272

0000(??2{7?

0000[?]2??

000001727

S = O =

Figure 4.1: Example showing group tests performed. Each box represents a group test of
the items inside the box.

Table 4.1: Code associated with a group iteration of size 8.

Input bits | Output bits
00000000 0
00000001 1000
0000001? 1001
0000017? 1010
00001?7? 1011
0001?2777 1100
001?7777? 1101
0127277? 1110
12227772 1111
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*?* will not affect the output bits sent. Note that the value of these bits will remain unknown
after one group iteration; their value must be determined in a subsequent group iteration. In
contrast, the input bits represented with ‘0’ will be coded (known to be insignificant) after

one group iteration.

Generalizing from this example, we conclude that for a group iteration of size k, if the
chosen set K consists of k 0’s, then one 0 is output. When K contains a 1, then a 1 is
output, followed by a log, k length binary integer representing the location of the first 1 in
the set K.

4.3 Other Group Testing Algorithms

4.3.1 Doubling

The doubling algorithm of Bar-Noy et al. [4] solves the competitive group testing problem,
where the number of significant items s is unknown. This algorithm is the same as Hwang’s
algorithm, except that the method of choosing the group iteration size k is different. In the
doubling strategy, k starts at 1, and doubles after every group test. It continues doubling as
long as no significant items are found, and resets to 1 once a significant item is found. To
quickly handle the case where there are no significant items, one additional group test of

the entire set of n items is performed at the beginning.

Recall that the goal of competitive group testing does not directly minimize the number
of group tests, but instead tries to minimize the competitive ratio. Although it is not trivial
to prove, this algorithm was shown in [14] to have a competitive ratio of 2. This means
that the number of group tests that this algorithm performs is no more than a factor of 2
times greater than the number of group tests that the optimal algorithm that knew the exact

number of significant items would have performed.
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4.3.2 Jumping

The Jumping algorithm [15] is an extension of the doubling algorithm, and was shown
to have a competitive ratio of 1.65. It works by performing group iterations of size 1 +
2,4+8,...,2" + 2**1 until a significant item is found. After a significant item is found, all
remaining unidentified items are tested together in one group test to handle the case when
no more significant items remain. If some significant items remain, then the algorithm
resets, and follows its initial procedure on the set of remaining unidentified items. This
means it performs a group iteration of size 1 + 2 = 3, followed by one of size 4 + 8 = 12,
and so on, until another significant item is found. This process repeats until all items are

identified.
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Chapter 5

GROUP TESTING AND COMPRESSION

In this chapter, we describe the deep connections between group testing and data com-
pression. In particular, we show how Hwang’s generalized binary splitting algorithm gener-
ates an elementary Golomb code. By making this relation, we can state some of the known
results about the effectiveness of Golomb codes and apply them to group testing.

We also show how zerotree coding can be thought of as a special case of group test-
ing. This realization led us to investigate the use of group testing as a basis for image
compression.

We end this chapter with a discussion about how group testing can be used in the field of
image compression. This chapter provides structure to the rest of this thesis by overviewing

the content of the rest of the chapters in this thesis.

5.1 Group Testing and iintropy Coding

As described in section 4.1.3, any group testing algorithm can be used as a method for
compressing a stream of bits. Thus, group testing can be viewed as a standard entropy code
that works on a binary alphabet.

One question that arises is whether combinatorial, competitive, or probabilistic group
testing algorithms would be more suitable for data compression. In the combinatorial group
testing problem, it is assumed that the number of significant items in the initial set is known
before the algorithm starts. Although this is usually not true in the context of data compres-
sion, it is possible for the encoder to send the number of significant items (as side informa-

tion) to the decoder at the beginning of the bit stream. With this method, any coinbinatorial
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group testing algorithm can be used as an entropy code.

In competitive group testing, the number of significant items is not known at the begin-
ning; this more accurately models the data compression scenario. This scenario is similar
to the adaptive entropy coding methods in that the algorithm tries to adaptively estimate the
number of remaining significant items as bits are encoded. However, the competitive ratio
metric used (see section 4.1.1) in this problem does not directly correspond to minimizing
the number of group tests.

The probabilistic group testing framework seems most applicable to data compression
since its goal is exactly the same as the goal of an entropy coder: namely, to minimize the
expected number of tests required. Of course, if the probability distribution of the data to
be compressed is known only to the encoder, then this information must also be sent as side

information to the decoder.

S5.1.1 Relation to Golomb Codes

If we look more closely at Hwang’s generalized binary splitting method (section 4.2.1), we
can see a deeper cor;nection between group testing and Golomb codes. In fact, a group
iteration of size k is essentially EGy, the elementary Golomb code of order k£ (presented
in section 3.3.4). If we ignore the ?’s in table 4.1, we see that this table showing the
code corresponding to the group iteration is exactly the same as the EGg code presented

previously in table 3.1.

5.1.2 Effectiveness of Group Testing

As explained in chapter 3, the effectiveness of an entropy code can be characterized by
comparing its bit-rate with the entropy of the source. Since group testing is an entropy code,
we can calculate the bit-rate for group testing on simple sources and compare it with the
entropy of the source. Because of the close relation between group testing and elementary

Golomb codes, our task is vastly simplified. Let us first consider the binary i.i.d. source
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model where each source bit has value 0 with probability p, and 1 with probability 1 — p.
By relating group testing to Golomb codes, we learn that the optimal group iteration size
is k*(p) (see section 3.3.4). This means it is the unique integer k satisfying the inequalities
3.6.

We will use GTR(p) to refer to the group testing bit-rate on source S, using the optimal
group iteration size k*(p). To measure the efficacy of group testing, we can compare this
bit-rate to the entropy of the S,. The entropy of S, can simply calculated using equation
3.3; H(S,) = —plog, p — (1 — p) log,(1 — p). A method for calculating the group testing
bit-rate GTR(p) will be presented in chapter 9. Figure S.1 compares the group testing bit-
rate GTR(p) with the entropy of the source H(S,) for various values of p. As the graph

shows, the group testing bit-rate is always within 5% of entropy, and usually much lower.

Entropy of Group Testing
0.04
0.03}
1. bitrate
entropy 0.02
0.01 2
5
0
0.5 0.6 0.7 0.8 0.9 1
0]

Figure 5.1: Compares group testing bit-rate to entropy, on an i.i.d. source where p is the
probability that a source bit is 0. Numbers on the graph indicate the optimal group iteration
size k*(p) for that section of the curve.

5.1.3 Exact Partitioning Method

Note that when the group iteration size k is not a power of 2, then it is not immediately

obvious how binary splitting (procedure 4.1) should partition the initial set of K of size k&
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into two sets K and K, to minimize the expected number of bits required to code the group
iteration. Although the exact partitioning method is irrelevant in the combinatorial group
testing problem (see section 4.2.1), it becomes relevant when our metric is to minimize the
expected number of group tests.

We now proceed to define the optimal binary splitting procedure. This procedure is
exactly like the binary splitting procedure, except that the exact partitioning method is
defined to minimize the expected number of group tests. The simple and elegant halving
method (see section 4.2.1) turns out not to be the optimal binary splitting method. The
optimal method is to partition K into two sets of size 7 and k — 7 where 7 is a power of two
and k — i is as close to i as possible. Furthermore, the set of smaller size should be tested
first. Making this choice in the binary splitting is the only way to ensure that group testing
with group iteration size k is the same as an elementary Golomb code of order & for all
values of k. The reason for this choice is explained below.

The example in section 4.2.1 shows that group testing with group iteration size k is a
V-V code (defined in section 3.3.2) where the input sequence 0* is coded with 0, and for
0 < j < k, 071 is coded with a codeword that starts with a 1. Define ! = [log, k]. If &
is a power of 2, then [ + 1 is the length of the codeword for the input sequence 0°1. When
k is not a power of 2, then of the k input sequences of the form 071, k¥’ = 2141 — k of
them will be coded with a codeword of length { + 1, while k£ — k£’ of them will be coded
with a codeword of length [ + 2. Choosing the sizes of K; and K, corresponds to deciding
which of the input sequences 071 will have longer codewords than the others. Clearly, we
want the less probable input sequences to have longer codewords, and more probable input
sequences to have shorter codewords. If p is the probability that a source bit is zero, then
the probability of input sequence 0”1 occurring is p? (1 — p). This implies that if j < k', we
should code 01 with a codeword of length [ + 1, and that the other input sequences should
be coded with codewords of length  + 2.

We can use a binary tree to represent the sequence of group tests performed by a

group iteration of size k. The interior nodes of this tree represent group tests, with left
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Procedure 5.1 Optimal Binary Splitting

Initially, K is a significant set input, and I = @ represents the items identified as insignif-
icant.

e Base Case: |K| = 1. One significant item has been found. Return it along with I.

e Inductive step: |K| > 1.

1.

Let £ «— 2Uoga(IKI/2)} p  2M02(K1/2)] (¢ and h are the powers of two just
smaller and just larger than |K|/2, respectively)

If |[K|/2 — € < h— |K|/2 then ky «— £ else kg «— h. (Find the closest power of
2to |K|/2.)

. Let kl = min(ko, IK' - ko) Let kg = ma.x(ko, IKl - ko). (Make kl the smaller

one.)
Partition K into two sets K, and K, where |K;| = k; and | K| = k..
Perform a group test on K.

If K, is significant, then recursively look for a significant item in K.

If K, is insignificant, then we know K, must be significant. Set I — I U K,
and recursively look for a significant item in K.




and right branches corresponding to significant and insignificant test results, respectively.
Left branches are labeled with a 1 to signify the output bit sent due to a significant result;
similarly, right branches are labeled with a 0. The group testing algorithm starts at the root
node and follows the branches downward according to the group testing results. Eventually
it will reach a leaf, signifying that the group iteration is finished, and that that part of the
input bits have been identified. The leaves are labeled with the bits from the input that have
been identified. This tree is illustrated in figure 5.2.

Figure 5.2: Binary tree representing the V-V code produced by one group iteration. Edge
labels correspond to output bits; leaves correspond to the input sequence that was coded on
that branch.

Note that the root node represents the initial group test of size k. Thus, if the first group
test result is insignificant, then the k input bits have been identified to be 0F, and this is the
label at the leaf node located at the right branch of the root node. Also note that the size of
each group test is equal to the number of leaves in the subtree rooted at that node.

Let node L be the left child of the root node, and consider the subtree rooted at this
node. In this subtree, the left-most leaf represents a series of group tests where the group

tested was always significant. This corresponds to where the input sequence was 1. The
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right-most leaf of this subtree corresponds to a series of group tests where each group tested
was insignificant. This corresponds to the input sequence 0*—'1. In fact, the leaves at the
bottom of the tree represent the input sequence 1,01,001, ...,0*~'1 when read from left
to right. Furthermore, the depth of a leaf represents the length of the associated output
codeword. To make the more probable input sequences have shorter codewords, we need
to construct the tree where the first £’ leaves are at depth [ + 1, and where the rest of the
leaves are at depth [ + 2.

Recall that in the binary splitting algorithm, we split set K of size k into two sets K;
and K, respectively of size k; and k;, and test set K, first. If K, is significant, then we
will have to identify a significant item from a set of k,; elements; if K is insignificant, we
will have k; elements from which to identify a significant item. This implies that the left
child of node L has k, leaves, and that the right child has k. leaves. To optimize the depths
of the leaves for coding performance, either the left child of node L should be a complete
binary tree (case I of figure 5.2), or the right child of node L should be a complete binary
tree (case II). This implies one of K or K, must have a power of 2 number of elements.
Furthermore, we also need to test the smaller set first so that number of elements on the left
branch of node L will be less than the number of elements on the right branch. This is the

reason behind the method of partitioning in the optimal binary splitting procedure.

5.2 Group Testing and Zerotree Coding

Another way to characterize group testing is by viewing it as a generalization of zerotree
coding. Recall that zerotree coding tests trees of coefficients for significance, where trees
are significant only when some coefficient in that tree is significant. Testing a tree for
significance is exactly the same as performing a group test on the coefficients in that tree.
The significance pass of any zerotree coding algorithm can be thought of as a group tester
that identifies the significant coefficients of a given bit-plane. Group testing is more general

than zerotree coding because the groups that it tests together are not restricted to be trees,
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but can be arbitrary collections of coefficients.

5.3 Group Testing and Image Compression

Up to this point, we have been explaining what has been previously done in image com-
pression, and how group testing relates to previous image compression techniques. Now
we proceed to discuss the best methods of applying group testing to image compression.
We start by describing how previous image compression algorithms can be thought of as
using group testing. We then discuss some of the issues that arise when applying group
testing to image compression, and then talk about some of the general techniques that can

be used to develop a group testing-based image coder.

5.3.1 Previous Work

Based on section 2.6, it is clear that a form of group testing has already been used in image
compression. For instance, Ordentlich, et al. {[40] and Malvar [34] both use elementary
Golomb codes to effectively code wavelet coefficients, which can be thought of as a group
testing technique. Furthermore, the many zerotree coding algorithms that have been used
for image compression can also be thought of as using group testing. Thus, we can say that
a significant number of wavelet coding techniques essentially rely on group testing. Note
that these previous techniques use group testing to code the bits in the significance pass.
Coding these significance pass bits appears to be where group testing is most useful. In
fact, these bits can be directly coded with any group testing algorithm.

5.3.2 Mismatch Between Source Models

An obvious way of using group testing in the significance pass is to simply take all the
transform coefficients in order and code them with a group testing coder. Unfortunately,
directly applying group testing in this manner may result in a coder with poor PSNR per-
formance. This is because the group testing algorithms that have been studied do not take
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into account the typical statistical characteristics of the transform coefficients of images.

The combinatorial group testing problem assumes that nothing is known about the ini-
tial items. This is similar to assuming that all coefficients are equally probable to be signif-
icant, and that all coefficients are independent of each other. As explained in section 2.5,
neither of these facts is strictly true in our application for wavelet coefficients.

For example, we know that one reason zerotree coding compresses efficiently is that the
coefficients can be organized into trees that usually obey the zerotree property. Since the
group testing algorithms defined in the literature do not know about the zerotree property,
the algorithm cannot be the most effective coder for its input. The same reasoning can be
applied for other statistical characteristics of wavelet-transformed coefficients, such as the
dependence upon neighbors.

Unfortunately, the probabilistic group testing problems that have been studied so far
also suffer from this mismatch. To the best of our knowledge, all probabilistic group testing
problems deal only with the case where the probability of significance of each input item is

independent from all other items. This is not true for the transform coefficients.

5.3.3 Making the Sources Match

One way to surmount this difficulty is to make the characteristics of our input to group
testing match with what the group testing algorithm expects. To do this, we can organize
all the wavelet coefficients into classes which tend to have characteristics that match what
the group testing algorithm expects. Each class could then be coded with a different group
testing coder. Since different classes have different characteristics, we should use different
group testers for each class.

To illustrate this approach, we can use Hwang’s generalized binary splitting algorithm
as our basic group testing coder. We can think of this algorithm as expecting its input
items to be probabilistically independent of each other, as well as all having approximately
the same probability of significance. To make this coder to work well, we would want to

define the classes so that coefficients in a class satisfy these two characteristics as much



as possible. That is, we will try to make the coefficients in each class as independent as
possible of each other, as well as approximately having the same probability of significance.

This is the basic approach we will explore in detail in chapters 6-8. In these chapters,
we divide the transform coefficients into different classes, and then code each class with
group iterations. Since the probability of finding a significant item will be different for
different classes, each class will be coded with a different group tester based on group
iterations. Each group tester will adaptively choose its own group iteration size based on
the estimated probability of significance for its coefficients. Since the classes will have
different probabilities of significance, they also will use different group iteration sizes.

We will apply this group testing method to a wide variety of different transforms, in-
cluding the wavelet transform, wavelet packets, discrete cosine transform, and lapped trans-
forms. Each of the different transforms will require a different definition of the classes in

order for the coder to work well.

5.3.4 Defining New Group Testitig Algorithms

Another completely different way to tackle the mismatch problem is to define new variants
of the group testing problem that know about the statistical properties between the input
items. Then we could proceed to define new algorithms for solving this problem; these
new algorithms could then be directly applied to compressing the bits from the significance
pass of an image coder. We now proceed to discuss some possible variants of group testing

that could be useful for image compression.

Two-state Markov Source

In this problem, the input comes from a two-state Markov chain shown in figure 5.3. This
chain has two probability parameters p and g, representing the probability of moving from
state 0 to state 1 and from state 1 to state 0, respectively. Each step of the Markov chain

defines the next bit of the source as follows: if the chain moves to state 7, then the next bit
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Figure 5.3: Markov-chain diagram of source.

is i. The goal of a group testing algorithm would be to minimize the expected number of
group tests to find the significant items, when it is given n items generated by this Markov
source. Although we are using this source as a simplified model of the significance of
transform coefficients coded in the significance pass, this Markov chain has previously
been used to model bit errors in a channel (the Gilbert model) as well as pixels of black and

white images (the Capon model [6]).

Note that the bits generated by this source are not independent. If p < % and ¢ < %,
then after seeing a 0, it is more likely that another 0 will follow; similarly, after seeing
a 1 it is more likely that another 1 will follow. Modeling a dependence between source
bits appears to be general problem that is potentially applicable in many realistic scenarios
besides image compression. For instance, consider the use of group testing for identifying
defective Christmas lights or beakers that leak. If we assume the items came out of a factory
line, it may be plausible that the probability that an item is defective is not independent, but
that if the machinery produced a defective item at time ¢, then it is more likely to also

produce another defective item at time ¢ + 1.

