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The Finite Ridgelet Transform
for Image Representation

Minh N. Do, Member, IEEEand Martin Vetterlj Fellow, IEEE

Abstract—The ridgelet transform [6] was introduced as a sparse the discontinuity across an edge, but will not see the smooth-
expansion for functions on continuous spaces that are smooth away ness along the edge.
from discontinuities along lines. In this paper, we propose an or- To overcome the weakness of wavelets in higher dimensions,

thonormal version of the ridgelet transform for discrete and fi- Candés and Donoho [51. [6] recently pioneered a new svstem
nite-size images. Our construction uses the finite Radon transform [51, [6] y pi W Sy

(FRAT) [11], [20] as a building block. To overcome the periodiza- ©Of representations nameitigeletswhich deal effectively with

tion effect of a finite transform, we introduce a novel ordering ofthe  line singularities in 2-D. The idea is to map a line singularity
FRAT coefficients. We also analyze the FRAT as a frame operator into a point singularity using the Radon transform [7]. Then,
and derive the exact frame bounds. The resulting finite ridgelet ha \wavelet transform can be used to effectively handle the point

transform (FRIT) is invertible, nonredundant and computed via sinqularity in the Radon domain. Their initial broposal was in-
fast algorithms. Furthermore, this construction leads to a family Ingularity | n. Iriniial prop was |

of directional and orthonormal bases for images. Numerical results  tended for functions defined in thentinuousk® space.

show that the FRIT is more effective than the wavelet transform in For practical applications, the developmentdicretever-

approximating and denoising images with straight edges. sions of the ridgelet transform that lead to algorithmic imple-
Index Terms—Directional bases, discrete transforms, image Mentations is a challenging problem. Due to the radial nature of

denoising, image representation, nonlinear approximation, Radon ridgelets, straightforward implementations based on discretiza-

transform, ridgelets, wavelets. tion of continuous formulae would require interpolation in polar
coordinates, and thus result in transforms that would be either
I. INTRODUCTION redundant or cannot be perfectly reconstructed.

. ) In [8]-[10], the authors take the redundant approach in

ANY image processing tasks take advantagemarse gefining discrete Radon transforms that can lead to invertible

. representations of image data where most informatigfiscrete ridgelet transforms with some appealing properties.
is packed into a small number of samples. Typically, thegg, example, a recent preprint [10] proposes a new notion
representations are achieved via invertible and nonredundgnikadon transform for data in a rectangular coordinate such

transforms. Currently, the most popular choices for this pPUfat the lines exhibit geometrical faithfulness. Their transform
pose are the wavelet transform [1]-[3] and the discrete cosigejnyertible with a factor four oversampled. However, the

transform [4]. ) ) inverse transform is ill-conditioned in the presence of noise and
The success of wavelets is mainly due to the good perf?[e'quires an iterative approximation algorithm.

][nance folr p|ec<ra]vy|se ST]OOth fur]ctlonsdlp one_dlmelnsmn. Un- 1 this paper, we propose a discrete ridgelet transform that
ortunately, such is not the case in two dimensions. In essenggy, e, a5 poth invertibility and nonredundancy. In fact, our

wavelets are good at catching zero-dimensiongbaint sin- construction leads to a large family ofthonormaland direc-

gu::':lg;[ilﬁS, ir?wm two;]dl\r/neniloré?rlnplr?c;e\r/]vlsle iimOIOtr?ti &gn_gl}s trﬁ()nal bases for digital images, including adaptive schemes. As
se g Images have one-dimensionai singuiarities. tha ésresult, the inverse transform is numerically stable and uses
smooth regions are separated by edges, and while edges areH S

) . " Esame algorithm as the forward transform. Because a basic
continuous across, they are typically smooth curves. Intuitively,

. : 4 . ilding block in our construction is the finite Radon transform
wavelets in two dimensions are obtained by a tensor—product{é[)

) ; ; ], which has a wrap-around (or aliased line) effect, our
one dimensional wavelets and they are thus good at isolat g . . ) X
ridgelet transform is not geometrically faithful. The properties
of the new transform are demonstrated and studied in several
Manuscript received April 12, 2001; revised May 25, 2002. This work Waépplications.
supported in part by a Ph.D. Fellowship from the Department of Communica- il . id he i d .. bl
tion Systems, EPFL, and the Swiss National Science Foundation under GrantA‘S an | UStr_at'on' consider the image denoising pro em
21-52439.97. The associate editor coordinating the review of this manusctighere there exist other approaches that explore the geometrical

and approving it for publication was Prof. Pierre Moulin. regularity of edges, for example by chaining adjacent wavelet
M. N. Do was with the Audiovisual Communications Laboratory, Depart-

ment of Communication Systems, Swiss Federal Institute of Technology, Lgpefficients and ther_] thr65h9|d'ng them over those conto_urs
sanne, Switzerland. He is now with the Department of Electrical and Compufd2]. However, the discrete ridgelet transform approach, with

Engineering, the Coordinated Science Laboratory, and the Beckman Instity{g,“pyjilt-in” linear geometrical structure provide amore direct
University of Illinois, Urbana, IL 61801 USA (e-mail: minhdo@uiuc.edu). '

M. Vetterli is with the Audiovisual Communications Laboratory, Departmenway_by S|mply threShOIdmg S|gn|f|cant ”dgelet coefficients—

of Communication Systems, Swiss Federal Institute of Technology, Lausanite,denoising images with straight edges.

Switzerland, _and also' Wlth the quart_ment of Electrical Engineering a!'\d The outline of this paper is as follows. In the next section we
Computer Science, University of California, Berkeley, CA 94720 USA (e-mail; . L . . .
martin.vetterli@epfl.ch). review the concept and motivation of ridgelets in the continuous

Digital Object Identifier 10.1109/TIP.2002.806252 domain. In Section Ill, we introduce the finite Radon transform

1057-7149/03$17.00 © 2003 IEEE



DO AND VETTERLI: FINITE RIDGELET TRANSFORM FOR IMAGE REPRESENTATION 17

with a novel ordering of coefficients as a key step in our discret
ridgelet construction. The finite Radon transform is then studie
within the frame theory. The finite ridgelet transform is defined os
in Section IV, where the main result is a general family of or- o
thonormal transforms for digital images. In Section V, we pro-
pose several variations on the initial design of the finite ridgele °2
transform. Numerical experiments are presented in Section Vv ,
where the new transform is compared with the traditional one:
especially the wavelet transform. We conclude in Section VI N
with some discussions and an outlook. -04

/
/
/

0

)

/
Z
Z

0

( "
m‘
7 ;’
25
Z

S

A
==
=~

~
7

74

7

~

{

)

‘%

/)
&

=

)

q

o

4

" ?') .

9
9

7

27

0
2

)
_
_
(7

7
7

==
Y
s

_

Z
Z
<

0
4
.

4
N osSSSS<
\}v//l =

W\
v

7
>

7=

4

7
7
@

.
“

4(&\

7

¢

y
Z

Il. CONTINUOUS RIDGELET TRANSFORM o

We start by briefly reviewing the ridgelet transform and
showing its connections with other transforms in the contin
uous domain. Given an integrable bivariate functjtim), its X, 0o §
continuous ridgelet transfor¢CRT) inR? is defined by [5], [6] !

CRIf(0.0.0)= [ opo@f@ds )

2-D
Fourier

where the ridgelets), , ¢(xz) in 2-D are defined from a

wavelet-type function in 1-0)(z) as o
g
bab.o(x) = a=/2p((z1 cos0 + T2 800 — b)/a).  (2) %

Fig. 1 shows an example ridgelet function, which is oriented Radon
atan angl@ and is constant along the linescos # 4, sin f = domain
const.

For comparison, the (separable) continuous wavelet trans-

form (CWT) inR? of f(x) can be written as m™ [ Ridgelet
domain

CWTf<a17 az, b17 bQ) = Il/}ﬂ'la(I'belabQ (z)f(:l)) dz (3)
Jre

where the wavelets in 2-D are tensor pI’OdUCtS Fig. 2. Relations between transforms. The ridgelet transform is the application

of 1-D wavelet transform to the slices of the Radon transform, while the 2-D
Fourier transform is the application of 1-D Fourier transform to those Radon

d)al,az;bl,bz(x) = wal,bl(zl)d}027b2 ($2) (4) slices.
of 1-D waveletsg, i(t) = a=Y/24((t — b)/a) .t _ , o
As can be seen, the CRT is similar to the 2-D CWT except thikien the ridgelet transform is the application of a 1-D wavelet
the point parameterghy, b») are replaced by thne parame- transform to the slices (also referred to as projections) of the
ters(b, #). In other words, these 2-D multiscale transforms afgadon transform

related by CRT;(a, b, §) = /H Vas (RS (6, 1) dt. ®)

Wavelets: - djscale,pain,t-positiona .. . - . .
Ridgelets:  — ” ' N It is instructive to note tha_lt if in (6) instead of t_akmg alD
: scale, lineposition- wavelet transform, the application of a 1-D Fourier transform
As a consequence, wavelets are very effective in representiigngt would result in the 2-D Fourier transform. More specif-
objects with isolated point singularities, while ridgelets are veigally, let F';(w) be the 2-D Fourier transform ¢f(x), then we
effective in representing objects with singularities along linekave
In fact, one can think of ridgelets as a way of concatenating 1-D )
wavelets along lines. Hence the motivation for using ridgelets in Fy(§cost, Esinf) = /R e ¥ Ry (9, t) dt. ()

image processing tasks is appealing since singularities are ofte_l?_h. is the f L liceth di |
joined together along edges or contours in images. IS Is the famougrojection-slic&heorem and is commonly

In 2-D, points and lines are related via the Radon transfor s,,ed in imagt_a reconstruction f“’m projection methods [.13]’
thus the wavelet and ridgelet transforms are linked via the Ra 4]: The relations between the various transforms are depicted
transform. More precisely, denote the Radon transform as ig. 2.

R0, t) = F(x)8(21 cos + wosinh — t)dz  (5) [ll. FINITE RADON TRANSFORM

/R A. Forward and Inverse Transforms

1in practice, however one typically enforces the same dilation scale on bothA ted in th . ti di te ridaelet
directions thus leading to three wavelets corresponding to horizontal, vertical, A5 SUGgeSI€d In thé previous secton, a discrete riagele

and diagonal directions. transform can be constructed using a discrete Radon transform.
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Numerous discretizations of the Radon transforms have be

devised to approximate the continuous formulae [13]-[1&

However, most of them were not designed to be invertib,

transforms for digital images. Alternatively, tHimite Radon

transform theory (which means transform ffinite length ‘ I
signals) [11], [19]-[21] originated from combinatorics, pro

vides an interesting solution. Also, in [22], a closely relate

transform is derived from the periodization of the continuou
Radon transform.