To measure the effectiveness of algorithms that solve this problem, we can compare
the bit-rate of a group testing algorithm on this source with the entropy of the source. The
entropy of this source and the bit-rates of several group testing algorithms for encoding this

source are calculated in chapter 9.
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More General Source Models

Of course, there are many more ways to model the statistical characteristics of wavelet co-
efficients. Unfortunately, the model in the previous section was a one-dimensional model
in that items only depend on the neighbors that came before or after it in time. It would
be nice to model statistical dependences in two-dimensions, since wavelet-transformed co-
efficients of images are inherently two-dimensional. One possible way of modeling the
input is to use a Markov random field, an extension of Markov chains to handle multiple
dimensions. Another possible source model for the wavelet-transformed coefficients is a
generalized Gaussian distribution field, having slowly spatially varying variances; this is
the model used in [30]. In these statistical models, minimizing the expected number of
group tests seems to be the goal that most naturally applies when using group testing for

image compression.

Adaptivity and Unknown Model Parameters

To accurately represent transform coefficients, a source model of an image usually has
some model parameters that take on different values for different kinds of images. For
example, if an image contains lots of smooth regions with the same value, we expect inter-
pixel correlation to be fairly high. This may cause the coefficients in the transform domain
to be more probabilistically dependent on their neighbors. In the other case, when there
are not many smooth regions in an image (such as a picture of a crowd of people), we may
expect the coefficients in the transform domain to be less dependent on their neighbors. In
addition to being different on different images, these model parameters may also differ on
different parts of a single image.

Unfortunately, the values of these model parameters for a particular image are not
known until the image is analyzed. For an encoder to be able to take advantage of the model
parameters and obtain more efficient compression, it must tell thé decoder the model pa-

rameters. This can be done by encoding the parameters at the beginning of the compressed
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image description. This will work well whenever the model parameters over the entire
image can be succinctly described. Alternatively, an adaptive approach could be used to
handle unknown model parameters. In this method, the model parameters are estimated,
and as more of the image is encoded, the parameters estimates are updated. The algorithm

would adapt according to the current estimate of the parameters.

Model Parameter Inquiry Problem

As a more structured way of tackling the problem of unknown parameters, we could expand
our definition of the group testing problem to also include costs of inquiring about the model
parameters. Given a model with some unknown parameters and a set of input items, there
would be two possible types of operations: group tests, and model parameter inquiries.
Group tests cost one bit, and model parameter inquiries cost & bits, where k depends on the
desired precision for the model parameter. The goal would be to minimize the total cost
of finding all significant items. The adaptive approach to encoding would use no model
parameter inquiries; the non-adaptive approach would estimate the unknown parameters
solely through the use of model parameter inquiries. A balanced approach that uses both
methods has the potential to work better, although it makes the group testing problem more

difficult to solve.
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Chapter 6

GROUP TESTING FOR WAVELETS

This chapter explains the new Group Testing for Wavelets (GTW) algorithm [20], a
wavelet-transform based image coder that uses group testing. Our work was motivated by
seeing group testing as a generalization of zerotree coding. Thus, our image coder was
created to determine whether using group testing instead of zerotree coding would make a
significant performance improvement on actual images.

Our new coder shares many of the same techniques of previous zerotree coding al-
gorithms, with the chief difference being that our significance pass replaces the previous
zerotree coding method with a group testing method. In fact, GTW is exactly SPIHT with
the significance pass replaced by a group testing method. Note that SPIHT has the best
compression performance out of the zerotree coding techniques that use the wavelet trans-
form. Thus, comparing the performance of GTW with SPIHT is really comparing group
testing with the best zerotree coding method.

We start by explaining GTW in section 6.1. Next, we compare the rate-distortion per-
formance of GTW with SPIHT in section 6.2, We then discuss some alternative approaches
for image compression that slightly modify how the original GTW codes coefficients in
section 6.3. We conclude in section 6.4 with a comparison to other image coders and a
summary of our results.

This chapter shows that the rate-distortion performance of GTW is better than SPIHT
(without arithmetic coding) and comparable to SPIHT-AC (with arithmetic coding). GTW
is significantly better than SPIHT and close to SPIHT-AC over a large range of bit-rates.
This is a significant result because GTW does not employ arithmetic coding. It shows that

the simple group testing procedure can supplant the need for arithmetic coding in a practical
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image coder.

6.1 The GTW Algorithm

6.1.1 Algorithm Overview

Our algorithm follows the standard transform coding process (shown in figure 2.3), where
we first apply the DWT on the image data, and then code the transform coefficients. The
transform coefficients are coded in a bit-plane by bit-plane fashion, with each bit-plane
coded by a significance pass and a refinement pass. In the significance pass, our coder
divides the coefficients into GTW classes. As was mentioned in section 5.3.3, the purpose of
these classes is to separate coefficients with different probabilities of being significant. Each
class is then coded with its own group tester that adapts to the probability of significance
for that class. Our method of adapting is similar to previous adaptive Golomb coding work,
but also relies on entropy arguments found in section 5.1.2.

Our division of coefficients into classes is similar to choosing different contexts for the
coefficients, and coding each context with a different entropy coder. Thus, we must design
our classes with the context dilution problem (explained in section 2.6.3) in mind. Having
too many classes may result in poor adaptation to the classes’ characteristics, because the
number of coefficients belonging to a class may be too small. On the other hand, having
many classes is beneficial in that coefficients in a class will be more likely to have similar
characteristics, which leads to better overall coding performance. The number of classes
must be chosen to balance the effectiveness of many classes with the ineffectiveness of very

few coefficients in each class.

6.1.2 GTW Classes

We define the GTW classes based on the properties of typical wavelet transform coefficients
of image data such as those presented in section 2.5.

The characteristics that distinguish between GTW classes are the subband level, the
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significant neighbor metric, and the pattern type. We now proceed to describe these char-

acteristics.

Subband Level

In a bit-plane of a wavelet-transformed image, the coefficients in lower frequency subbands
are more likely to be significant. The lowest frequency subband counts as a subband level.
There is one additional subband level for each level of the wavelet transform. Figure 6.1

shows the 4 subband levels when 3 levels of the wavelet transform are performed.

Figure 6.1: Subband levels in GTW. Solid lines separate subband levels; dotted lines sepa-
rate subbands.

Significant Neighbor Metric

A coefficient in a bit-plane is likely to be significant if more of its neighbors are significant.
A neighbor is defined to be the following: one of up to 8 spatially adjacent coefficients in the
same subband, one of the 2 spatially identical coefficients in another subband at the same
level, the parent coefficient in the next lower subband, or one of the 4 child coefficients in
the next higher subband. The parent/child relations are exactly as defined in SPIHT. Figure
6.2 shows the neighbors of a coefficient.

There are 4 values in the significant neighbor metric; 0, 1, 2, and 3 +; corresponding
to whether 0, 1, 2, or more than 2 neighbors are significant, respectively. In counting
the significant neighbors we count one for each spatially adjacent, spatially identically, and
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parent coefficient, but just one for all 4 children coefficients. That is, if one or more children
are significant then we add one to the count of significant neighbors. Thus, the maximum
neighbor count is 12 even though there are 15 neighbors. In determining the significant
neighbor metric for a coefficient in the current bit-plane, a neighbor can be known to be
significant from the coding of a previous bit-plane or from the coding of the current bit-

plane.

Neighbors of [JJj: T (alale
parent a gy
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[¢] child '

Figure 6.2: Illustration of neighbors.

We derived our significant neighbor metric from several considerations. We chose to
limit the 4 children to count as at most one because the 4 children, taken together, represent
one spatially equivalent spot in the next lower subband level. Also, knowing that 4 child
coefficients are significant does not seem to bear 4 times as much information as knowing
that one child coefficient is significant.

We reduce the resulting count of significant neighbors to four values for several reasons.
One is to avoid having too many classes, and suffering from a context dilution problem.
Another is the observation that once the metric for a coefficient reaches about 4, then the
probability of significance for that coefficient is high enough that a group iteration size of
one is sufficient. Inequalities 3.6 show that £ = 1 when p < (/5 — 1)/2 = .62, implying
that when the probability of being significant is greater than about 0.38, a group size of 1 is
optimal.



72

Pattern Type

Coefficients adjacent to each other are assigned different pattern types. The pattern type is
based solely on position in a subband. In GTW, each coefficient belongs to one of 4 distinct

pattern types as shown in figure 6.3.

Figure 6.3: Illustration of pattern type.

One idea behind using the pattern type is to make coefficients in any class less likely to
be correlated. This will make the coefficients more likely to be independent of each other,
which is what Hwang’s generalized binary splitting expects.

We can also view the pattern type as an attempt to control the order in which the in-
formation known about a coefficient’s neighbors propagates. Let C; represent the set of
coefficients with pattern type i. If we assume all coefficients in C; are coded before those
in C;,,, then figure 6.4 shows that a coefficient in C;;, knows more information about its
neighbors than in C;. The greater amount of available information should make it easier to
code C;,; than C;. We call this the bootstrapping effect. Controlling the coding order of
the pattern type will change how accurately the coefficients in C; are classified, and how

well they are coded. This may help improve the net coding efficiency.

6.1.3 Class Ordering

A GTW class is defined by these three characteristics: subband level, significant neighbor
metric, and pattern type. For our study we used 7 subband levels, 4 significant neighbor
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Figure 6.4: Illustration of bootstrapping.

metric types, and 4 pattern types for a total of 112 classes. With these specified classes,
what is the best order in which to code them? From the perspective of generating an em-
bedded bit stream, we should code the coefficients that contain the most information first.
Since finding significant coefficients increases the fidelity of the image and finding insignif-
icant coefficients has no effect on the fidelity, those coefficients more likely to be significant
should be coded first.

Based on this heuristic, we should code the low subband level classes before the high
subband level classes. We should also code the classes with more significant neighbors
before those with fewer or no significant neighbors. After some testing (see section 6.3.3),

we determined that the following ordering resulted in good rate-distortion performance:

GTW Ordering: Always code the classes with the greatest significant neigh-
bor metric first. If there are several classes with the same significant neighbor
metric, then code the classes with the lowest pattern type first. If there are
classes with the same significant neighbor metric and pattern type, then code
the class with the lowest subband level first.

One way to verify that this ordering works well is through figure 6.5. It is a scatter
plot of the log of the group iteration size k for each class. Every group iteration performed

is placed in a rectangular bin. Darker bins correspond to bins containing more elements.
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Classes are ordered according to the GTW ordering; thus, the classes on the left of the plot
are always coded before the classes on the right. This graph was created from the results
of encoding the standard Barbara image to 1.0 bits per pixel with the GTW coder. It shows
that the classes with the lower group iteration sizes tend to be coded first. The classes with

low group iteration size also tend to contain those coefficients most likely to be significant.
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Figure 6.5: Group iteration size scatter plot for Barbara at 1.0 bpp.

Note that the ordering depends mostly on the significant neighbor metric because it
happens to be the best predictor for when a coefficient is sigtiiﬁcant.

In addition to improving the image quality, finding significant coefficients quickly con-
tributes to better classification of their neighbors. Once a significant coefficient is found, its
neighbors could change classes because they now have one more significant neighbor. The
new classes will be coded earlier than the old classes in which the coefficients were formerly
contained. This has an effect of searching for clusters of significant coefficients because
once a significant coefficient is found, then its neighbors are more likely to be coded next.
If any of these neighbors were tested as significant, then the coefficients around them will

also be more likely be coded earlier.
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6.1.4 GTW Details

In our study we first use the Daubechies 9/7-tap filters [3] and perform enough levels of the
wavelet transform so that the lowest frequency subband is of size 8 x 8 or smaller. On 512 x
512 images, this translates into 6 levels of wavelet transform, leading to 7 subband levels.
Next, the average of the coefficients in the lowest frequency subband is subtracted from
the lowest frequency subband before the transform coefficients are coded. This average is
coded and sent in the first bits of GTW. After this step, the value of the maximum magnitude
coefficient is coded so that the coefficients can be normalized for bit-plane encoding.

The bit-plane encoding uses a significance pass and a refinement pass. The refinement
pass keeps a list of the coefficients that have been found significant and sends one additional
refinement bit for each coefficient in this list; this is exactly the same as in previous zerotree
coders. The significance pass for finding significant coefficients organizes the coefficients
into classes, and uses adaptive group testing to code each class. For each class C, we let k¢
represent the group iteration size used for the coefficients in that class; the adaptive group
testing method will update k¢ as coefficients in that class are coded.

Note that the significance pass and its associated adaptive group testing method are the
parts of GTW that are significantly different from previous image coders; we now proceed
to describe the significance pass, group iterations, and the adaptive group testing strategy

in more detail.

Significance Pass

The GTW algorithm to code the significant coefficients in a bit-plane is fairly simple. The
basic idea is to repeatedly code coefficients in the GTW classes with group iterations until
all have been coded. We will code the coefficients in class C' with group iteration size
kc, where k¢ is a dynamically changing value determined by the adaptive group testing
strategy. Initially, k¢ starts out atlfor all classes.

We try to code the coefficients in a class only when the GTW class is adequate. A class
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C is adequate if there are at least k¢ coefficients in that class, where k¢ is the current group
iteration size for class C. Coding only adequate classes ensures that the appropriate group
iteration size is used for the class; this is necessary for good coding performance.

Our algorithm starts off coding coefficients only from adequate classes. When there
are no more adequate classes, most coefficients will have been coded. However, there will
be a few coefficients left in inadequate classes. At this point, we start combining coeffi-
cients together from inadequate classes and code the combined groups. In this context, we
code only combined groups of coefficients that are end-adequate. We say a group is end-
adequate when it contains k coefficients, where k is the minimum k¢ over all classes C
such that a coefficient of the group is a member of class C. After coding all end-adequate
groups, there may be some remaining coefficients which when combined together, do not
form an end-adequate group. At this point, these remaining coefficients are tested in one

combined group. This process is repeated until all coefficients are coded.

Group lteration

As mentioned in section 4.2.1, a group iteration of size k is the process of performing
a group test on k items, and then, if necessary, performing binary splitting to identify a
significant item in the group. Due to the entropy argument found in section 5.1.3, our group
iteration procedure will use optimal binary splitting (procedure 5.1). In this procedure, a
set of size 11 is partitioned into sets of size 4 and 7 with the set of size 4 tested first, and a

set of size 13 is partitioned into sets of size 5 and 8 with the set of size 5 tested first.

Adaptive Group Testing Strategy

The main difference between our group testing strategy and Hwang’s generalized binary
splitting algorithm is in our adaptive method of choosing the group iteration size k. Unlike
his algorithm, we do not restrict k£ to be a power of 2.

For each class C, our method keeps track of s¢, the number of significant coefficients
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Procedure 6.1 GTW Significance Pass

Initially, we are given a set of uncoded coefficients, each belonging to a particular class.

While there are coefficients left to be coded,
e If there is an adequate GTW class,

1. Let C be the first adequate GTW class, according to the GTW ordering of the
classes.

2. Pick the first k¢ coefficients from class C, and perform a group iteration on
this group. The group iteration will output bits corresponding to the group test
results.

3. Let s and 7 represent the number of significant and insignificant coefficients
found in the group iteration, respectively.

4. If a significant coefficient is found (s = 1), output its sign and update the neigh-
bors of that coefficient (coefficients could change classes at this point).

5. Using the adaptive group testing strategy, update k¢ knowing that s items were
found significant and : items were found insignificant in class C.

e Else if there is no adequate class,

1. Let G — 0.
2. While G is not end-adequate and there are still uncoded coefficients not in G,

- Let z be the first coefficient in the first non-empty class, according to the
GTW ordering.
- G+~ Gu{z}.
3. Perform a group iteration on G. If a significant coefficient is found, output its
sign and update the neighbors of that coefficient.
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Procedure 6.2 Group Iteration

Initially, we are given a group K of size k.
Perform a group test on K, outputting the result.

e If K is insignificant, then mark the coefficients in K as insignificant, and return k as
the number of insignificant coefficients found.

e Elseif K is significant,

Perform the optimal binary splitting on K (procedure 5.1). This procedure will
return z, the significant coefficient found, as well as I, a set of coefficients
identified as insignificant.

Output the results of the group tests performed in the optimal binary splitting pro-
cedure.

Mark the coefficients in K as significant, insignificant, or not yet identified, accord-
ing to the results z and I.

Return z and |I|.

Procedure 6.3 Adaptive Group Testing

At the beginning of each significance pass, for each class C, set n¢c «— 0, s¢ <« 0, and
kc — 1.

After s significant items and ¢ insignificant items have been found in class C, we perform
the following:

e Setsg — sc+s,andng «—nc+s+:.
L4 IfSc=0thenkc¢—kc'2.

e Elseif s¢ > 0, then k¢ «— k*(sc/nc).
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identified so far in class C, as well as nc, the total number of coefficients identified so far
in C. Our adaptive strategy will choose k¢, the group iteration size that will be used for
class C. Our method consists of two phases, an initial doubling phase, and a steady-state
estimation phase. We start in the doubling phase with kc = 1. In this phase, while no
significant coefficient is found in the previous group iterations for C, we double kc. Once
the first significant coefficient is found, we enter the estimation phase. In this phase, we use
p = (nc — s¢)/nc as the probability estimate of insignificance, and choose k¢ = k*(p)
(i.e. choose the k to satisfy the inequalities 3.6 in section 3.3.4).

Note that the initial phase of our strategy is the same as both the doubling strategy taken
from Bar-Noy et al. [4] and Langdon’s [29] adaptive Golomb coding method. This scheme

quickly adapts to the characteristics of the source.
6.2 Results
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Figure 6.6: Comparing performance of GTW and SPIHT.

We present our results on the 512 x 512 Barbara image and compare our PSNR curve
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with the ones for SPIHT with and without arithmetic coding. Figure 6.6 shows that GTW
performs about 0.7 dB better than SPIHT and about the same as SPIHT-AC.

Table 6.1 compares GTW against SPIHT with arithmetic coding for a wide variety of
natural images. All images are 512 x 512 in size, except for the man image which is
1024 x 1024. All are 8-bit gray-scale images. The standard test images Goldhill, Lena, and
Barbara can be obtained from UCLA’s web site [{28]. The other images are part of the USC
image database [50]. All results are measured in terms of PSNR, in dB. The ASPIHT-AC
rows represent the difference in PSNR between SPIHT-AC and GTW. Positive numbers
indicate the amount of PSNR improvement of SPIHT-AC over GTW. We can see that the
difference between SPIHT-AC and GTW is very small.

6.3 Alternative Approaches

6.3.1 Alternative Significant Neighbor Metric

It is clear that our significant neighbor metric is ad hoc in nature, since all neighbors of
a coefficient ¢ (except its children) have an equal say towards whether c is likely to be
significant. By performing statistical analysis across an image, it should be possible to
calculate a set of weights wy, w», . . ., w;s for the 15 neighbors of c that represent how much
each neighbor contributes to ¢’s significance status. By taking the statistics into account, we
are able to better predict whether ¢ will become significant, resulting in better compression.

As a more “principled” approach, we redefined the significant neighbor metric to be
312, w;b;, where w; is the weight given to the ith neighbor of a coefficient, and b; is the bit
value of the ith neighbor (1 for significant, and 0 for insignificant or unknown). Although
the numeric weights could be calculated by many different methods, we used the logit [31]
approach, which is a standard method in statistics for assigning weights when the training
data are discrete. To compress an image, we calculated the weights using that image and
then sent the weights in the initial part of the compressed bitstream.

Figure 6.7 is a graph that shows the percentage of significant coefficients found in the
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Table 6.1: Comparing PSNR results of GTW and SPIHT-AC. ASPIHT-AC = SPIHT-AC —
GTW.

Image Algorithm Rate (Bits/pixel)
0.1 0.25 0.5 1.0
GTW 24.37 | 27.22 | 29.51 | 32.51
rough wall
ASPIHT-AC | +.31| +.10| 0.00 | —.07
GTW 26.12 { 29.13 | 32.41 | 36.45
couple
ASPIHT-AC | +.05 | +.08 | +.04 | +.13
man GTW 27.80 | 31.31 | 34.13 | 37.42
ASPIHT-AC | +.32 | +.05 | +.12 ( —.15
boat GTW 27.31 | 30.93 | 34.27 | 39.01
ASPIHT-AC | +.05 | +.04 | +.18 | +.11
GTW 27.50 | 29.35 | 31.17 | 33.86
ASPIHT-AC | —-.05| +.01 | +.01 | —.08
Goldhill GTW 27.86 | 30.49 | 33.09 | 36.42
ASPIHT-AC | +.08 | +.07 | +.04 | +.13
Lena GTW 30.17 | 34.17 | 37.28 | 40.45
ASPIHT-AC | +.05| —.06 | —.07 | —.04
GTwW 24.41 | 27.86 | 31.49 | 36.42
Barbara
ASPIHT-AC| —-.15| —.28| —.09| —-.01

set of coefficients that had a given value as its significant neighbor metric, on the Barbara
image. Comparing with figure 6.8, it appears that the logit metric and the GTW significant
neighbor count give about the same information. The logit metric is slightly better because
at low values of the metric, the percentage of significant coefficients is higher. However, we
feel the added complexity of training to obtain the weights was not worth the slight benefits.
Overall, this approach performed slightly better than our significant neighbor metric. The
improvements over the ad hoc method ranged from 0.0 dB to 0.15 dB at various bit rates

on the Barbara image.
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Figure 6.7: Significance results of the logit metric value, uniformly quantized into 20 inter-
vals, on the Barbara image. The logit weights were calculated from training on Barbara.
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Figure 6.8: Significance results of the ad hoc significant neighbor count, on the Barbara
image.
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6.3.2 Alternative Pattern Types

We observed that the coefficients that just became significant in the current bit-plane had a
substantial effect on the value of the significant neighbor metric for their neighbors. Thus,
it would be nice to maximize the amount of information known about a coefficient’s neigh-
bors. Unfortunately, this may not be possible in an overall sense: We must pick a specific
ordering in which to code the coefficients, and on average, when coding a specific coeffi-
cient, we expect roughly half of its currently insignificant neighbors to not yet be coded at
the current bit-plane.

Although maximizing the information known might not be possible, we can change
the rate at which the information about neighboring coefficients increases. Recall that the
bootstrapping effect describes how information increases as more coefficients are coded.
This effect is different for different patterns, as illustrated in figure 6.9. We tried the two
alternative patterns in figure 6.9 and found no appreciable difference in coding efficiency
between these different patterns and the original pattern. The difference between the rate-
distortion curves for the Barbara image using different pattern types was less than 0.01 dB

on average.
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Figure 6.9: How information propagates in different patterns.

We also tried eliminating the pattern type completely; this reduces the number of classes



by a factor of four. This change also performed roughly the same as when using the pattern
type. In this case, the difference between the two curves on the Barbara image averaged
about 0.03 dB. Having no patterns was a bit better at low bit-rates, while having patterns

was a bit better at higher bit-rates.

6.3.3 Varying Ordering of Testing Groups
Varying GTW Class Ordering

The class ordering in GTW, described in section 6.1.3, considers the 3 class characteristics
in the following order: significant neighbor metric first, then pattern type, then subband
level. We tried our algorithm with each of the 6 possible total orderings of the 3 different
characteristics. From experimentation we found that these alternative orderings did not
perform as well; figure 6.10 shows the performance of these orderings on the Barbara
image. Intuitively, it would appear that considering the subband level first would give good
results because lower frequency subbands tend to have more significant coefficients in the
early bit planes. However, ordering with subband level first produced concave dips in the
rate-distortion curve. This could mean that it is more worthwhile to identify significant
coefficients in higher frequency subbands early. Furthermore, the orderings with pattern
type first were significantly worse, because the pattern type is not useful for predicting

significance of coefficients.

Group Iteration Size Ordering

We found that significant neighbor metric is better at predicting significance than subband
level. In terms of rate-distortion theory, we would like to find the significant coefficients
as soon as possible to reduce the distortion. Thus, it is better to test all the coefficients in
order of most likely to be significant, to least likely to be significant.

One way to apply this principle is to use the adaptive group testing statistics to set the

ordering of which classes should be tested first. Classes with a smaller group size are more
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Figure 6.10: Different class orderings on the Barbara image. Sig, Sub, and Pat stand for
Significant Neighbor Metric, Subband Level, and Pattern Type, respectively. Each line is
labeled by the order of importance of the characteristics, so that SigPatSub represents the

normal GTW ordering.

likely to have significant coefficients and thus should be tested first. We tried this ordering
where classes were tested in the order of smallest group iteration size first. Ties were broken
by the regular GTW ordering. On the Barbara image, the rate-distortion performance did

not change with this technique.

Generalized Coefficient Ordering

We could also try different ways of ordering the coefficients within a particular class. In-
stead of arbitrarily group testing the first k£ coefficients that are in a GTW class, we could
instead look for k£ most important coefficients in that class, and code them first. The cri-
terion of importance could be based on the likelihood that a coefficient is significant, or
on the amount of information a coefficient could give to its neighbors. This is the idea
behind the two new orderings described in this section: the parent-first ordering and the

neighbors-first ordering. Figure 6.11 shows how these orderings compare to the original
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GTW ordering on Barbara.

In the parent-first ordering, only coefficients whose parents are already coded are al-
lowed to be tested in a group iteration. In this case, a class is considered inadequate if
it does not have enough coefficients with coded parents to fulfill the group iteration size
quota. The normal GTW ordering was used to decide which classes to code first. Note that
with this ordering, it is still possible for coefficients in high-frequency subbands to be coded
before coefficients in low-frequency subbands. This can happen when the coefficients in
the high-frequency subband are not descendants of the coefficients in the low-frequency
subband. This ordering performed slightly worse than the normal GTW ordering.

In the neighbor-first ordering, we allowed a coefficient of pattern type 7 to be coded
only when its neighbors that have pattern type < % are already coded. In this case, a class is
considered inadequate if it does not have enough coefficients with an appropriate number
of coded neighbors to fulfill the group iteration size quota. We can view this an attempt
to maximize information flow, based on the following scenario: Suppose that c, and c;, are
both uncoded coefficients in the current bit-plane, and that all of ¢,’s neighbors are coded
while none of ¢;’s neighbors are coded yet. Then it may be more beneficial to code ¢, before
c. because ¢, will provide information about itself to its neighbors, where as ¢, will not.
The neighbor first method performed significantly worse than the normal GTW ordering.

The results of these two orderings imply that trying to maximize the information flow
between coefficients does not improve the net performance. Although better prediction can
be obtained for coefficients when we maximize the information available, it appears that
the slightly better prediction is not enough to offset the loss incurred from not coding the

most likely to be significant coefficients first.

6.3.4 GTW with Arithmetic Coding

There is a significant gain in going from SPIHT to SPIHT-AC for Barbara. Such a gain
does not seem possible in adding arithmetic coding to GTW. The SPIHT zerotrees take

into account the correlation between a coefficient and its parent and children, but not its
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Figure 6.11: Generalized coefficient orderings on the Barbara image.

spatially adjacent coefficients in the same subband. Arithmetic coding in SPIHT-AC helps
account for correlation between spatially adjacent coefficients by using different contexts
for adjacent neighbors of different values. In GTW, spatially adjacent neighbor information
is used as part of the context for group testing. Out of curiosity we added an adaptive first-
order arithmetic coder on a binary symbol set to GTW. There was no appreciable difference

in rate-distortion performance.

6.3.5 Varying Group Testing Strategies

Another way to optimize GTW is to change the exact group testing strategy. Instead of
using adaptive group testing, it is possible to initially send statistics saying what the group
iteration size should be for each class. This method performed worse than our adaptive

strategy.
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6.4 Conclasions

6.4.1 Comparison with Wavelet Image Coders

To put our work in context, we first highlight the key differences between GTW and other
recent work wavelet image compression techniques.

Ordentlich, Weinberger, and Seroussi’s algorithm (OWS) [40] and Malvar’s algorithm
(PWC) [34] are similar to GTW in that they both use Golomb codes. The main differences
are in what contexts are used and in what order the bits are coded. In OWS the coefficients
are coded in a zig-zag order with fractional bit-planes, where as in PWC the coefficients
are reordered in a complicated but fixed way. GTW orders its coefficients dynamically,
optimizing for information flow and for likelihood of being significant.

Wu’s ECECOW algorithm [60] does not use group testing, but strict arithmetic encod-
ing with context. Training is used to calculate the contexts that will be used in the coding.
ECECOW has impressive rate-distortion performance, certainly better than SPIHT-AC and
GTW, but neither SPIHT-AC nor GTW rely on training to achieve their results.

Chai et al.’s SLCCA [7] coder identifies significant coefficients in clusters. It initially
codes the starting positions of a cluster of significant coefficients, and expands a cluster by
coding the coefficients around the starting position. When a significant coefficient’s child is
the start of a new cluster, then a significance link symbol is sent, so that the position of the
new cluster need not be sent. This approach of looking for clusters of significant coefficients
is similar to the way that GTW updates the neighbors of a significant coefficient, and codes
the coefficients with the highest significant neighbor metric. Including the parent in the
significant neighbor metric helps “link” parent clusters to their children clusters.

As described in section 2.6.6, Taubman’s EBCOT coder [52] uses a combination of ze-
rotree coding, sign coding, and fractional bit-planes to encode a bit-plane. Each of these
techniques is followed by arithmetic coding with carefully chosen contexts. They achieve
slightly better performance than GTW mainly due to the sign coding, and through keeping

track of the manner in which the orientation of a subband affects the correlation between
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neighbors. Note that the fractional bit-plane method is similar to the way that GTW chooses
the ordering of its GTW classes to find significant coefficients quickly. Since GTW prop-
agates the information about significant neighbors as soon as they are discovered, we can
view GTW as making many fractional bit-plane passes. This is in contrast to EBCOT which
has only four passes in its fractional bit-plane method.

6.4.2 Summary of Results

We have shown that the proposed method of coding GTW classes has better rate-distortion
performance than the non-arithmetic-coded version of SPIHT. This shows that the group
testing method can offer a significant improvement over the zerotree coding method. We
also have shown that it is possible to get performance comparable to the arithmetic-coded
version of SPIHT without using arithmetic coding.

Unfortunately, our work in exploring alternative approaches in using group testing for
image compression did not result in a coder with better PSNR performance than GTW.
However, our work is helpful in understanding why certain image compression techniques
work better than others. Thus, our work on alternatives is useful for helping future re-
searchers understand image compression better, and may help others invent even better
techniques in the future.

Furthermore, our work unifies many previously proposed wavelet coding methods into
a single framework based on group testing; these previous methods include zerotree coding
and Golomb coding. This leads to a better fundamental understanding of previous image

coders, and thus is a significant contribution to the literature.



Chapter 7

GROUP TESTING FOR WAVELET PACKETS

7.1 Introduction

In this chapter, we introduce our new Group Testing for Wavelet Packets algorithm (GTWP)
[21], which is an extension of GTW to the wavelet packet transform. The wavelet packet
transform is a generalization of the standard dyadic wavelet decomposition of an image
that adapts to the particular image being coded to obtain better coding performance. Our
main goal in this chapter is to show that using group testing on wavelet packets results in
better PSNR performance than previous techniques that applied zerotree coding to wavelet
packets.

In [64], Xiong et al. presented the space-frequency quantization for wavelet packets
(SFQ-WP) image coder. It was an extension of the space-frequency quantization algorithm
(SFQ) [63], which was originally defined for the dyadic wavelet decomposition. Based on
this work, it is known that using the wavelet packet decomposition on an image can im-
prove the PSNR by 0.8-1.3 dB for some images, when compared with the standard wavelet
transform. Unfortunately, SFQ and SFQ-WP are not embedded coders.

Other researchers [38, 8, 39] have tried many different techniques to encode wavelet
packet transform coefficients of an image. In particular, Rajpoot et al. [42] and Khalil ez
al. [27] applied zerotree techniques to wavelet packet transforms to generate an embedded
bitstream. Unfortunately, these techniques define the parent-child relationships in an ad hoc
manner. This motivated us to find more natural methods to code wavelet packet transform
coefficients.

Like our previous algorithm, GTWP algorithm basically divides the coefficients into
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different classes, and codes each class with a different group tester. The chief difference is
in the transform used, and in the definition of the classes. We demonstrate the flexibility of
the group testing framework by implementing two different class definitions. One definition
is a simplification of the GTW classes, as defined in section 6.1.2. The other is an adaptation
of the contexts in EBCOT [52], which is the basis for JPEG 2000.

Our results indicate that GTWP can be up to 1.3 dB better than GTW on images where
an adaptive wavelet packet decomposition is helpful. We also show that GTWP is better
than previous techniques that combine wavelet packets and zerotree coding. This is ex-
pected because our method is not restricted to coding trees and is thus inherently more
flexible than standard zerotree coding. Furthermore, we show that GTWP is often better
than JPEG 2000 and never significantly worse.

This chapter is organized as follows: Section 7.2 introduces the wavelet packet trans-
form, with a focus on image compression. Section 7.3 introduces two variants of GTWP.
Section 7.4 evaluates our algorithm’s rate-distortion performance. Section 7.5 summarizes

our results.

7.2 Wavelet Packets Background

As described in [58], wavelet packets are a generalization of the standard dyadic wavelet
decomposition of a signal. The standard dyadic wavelet transform (as discussed in section
2.4.2) decomposes the signal by applying a series of successive filters to the lowest fre-
quency subband. Wavelet packets are a generalization of this where the successive filters
can be applied to any subband of any orientation, not just the lowest frequency LL subband.
Any one particular choice of subbands to decompose is known as a basis; the choice of
exactly which basis to use depends on the characteristics of the input. Figure 7.1 shows the
subbands after transforming an image with wavelet packet transform using one particular
basis.

A basis that adapts well to the input signal can be chosen via Coifman and Wicker-
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Figure 7.1: Sample subbands of a wavelet-packet transformed image.

hauser’s entropy-based technique [9] or by Ramchandran and Vetterli’s rate-distortion op-
timization technique [43]). These methods work by fully decomposing all subbands to a
predefined maximum depth, thus forming a decomposition tree where each decomposed
subband is represented in the tree by a parent node with four child nodes. Then the best
basis is found by pruning this decomposition tree in a recursive bottom-up fashion. The
entropy-based technique prunes the tree to minimize the overall estimated entropy of the
wavelet packet structure. The rate-distortion method is given a particular target bit rate for

the image and prunes the tree to minimize the distortion of the image.