Thefinite Radon transfornfFRAT) is defined as summations
of image pixels over a certain set of “lines.” Those lines a
defined in a finite geometry in a similar way as the lines for t
continuous Radon transform in the Euclidean geometry. Den

Z, = {0,1,...,p— 1}, wherep is a prime number. Note
that Z,, is a finite field with modulop operations [23]. For later

convenience, we denof€; = {0, 1, ..., p}.
The FRAT of a real functiorf on the finite gring is defined
as
1
rp[l] = FRAT(k, 1) = — i, j]. 8
AU f()\/]—)Zf[J] ()h

(4,7)€ELk

Here,L; ; denotes the set of points that make up aline on th@. 3. Lines for the 7x 7 FRAT. Parallel lines are grouped in each of the
; 2 ; eight possible directions. Images in order from top to bottom, left to right are
lattice Z;;, or, more precisely

corresponding to the values bffrom 0 to 7. In each image, points (or pixels)
N . . in different lines are assigned with different gray-scales.
Li={(,j):j=ki+l (modp),i€Zy}, 0<k<p, 9 gray

Lyi={(,7):7 €7} (9) By analogy with the continuous case, fivte back-projec-

Fig. 3 shows an example of the finite linés ; where points tion (FBP) operator is defined as the sum of Radon coefficients
g P oL P f all the lines that go through a given point, that is

in the gridZ§ are represented by image pixels. Note that due %

the modulo operations in the definition of lines for the FRAT, Lo 1 Py P

these lines exhibit a “wrap around” effect. In other words, the FBE(i, j) = VP Z illl (.5)ez, @1
FRAT treat the input image as one period of a periodic image. (kDEP: 5

Later, we will present several ways to limit this artifact. where P; ; denotes the set of indices of all the lines that go

We observe that in the FRAT domain, the energy is best cothrough a point(i, j) € Zj. More specifically, using (9) we
pacted if the mean is subtracted from the imgge j] priorto can write
taking the transform given in (8), which is assumed in the se-
quel. We also introduce the factpr /2 in order to normalize  Fii = {(k, [): 1 =j — ki (mod p), k € Z,} U{(p, i)}.
thel,-norm between the input and output of the FRAT. o (12)
Just as in the Euclidean geometry, a libg, on the affine  From the property of the finite geometsg; that every two
pIaneZﬁ is uniquely represented by its slope or directior pomts lie on exactly one line, it follows that every pomtéﬁj
Zr (k = p corresponds to infinite slope or vertical lines) and€S On exactly one line from the sé ;, except for the point
its intercept! € Z,. One can verify that there aj8 + p lines (i, 7) which lies on allp+ 1 lines. Thus, by substituting (8) into

defined in this way and every line contaipgoints. Moreover, (11) we obtain

any two distinct points oer? belong to just one line. Also, two o 1 0
lines of different slopes intersect at exactly one point. For any FBP.(i, j) :]; Z Z I 7]
given slope, there arg parallel lines that provide a complete (k,DEP; ; (¢.3")€Lk 1
cover of the pIancZﬁ. This means that for an inputimagé, j] 1

: P .
with zero-mean, we have == > fi,i+pfli 4]

po1 1 P \winez
nlll=— > fli.j]=0 VkeZ;,. (10) = fli. j]- (13)

1=0 VP (i,j)€Z2 L . . .
’ v So the back-projection operator defined in (11) indeed

Thus, (10) explicitly reveals the redundancy of the FRAT: ioomputes the inverse FRAT for zero-mean images. Therefore
each direction, there are onty— 1 independent FRAT coeffi- we have an efficient and exact reconstruction algorithm for the
cients. Those coefficients gt+ 1 directions together with the FRAT. Furthermore, since the FBP operator is the adjoint of
mean value make up totally ¢p + 1)(p — 1) + 1 = p? inde- the FRAT operator, the algorithm for the inverse of FRAT has
pendent coefficients (or degrees of freedom) in the finite Radtime same structure and is symmetric with the algorithm for the
domain, as expected. forward transform.
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It is easy to see that the FRAT requimsactlyp® additions projections represented fu,.: k € Zy}.We havep—1 choices
andp? multiplications. Moreover, for memory access efficiencyfor each of those normal vectors as
[20] describes an algorithm for the FRAT in which for each pro-
jection k& we need to pass through every pixel of the original
image only once using histogrammers, one for each summa- So what is the good choice for the+ 1 normal vectors of
tion in (8) of that projection. For images of moderate sizes, whe FRAT? To answer this we first prove the following projec-
observed that the actual computational time of the FRAT is conien slice theorem for the general FRAT. A special case of this
patible with otherO(p?log(p?)) transforms, such as the 2-Dtheorem is already shown in [20].
FFT, where the leading constant can be large. For example, oefining W, = e~2V=17/p thediscrete Fourier transform
a Sun Ultra 5 computer, both the forward and inverse FRAT{®FT) of a functionf on Z? can be written as
take less than a second to compute on an image of sizex257 1 o
257. Flu, o] == Y fli, JW+ (17)

P ez

(ak7bk):nuk7 lgngp_l

B. Optimal Ordering of the Finite Radon Transform
Coefficients

The FRAT described in Section IlI-A uses (9) as a convenient R, pw] = 1 Z T, b[t]W;,”t. (18)
way of specifying finite lines on thﬁg grid via two parameters: v

the slopek and the intercept However, it is neither a unique
nor the best way for our purpose. Let us consider a more gengy
definition of lines on the finiteZ? plane as

and for FRAT projections o, as

tez,
heorem 1 (Discrete Projection-Slice Theorenhe 1-D

T R, »[w] of a FRAT projectionr, ;[t] is identical to the
2-D DFT Flu, v] of f[i, j] evaluated along a discrete slice
through the origin at directiofu, b)

R, p[w] = Flaw, bw]. (19)

L,y ={(i,j) € Z}:ai+bj—t=0 (modp)} (14)

whereq, b, t € Z, and(a, b) # (0, 0).