Xiong et al. [62] first explored the combination of a wavelet packet decomposition of an
image with the SFQ coder, a coder that uses zerotree quantization techniques. The difficulty
in applying a zerotree quantization to wavelet packets is that it is no longer clear how to
define the parent-child relationships in the trees. As noted by Rajpoot et al. [42], there is a
parenting conflict, where some child coefficients could have multiple parents. This problem
has typically been solved by limiting the space of possible wavelet packet decompositions
so that no parenting conflict occurs, or by assigning the parent-child relationships in a

somewhat ad hoc manner (see [62, 42, 27]).
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7.3 Group Testing for Wavelet Packets

We propose a new coder, Group Testing for Wavelet Packets (GTWP), that extends our pre-
vious GTW algorithm to use wavelet packets for encoding images. In this new algorithm,
we find the best basis for the input image, and encode the structure of this basis in the first
bits of our compressed image. Then we define new GTWP classes based on the charac-
teristics of the wavelet packet decomposition of the image, so that the classes are encoded
efficiently. We also specify the order in which we plan to code the classes.

Once both the GTWP classes and the ordering between them are defined, then we can
code each class with a different group tester, and proceed in the same manner as GTW. That
is, we still proceed by bit-plane encoding with a significance pass and a refinement pass.
The significant pass is exactly the same as procedure 6.1 defined in section 6.1.4 except
that GTWP classes are used instead of GTW classes. As in GTW, we also compute average
value of the lowest frequency subband and subtract it from the subband before starting the
bit-plane encoding.

We first describe how we choose the best basis and encode it; then we describe two

different methods for defining the GTWP classes with their associated ordering.

7.3.1 Best Basis

We investigated using both the entropy-based technique and the rate-distortion technique
for computing the best wavelet packet basis. For the entropy-based technique, we explored
many different metrics for calculating the entropy of a particular subband. Let v; represent

the value of the coefficients of a subband. Then the entropy metrics we tried are as follows:

e log energy metric: Y, In(v?).

e Shannon metric (used in [9]): Y, v In(v?).

L1-norm metric: }_; |vi|.

threshold metric: Given a threshold value T, calculate |{v; : |v;| > T}|.
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e first-order entropy metric (used in [27]): Given a quantization step size Q, divide the
coefficients into quantization bins, and estimate the probability p; of a bin occurring
by p; = n/t, where n is the number of coefficients in that bin, and ¢ is the total

number of coefficients. Calculate — ) p; log,(p;)-

We also tried the rate-distortion optimization technique, optimizing for a wide variety
of bit-rates for various different possible scalar quantizers. Note that this technique is not
well suited to our problem because it forces us to pick artificial parameters, namely, the
final bit-rate for which to optimize and the quantizer step sizes to consider. Since GTWP is
an embedded coder, the final bit-rate we choose for the purpose of obtaining the best basis
does not correspond to the actual final bit-rate to which we encode the image. Furthermore,
since GTWP codes the transform coefficients bit-plane by bit-plane, it cannot choose to
code a subband with a particular quantizer step size; the step size it ends up using may
not have any relation to the quantizer step size parameters that we chose to run the rate-
distortion optimization technique.

It is interesting to note that the optimal calculated quantizer step size for all the subbands
under the rate-distortion technique differed from each other by no more than a factor of 2,
at least for the Barbara image. In the bit-plane encoding technique, if we stop coding in
the middle of a bit-plane, then the coefficients that have not yet been coded in the current
bit-plane are quantized with a step size of 2 times the step size of those coefficients that
have been coded. This suggests that GTWP’s bit-plane encoding technique may be a good
approximation to the quantization step sizes that the rate-distortion optimization best basis
produces.

The log energy, Shannon, and L1-norm metrics are the simplest in that they do not
require additional parameters (such as threshold value or quantization step size) to com-
pute. The top performers for our algorithm are the log energy metric and the rate-distortion
optimization metric. Seeing that the log-energy metric was simpler and did not require

selecting artificial parameters, we used it exclusively. As an example, we show the best
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Figure 7.2: Illustration of the best basis for the Barbara image.

basis chosen by the log energy metric on the Barbara image in figure 7.2. For simplicity,
we show only 5 levels of decomposition even though our algorithm uses a maximum of 6
levels.

To encode the decomposition tree, we simply perform a depth-first traversal of the tree,
and encode a 1 when that particular node is split into children, and a 0 when the node is a
leaf.

7.3.2 GTWP Classes

To illustrate the flexibility of the group testing methodology, we implemented two different
ways of choosing the GTWP classes: GTWP-S and GTWP-J. The first method is a simpli-
fication of the definition GTW classes (S for Simple), and the second method is based on
the contexts used in the JPEG-2000 image coder (J for JPEG-2000).

GTWP-§

The GTWP-S classes are a simplification of GTW classes and are defined by three different

characteristics: the subband level, the significant neighbor metric, and the pattern type.
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Subband Level. The lowest frequency subband representing the average of the entire
image counts as subband level one. There is one additional subband level for each level of
the wavelet transform. Figure 7.3 shows the 4 subband levels when 3 levels of the wavelet
transform are performed. Note that because we are using wavelet packets, each subband

level may contain more than 3 actual subbands.

Figure 7.3: Subband levels of a wavelet-packet transformed image in GTWP-S. Solid lines
separate subband levels; dotted lines separate subbands. All shaded coefficients are in
subband level 3. Subband levels 2, 3, and 4 have 3, 6, and 15 subbands, respectively.

Significant Neighbor Metric. To finesse the problem of defining parent-child relation-
ships in the wavelet packet transform, we restrict the neighbors of a coefficient to be one of
up to 8 spatially adjacent coefficients in the same subband. Like GTW, there are 4 values
in the significant neighbor metric, 0, 1, 2, and 3+, depending on whether 0, 1, 2, or more
than 2 neighbors are significant. Because there are only up to 8 neighbors, the maximum

neighbor count is 8.

Pattern Type. This characteristic is exactly the same as in GTW, where the coefficients
in a subband are assigned into 4 different pattern types based solely on its position in a
subband.

Overall, there are 7 subband levels, 4 significant neighbor types, and 4 pattern types

resulting in 112 classes total. These classes are ordered according to the same ordering as
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the GTW classes, namely, with significant neighbor metric first, pattern type second, and
subband level last. Putting the pattern type or subband level first gives inferior results.

GTWP-J

The GTWP-J classes are based on the contexts in Taubman’s EBCOT coder [52], and are
also found in the JPEG 2000 coder. In this class definition, there are only two characteristics
that define the classes: the orientation type and the neighborhood significance label.

Orientation Type. The orientation type of subband s contained in subband level ¢ is
based on the orientation of the largest parent subband in subband level : that contains s.
Here, the subband levels are defined as specified in the GTWP-S classes. There are only 3
orientation types, LH (vertically high-pass), HL (horizontally high-pass), and HH subbands.
The subband at subband level 1 (the LL subband) is considered to have orientation type LH.

The orientation type of a coefficient in subband s is the orientation type of subband s. This

is illustrated in figure 7.4.
e
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Figure 7.4: Dlustration of orientation type of a wavelet-packet transformed image. All
shaded coefficients have orientation type HL.

Neighborhood Significance Label. Let h, v, and d represent the number of significant
neighbors that a coefficient has which are adjacent to it horizontally, vertically, and diago-

nally, respectively. Thus, A and v both have a value of up to 2, whereas d has a maximum
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value of 4. The neighborhood significance label is assigned according to table 7.1. Note
that the labeling is dependent on the orientation type of the coefficient. This label is taken
from the context classifier in the EBCOT coder.

Table 7.1: Neighborhood significance label.

Assigned | LH subband | HL subband | HH subband
Label h| v d h jv]| d d | h+v
0 0] O 0 0 |0] O 0 0
1 0| O 1 0 |0] 1 0 1
2 0] o |[>2] o [o[=>2] 0 | >2
3 0] 1 (>0 1 10f(>0] 1 0
4 0| 2 |=>20] 2 |(0|>0] 1 1
51 1y 0 0 0 |11 0 1 =1
6 1{ 0 (=1} 0 |1}2>21] 2 0
7 1{>21|>20]|21]1|2>20]| 2 >0
8 2 >0 2120|122 =20

With 3 orientation types and 9 significant neighbor labels for each orientation type,
there are a total of 27 classes. The classes are ordered according to the group iteration size.
Classes with smaller group iteration size are coded first, since they are more likely to be

significant. Ties are broken arbitrarily.

7.4 Results

Here we present our results on some standard 8-bit monochrome images: the 512 x 512
images Barbara, Goldhill, and Lena (available from [28]); and a 768 x 768 fingerprint image
from the FBIs fingerprint compression standard [5]. We present results for several different
algorithms, including GTW, GTWP-S, GTWP-J, JPEG 2000 and SFQ-WP. All algorithms
use the Daubechies 9/7-tap filters [3]. JPEG 2000 results were produced with a beta version
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of a codec [2] for the JPEG 2000 image compression standard. SFQ-WP represents the
practical version of Xiong et al.’s SFQ algorithm applied with wavelet packets; results are
taken from [64]. To our knowledge, SFQ-WP is the current state-of-the-art method for

image compression with wavelet packets.

Compression of Barbara
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Figure 7.5: Comparing performance of GTW, GTWP, and JPEG-2000.

Figure 7.5 compares the PSNR curves for GTW, GTWP-S, GTWP-J, and JPEG 2000
on the Barbara image. As can be seen, there is little difference between the two GTWP
variants, and using the wavelet packets increases the PSNR by about 1.2 dB over GTW.
Table 7.2 lists PSNR results for all four images on the different algorithms.

The table shows how the amount of improvement for using wavelet packets instead of
the dyadic wavelet decomposition is highly dependent on the type of image. Some images
(like Barbara) benefit significantly from the wavelet packet decomposition; some images
(like Goldhill) benefit slightly; and some (like Lena) do not benefit at all. In fact, the best
basis for the Lena image was calculated to be the standard dyadic wavelet decomposition
with one additional decomposition of a highest frequency subband. Thus, we would expect
the results for GTWP on Lena to be roughly the same as that for GTW; this is what the
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Table 7.2: Comparing PSNR results of various algorithms. GTW is used as the baseline,
so that for algorithm A, AA = A — GTW.

Rate (Bits/pixel)

0.1 0.25 0.5 1.0
GTW 24.37 | 27.87 | 31.59 | 36.47
AJPEG2000] +.19| +.46 +.50 | +.46
Barbara AGTWP-S | +1.27 | +1.37 1.39 | +1.18
AGTWP-J | +1.15 | +1.27 | +1.28 | +1.07
ASFQ-WP ?7{+1.38 | +1.53 | +1.22
GTW 30.06 | 34.13 | 37.27 | 40.51
AJPEG2000| -27| -.12| —-.13| —.46

Image Algorithm

Lena AGTWP-S —-04| +.06| 0.00| —.09
AGTWP-] -02| +.09| —.01| —-.09
ASFQ-WP 71 +.22| +.13| +.04

GTW 27.76 | 30.46 | 33.10 | 36.47
AJPEG2000| —-.05( +.04| +.05| —-.07

Goldhill
AGTWP-S 0.00f{ +.12| +.17] +.17
AGTWP-] +01| +.09]| +.17| +.13
GTW 28.35 | 32.80 | 36.06 | 39.98
. AJPEG2000| +.24| +.17| +.10| +.16
fingerprint

AGTWP-S +.50 | +.35| +.73 | +1.38
AGTWP-] +45| +.31| +.70 | +1.38
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results show. The slight performance differences are due mostly to differing significant
neighbor metrics.

If we compare our results with the published results of previous zerotree coding tech-
niques on wavelet packets, we see that we outperform Rajpoot et al.’s technique by over
1.0 dB on the fingerprint image, and we outperform Khalil et al.’s technique by about 0.3
dB on the Barbara image.

It is interesting to note that there was little difference between GTWP-S and GTWP-J. It
appears that as long as something reasonable is chosen, the exact method of classifying co-
efficients whose neighbors are significant does not matter that much. In fact, we also tested
GTW-S, a version of GTW simplified so that the significant neighbor metric did not include
spatially identical neighbors in different subbands (making GTW-S similar to GTWP-S).
There was also little difference between GTW-S and GTW. It appears that the significance
of a coefficient depends almost entirely on its 8 immediately adjacent neighbors, and very
little on the parents and other neighbors in different subbands. This agrees with the findings
in [52].

As can be seen in the table, GTWP’s performance is often better than JPEG 2000, and
never significantly worse. Furthermore, GTWP’s performance is not too far from that of
SFQ-WP. Although GTWP is worse, GTWP is an embedded coder, while SFQ-WP is not.
Furthermore, GTWP is much simpler than SFQ in that it does not use arithmetic coding,

and does not perform rate-distortion optimization.

7.5 Conclusion

In conclusion, we have shown that group testing is a general method that can be easily
adapted to encode wavelet packet transform coefficients. We have shown that GTWP has
good PSNR performance, in that it outperforms previously published zerotree coders that
used wavelet packets. Since our group testing coder outperforms all embedded image

coders that we know of which apply zerotree coding techniques to wavelet packets, we
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conclude that the group testing technique is superior to the zerotree coding technique.

We have also shown that GTWP can outperform GTW by 0.8 dB to 1.3 dB on some
images. Furthermore, GTWP sometimes outperforms JPEG 2000, a benchmark algorithm
that does not use wavelet packets. These facts confirm that using wavelet packets for image
compression instead of the standard dyadic wavelet decomposition can result in significant

PSNR improvements on certain types of images.
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Chapter 8

GROUP TESTING FOR BLOCK TRANSFORMS

In this chapter, we introduce our group testing for block transforms algorithm (GTBT),
which applies GTW’s group testing technique to code coefficients generated from various
different block transforms. A block transform is simply any transform typically applied
by dividing the input data into blocks, and transforming the blocks independently. The
particular block transforms we use will be those that have previously been used for image
compression; this includes the popular discrete cosine transform [46], as well as many
lapped transforms introduced by Malvar [36] and Tran et al. [53].

Although zerotree coding is typically used to code wavelet-transformed coefficients,
it has also been applied to block transforms with some success. Recall that the zerotree
technique was motivated by the multi-resolution structure of the dyadic wavelet decompo-
sition, where coefficients could be organized into trees formed across different subbands.
Since there is a mismatch between the zerotree structure and the statistical characteristics
of block transforms, using zerotree coding on block transform coefficients leads to ineffi-
ciencies in coding performance. As a generalization of zerotree coding, group testing is
not hampered by the zerotree structure and can easily be adapted to more efficiently code
block-transform coefficients. In this chapter we show the flexibility and efficacy of the
group testing framework by applying it to block transforms.

Our technique will be very similar to GTW in that we divide the coefficients in a bit-
plane into different classes, and code each class with a different group tester. For our algo-
rithm to compress efficiently, the class definitions must reflect the statistical characteristics
of the block-transformed coefficients. The main goal of this chapter is to discover the best

way to define the classes for the block transform, in order to achieve efficient compression.
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Our results indicate that group testing performs significantly better than previous ze-
rotree coding algorithms on some images. In particular, we perform about 1.6 dB better
than both GTW [20] and SPIHT [45] at a wide range of bit-rates on the Barbara image. On
this image, we also perform about 0.3 dB better than previous zerotree coding techniques
that use the same transforms.

Since we need to understand block transforms before we can define group testing
classes for them, we start out in section 8.1 by describing the block transforms we use,
showing how they relate to the DWT, and giving an overview of image coding algorithms
that use these transforms. We then present our GTBT algorithm in section 8.2, compare the
results of our algorithm to the results of previously published image coders 8.3, and finally

conclude in section 8.4.

8.1 Block Transform Background

8.1.1 Discrete Cosine Transform

The discrete cosine transform (DCT) decomposes a signal into coefficients representing
functions of varying frequency. It is closely related to the Fourier transform, which is a
standard mathematical method of representing a periodic signal as a linear combination
of an infinite number of sinusoidal functions that vary in frequency. We can think of the
Fourier transform as representing a function f(t) with 3 2 a:gi(t), where {a;} are the
transform coefficients, and {g;(¢)} are sinusoidal functions that increase in frequency as ¢
increases. We can relate the DCT of a sequence to the transform coefficients of a discrete
version of the Fourier transform as follows: Given a length n sequence {z;}, construct a
length 2n sequence by reflecting {x;} across one border. Take this length 2n sequence, and
periodically extend it out to infinity, thinking of this infinite sequence as a function f. The
coefficients of the discrete Fourier transform of f are the transform coefficients produced
by the DCT on {z;}.

The DCT of a length n vector x is computed by multiplying x by the n x n matrix C,
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defined as follows:

- \/Ecos () | fori=0;5=0,1,...,n—1
ij =

\/-%-cos (Q’—*'—IM) , fori=1,2,...,n-1;5=0,1,...,n—1

2n

Recall that coding gain (see section 2.4.1) is one widely used measure of the efficacy
of a transform. It is known that the coding gain of the DCT on highly-correlated AR(1)
sources is close to the optimal coding gain achievable by any transform for that source [36].
A highly-correlated AR(1) source is simply a mathematically defined statistical process for
generating data where adjacent data points are probabilistically likely to have the same
value. This source is frequently used as a model for images. The widespread use of DCT
for image coding can be partly attributed to the fact that DCT performs close to optimal on

the source used to model images.

In standard block transforms such as DCT, the input signal is divided into blocks of
length M, with each block transformed separately into an output block of size M. For the
forward DCT transform, the output consists of blocks of length M transform coefficients,
where block iz was obtained by multiplying input block ¢ by C, a matrix of size M x M.
The first coefficient in each block represents an average of the values of the coefficients in
that block; for historical reasons it is known as the DC coefficient. The other coefficients
in a block are known as AC coefficients. The inverse transform is computed by multiplying

each block by C~1.

When applied to two-dimensional data such as images, the DCT is first performed in
the vertical direction, and then in the horizontal direction. We can view this as dividing the
image pixels into two-dimensional blocks of size M x M, and applying the DCT to each
column of the M x M block, and then applying the DCT to each row of the resultant data.
Each input block of size M x M gets transformed into an output block of size M x M, where
the coefficient at (0, 0) is the DC coefficient, and all other coefficients are AC coefficients.
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8.1.2 Lapped Transforms

A lapped transform [36] is a generalization of the standard block transform where the input
is divided into overlapping blocks of length L, with each block transformed into an output
block of size M; we call this an M x L lapped transform. An M x L lapped transform can
be computed by multiplying the input row vector of length L with an L x M size matrix
representing the transform, resulting in a output block of length M. In a typical example
where L = 2M, each input data point is used in two adjacent output blocks. In this case,
the inverse transform to recover one original block of M input data points is computed by
taking two adjacent output blocks of coefficients (2M coefficients total) and multiplying it
with another 2M x M matrix representing the inverse transform. In the two-dimensional
case, we can view a lapped transform as mapping overlapping input blocks of size L x L
into output blocks of size M x M.

Unlike non-lapped block transforms, lapped transforms can take correlation between
adjacent blocks into account; this makes it more efficient at decorrelating signals. Lapped
transforms can also reduce blocking artifacts because their basis functions decay smoothly
to near zero at their boundaries. Both lapped orthogonal transforms (LOT) and lapped
biorthogonal transforms (LBT) have been studied. LBT’s have more degrees of freedom
than LOT’s since the biorthogonality condition is weaker than the orthogonality condition.
Aase and Ramstad [1] have shown that these extra degrees of freedom can be used to design

better lapped transforms for image coding.

8.1.3 Organization into Subbands

The block-transform coefficients of an LM x LM image are typically stored in a block-by-
block fashion, so that the output of a block transform that uses M x M blocks consists of an
L x L grid of M x M blocks, where each block represents an M x M block of the original
input image. However, we can conceptually reorder the transform coefficients into a grid

of M x M subbands, each of size L x L. This reordering puts all the DC coefficients into



107

one subband, ordered so that the DC coefficient in block (z, y) is at position (z, y) in the
DC subband. Similarly, there will be a separate subband for each AC coefficient; subband
(%, 7) will contain AC coefficients from position (, j) within their block, ordered so that the
AC coefficient at position (z, j) in block (z, y) will be located at position (z, y) in subband
(2, 7). Figure 8.1 illustrates this reorganization when M =4 and L = 6.

o O 5 500000
000800 = a =
©O000d
OOOCO0

oo 1© o) 000000
‘otelelelete

a a A [ ]

o ‘o)

‘o] o) S ‘o) ‘o) ‘] >

[ ] [ ] [ | [ ]

Figure 8.1: Coefficients from a block transform on the left are reorganized into subbands on
the right. Circular coefficients are the DC coefficients that end up together in one subband;
black coefficients from one block are scattered out to all subbands.

In this reorganized picture, each of the M? subbands represents the entire original image
at a different frequency decomposition. Note that with this organization, these subbands
are similar to the subbands from a dyadic wavelet decomposition in that coefficients in a
subband represent the same frequency decomposition of an image over differing spatial
locations. Furthermore, the upper-left block of DC coefficients (see figure 8.1) represents a
postage-stamp size overview of the entire image, much like the lowest frequency subband
in a dyadic wavelet decomposition. The principal difference between the dyadic wavelet
decomposition and this reorganized block transform picture is that all the subbands from
block-transforms are the same size, whereas in the wavelet transform, the subbands’ sizes
decrease by a factor of 2 with every additional level of the DWT performed. In other words,
block transforms offer a uniform-band frequency partitioning of the input, in contrast to the
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octave-band frequency partitioning of the wavelet transform.

For the DCT transform, the DC coefficient of an output block represents an average of
the 8 x 8 input block. Since adjacent image blocks often are similar, adjacent coefficients
in the DC subband will be correlated. For the lapped transforms, each traditional M x M
output block is computed from an L x L input block of the original image. Most of the
energy in the DC coefficient of the lapped transform is from the average of the entire L x L
block. Since blocks are overlapping, some image pixels are used in more than one average

and contribute their energy to adjacent coefficients in the DC subband.

8.1.4 Relation to the Wavelet Transform

With the subband organization, it becomes clear that we can also perform several levels of
block transforms by recursively reapplying the block transform to the DC subband. We use
the term hierarchical block transform to refer to any block transform scheme that decorre-
lates its DC subband by applying another transform. Note that hierarchical block transforms
are similar to the levels of the DWT in a dyadic wavelet decomposition. Since the DC sub-
band represents a small low-resolution overview of the entire image, we expect there to
be significant correlation in the DC subband. Hierarchically reapplying a block transform
to the DC subband should decorrelate it and enable better compression performance. We
could continue to perform levels of the block transform as long as the lowest-frequency
DC subband is not too small. Note that after every block transform step, we are always
reorganizing the transform coefficients so that a DC subband is always present. Also note
that in principle, any transform could be used to decorrelate the DC subbands; in addition
to the lapped transforms and the DCT, even a DWT could be used to decorrelate the DC
subband.

Another relationship between lapped transforms and the DWT is that a lapped trans-
form can be thought of as a generalization of one level of the DWT. Recall that the output
coefficients of a wavelet transform can be computed via convolution. For a k-tap wavelet

transform, any one output coefficient depends on at most k& consecutive input coefficients.
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Thus, an M x (M + k) lapped transform can use the overlap of k data points on the input to
compute the convolution of the input with the wavelet filter coefficients as would be done
by the DWT. In other words, the DWT can be implemented as a lapped transform. Further-
more, hierarchical lapped transforms can completely implement the DWT’s that use many
levels. In its full generality, hierarchical block transforms should perform better than the
DWT.

8.1.5 Previous Algorithms
JPEG

The most widespread image compression format using DCT is the standard JPEG [57]
format. It uses 8 x 8 DCT blocks. The DC coefficients are predictively coded, meaning
that the differences between adjacent DC coefficients are stored as symbols. For the AC
coefficients, a simple quantization scheme is used to store them; there is a standard table
dictating the quantization step size for each coefficient based on its position in the block.
The symbols are entropy coded with a Huffman code [23], which is a well-known block-to-
variable-length code (see section 3.3.2). Due to the advances in image compression and the
old age of the JPEG standard, it is significantly worse than wavelet-based zerotree coders

and other state-of-the-art coders in terms of rate-distortion performance.

EZ-DCT

Xiong et al.’s Embedded Zerotree DCT algorithm (EZ-DCT) [61] applied the zerotree tech-
nique to the DCT-transformed coefficients of an image. Although the coefficients of a DCT
transform are not naturally tree-structured, this coder showed that by imposing a some-
what arbitrary tree structure on the coefficients, reasonable performance could be achieved.
Their tree structure consisted of taking each 8 x 8 output block of the DCT transform, and
organizing the coefficients of that block into a single tree by pretending that it was produced
by a 3-level DWT of an 8 x 8 block.
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This coder performed much better than JPEG, and slightly worse than wavelet-based
zero-tree coders such as Shapiro’s EZW. At the time, EZ-DCT was the best image coder
that used the DCT transform.

EZ-LOT and EZ-LBT

Malvar applied the zerotree technique to lapped transform coefficients [35]. He basically
used the same method as EZ-DCT, but replaced the DCT transform with lapped transforms.
He defined an 8 x 16 LOT transform as well as a 8 x 16 LBT transform that were optimized
for both image compression efficiency and low computational requirements. We use EZ-
LOT (EZ-LBT) to refer to Xiong et al.’s embedded zerotree technique when applied to the
Malvar’s fast version of the LOT (LBT) transforms.

Tran’s Hierarchical Lapped Transforms

Tran et al. [54] focused on designing the best lapped transforms for image compression,
and did not consider the speed of computation to be a crucial factor. They designed several
lapped transforms, including 8 x 40 generalized LOT (GLOT), 8 x 16 generalized LBT
(GLBT), and 16 x 32 GLBT. These transforms were optimized solely for good coding
performance on images. In his coding algorithm, he used a hierarchical coder, where after
the first level of the lapped transform was performed, an additional 3 levels of the 9/7

Daubechies biorthogonal wavelet transform [3] were performed.

They also used a zerotree coding scheme on the transform coefficients that was very
similar to the EZ-DCT scheme. One difference is that the hierarchical transform provides
the opportunity to create deeper trees than previous non-hierarchical versions. We will use
EZ-GLBT to refer to Tran et al.’s hierarchical zerotree coder when applied to the GLBT

transform.
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PTC

Malvar’s Progressive Transform Coder (PTC) was an extension of his previous coder PWC
(see section 2.6.5) that replaced the wavelet transform with a hierarchical LBT. This coder
basically uses elementary Golomb codes to code the significance pass of a bit-plane. In
PTC, one level of Malvar’s fast LBT is performed, followed by a second level of DCT on
the DC subband of the LBT transform.

The least complex transform (the DCT) was used at the second level because fast per-
formance was one of the goals of this coder. Furthermore, a lower quality transform at the
second level does not hurt the overall compression performance much. However, the qual-
ity of the first level transform does matter; using LBT at the first level results in much better
compression performance than using DCT. Although the standard dyadic wavelet decom-
position is slightly better for image compression than the fast LBT, the LBT also requires

fewer computations. This makes the tradeoff worthwhile for some applications.

8.2 Group Testing for Block Transforms

In this section, we introduce our group testing for block transforms algorithm (GTBT)
[22], which applies the group testing framework to code coefficients generated from block
transforms.

Our technique will be identical to the GTW method presented in section 6.1.4 with the
exception of the group testing class definitions. This means that after applying the block
transform, we proceed by coding one bit-plane at a time with significance and refinement
passes. The significance pass will be exactly like GTW’s significance pass (procedure 6.1)
except that it will use GTBT classes instead of GTW classes. Similar to GTW, we compute
the average value of the DC subband and subtract it from the DC subband before starting
the bit-plane encoding.

We will use the same GTBT class definitions for each of the block transforms we use.

These transforms include the quickly computable LBT and LOT by Malvar, the GLBT by
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Tran et al., and the DCT. We will also try both hierarchical and non-hierarchical versions
of each of these block transforms; the hierarchical transforms we study will decompose the
DC subband with another block transform.

Our GTBT class definitions are based on the statistical characteristics of the trans-
form coefficients generated from applying block transforms to images. We now proceed

to present GTBT classes, followed by the ordering we use when we code these classes.

8.2.1 GTBT Classes

Exactly as in the definition of GTW classes, our GTBT classes have three different defining
characteristics: the subband level, the significant neighbor metric, and the pattern type.

In the definition of classes, we will exclusively use the subband view of the block-
transform coefficients, as shown in figure 8.1. Thus, we picture the transform coefficients

as having M? subbands, where M is the output block size of the transform.

Subband Level. It is well known that for any particular block, the energy in the AC co-
efficients decrease as you move away from the DC coefficient. This means that coefficients
in subbands closer to the DC coefficient are more likely to be significant than those in sub-
bands farther away from the AC coefficient. To model this behavior, we classify subband
(2, 7) according to its distance from the DC coefficient at position (0, 0).

The DC subband is in subband level 0. Subband level 1 contains those subbands (2, j)
which satisfy i + j = 1 ori + j = 2. Subband level 2 contains those subbands (3, 5)
which satisfy 2 < i + j < 5. Subband level 3 contains those subbands (, j) which satisfy
5 < t+37 < M, where M is the output block size. Subband level 4 contains those subbands
whose position (7, j) satisfy M < ¢ + j, where M is once again the block size. Figure 8.2
shows the 5 subband levels. This method of defining the subband levels was made based on
the two competing goals: preventing context dilution (by having fewer of subband levels)
and making the probability of significance of coefficients in one subband level about the

same (by having more subband levels).
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Figure 8.2: The subband levels of a block-transformed image in GTBT. Solid lines separate
subband levels; dotted lines separate subbands.

For hierarchical transforms that have two levels, we basically double the number of
subband levels; one set of levels contain subbands from the first transform, and the other
set contains the subbands from the second-level transform of the DC subband of the first
transform. Since a two-level hierarchical transform does not have any DC coefficients from
the first level, there are actually only 9 subband levels in a two-level hierarchical transform.
The subbands from the second level are considered more important than the subbands from

the first level of the transform.

Significant Neighbor Metric. Looking at the statistics of the transformed coefficients,
we found that adjacent coefficients in a subband showed statistical dependency on each
other. That is, the probability that the coefficient is significant increases as more of its
neighbors are found to be significant. Here, we consider the neighbors of a coefficient to
only be the 8 coefficients in the same subband that surround a coefficient. Thus, just like
in GTW classes, we define 4 values in the significant neighbor metric: 0, 1, 2, and 3+,
depending on whether 0, 1, 2, or more than 2 neighbors are significant. Because there are
only up to 8 neighbors, the maximum neighbor count is 8. Note that this definition is a

simplification of the original GTW scheme that omits parent-child relationships.
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Pattern Type. This characteristic is exactly the same as in GTW, where the coefficients
in a subband are assigned into 4 different pattern types based solely on its position in a
subband.

For non-hierarchical transforms, there are 5 subband levels, 4 significant neighbor
types, and 4 pattern types resulting in 80 classes total. For two-level hierarchical trans-
forms, there are 9 subband levels, resulting in 144 classes total. These classes are ordered
according to the same ordering as the GTW classes, namely, with significant neighbor met-

ric first, pattern type second, and subband level last.

8.3 Results

Here we present our results on some standard 8-bit monochrome images: the 512 x 512
images Barbara, Goldhill, and Lena (available from [28]); and a 768 x 768 fingerprint
image from the FBI's fingerprint compression standard [S]. We present results for our
GTBT on several different transforms: the 8 x 8 DCT; the 8 x 16 type-I fast LOT with
angles (6o, 61, 6>) = (0.1457,0.17x, 0.167) [36]; the 8 x 16 LBT from [33]; and the 8 x 16
GLBT from [54]. For convenience, we refer to GTBT using the DCT, LOT, LBT, or GLBT
transforms as GT-DCT, GT-LOT, GT-LBT, and GT-GLBT, respectively.

First, we compare PSNR results of a non-hierarchical version of GT-DCT with Xiong
et al.’s EZ-DCT scheme; their results are taken from [61]. As table 8.1 shows, GT-DCT
performs somewhat better than EZ-DCT on Barbara, and about the same on Lena. The 0.3
dB difference on Barbara illustrates the improvement from using group testing instead of
zerotree coding.

Next, we show our results for hierarchical versions of the four different transforms we
considered. For a given first level block transform, we did try using many different trans-
forms at the second level of the hierarchy. However, we found that the rate-distortion
performance difference between different transforms at the second level was insignifi-

cant. Using any second level transform did show a noticeable improvement over the non-
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Table 8.1: Comparing PSNR results of coders using the non-hierarchical 8 x 8 DCT trans-
form.

Rate (Bits/pixel)
0.25 05| 0.75 1.0
GT-DCT | 27.25 | 31.14 | 34.06 | 36.20
EZ-DCT | 26.83 | 30.82 | 33.70 | 36.10
GT-DCT | 32.31 | 35.90 | 38.06 | 39.52
EZ-DCT | 32.25 | 36.00 | 38.06 | 39.62

Image | Algorithm

Barbara

Lena

hierarchical version; however, the specific transform used at the second level did not appear
to be important. Given this fact, we only present results for hierarchical transforms that ap-
ply the same transform for the first and second level of the hierarchy. PSNR Results are
shown in table 8.2.

Note that the transforms we use all produce 8 x 8 output blocks of coefficients, and 64
total subbands. This implies that the size of the DC subband is a factor of 64 smaller than
the size of the input. Thus, after a two level hierarchy on 512 x 512 images, the size of
the second level DC subband is 8 x 8; this is small enough that applying another level of
transform would not help.

In general, coding performance improves as we proceed in order from DCT to LOT
to LBT to GLBT. This is expected, because each transform is of higher quality than the
previous one. LOT is better than DCT because it is lapped; LBT is a general form of
the LOT, and the GLBT throws away the fast-computability characteristic inherent in the
design of LBT.

It also appears that the lapped transform methods perform much better than the stan-
dard GTW on only Barbara and fingerprint, the two images containing the most edges. As
mentioned in the end of section 2.4.2, these edges lead to more energy in the coefficients
representing the high-frequencies. This suggests that the lapped transforms are better than
the dyadic wavelet decomposition at decorrelating high frequency content. One possible
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Table 8.2: Comparing PSNR results of various algorithms. GTW is used as the baseline,
so that for algorithm A, AA = A — GTW.