This is by analogy with the line equatian; cos #+x5 sin  — Proof: Substituting (15) into (18) and using the fact that
t = 0in R2. Therefore, for a finite line defined as in (14), b) the set of parallel lines{L;, , ,: t € Z,} provides a complete
has the role of the normal vector, whilés the translation pa- cover of the planeZ?, we obtain
rameter. In this section, all equations involving line parameters 1
are carried out in the finite field,, which is assumed in the  Ra[w] =5 o>t awet

sequel without the indication of maqd teZy, (i,j)eL, , ,
It is easy to verify that for a fixed normal vectdu, b), 1 o
{L, , . t € Z,}is asetofp parallel lines in theZ? plane. == > fli, AWt = Flaw, bw).
This set is equal to the set pflines{Ly ;: | € Z,} defined in p (i,5)€Z2
(9) with the same slopg, wherek = —b~'a for b # 0 and -

k = pfor b = 0. Moreover, the set of lines with the normal £rom (19), we can see the role of the FRAT normal vectors
vector(a, b) is equal to the set of lines with the normal VECIO[,, b) in the DFT domain: it controls the order of the coeffi-

(na, nb), for eachn = 1,2, ..., p — 1. _ cients in the corresponding Fourier slices. In particulds, b]
With the general line specification in (14), we now define thggyals to the first harmonic component of the FRAT projection
new FRAT to be sequence with the normal vectar, b). For the type of images

1 o that we are interested in, e.g., of natural scenes, most of the en-
raplt] = FRAT¢(a, b, 1) = N Z i g]- (19) ergy is concentrated in the low frequencies. Therefore in these
(BI)ELG b cases, in order to ensure that each FRAT projection is smooth
Lr_low frequency dominated so that it can be represented well
y the wavelet transform, the represented normal veetob)
should be chosen to be as “close” to the origin of the Fourier
E/JIane as possible.
Fig. 4 illustrates this by showing an example of a discrete
ourier slice. The normal vector for the corresponding FRAT
Bf_ojection can be chosen as a vector from the origamtpother
point on the Fourier slice. However, the best normal vector is
&elected as the closest point to the origin. The choice of the
normal vector(a, b) as the closest point to the origin causes
the represented direction of the FRAT projection to have the
u, = (—k,1)for k=0,1,...,p—1andu, = (1, 0). (16) least “wrap around” due to the periodization of the transform.
The effect of the new ordering of FRAT coefficient in the image
In order to provide a complete representation, we need ttlemain is illustrated in Fig. 5 for the same example projection.
FRAT to be defined as in (15) with a set@f 1 normal vectors As can be seen, the “wrap around” effect is significantly reduced
{(ax, bx): k € Z;} such thatthey cover g+ 1 distinct FRAT  with the optimal ordering compared to the usual one.

From the discussion above we see that a new FRAT proj
tion sequencer, (0], 7a,b[1], -- -, ra,s[p—1]),is SiMply are-
ordering of a projection sequenge,[0], rx[1], ..., rx[p — 1])
from (8). This ordering is important for us since we later appl
a 1-D wavelet transform on each FRAT projection. Clearly, t
chosen normal vector@, b) control the order for the coeffi-
cients in each FRAT's projection, as well as the represented
rections of those projections.

The usual FRAT described in Section IlI-A uses the set
(p + 1) normal vectorsu;,, where
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Fig. 4. Example of a discrete Fourier slice (indicated by the black squaresg
with the best normal vector for that FRAT projection. In this example; 17

and the slopé = 11. The normal vector can be chosen as a vector from the
origin to any other points on the Fourier slide. The best normal vectdr, i8) 14
(the solid arrow).

12
Formally, we define the set @f+ 1 optimal normal vectors

{(az, b}): k € Z;} as follows:
(af, by,) = arg [1(Cp(ar), Co(bi))Il -
(20)
Here, C,(z) denotes the centralized function of period &
p: Cy(z) = = — proundz/p). Hence,[|(Cy(ar). Cp(bi))]
represents the distance from the origin to the pgint b:) on 4
the periodic Fourier plane as shown in Fig. 4. The constrain
Cp(br) > 0 is imposed in order to remove the ambiguity in
deciding betweer{a, b) and (—a, —b) as the normal vector
for a projection. As a result, the optimal normal vectors are
restricted to have angles i, 7). We use theso-norm for
solving (20). Minimization is simply done for eadh € 77
by computingp — 1 distances in (20) and select the smallest

min
(ar,br)€{nly:1<n<p—1}
s.t. Cp(br)>0

2

0 2 4 6 8 10 12 14 16
(b)
one. Fig. 6 shows an example of the optimal set of norm@h. 5. Lines for the FRAT projection as shown in Fig. 4 using (a) usual

. - ering and (b) optimal ordering. They both represent the same set of lines
vectors. In comparison with the usual set of normal V(:"Ctoggtj with different orderings. The orderings are signified by the increasing of

{ur: k € Z;} as given in (16), the new s€tay, by): k € Z;}  gray-scales. The arrows indicate the represented directions in each case.
provides a much more uniform angular coverage.

After obtaining the set of normal vectoféay, b;)}, we can
compute the FRAT and its inverse with the same fast algorith
using histogrammers described in Section IlI-A. For a giwen

splving (20) requires)(p*) operations and therefore it is negfi- frame operatorlin this section we will study the FRAT in more
gible compared to the transforms themselves. Furthermore, Rail and reveal some of its properties in this frame setting. A

can be pre-computed, thus only presents as a “one-time” COgayaied introduction to frames can be found in [3] and [24].

For the sake of simplicity, we write 1] for ra; i; [1] in the Suppose thafF is a linear operator frolR” to R*, defined
sequel. In other words, from now we regdrds an index in the
set of optimal FRAT normal vectors rather than a slope. LikeY
wise, the IineLfl*,bz,t is simply rewritten ad.;, ¢, for0 < k <

k

p, 0 <t <p. (Fz)n = (2, @n), forn=1,..., M. (21)

r%s Frame Analysis of the FRAT

Since the FRAT is a redundant transform, it can be studied as
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-1 1 1 I ! | I ! I I 1 I I 1 | I J
-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 ATy ) R 3 3

Fig. 6. Set of normal vectors, which indicate the represented directions, for the FRAT pfsiZ& using (a) usual ordering and (b) optimal ordering.