Image Algorithm Rate (Bits/pixel)
0.1} 0.25 0.5 1.0
GTW 24.37 | 27.87 | 31.59 | 36.47
AGT-DCT | —-28| -30| —-.26 | —.11
Barbara AGT-LOT +.81 | +1.19 | +1.25 | +1.09
AGT-LBT | +1.11 | +1.53 | +1.67 | +1.46
AGT-GLBT | +1.20 | +1.64 | +1.74 | +1.61
GTW 30.06 | 34.13 | 37.27 | 40.51
AGT-DCT | —-1.87| -163 | —-1.23 | —.86
Lena AGT-LOT |-1.11| -99| —-79| —.62
AGT-LBT ~-59| =53 -39 -39
AGT-GLBT}| -60| —-37| —-.21| -.31
GTW 27.76 | 30.46 | 33.10 | 36.47
AGT-DCT | -.70( —-.57| —-.56 | —.49
Goldhill AGT-LOT ~-25| —-04| —-.09| —.08
AGT-LBT -05| +10| +.13| +.09
AGT-GLBT| —-.06| +.12| +.08| +.14
GTW 28.35 | 32.80{ 36.06 | 39.98
AGT-DCT | -1.19|-1.09| —49 | +.24
Fingerprint | AGT-LOT -22| -30| +.15| +.88
AGT-LBT +.03| +.06| +.45| +1.05
AGT-GLBT | +.17| +.20| +.67 | +1.35
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reason for this behavior is that the lapped transforms offer a uniform-band frequency par-
titioning of the input, compared with the octave-band partitioning found in the wavelet
transform. As mentioned in [54], the finer frequency partitioning increases the frequency

resolution that can often generate more insignificant coefficients.

It is interesting to note that the wavelet packets version (GTWP) also handles images
with lots of high-frequency content well. Surprisingly, the GT-GLBT outperforms GTWP
by about 0.30 dB on the Barbara image. This is especially significant because GTWP
already outperforms GTW on this image by about 1.3 dB.

As expected, GT-GLBT shows some performance improvement over Tran ef al.’s Em-
bedded Zerotree technique applied to the GLBT (EZ-GLBT). Improvements of up to 0.45
dB were observed on the Barbara image, as illustrated in the PSNR curves of figure 8.3.
EZ-GLBT results are taken from [54]. This figure shows the performance gain of using

group testing instead of zerotree coding in image compression.

Compression of Barbara
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Figure 8.3: Comparing performance of coders using the GLBT transform and GTWP-S.
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8.4 Conclusion

In conclusion, we have shown that the group testing framework is flexible in that it can
be easily adapted to code coefficients from block transforms. We have also shown that the
group testing of both DCT and GLBT transform coefficients improves upon zerotree coding
of these coefficients by an average of 0.3 dB, over a range of bit-rates for the Barbara image.
Finally, we have also shown that the GLBT transform can lead to results that surpass even
our previous GTWP aigorithm by about 0.3 dB. Our coder shows one way of effectively
coding block transform coefficients. It gives more insight on the statistical characteristics
of block-transformed coefficients, insight which can be used to create better image coders
using block-transforms. Thus, our image coder is an interesting addition to the field of

image compression.
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Chapter 9

THEORETICAL PERFORMANCE OF GROUP TESTING

In this chapter, our goal is to explore the efficacy of group testing when used on trans-
form coefficients of an image. We are particularly concerned with group testing’s efficacy
in the context of GTW, the image coder defined in chapter 6. To explore this problem,
we first define two different probabilistic models for representing the bits of the transform
coefficients: an independence model that does not model dependencies between bits, and a
dependence model that does include some probabilistic dependencies.

We study the independence model because it is simple and easy to analyze. However,
we know it is not completely accurate because the coefficients do in fact have probabilistic
dependencies with each other (see section 2.5). This motivated us to study the dependence
model; although it is more complicated, it is also a more accurate representation of the
bits to be compressed. Understanding group testing’s performance when the input bits
are probabilistically dependent helps us obtain a more accurate view of group testing’s
performance on images.

The independence model is basically composed of simple i.i.d. binary sources, while
the dependence model is composed of the two-state Markov model first discussed in section
5.3.4. For both i.i.d. and Markov sources, we define group testing methods for efficiently
encoding the source, calculate the bit-rates of the different methods, and compare the bit-
rates with the entropy of the appropriate source. The bulk of this chapter is concerned
with showing the effectiveness of group testing as a general entropy coder on these two
sources. Although we are primarily concerned with examining group testing’s performance
on images, this chapter also shows the performance of group testing on any data that can

be modeled by an i.i.d. binary source or a two-state Markov source.
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The group testing methods we study for encoding sources are all based on using group
iterations (procedure 6.2) to code source bits. For the i.i.d. source, our method is to repeat-
edly perform group iterations of an appropriate size. For the two-state Markov source, we
present three different encoding techniques: simple sequential coding, two-state sequential
coding, and interleaved coding. For each technique, we calculate the bit-rate of the simple
version of these methods with group iteration size two. We keep the group iteration size
small so that the methods can be more easily analyzed.

In section 9.1, we discuss general characteristics of transform coefficients of an image
in order to determine how they should be modeled. In section 9.2, we introduce the inde-
pendence model. We also discuss the efficacy of group testing on the model, as well as the
model’s relation to actual images. Section 9.3 introduces the dependence model that uses
Markov sources and discusses its relation to actual images. Section 9.4 studies efficacy
of the three different group testing methods for the Markov source. As we introduce each
method, we also relate them to the actual group testing methods used in GTW. We summa-
rize and draw some conclusions about the capabilities of different group testing methods in

section 9.5.

9.1 Modeling Image Transform Coeflicients

In this thesis, the image compression algorithms that we study are all transform coders that
use bit-plane coding. That is, the coders apply a transform to the image and encode the
transform coefficients in a bit-plane by bit-plane manner. To study the theoretical perfor-
mance of this type of compression, we first need to define a probabilistic model for the bits
in each bit-plane. This is necessary before the bit-rates of different group testing techniques
can be calculated.

Note that although we principally talk about modeling wavelet transform coefficients,
the models that we study apply equally well to coefficients generated from other transforms.
Similarly, although we explain our methods of encoding the models by relating them to the
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GTW algorithm, they are also related to GTWP and GTBT.

9.1.1 Bit Characteristics of Transform Coefficients

We can apply knowledge about the statistical characteristics of wavelet coefficients (see
section 2.5) to infer the statistical characteristics of the bits in a bit-plane. We know that the
bits in a bit-plane can be divided into refinement bits and significance bits, depending on
whether they were coded in the significance pass or the refinement pass. For refinement bits
b, Pr[b = 1] = 0.5. For significance bits b, Pr[b = 1] is typically close to zero, but can vary
widely for bits in differing subbands as well as bits with differing number of significant
neighbors.

Furthermore, the significance bits in earlier bit-planes have a higher probability of being
0 than the significance bits in later bit-planes. Using the Barbara image as an example, only
a few hundred coefficients are significant in the first few bit-planes. This is out of a total
of 512 x 512 coefficients, implying that Pr[b = 1] =~ 0.0001 for significance bits b in the
first few bit-planes. By the bit-plane 7, there are about 10, 000 significant coefficients in the
Barbara image, implying Pr[b = 1] ~ 0.04 for significance bits b in bit-plane 7.

The significance bits exhibit dependencies on each other, with bits both in the same
bit-plane as well as bits in other bit-planes. This is a directly implied by our knowledge
about the dependencies between coefficients; we illustrate this by using the dependencies
between spatially adjacent coefficients as an example. For coefficient c, let bi(c) denote
the kth bit of ¢, i.e. the bit of ¢ encoded by bit-plane k. Let b(c) be a significance bit of
coefficient ¢, and let ¢, be a coefficient adjacent to c. Then if b;(c,) = 1 for some j < k,
then c, is significant and b (c) is much more likely to be significant; if bj(c,) = 0 for all
j < k, then ¢, is insignificant, and b(c) is less likely to be significant. Thus, bix(c) is
dependent upon b;(c,), for any adjacent coefficient c, for all j < k.

Of course, there are other dependencies besides those between adjacent coefficients,
such as those between parent coefficients and their children.

Based on the above observations, we could construct a probabilistic model that gener-
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ates the bits of each bit-plane in accordance with the known dependencies and probabilities
of significance. However, because there are many dependencies, such a model would be
fairly complex; it would be difficult to analytically determine the bit-rate of applying group
testing to this complex model. Instead, we construct much simpler models that generate
the bits of a bit-plane. In these simpler models, the bit-rate of applying group testing can
be analytically determined. The analysis of these simpler models gives us insight on group

testing’s performance on real images.

9.2 Independence Model

In this section, we define a simple independence model for generating the transform coeffi-
cient bits of an image. We then show how to use group testing to encode the bits from this
source model, and compare the bit-rate of group testing with the entropy of this model. We
then relate the results of analyzing this model to the GTW algorithm.

In the independence model, we assume the bits are generated independently. However,
we do not assume the bits are identically distributed. Under this model, an n-bit source
would be specified by » numbers, (p1,...,pn), where p; = Prbiti = 0]. To model the
bit-planes of the transform coefficients, the p;’s for refinement bits would be close to 0.5,

and the p;’s for bits in bit-plane one would be close to 1.

9.2.1 Encoding Independence Model

Since the p;’s are known for all bits, one way to encode this source is to divide the bits into
classes based on p;, and separately encode each class. We define the classes so that all bits
in any class have approximately the same probability of being significant. We encode each
class using group iterations, where the size of the group iteration is chosen optimally based
on the p;’s for the bits in that class. In effect, we are reorganizing the bits of the model
so that they seem to be coming from a composite source consisting of many i.i.d. binary

sources, where each binary source has a different probability of generating 0’s. As long as
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n is large enough, our method of dividing the bits into classes is approximately the same as

using group iterations on this composite source.

9.2.2 Group Testing Performance on Independence Model

Figure 5.1 in section 5.1.2 shows the efficacy of performing group iterations on an i.i.d.
source relative to entropy when the optimal group itération size is used. As can be seen, the
group testing bit-rate is always within 5% of entropy. On a composite source consisting of
i.i.d. binary sources, the group testing bit-rate would be a weighted average of the bit-rates
for each binary source, where the weights depend on the relative proportion of bits produced
by each source. Since all the bits are independent, the entropy of the composite source is a
weighted average of the entropy of each binary source. Thus, we can see that group testing
bit-rate on the composite source is also within 5% of the entropy of the composite source.
This suggests that group testing applied to the independence model is also within 5% of
entropy.

To complete the analysis of this model, we present one method for calculating the bit-

rate of using group iterations on an i.i.d. binary source in section 9.2.4.

9.2.3 Relation to GTW

The independence model examines the performance of compressing the transform coeffi-
cients under the assumption that all bits of the transform coefficients are independent of
each other. The technique of using different classes for bits with different probabilities is
clearly similar to GTW’s use of GTW classes. Our method of encoding the independence
model represents the performance of GTW when given a black box capable of perfectly
classifying each bit, giving every bit’s conditional probability of significance given the val-
ues of all other bits.

Unfortunately, a black box capable of perfect classification is impossible to construct.

Since the bits are encoded bit-plane by bit-plane, the values of the bits in previous bit-
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planes are known when encoding the current bit-plane. This knowledge makes it possible
to separate the significance bits from refinement bits. However, it is not possible to perfectly
classify all the significance pass bits. As an example, a classifier cannot always separate
out coefficients with many significant neighbors from coefficients without many significant
neighbors, because the values of the neighbors at the current bit-plane are not yet known
when the bit-plane is being encoded.

We can view GTW’s use of GTW classes as an attempt to approximate this perfect
classification black box, based on all the available information about the coefficients. We
believe that the GTW classes provide a reasonable approximation to the black box because
of GTW'’s excellent performance compared with other image coders. Although the GTW
classes do not perfectly represent the black box, examining the performance of encoding the
independence model still provides useful insight on the theoretical performance of GTW.

Recall that GTW only uses group testing on the significance pass bits, and that the
refinement pass bits are left uncompressed. If we were to apply group testing to the refine-
ment pass bits, then a group iteration size of one would be optimal since the probability
of significance of these bits is about 0.5; this is exactly the same as leaving these bits un-
compressed. Thus, we can view the overall GTW algorithm as dividing all the bits in a
bit-plane into classes and coding the classes with group iterations, where there is one class
representing the refinement bits that will be coded with group iteration size one. Our effi-
cacy results of encoding the independence model represents encoding the entire image, not

just the performance of encoding all the significance pass bits in GTW.

9.2.4 Group Testing Bit-rate for i.i.d. Sources

In this subsection, we present one method for calculating the bit-rate of using group itera-
tions on an i.i.d. binary source. Because making a group iteration results in an elementary
Golomb code (see section 5.1.2), calculating the bit-rate of using repeated group iterations
is equivalent to calculating the bit-rate for the corresponding elementary Golomb code.

We can use equation 3.5 to calculate the bit-rate of an elementary Golomb code on a i.i.d.
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source. We are given a binary i.i.d. source S, where p is the probability that a source bit is
0. Let k be the group iteration size that we choose; our goal is to calculate the bit-rate of
EGk (defined in section 3.3.4) on this source S,.

Let (bo, by, . .., be) = (1,01,001,...,0%721,0%"11, 0F) be the k + 1 input messages of
EGy, and let (c;) be the corresponding k + 1 output codewords such that b; maps to c;- We

now summarize our knowledge about this code:

i+1, for0<i<k
|b:| = .1

k, fori =k

1-p)p', for0<i<k
Prib;] = (1-2) 9.2)

*, fori=k

(1 + l-logz kJ’ for 0 _<_ 1< k’ = 2“082 kj+1 __ k

lesl = 2+ |logy k|, fork' <i<k (9.3)

1, fori=k

\
Note that although the expression 2+ |log, k| given for |c;| when k' < i < k is different

from the expression 1 + [log, k] given in section 3.3.4, these two expressions are in fact
equivalent.
Using equation 3.5, the bit-rate can be calculated as

o Prib] il
o Prib] i

=0

We can plug in the appropriate values from equations 9.1 — 9.3 and use Mathematica to

solve for the final result:

vl
R(EGg, Sp) = (1 —p) (l_log2 k] +1+ T — p") , 94

where k' = 2llogz2kl+1 _ g
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Recall (from section 3.3.4) that k*(p) refers to the optimal group iteration size on source
Sp; it is chosen to satisfy the inequalities 3.6. Note that using the above expression for the
bit-rate, it is possible to prove that the integer k satisfying the inequalities 3.6 is the integer
that minimizes the bit-rate over all possible group iteration sizes. Also recall (from section
5.1.2) that GTR(p) refers to the group testing bit-rate on source S, using the optimal group
iteration size. This means GTR(p) = R(EGi-(p), Sp), and that GTR(p) is defined by
equation 9.4 with k set to k*(p).

9.3 Modeling Dependencies

In this section, we define a model for generating the transform coefficient bits of an image
that includes dependencies between the bits. We first discuss general issues about mod-
eling dependencies, before explaining the actual dependence model. We then discuss the
accuracy of the model in accounting for the transform coefficient bits. Bit-rates for the
dependence model are calculated in section 9.4.

Our primary goal in defining a dependence model is to represent the statistics of trans-
form coefficient bits more accurately than possible with a model assuming independence.
A secondary goal is to keep the model simple, so that performance of different group testing
methods can be more easily determined analytically. The dependencies between coefficient
bits in our model gives us more confidence in the applicability of the our group testing per-

formance resuits towards real images.

9.3.1 Choosing Dependencies to Model

As previously mentioned in section 9.1.1, trying to model all the dependencies present in
the transform coefficient bits would lead to an unwieldy, complex model. In choosing the
appropriate dependencies to model, we are motivated by the following fact:

Given two bits b; and b,, and the associated probabilities Pr{b; = 1] and Pr{b; = 1],
if b; and b, are probabilistically independent, then their total entropy is greater than if
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they are dependent on each other. Furthermore, the more dependent they are upon each
other, the less total entropy they have. This means that io obtain a good approximation
of the transform coefficient bits, we should include the dependencies between bits that
are strongest in our model. In order help the model to remain simple, we can ignore the
dependencies between bits that are not that strong, but still exist.

We know from our image coding work that the strongest dependencies are between
coefficients that are spatially adjacent to each other in the same subband. Thus, our de-
pendence model will include dependencies between adjacent bits, and ignore other depen-
dencies such as those between a parent coefficient and a child coefficient in the dyadic
wavelet decomposition. Another advantage of using this simplified model of the dependen-
cies is that it also works equally well for the wavelet packet transform and block transform
coefficients.

Another simplification that we make in the dependence model is that the dependence
model consists of one-dimensional streams of bits, while transform coefficient bits are in-
herently two-dimensional in nature. One-dimensional models have many fewer dependen-
cies than their two-dimensional counterpart; this makes it easier to analytically determine
the bit-rates of using group testing on the one-dimensional models.

Since the entropy of dependent bits is less than the entropy of independent bits, we ex-
pect algorithms that do not know about bit dependencies but assume bits are independent
to perform worse than algorithms that know about the bit dependencies. Designing com-
pression algorithms with the dependencies in mind gives the algorithms a chance to exploit

the dependencies to obtain a lower overall bit-rate.

9.3.2 Dependence Model

Our dependence model is a composite source, consisting of a set S; each element of S is
a source generated from the two-state Markov chain shown previously in figure 5.3. Note
that although the elements of S are generated independently from each other, the bits that

any one element of S produces do have dependencies with each other. Each element of S
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has its own parameters p and ¢, where p is the probability of transitioning from state 0 to
state 1, and q is the probability of transitioning in the reverse direction. We assume each
source starts out in the stationary distribution.

To encode this source with group testing, we simply need to specify a method of encod-
ing Sp 4, which is the Markov source with parameters p and g. Compressing the compos-
ite source would consist of applying our group testing method to each individual Markov
source. It is easy to see that if the bit-rate for our group testing method on S, 4 for any
values of p and q is always within 2% of the entropy of Sj 4, then the bit-rate for the com-
posite source is also within % of the entropy. Section 9.4 compares the entropy of Sy 4

with many different group testing methods for encoding Sp,.

9.3.3 Relation to Transform Coefficient Bits
Markov Sources for a Bit-plane

We first look at how Markov sources can represent the bits in one bit-plane of the transform
coefficients. The bits in a bit-plane can be divided into significance pass bits and refinement
pass bits. We can model the refinement pass bits as generated by the source So.5,0.5; thus,
these bits are generated independently and uniformly at random. For significance pass
bits, we model each subband as generated by a different Markov source with different
parameters p and q. Thus, we are ignoring dependencies between subbands, and modeling
only dependencies between neighboring bits.

The dependencies in the Markov source are similar to those present in a subband in
that bits of similar value tend to be clustered together. Thus, 1 bits are more likely to be
found next to other 1 bits, and likewise for 0 bits. However, it is clear that the Markov
source is not a completely accurate representation of the dependencies within a subband.
As previously mentioned, the main difference is that the Markov source generates a one-
dimensional stream of bits, while subbands are two-dimensional in nature, with dependen-

cies existing between horizontally and vertically adjacent neighbors. In this work, we take
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the path of using simple dependency models so that the bit-rates of using group testing on
these models can be more easily determined. Since the one-dimensional model is a special
case of the two-dimensional model, we can view our work as a stepping stone to dealing

with the two-dimensional model.

Markov Sources for All Bit-planes

We know that the probability characteristics of a bit-plane differ from one bit-plane to the
next; earlier bit-planes have fewer 1 bits in their significance pass. Thus, we use separate
Markov source models for each bit-plane. For the significance pass bits, one Markov source
is used to model the bits from one subband of one bit-plane. Although this seems to imply
that our model ignores all dependencies between bit-planes, this need not be the case. We
know that image compression techniques code the bits in bit-plane order, so that all previous
bit-planes are known before starting to code the current bit-plane. Thus, the parameters p
and q for the Markov sources in the second bit-plane can be specified dependent upon the
actual values of the bits in the first bit-plane. In other words, if a subband happened to
have more significant coefficients than expected in the first bit-plane, the value of p for
that subband in the second bit-plane could be higher than it would have been otherwise.
Similarly, the p’s and ¢’s for sources in bit-plane ¢ can be dependent on the values of all
bits in previous bit-planes. Note that knowledge of previous bit-planes is already assumed

when dividing bits into significance and refinement passes.

Choosing p and q

We can use our knowledge about transform coefficients to estimate reasonable values for
the parameters p and g in our Markov source. For the first few bit-planes, there are very
few significant coefficients, and p should be very close to zero. For any given subband,
the value of p should increase with each successive bit-plane. Furthermore, lower level

subbands that contain more significant coefficients should have higher values of p than
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higher level subbands.

Values of p between 0 and 0.5 appear to be reasonable for modeling the bits of a sub-
band. Since most transform coefficients are close to zero, we expect most subbands to be
modeled by sources where p is close to zero. However, there are subbands where p =~ 0.4 is
not an unreasonably high value for its associated Markov model. Looking at figure 6.8, we
see that when a coefficient has a significant neighbor metric of 6 out of a maximum of 12,
then its probability of significance is about 0.4. These coefficients are probably found only
in subbands where a high percentage of the coefficients in that subband are significant. This
would most likely happen in one of the lower level subbands at one of the higher bit-planes.
In fact, for any subband, there is a threshold level at which approximately 3 the coefficients
are significant. This means that for some bit-plane i, we expect about % the significance
bits to be 1. Since lower frequency subbands have larger coefficient values, the bit-plane
in which a significant fraction of the bits become significant is lower for low frequency
subbands. It can be empirically verified that when encoding an image at a high quality
setting, the number of bit-planes encoded surpasses this threshold level for the subbands in
the lower levels.

The parameter g controls how likely the 1’s are to be clustered, with lower values cor-
responding to longer clusters of 1’s. As we explain below, values of g betweenpand 1 — p
appear to be reasonable for modeling the bits of a subband. In the Markov sources applica-
ble to our modeling task, g should be low enough so that there is a significant probability of
generating clusters of 1’s. Note that if ¢ = 1 — p, then the Markov source is in fact an i.i.d.
source and no clustering of 1’s occurs. If ¢ < 1 — p then some clustering occurs, whereas
if ¢ > 1 — p then the 1’s are unlikely to be clustered together. Thus, ¢ < 1 — p is necessary
to ensure clustering occurs.

An additional constraint on ¢ is that g should not be so low that too many 1’s are gen-
erated by the source. Figure 6.8 shows that the probability that any significance bit is 1
never rises significantly above 0.5, even for bits whose neighbors are all significant. This

implies that when coding the significance pass bits of any particular subband, we expect no
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more than % the bits to be significant. Thus, our source that models the bits in a subband
should generate no more 1 bits than 0 bits. We need to ensure that Ty > 0.5, where 7 is
the probability that the Markov chain is in state O in the stationary distribution. As shown
in section 9.4.1, 7 is easily calculated to be ¢/(q + p), which implies that choosing g > p
ensures this additional constraint.

In our work, we examine our model for all values of p in the range 0.1 < p < 0.5
when ¢ = 0.5 and ¢ = 0.4. Although this is a somewhat arbitrary choice, this choice
is motivated by several factors. One factor is that ¢ = 0.5 satisfies the reasonableness
condition p < g < 1 — p for the values of p that we test. In addition, when ¢ = 0.5,
the expected length of a run of 1 bits is 2. We feel this is a reasonable approximation
of the occurrence of clusters of significant coefficients in image transform coefficients.
Finally, we chose not to examine the model when p < 0.1 because of the complexity of
analytically determining the bit-rate for appropriately designed group testing methods for
small p. With small p, it is necessary to use large group iteration sizes to obtain good
compression performance. Since we only analytically determine the performance of group
testing methods with group iteration sizes 2 or smaller, our results are not applicable to

Markov models with small p.

9.4 Two-state Markov Chain Model

In this section, we analyze the performance of encoding the two-state Markov chain model
with the different methods of group testing. We start by defining the two-state Markov
source and calculating its entropy. We then present three different methods for encoding
this source: simple sequential coding, two-state sequential coding, and interleaved cod-
ing. We relate each method to the corresponding image compression algorithm that the
method models. We also calculate the bit-rates of these methods on our Markov source,
and compare them to the entropy of the source.

In the simple sequential coding method, we repeatedly perform group iterations of the
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same size to encode the source. In the two-state sequential coding method, we repeatedly
perform group iterations of two different sizes; the size we use depends upon the state we
are in. In the interleaved coding method, we no longer encode the source bits in order,
but instead start by coding every other bit before coming back to encode the uncoded bits.
These methods are explained in more detail in the following subsections.

The three methods are ordered from simplest to most complicated to implement. As
we progress to the more complex methods, the method more closely resembles the actual
method for encoding bits used in GTW. For each of these methods, we calculate the bit-rate
assuming we use a group iteration size of two. Keeping the group iteration size small makes
the bit-rate calculation tractable. We then compare our group testing methods to each other,

and to the entropy of the source.

9.4.1 Two-state Markov Chain Source

We now present some notation for the binary source that generates bits according to the two-
state Markov chain as described previously in section 9.3.2. Let S; , represent this source,
where p is the probability of transitioning from state 0 to state 1, and g is the probability
of transitioning in the reverse direction. The source starts out in the stationary distribution
7 = (mo, 1), Where 7; is the probability of starting in state i. We also use b; to denote the
ith bit produced by the source; b; = 0 if the ith step of the Markov chain transitions into
state 0; otherwise b; = 1. Furthermore, we define 7 = 1 — p and § = 1 — q to make some
of the formulas more readable.

Note that the stationary distribution 7 is fairly simple to calculate for this Markov chain;

solving the simultaneous equations:

Mo = pPmo+qm

m+m = 1

leads us to conclude that

(o, ™) = (L _P_)



133

9.4.2 Entropy of Markov Source

The entropy of Markov chain sources is known to be the average value of the entropy at

each state [46]; for a chain C with m states U;, we have

H(C) =)_Pr{U] H(Uy). 9.5)

i=1

Thus, the entropy of S, 4 is simply

H(Sp,q) = mo(—plog, p — plog, p)) + mi(—qlog, ¢ — qlog, ). (9.6)

9.4.3 Simple Sequential Coding

One way of encoding Sp 4 With group testing is by encoding the bits of the output source
sequentially. The most obvious way to encode S, , is to pick a group iteration size & that is
suited for the source, and to then encode the bits of the source with repeated group iterations
of size k. In this method, k never changes. We denote this method SC(k). Intuitively, this
is not the best method because the distribution of the source symbols changes depending
on the current state of the Markov chain. With different probability distributions, different

group iteration sizes could perform better.

We would expect the bit-rate of this simplistic method to be about GTR(m), since
this method “assumes” the underlying source S, , is like the i.i.d. source Sy,. With this
intuition, we would expect the optimal value of k for this source to be about k*(7g). In
the context of image compression, this method represents encoding the bits ignoring the
existing dependencies and assuming the transform coefficient bits are in fact independent.
Since the source is a model of the bit-plane of a subband, we can think of this method
as defining GTW classes based solely on the subband level, and not upon the significant
neighbor metric nor on the pattern type.
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9.4.4 Bit-rate of Simple Sequential Coding

Here we calculate R(SC(2), S;,4), the bit-rate for simple sequential coding using group
iteration size two. We can calculate the bit-rate by using recurrence equations. Let U,
represent the expected number of bits used to encode n bits from Sp ¢, given that the last bit
from the source was a 0. Let V;, represent the expected number of bits used to encode n bits
from S, 4, given that the last bit from the source was a 1. We can think of U,, as encoding a
string of length n knowing that the source is in state 0 of its Markov chain. Similarly, the

V.’s know that the source is in state 1 of its Markov chain.

U=V, = 0 Initial Conditions
u=Vv; =1
U. = 0(1+Up_2) (Processing 00)
+ 5p(2 + Va-2) (Processing 01)
+p(2+ Vp—1) (Processing 17)
Vo = gp(l+U,_2) (Processing 00)
+qp(2 + Va_2) (Processing 01)
+ 32+ Vo) (Processing 1?)

Note that 1? means we saw and encoded a 1, and the value of next bit ? is still uncoded
and will be coded next. To solve this recurrence, we use the method of generating functions

presented in [19]. First we simplify the recurrence equations, obtaining:

Un = alUn2+a:Va_a+a3V, ) +ay 9.7
biUp—2 + b2Va_2 + b3V4) + by, 9.8)

S
I
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where

a, = p?

a; = pp

a3 = p

a; = a;+2ay+ 2a3
bp = gp

b = qp

bs = ¢q

by = by + 2by + 2b;.
Next, we put the recurrence equations in generating function form. We illustrate this
process for equation 9.7. The first step is to write down a single equation that expresses Uy,

for all values of n, assuming that U, = 0 and V;, = 0 for all n < 0. In this case, we get the

equation:
Up = a1Up—2 + a2Va—2 + a3Vp_1 + ag — a46n0 + (1 — a4)6n1,
where
0, forn#k
6nk =
1, forn =k.

Next, we multiply both sides by 2™ and sum over all n. This produces:

Z U,z" Z a Un_22™ + Z asVp_a2™ + Z azVp_12" + E asz"
n
— z a46n02" + Z(l — a4)bn 2"

Simplifying, we get:

E U, = alzzz U,._zz"_2+a222§ V,,_gz""z-i-a;;zz V_lz"_1+a4§ 2"
n n n n n

— a2 + (1 —ay)2!
1

n o __ 2 n 2 n n
;Unz = 2 ZUnz + azz zn:V,.z +asz¥Vnz +a41_z

—ag+ (1 —ayg)z
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Since the generating functions U(z) and V'(z) are defined as

U(z) = i Upz" =) Unz", V(z)= f: Vaz" =Y Vaz",

n=0 n n=0 n
we then replace the infinite sums with either U(z) or V(z) obtaining

ay

U(z) = a,2%U(2) + a22*V (2) + a3zV (z) + - —ag+ (1 — ag)z.

1

Using a similar process, we also can obtain
b
V(2) = b, 22U(2) + b222V (2) + b32V(2) + 1__4; — by + (1 — by)z.

We can now use Mathematica to solve for U(z) and V' (z) in terms of p, ¢, and z:

21+ (1 —g+pg)z+(-1+p)Q—p—9g)2® - (-1+p)(1 —p—g)7’)
(1-21-(-1+p)2)Q1-(1—-p—9q)2)

z2(1-(1-3p+p*—q)z+p(1 —p—q)2°)

(1-2P21 - (-1+p)2)1 - (1-p—9)?)

From the standard properties of generating functions, we know that

_ V() _ 1-Q-3p+7—q)z+p(1 —p—q)2°)

B T (1-22A-(-1+p2x)(1-(1-p—4q)2)

is a generating function for the sequence (V, V2, V3, ...). Let W;(z) and W (z) represent

the numerator and denominator, respectively, of W (z). Then the general expansion theorem

U(z) =

V(2)

w(2)

for rational generating functions [19] applied to W (z) tells us:
Wo =V =(con+c)1"+a(-1+p)" +c3(l —p—q)",

where ¢;’s are real numbers, and ¢, = (2W3(1))/(W/['(1)). In the bit-rate calculation (equa-
tion 3.1) the bit rate is lim,,_. iVn. Since all other terms besides the cy are lower order
terms that approach 0 as n approaches co, we can see that ¢, actually represents the bit-rate.
Using Mathematica once again, we find the bit-rate of this method is

_ _q+pd—q)—2p°
R(SC(2), Sp) = c0 = L5 st (9.9)

Note that using U(z) to calculate the bit-rate gives the same result. Section 9.4.9 presents

plots of this bit-rate for various values of p at ¢ = 0.5 and ¢ = 0.4.
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9.4.5 Two-state Sequential Coding

The more sensible alternative way of sequentially encoding S, is to choose the group
iteration size k£ dependent upon the current state of the Markov chain for S, ;. This method
has two group iteration sizes kp and k;; when the Markov chain is in state b, group iteration
size k; is used. This means that if the last bit processed was an b, then the next group
iteration size used is k,. We denote this method SC(kq, k;)- Note that when ky, = k;, we
are choosing the same group iteration size no matter what state we are in; this is equivalent

to the simple sequential coding method. Thus, SC(kq, ko) = SC(ko).

We can view the encoder of this method as a two-state algorithm: in state 0, it uses kg
as the group iteration size; in state 1, it uses k; as the group iteration size. Intuitively, k¢
should be chosen to be about k£*(j5) since the probability of a zero occurring in state 0 is
P. Similarly, &k, should be chosen to be about k*(g). This method can be thought of as a
simplified version of the adaptive version of group testing where the group testing iteration

size changes as more bits are encoded.

In our application to image compression, we are concerned with sources where ¢ = 0.5
(see section 9.3.3); this models a clustering effect on the 1 bits. Since £*(0.5) = 1, we
study the case where k; = 1. This implies that after seeing a 1 bit, the sequential encoding
method tests the next bits individually until it sees a 0 bit.

Since we use these sources to represent one bit-plane of one subband of the transform
coefficients, this technique is like defining two classes for each subband, one for bits less
likely to be significant, and one for bits more likely to be significant. In fact, this can rep-
resent defining GTW classes based on subband level and on a simple significant neighbor
metric. Unlike in GTW, these bits are always coded in a sequential order. This means that
when coding any bit, only up to one adjacent bit can be known to have value 1.
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9.4.6 Bit-rate of Two-state Sequential Coding

Here we calculate the bit-rate for SC(2,1). We assume the encoder starts out in state 0,
meaning that it first chooses a group iteration size of 2. There are three possible input
messages we could process in state 0: 00, 01, and 1?. As described above, if the last bit
processed is a 1, then we transition into state 1; otherwise, we remain in state 0. In state 1,
the group iteration size is one; we either process a 0 and transition into state 0 or process a

1 and remain in state 1.

We now calculate the bit-rate by using recurrence equations in a manner similar to
section 9.4.4. Let U, represent the expected number of bits to encode n bits from S, g,
given that we are in state 0 (or equivalently, that the last source bit seen was a 0). Similarly,
let V;, represent the expected number of bits to encode n bits from S, 4, given that we are

in state 1. The equations are as follows:

U=V = 0 Initial Conditions
U1 = ‘/1 = 1
Uo = pp(1+Up_) (Processing 00)
+ pp(2 + Vo—2) (Processing 01)
+p(2 + Vo21) (Processing 1?)
Vo = q1+U,-1) (Processing 0)
+q(1 + Vo) (Processing 1)

Note that with the exception of the equation for V,,, these equations above are the same

as the equations for the simple sequential coding method.

Once again, we use the method of generating functions to solve this recurrence. Sim-

plifying the equations, and putting them into generating function form yields:
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U, = aUp—2+a3V,_2+a3Vy_1 +ay
Vo = biUn-1 +b2Va1 + b3
U(z) = Z Uiz = a,22U(2) + 0,22V (2) +a3zV(z) + ay/(1 — z) —as + (1 — aq)z

=0

V(z) = _ Vit = b2U(2) + b2V (2) + bs/(1 = 2) — bg + (1 — ba)z,

1=0

where
a = p*
a; = pp
a = p
ay = a; + 2a; + 2a;
bh = ¢
b = @

by = b +by=1.
Mathematica can solve this, resulting in:
z(1— (1 -3p+p* —q)z —p(1 + (-2 + p)g)2?)
1-221~-(-1+p)2)(1-(1-p—4q)2)
z(1 — (1 = p)22% + qz(1 + 2pz — p*z2))
(1-221-(-1+p)2)Q1-(1-p—q)2)

We can then use the general expansion theorem for rational generating functions to

U(z)

V(iz) =

derive that

Un = (con +c1)1" +c2(—1 —p)" +c3(1 —p = q)",

where ¢;’s are real numbers, and c; represents the bit-rate.