The sef{p,, }; c RY is called a frame dR” if there exist go through each point, it follows that the entriestoequal to

two constantsA > 0 and B < oo such that (p+ 1)p~—! along its diagonal ang—! elsewhere.
M The key observation is that” is a circulant matrix,
Allz|? < Z (z, gn)|? < Bllz?, Ve eRY  (22) hgnce its elg_envalues can be computeq as jihgoints
= discrete Fourier transform (DFT) on its first column =

p+Dp~ ' p~, ..., p~1) [1, Sec. 2.4.8]. Writing: as
where A and B are called the frame bounds. Whén= B (« ) )1 ] ¢

the frame is said to be tight. If the frame condition is satisfied c=(1,0,....,00+p~"-(1,1,..., 1)
thenF is called a frame operator. It can be shown that any fini{g, optain
set of vectors that spaf&" is a frame. The frame bound ratio
B/A indicates the numerical stability in reconstructingrom DFT{c}=(1,1,...,1)+p-(1,0,0,...,0)
(Fz),; the tighter the frame, the more stable the reconstruction =(p+1,1,1,...,1)
against coefficient noise. . . .
The frame operator can be regarded as a left matrix muItipYY—here the DFT is _computed for the Dirac and constant 5|gnals.
cation with ', whereF is anM x N matrix in which itsnth Therefore the eigenvalues 6farep+ 1 and 1, the latter with

row equals tap,,. The frame condition (22) can be rewritten adnultiplicity of p? — 1. As a result, the tightest frame bounds for
FRAT asA =1andB =p + 1. [ |

2T Az < 2TFTFz < 27 Bz, Vi eRN. (23) For reconstruction, the FBP defined in (11) can be repre-
sented by a left multiplication with matrix—'/2B, where
Since FTF is symmetric, it is diagonalizable in an or-p i), (k) €quals to 1if(k, I) € P; ; and O otherwise. From
thonormal basis [25], thus, (23) implies that the eigenvalues e definition of P; ;, we have
FTF are betweerd and B. Therefore, the tightest possible o
frame boundsA and B are the minimum and maximum Rk, (i,5) = Big), e.0)» Vi, g, k, 1.

eigenvalues of " I, respectively. In particular, a tight frame is - 5o the transform matrices for the operators FRAT and FBP
equivalent toF " F = A - I, which means the transpose Bf are transposed of each other. L%} denotes the subspace of

equals to its left inverse within a scale factér zero-mean images defined &@j. Since the FBP is an inverse of

Now let us return to the FRAT. Since it is invertible it can the FRAT for zero-mean imageS, we have the fo”owing result.
regarded as a frame operatoti(Z;)) with the frame{ oy, : k € Proposition 2: On the subspace of zero-mean image%
Zy, 1 € Z,} defined as the FRAT is aight framewith A = B = 1, which means

— p1/2§ 24 p p-1 .
Ph =P e4) =SS edenn VFEZL (25)

whereds denotes the characteristic function for theS$gwvhich k=0 1=0
meansis|i, j] equals to 1 if(i, j) € S and 0 otherwise. Note  Remark 1: It is instructive to note that constant images on
that this frame is normalized sinde ;|| = 1. By writing ZI% are eigenvectors of = FTF with the eigenvalug + 1.

images as column vectors, the FRAT can be regarded as a Tefking constant images out leaves a system with all unity eigen-
matrix multiplication with = p~1/2R, where{R} . 1), i, ;) Vvalues, or a tight frame on the remaining subspace. Thus, we
is the(p® +p) x p* incidence matrix of the affine geomet#f:  have another interpretation of FRAT being a normalized tight
R, i,5) €quals to 1if(i, j) € Ly; and O otherwise. frame for zero-mean images.

Proposition 1: The tightest bounds for the FRAT frame By subtracting the mean from the image before applying the
{eri ke Zy, L€ Zy}in lz(Zg) areA=1andB =p+ 1. FRAT, we change the frame bound ratio frgm+ 1 to 1 and

Proof: From (23), these tightest bounds can be computetitain a tight frame. Consequently, this makes the reconstruc-

from the eigenvalues & = FTF = p~'RTR. SinceR is the tion more robust against noise on the FRAT coefficients due to
incidence matrix for lines irz?, (R* R); ), (v ;) equals the thresholding and/or quantization. This follows from the result
number of lines that go through both j) and(i’, /). Using in [26] that with the additive white noise model for the coeffi-
the properties of the finite geometgﬁ that every two points cients, the tight frame is optimal among normalized frames in
lie in exactly one line and that there are exagthy 1 lines that minimizing mean-squared error.
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IV. ORTHONORMAL FINITE RIDGELET TRANSFORM Image FRAT domain FRIT domain

With an invertible FRAT and applying (6), we can obtain / K
an invertible discrete ridgelet transform by taking the discrete
wavelet transform (DWT) on each FRAT projection sequence; E@‘f ;
(r£[0], rk[1], ..., re[p—1]), where the directio# is fixed. We fi
call the overall result thénite ridgelet transform{FRIT). Fig. 7 i
depicts these steps. \_//'

Typically p is not dyadic, therefore a special border handling DWT
is required. The Appendix details one possible way of com- _ _ _ _
puting the DW for prime length signas. Due to the periodicitg, . Digren o he FRIL Ater g e PR, 8 VT s apoted o
property of the FRAT coefficients for each direction, periodic
wavelet transforms are chosen and assumed in this section.

Recall that the FRAT is redundant and not orthogonal. Next Proof: Denotel = (1, 1, ..., 1) € RP. If wo = c1,c #
we will show that by taking the 1-D DWT on the projections of then from the orthogonality assumption that, w.,) = 0,
the FRAT in a special way, we can remove this redundancy awg obtainy_, w,,[{] = 0,Vm =1,...,p - L.
obtain an orthonormal transform. Conversely, assume that each basis funciign 1 < m <

Assume that the DWT is implemented by an orthogonal treg— 1, has zero mean. Denatethe subspace that is spanned by
structured filter bank with/ levels, whereG, andG, are low these functions and+ is its orthogonal complement subspace
and high pass synthesis filters, respectively. Then the family ifR? . It is clear that5+ has dimension 1 withw, as its basis.

functions Consider the subspag = {c1: ¢ € R}. We have(cl, w,,) =
eYwnlll =0,Vm =1, ..., p—1,thusS, C S+. On the

{g(()J) [—27m), ¢ —2m]:j=1,...,J; me Z} other handdim(Sp) = dim(S+) =1, thereforeS+ = S;.
This meansaw, is a constant function. [ |

As shown before, th€ondition 7 is satisfied for all wavelet
ses, or in fact any general tree-structured filter banks where
the all-lowpass branch is carried to the maximum number of
stages (i.e., when only one scaling coefficient is left).

By definition, the FRIT can be written as

is the orthogonal basis of the discrete-time wavelet series [11) .
Here,GY) denotes the equivalent synthesis filters at lgveir,
more specifically

J—1 .
a ) =TT 6o (+*).
k=0

FRIT[k, m] = <FRATf[k, 1, wg,’;>[.]>

GY G ' jI_IZ = W )
7 k ; Wy y Pkl
g])(z) =G (2,’2 ) GO (22 ) , ] = 17 . J. lezz:p
k=0
s w .
The basis functions frorﬁ?é‘]) are called the scaling func- <f/ zezz: m []‘Pk,l> (26)

tions, while all the others functions in the wavelet basis are
called wavelet functions. Typically, the filt€¥; is designed to  Here, {1} is the FRAT frame which is defined in (24).
satisfy the high pass conditio@; (z)|.=1 = 0 so that the corre- Hence, we can write the basis functions for the FRIT as follows:
sponding wavelet has at least one vanishing moment. Therefore,
ng)(2)|z:1 =0,Yj =1, ..., J, which means all wavelet Phym = Z w1 . (27)
basis functions have zero mean. €2,

For a more general setting, let us assume that we have a col- ) )
lection of(p+1) 1-D orthonormal transforms d&® (which can We can next prove the result on the orthogonality of a modi-

be the same), one for each projectioof FRAT, that have bases fied FRIT. . . )
as Theorem 2: Givenp + 1 orthonormal bases i (7, ) (which
can be the same{mﬁ,’i): m € Z,},0 < k < p, that satisfy the
{w(k): m € Zp} , k=0,1,...,p. ConditionZ then

. . m:k=0,1,...,p; =12, ...,p—1
The only condition that we require for each of these basescan{pk’ ik=0,1,....p3m ’ P = 13U {po}

be expressed equi_vglent.ly by the following !emma. . is an orthonormal basis iH(ZI%), wherepy, »,, are defined in
Lemma 1 (andmorZ). _S_upp(_)se th?‘{twm' m € Z,}isan (27) andpy is the constant functiomy[i, j] = 1/p, ¥ (3, j) €
orthogonal basis for the finite-dimensional spate then the .2

: H p
following are equivalent. Proof: Letus consider the inner products between any two
1) This basis contains a constant function, 3ay, i.e., FRIT basis functions

woll] = const, V1 € Z,. /
2) All other basis functionsy,,, m = 1, ..., p — 1, have (P ) = Y wll] w1 (ks o 1)
zero mean. ez,
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Using properties of lines in the finite geomet&y, it is easy (o]o] o] o0 o |o]
to verify that o]0 o] [o] o o]

1, ifk=k,1=V

(k1 ) =9 0, ifh=Fk,1£U (28) E‘ F
1/p, ifk#K. . -1 — -1
\,, Te—

Thus, when the two FRIT basis functions have the same ¢
rection,k = £/, then

(k) (k) , Fig. 8. lllustration on the construction of orthogonal FRIT basis for & 2
(Pkms Prmr) = Z wy, (1] Wi [l] = é6[m —m/]. 2 block using the Haar wavelet. Upper: Basis images for the FRAT. Lower:
lez, Basis images for the orthogonal FRIT. These images are obtained by taking the

(scaled) Haar transform for each pair (corresponding to one projection) of the
So the orthogonality of these FRIT basis functions COMERAT basis images. The constant image results from all projections and thus

from the orthogonality of the basfan™): m € Z,}. In partic- We can drop all but one of them.
ular, we see thaty, ,, have unit norm. Next, for the case when

the two FRIT basis functions have different directiohs# &, of the FRAT projections then we obtain the 2-D Fourier
using (28) we obtain transform. For convenience, we still use the term FRIT to
refer to the cases where other transforms than the DWT
(ks Pkt = 1 Z w®) wqu,') ] might be applied to some of the FRAT projections.
L'eZ, To gain more insight into the construction for the orthogonal
FRIT basis, Fig. 8 illustrates a simple example of the transform
1 Z o Ky ona2x 2 block using the Haar wavelet. In this case, the FRIT
“p W [1] Z W (U] - basis is the same as the 2-D Haar wavelet basis, as well as the
ez, l'ez, 2-D discrete Fourier basis.
In this case, if eithem or m’ is nonzero, e.gm # 0, then
using theCondition Z of these bases}_, , wil] = o0, it V. VARIATIONS ON THE THEME
implies (pr,m, pr',m’) = 0. A. Folded FRAT and FRIT

Finally, note thalUl_L’“(l) = 7, f‘?f al dlf?Cthl’]Sk’ €€ The FRAT in the previous sections is defined with a peri-
(10)]- So, together with the assumption t'ﬁf are constant ogic basis overZ2. This is equivalent to applying the trans-
functions, we see that all of the FRIT basis functipp$, (k = form to a periodization of the input imagg Therefore rela-
0,1, ..., p) correspond to the mean of the input image so Wgely large amplitude FRAT coefficients could result due to the
only need to keep one of them (in any direction), which is dgjssible discontinuities across the image borders. To overcome
noted agy. The proof is now complete. B this problem, we propose a similar strategy as in the block co-