Using Mathematica once again, we find the bit-rate of this method is

g+ 2(1+9) —p*(1 +4q)
R(SC(2,1),Sp0) =co = C-plp+q)

Section 9.4.9 presents plots of this bit-rate for various values of p at ¢ = 0.5 and ¢ = 0.4.
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9.4.7 Interleaved Coding

Instead of sequentially encoding the bits of S, ; with group testing, we could encode the
bits in a different order to try to obtain a better bit-rate.

Let (bo, by, ...) represent the output bits from S,,. Let By = {b; : iiseven}, and
B, = {b; : iisodd}. Then one possible encoding scheme is to first code bits from By
followed by bits from B;. The By bits can be encoded with any sequential coding method,
however, we will typically use SC(2, 1) because its bit-rate has already been calculated
(see section 9.4.6). After coding bits from B,, we next encode the bits from B; using
knowledge about By. This will result in more efficient coding than coding B, without any
previous knowledge. For all b; € B,, we will know the values of both b;_; and b;;; when
we are coding b;. In contrast, the sequential methods only (potentially) know about b;_;
when trying to encode b;. Knowing more information should enable us to code b; more
efficiently than in the sequential case. Of course, this is offset by the fact that we know less

information about bits in By when coding them than the sequential method knows.

After encoding the even-numbered bits By, we can divide the odd-numbered bits B, into
4 different classes depending upon the values of its neighboring bits in By; we can label
these classes 0.X0,1X0,0X1, and 1X1, where the X is the unknown bit with the values
of the two known bits surrounding it. Bits in the same class will have the same probability
distribution because of the way probabilistic dependence is modeled in the Markov chain.
The bits in the different classes can then be coded with a different group tester. The optimal
group iteration size can be chosen for each class; this size depends upon the probability
distribution for that class. We use IC(ky, k;) to denote the interleaved coding method that
uses SC(ky, k; ) to encode the B, bits.

Practical implementations would not encode all of By before starting on bits in B;.
Once enough B, bits have been encoded so that there is a significant number of bits from
B; in each class, then coding of the B; bits can begin. Coding of the B, and B, bits can
then be done in parallel, with the B; bits encoded only after their neighboring bits in By
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have been encoded.

This idea of interleaved coding is the most similar method to how GTW actually works
with the standard definition of GTW classes that includes subband level, significant neigh-
bor metric, and pattern type as characteristics. The initial classification of bits based on
their location in the bitstream is similar to classifying bits based solely on their position in
the subband, which is the idea of pattern types (section 6.1.2). Furthermore, we can think
of interleaved coding as classifying the bits of B, into three classes, one for each of the
possible number of significant neighbors (either 0, 1 or 2). This is similar to the classifi-
cation by significant neighbor metric. The subband level characteristic is accounted for in

that the different subbands are represented by different Markov sources.

9.4.8 Bit-rate of Interleaved Coding

The bit-rate for our interleaved coding scheme IC on S, , can be calculated in two parts:
the rate R g, for encoding the bits in By, and the rate Rg, for encoding the bits in B;. Since
exactly half the bits are in By and half the bits are in B, the final bit-rate for interleaved
coding is 3(Rp,(IC, Sp,q) + Rp, (IC, Sp.q)).

To calculate Rp,, we first need to calculate the statistical characteristics of the even-

numbered bits. This can be done by looking at the bits output after taking two steps in the

Markov chain for S, ,. Let
_[(P P
e (27)

represent the transition matrix of the Markov chain. Then
2 _( P+pa Pp+pd
Mp,q - ~ — =2
Pg+4qq pa+q
represents the transition matrix of the new Markov chain that takes two steps for every

one step of the original Markov chain. We can see that taking every other bit from source

Sp,q is equivalent to the source Sy, where p' = p(p + §) and ¢ = q(7 + G). Thus,
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Rp,(IC, Sp,q) = R(SC, Sy &), where SC is the sequential coding method that is used for
the bits in By.

To calculate Rp,, we can split this term up into the bit-rates of each individual class.
Let (C;, C,, C3, C,) represent the classes, Pr[C;] represent the probability that a bit from
B, is in class C;, and R(C;, S, ,) represent the bit-rate of encoding class C;. Then

4
Rp,(IC, Sp,q) = Z Pr(Ci]| R(C:, Sp,q)-

i=1
By using the optimal group iteration size for each class C;, the rate R(C;, Spq) is sim-
ply GTR(Pr[b; = 0|b; € C;]). The bit-rate for the interleaved code method can thus be

summarized as:

4
R(IC(ko, kl), Sp'q) = l (R(SC(ko, kl), Spl,ql) + E PI'[C,] GTR(Pl'[b, = Olbg € C;]))

2 i=1

(9.10)

We now need to calculate the probability of a zero bit occurring in each class, as well

as the probability distribution of bits among the classes. As shorthand notation, we use
Pr({XYZ] toreferto Pr[b;—; = X, b; =Y, by = Z]. We first calculate the probabilities for

sequences of length 3:

X |Y | Z|Pr[XYZ]
0 0 0 T oﬁﬁ
0101 ToDP
01110 mopq
oO|1}1 mopq
1100 mqp
1011 m1qp
1(1}0 m4gq
111}1 m™aqq

Now for each of the four classes, we want to calculate the probability that a bit is in
a particular class, as well as the probability that a bit is zero given that it belongs in a

particular class. This is simply calculated as follows:
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Class | Label | Pr[b; € class] Pr[b; = 0[b; € class]
C. | 0xo | Pr{000] + Pr[010] = 2

C, | 0x1 { Pr[001] + Pr[o011] o = 2
C; | 1X0 | Pr[100] + Pr[110] R = 5

Ci | 1X1 | Pr101] + Pr(111] | pidd = L

We can now compute the bit-rate for the interleaved coding using equation 9.10 along
with the probabilities calculated above. Section 9.4.9 presents plots of R(IC(2,1), Sp,q)
and R(IC(1,1), Spq) for various values of p at ¢ = 0.5 and ¢ = 0.4.

9.4.9 Comparison of Methods

In this subsection, we first compare the various bit-rates for the group testing methods on
the source S; 5. We then compare these results to the entropy of the source. Next, we
repeat our result comparison on the source Sy g 4 to show the effect of changing the amount
of clustering of 1 bits in the source. We end by discussing the implications of these results
towards encoding the dependence model as well as actual images.

Figure 9.1 is a plot of the bit-rate achieved for the different group testing methods on
Sp,0.5.- Overall, this plot shows that no one method is best for different probabilities. As
can be seen, IC(1, 1) is the best coding scheme when p > 0.36. Note that when p > 0.41,
IC(1,1)’s bit-rate of 1.0 is equal to that of SC(1) because IC(1, 1) decides to use group
iterations of size 1 for both odd-numbered and even-numbered bits. At .36 < p < 0.41,
IC(1, 1) achieves a bit-rate better than SC(1) because some of the odd-numbered bits are
coded with group iteration size 2. For .21 < p < 0.36, SC(2, 1) is the best coding scheme.
When p < 0.2, methods with group iteration size of more than two would result in better
bit-rates. Clearly as p — 0, the best group iteration size should approach infinity. The
graph does not show bit-rates for p < 0.1 because a group size of two is inappropriate for
those parameters. Note that the simple sequential method SC(2) is always significantly
worse than the two-state sequential method SC(2, 1) for this source.

Now we compare our group testing results to the entropy of the source, on S, ,. Here our
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Coding of Markov Source, q = 0.5

,/ . —- Ic(2.1)
% : : —-ic)
0.6 L ] J . )
0.1 0.2 0.3 0.4 0.5
p

Figure 9.1: Comparing bit-rates of various group testing methods on Sp g.5.
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Entropy comparison, g=.5
L | SRR ..................... SO —

-t
-

095f i
085F o
0.8f /2
0.78F [ :
0.7b /b

bitrate

T

0.65}; . . - Grdup Testing :
: D meemn Ent‘ropy

0§ 0.2 0.3 0.4 0.5
P

Figure 9.2: Comparing the bit-rates of the best group testing methods to the entropy on
Sp.os-

group testing bit-rate g(p, q) is the rate of the best group testing method presented in figure
9.1. Thus, over the set of coding methods M = {SC(2),SC(2,1),1C(2,1),IC(1,1)},

ym®=£$Mw&ﬁ-

Figure 9.2 shows the group testing bit-rate and the entropy of the source. Figure 9.3 shows
the group testing bit-rate as a percentage of entropy, meaning —1 + g(p, g)/H(Sp q)-

Note that for the case when p > 0.22, the group testing method is within 2% of entropy.
For values of p < 0.22, we know that the best sequential coding method and the best
interleaved coding method would choose a group iteration size bigger than 2; thus the bit-
rates of the methods shown here are not optimal. If we calculated group testing bit-rate for
SC(ko, 1) for all values of ko, and picked the optimal ko to minimize the group testing rate
for source S, 4, we would expect to be much closer to entropy when p < 0.22.

We now show the bit-rate calculations for the case where ¢ = 0.4. Note that in figure
9.4, the best method is always either IC(1, 1) or IC(2, 1). However, there appears to be
a point at around p = 0.29 where the interleaved coding methods and SC(2, 1) all have
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Entropy comparison, g=.5
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Figure 9.3: The group testing bit-rate as a percentage of entropy on Sy ¢ 5; this is a measure
of the efficacy of group testing.

roughly the same bit-rate.
We can compare our new results with the previous results on i.i.d. sources. Putting

the previous results in the context of Markov sources, figure 5.1 results for the best group
testing algorithm on S, 1, for values of p between 0.5 (on the left side of the graph) and
0 (on the right). It is interesting that our bit-rates on dependent sources are within 3% of
entropy, which is lower than the peak of about 4.3% on the i.i.d. source. This shows that,

in some cases, group testing on dependent sources actual performs better than on group

testing on i.i.d. sources.

Conclusions

Our results show that using the appropriate group testing method on S, 4, we can achieve
a bit-rate that comes within 3% of entropy for the values of p and ¢ that we examined.
Relating these results back to the dependence model presented in section 9.3.2, we see that
our results suggest it is possible to get within a small percentage of entropy (maybe 5%)
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Coding of Markov Source, q = 0.4
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Figure 9.4: Comparing bit-rates of various group testing methods on Sj ¢ 4.
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Entropy comparison, g=.4
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Figure 9.5: Comparing the bit-rates of the best group testing methods to the entropy on
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Figure 9.6: The group testing bit-rate as a percentage of entropy on Sj ¢ 4; this is a measure
of the efficacy of group testing.
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for using group testing on the dependence model.

One interesting fact from studying the different group testing methods is that no partic-
ular method is consistently better than the other methods. In particular, for different values
of p and ¢, sometimes interleaved coding works better than sequential coding, and some-
times the order is reversed. We know interleaved coding represents using pattern types in
the definition of GTW classes, and sequential coding represents ignoring pattern type in the
GTW classes.

This suggests the following: Suppose we use a parameter p to model the overall prob-
ability of significance for the coefﬁcietits in a two-dimensional subband, and a parameter
q to model the amount of clustering of significant coefficients that occurs in the subband,
according to some mathematical model. Then for some values of p and g, encoding the
coefficients using pattern type would be better than encoding the coefficients without using
pattern type. Furthermore, for different values of p and g, not using pattern type would be
better. Whether or not the values of p and q for which pattern type is better actually occur
in real subbands remains an open question. Regardless of this fact, our work also suggests
that the difference between the bit-rates of using pattern type and not using pattern type are

not very large.

9.4.10 Alternative Method for Calculating Bit-rates

In this section we present an alternative method for calculating R(SC(ko, k1), Sp,q) that is
simpler than the previous method of using recurrence equations. Unfortunately, we cur-
rently have no proof that this method produces the correct result. However, this method
produces the same results as the method of using recurrence equations on the two cases we
examine; we believe this method also makes sense intuitively.

Figure 9.7 is a diagram of how the encoder SC(k, j) processes the bits from S, ;. State
% of this diagram represents the fact that the last source bit was 7, and that the source is cur-
rently in state :. From state 2, there are transitions labeled by the possible input messages.

The last bit of the input message determines the state to which the associated edge points.
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Figure 9.7: Diagram of encoder for SC(k, j).

Since a group iteration of size k is performed in state 0, there are k + 1 edges leaving state
0; the edges are labeled with the input messages (1,01, . ..,0%"11, 0%). Similarly, using a
group iteration of size j in state 1 means that there are j + 1 edges leaving state 1.
Associated with each edge is a probability of following that edge when processing input
from S, ;. Table 9.1 shows these probabilities. Each edge also has a particular codeword

that the encoder outputs after seeing the associated input message.

Table 9.1: Edge probabilities for the two-state Markov encoder.

starting state label probability
0 ok o
0 01,0<i<k-1 P'p
1 0/ gt
1 01,1<i<j—-1 gp*'p
1 1 q

We can view this diagram of the encoder as a Markov chain. Let 7' = (mg, 7]) be the
stationary distribution of this Markov chain. Furthermore, for 0 < i < k, let b?, 72, and
¢ represent the input message, the probability, and the output codeword, respectively, of

an edge starting in state 0. Similarly, for 0 < i < j, let b}, r}, and ¢} represent the input
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message, the probability, and the output codeword, respectively, of an edge starting in state
1. Then the bit-rate calculation is:

& .

Ty Do TelC] + 1 Doio ic)
s -

ﬂ"l) Ei:o T?Ib?l + 7l'i ‘3=0 T;lb}l

Note that this equation represents the bit-rate as the division of the expected codeword

9.11)

R(SC(k, 7), Sp.a) =

length by the expected input message length. The bit-rate for block codes on i.i.d. sources
is also calculated by dividing the expected codeword length by the expected input message
length (see equation 3.5, section 3.3.2). This similarity between the two bit-rates leads us
to believe that equation 9.11 is correct. If we use this equation to calculate the bit-rate, we

can obtain the rate for SC(k, 1) as

R(SC(k, ), Sp.) = ﬁ")pﬁ(p ¥q)
(1-7* —p+7p+ 7 q—F *Hq+ 7 g+

(1 - 7)1 — p — 7q) llog, ] + (1 — 5*)Pa Llogy k] ),

where k' = 2Ulos2kl+1 _ [ and j' = 2llog23l+1 — 5,
Note that the above formula agrees exactly with the previously calculated bit-rates for
SC(2,2) = SC(2) and SC(2, 1); this is another reason why we believe equation 9.11 is

correct.

9.5 Conclusion

In this chapter, we sought to gain a better understanding of the effectiveness of group testing
methods on images by defining models of the transform coefficient bits of images, and then
by calculating the bit-rates of different group testing methods on the source models.

Our independence model is basically a collection of binary i.i.d. sources. We showed
that the group testing bit-rate using group iterations of the appropriate size is always within

5% of the entropy of the independence model.
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Our dependence model is basically a collection of two-state Markov sources that con-
tain probabilistic dependencies between its bits. These sources serve as a model for the
significance bits of a bit-plane of one subband. We defined three different methods of en-
coding the two-state Markov source. For this source, we showed that when 0.2 < p < 0.5
and when ¢ = 0.4 or ¢ = 0.5, the bit-rate of the best group testing method we studied is
within 3% of the entropy of the source. This suggests it is possible to compress the depen-
dence model of an image using group testing to within a small percentage of the entropy of

the model.
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Chapter 10

CONCLUSIONS

This thesis discusses the application of group testing to the field of image compression.
We have shown how group testing is related to Golomb codes and zerotree coding, two
image compression techniques that have been widely used. We have defined new image
compression algorithms that are primarily used group iterations, the group testing method
equivalent to elementary Golomb codes, to compress data. Furthermore, we have demon-
strated that our algorithms improve upon previous ones and are often competitive with the
best image compression algorithms in terms of rate-distortion performance.

Although our goal has been to find the best method of group testing for image com-
pression, some of our work can be thought of in more general terms. Our analysis of the
performance of various group testing techniques on different source models can be used
to answer the question, “If I wanted to use group testing to compress this source, what
group testing method should be used?” It does not matter if the source relates to images.
Much of the work in compressing the transform coefficients of an image was in finding the
correct definition for the classes. Thus, our work can be viewed as finding the statistical
characteristics of the transform coefficients, and exploiting them for efficient compression.
Although we applied the group testing technique to compress these coefficients, this is not
strictly necessary. Once the statistical characteristics are known, any compression tech-
nique that can take advantage of these statistics can be used, not necessarily group testing.

We end this thesis by discussing some of the possible directions for future work. There
are other compression problems for which we could study the effectiveness of our group
testing method. One example is coding images consisting of two colors (binary bit-maps).

In addition, it would be worthwhile to explore other group testing methods that do not use
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group iterations as their main subroutine. And completely new group testing algorithms
could be studied for the group testing problem that included queries for learning about the
source.

Much more work could be done on calculating the theoretical performance of group
testing. Besides verifying that the alternative method of calculating the bit rate (section
9.4.10) is correct, we could explore the efficiency of other group testing methods. It would
be interesting to look at other methods of interleaved coding, such as coding every nth bit
of the source, before proceeding on to the rest of the bits. It would also be interesting to
consider other sources that may represent images better, such as Markov random fields.
With all the sources that we define, it would be interesting to explore statistically how well

the image models match up with the actual characteristics of real images.
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