Remark 2: sine transform by extending the image symmetrically about its

1) An intuition behind the above result is that at each levebrders [3].
of the DWT decomposition applied on the FRAT projec- Given thatp is a prime number angd > 2, thenp is odd and
tions, all of the nonorthogonality and redundancy of thean be written ag = 2n — 1. Consider am x n input image
FRAT is pushed into the scaling coefficients. When thg[i. j],0 < 4, j < n. Fold this image with respect to the lines
DWT's are taken to the maximum number of levels then— 0 and; = 0 to produce @ x p imagef[i, j], in which (also
all of the remaining scaling coefficients at different prosee Fig. 9.
jections are the same, hence we can drop all but one of c . o
them. The result is an orthonormal FRIT. fli gl = fllil Al —n<d g <n (29)

We prove the above result for the general setting whereThe periodization off[i, j] is symmetric and continuous
different transforms can be applied on different FRARcross the borders of the original image, thus eliminating the
projections. The choice of transforms can be eith@limp discontinuity that would have resulted from the periodic
adaptive, depending on the image, or pre-defined. Fextension off[i, j]. Applying the FRAT to thef[i, j] results
example, one could employ an adaptive wavelet packat,(, + 1) transform coefficients. Notice the new range for the
scheme independently on each projection. The orthogixel indices of the imag¢|i, j]. We will show that the FRAT
onality holds as long as the “all lowpass” branch of theoefficients of f[i, j] exhibit certain symmetry properties

general tree-structured filter bank is decomposed tosg that the original image can be perfectly reconstructed by
single coefficient. All other branches would contain akeeping exactly:? coefficients.
least one highpass filter thus leading to zero-mean basisConsider the 2-D DFT of i, j]
functions. } 1 ) o
3) Furthermore, due to the “wrap around” effect of the Flu,v]= - Z flé, j]W;”J”“.
FRAT, some of its projections could contain strong P i<n
periodic components so that a more oscillated basis like
the DCT might be more efficient. Also note that from

Theorem 1, if we apply the 1-D Fourier transform on all Flu, v] = F|ul, |v]].

2

~

Using the symmetry property dffi, j] in (29), we obtain
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\/

Fig.9. Extending the image symmetrically about its borders in order to redu %
the discontinuities across the image borders due to the periodization.

241 e A - : .
Theorem 1 shows that the FRAT, ,[t], (—n < t < n) of . ,,:;13%:%:
fli, 4] can be computed from the inverse 1-D DFT as - , o A e o
,/'ﬁ’ g * // g7 = 6 o o
1 o < A /,-::/ - [¢] ©
-~ 5 — A - O
fll= = Y Ruful Wy B e ;
ﬁ —n<w<n = /z/ > A B o o
P //; . o
# a? o i
whereR, ,[w] = Flaw, bw]. The symmetry off'[u, v] thus 1 7
yields AR
//V:/ o]
16,07 o DCT 1
-~ . ¥, 0 -~ DWT
Ra,b[w] = Ra,wa” (30) K —+ FRIT - usual ordering
? —+— FRIT - optimal ordering
and 14 1 1 1 1 1 T - T
. . 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R, p[w] = Ria), ) [w]. (31)

Percentage of Retained Coefficients (%)

()
From (30) we havé, ;[t] = 74 ,[|t]] or each projectioti, p[t]
is symmetric about = 0, and (31) reveals the duplications ' '*

S

(a) Test image: a truncated Gaussian image of sizex2866 that
among those projections. In fact, with the set of optimal norm

represents the functiofi(z1, ¥2) = 1{uy <2, 405} e—ei—s3, (b) Compari-

n of nonlinear approximations using four different 2-D transforms: DCT,
vectors in (20), except for two projections indexed by0) and DWT, FRIT with usual ordering and FRIT with optimal ordering.
(0, 1) (the vertical and horizontal projections, respectively) all

other projections have an identical twin. By removing those du-
plications we are left witl2 + (p — 2)/2 = n + 1 projections.

For example, we can select the setof 1 independent projec-
tions as the ones with normal vectors in the first quadrant [ref |
to Fig. 6(b)]. Furthermore, as in (10), the redundancy among t
projections of the folded FRAT can be written as

.
o DCT
-0~ DWT
—#- FRIT ||

p—

30

n—1 28
Far b [0] 42> Far e [t] = % > fli gl (32)
t=1

n
)
T

—n<i, j<n

SNR (dB)
N
>

The next proposition summarizes the above results.

Proposition 3: The imagef[i, j] can be perfectly recon- 2|
structed from the following:? — 1 coefficients:

s

,& —

20F

Tar p:[t] suchthaty(a;) >0 and 0<t<m,

(33) LR ue o
O o @
%o (o . o 0 o
16 1 1 1 © Q ° (? © 1 1 1
. ~r. . 0 10 20 30 40 50 60 70 80 90
and the mean of the |made§z, j]. Angle of the line singularity (6)
To gain better energy compaction, the mean should be sub-

: i - : : Fig. 11. Nonlinear approximation comparison at different orientation
traCteq from the Imagﬁ[z,_ J_] previous to_taklng the FRAT. The (& line singularity in the truncated Gaussian imagese., v2) =
set of mdepepdent coefﬂments in (33) is referred as the fold@gg1 cor04aysina<03) € "1773. In each case, we keep the most 0.5%
FRAT of the imagef[i, j].

significant coefficients.
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(€Y

(b)
Fig. 12. From left to right, reconstructed images from the 32, 64, 128, and 256 most significant coefficients of the DWT and FRIT, out of 65 536tsoefficie
(a) Using DWT and (b) using FRIT.

However, orthogonality might be lost in the folded FRIT (reposition with J scales, where level hasp; directions. When
sulting from applying 1-D DWT om + 1 projections of the p; = 2, the orthonormal FRIT using the Haar DWT is the same
folded FRAT), since the basis functions from a same direction a$ the 2x 2 Haar DWT (see Fig. 8). Therefore the MFRIT
the folded FRAT could have overlap. Nevertheless, if we loosesheme includes the multilevel 2-D Haar DWT. In general,
up the orthogonality constraint, then by construction, the foldechenp; > 2, the MFRIT offers more directions than the 2-D
FRAT projections(7: 5+ [t]: 0 < t < n) are symmetric with DWT and can be useful in certain applications such as texture
respectta = 0 andt = n — 1/2. This allows the use of folded analysis.
wavelet transform with biorthogonal symmetric wavelets [27]
or orthogonal symmetric IIR wavelets [28]. VI. NUMERICAL EXPERIMENTS

B. Multilevel FRITs A. Nonlinear Approximation

In the FRIT scheme described previously, multiscale cOmestjiq\ying the study of the efficiency of the ridgelet transform
from the 1-D DWT. As a result, at each scale, there is a Iarﬂf"the continuous domain using the truncated Gaussian func-

number of directions, which is about the size of the inputimagﬁaons [6], we first perform numerical comparison on a 266

Moreover, the basis images of the FRIT have long suppo&t5 : : a2 g2
i . 6 f the functiory: =1 T
which extend over the whole image. image ofthe function’(z1, 72) = 1z, <2140.3) ¢

Here we propose a different scheme where the number of ee Fig. 10(a)], using four 2-D transforms: DCT, DWT, FRAT,

rections can be controlled, and the basis functions have smaﬁg}j FRIT. The comparison is evaluated in terms of the nonlinear

support. Assume that the input image has the sizen, where approximation power, i.e., the ability of reconstructing the orig-

n = pips---psq andp; are prime numbers. First, we applymal image, measured by signal-to-noise ratios (SNR’s), using

the orthonormal FRIT t@; x n; nonoverlapping subimages ofthed]\(: 5}?‘3“ magm:juc:]e t_ransform coefflhments. qu the FR'ST
sizep, x p1, wheren; = ps--- pyq. Each sub-image is trans-an , we extend the image size to the next prime number,

formed intop? — 1 “detail” FRIT coefficients plus a mean value.257, by replicating the last pixel in each row and column. We

These mean values form anxn, coarse approximate image ofUS€ the orthogonaymmletvavelet with four vanishing mo-
the original one. Then the process can be iterated on the codP&ts [24] for both the DWT and the FRIT. .
version up toJ levels. The result is called as multilevel FRIT ©Our initial experiments indicate that in order to achieve good
(MFRIT). results, it is necessary to apply strong oscillated bases to certain
At each level, the basis functions for the “detail” MFRIT coFRAT projections to handle to the “wrap around” effect (refer to
efficients are obviously orthogonal within each block, and aldbe remarks atthe end of Section IV). Forimages with linear sin-
with other blocks since they do not overlap. Furthermore, thegelarities, we find that in the FRAT domain, most of the image
basis functions are orthogonal with the constant function @mergy and singularities are contained in the projections with
their block, and thus orthogonality holds across levels as wdheleast“wrap around” [see Fig. 13(b)]. Therefore, without re-
Consequently, the MFRIT is an orthonormal transform. sorting to adaptive methods, we employ a simple, pre-defined
By collecting the MFRIT coefficients into groups dependingcheme where the DWT is only applied to the projections with
on their scales and directions, we obtain a subband-like decote}, b%)|| < D, while the remaining projections use the DCT.
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Direction: (a,b) = (1,1); Energy = 47.66%

We useD = 3 in our experiments, which means in the tested . : ; : ; .
FRIT, only 16 FRAT projections are represented by the DWT. Ov
Although this version of the FRIT contains most of Fourier-type -st ‘ ‘
basis functions, due to the concentration of energy mentionec s : Drector: (@b) = (0: Fneray - 1828% .
above, the resulting nonlinear approximation images are mainly ,|. i
composed of the ridgelet-type functions that fit around the linear
edge. s . ‘ ,
Fig. 10(b) display the comparison results. We omit the FRAT 0_////’\/—\
since its performance is much worse than the others. Clearly the , ,
FRIT achieves the best result, as expected from the continuou: : ;
theory. Furthermore, the new ordering of the FRAT coefficients ;|
is crucial for the FRIT in obtaining good performance. -1F
We then compare the performance where the singularity line i
varies its orientation. Consider the truncated Gaussian image |
again, using the functiofy (1, 72) = 1{z, cos 64, sin6<0.3} aF
e~*1=73. Due to the circular symmetry, we only need to con-
sider0 < 6 < 90°. Fig. 11 shows the results where the FRIT
(with optimal ordering) consistently outperforms both the DWT,
more than 2 dB on the average, as well as the DCT. 45 1
Our next test is a real image of size 256256 with straight o
edges. Fig. 12 shows the images obtained from nonlinear af
proximation using the DWT and FRIT. As can be seen, the FRIT s 1
correctly picks up the edges using the first few significant coef-
ficients and produces visually better approximated images. Bl
let us point out that even this simple test image can not be reg&2 1
resented as a summation of a few “global” linear singularitiess |
(like the Gaussian truncated images), and thus itosin the
optimal class of the ridgelet transform. 1 il
To gain more insight into the FRIT, Fig. 13(a) shows the top ]
five FRAT projections for the “object” image that contain most
of the energy, measured in thenorm. Those projections cor-

I I
Direction: (a,b) = (0,1); Energy = 16.22%
T T

I |
Direction: (a,b) = (-2,1); Energy = 2.14%

50 T T T

5 4

respond to the directions that have discontinuities across, plu o . - - - = -
the horizontal and vertical directions. Therefore, we see that c.. Direction
first the FRAT compacts most of the energy of the image into (b)

a few projections [see Fig. 13(b)], where the linear discontinu-

ities create “jumps." Next, taking the 1-D DWT on those pI’OEig- 13. (a) Top five FR_AT_ pr(_)jections of_the “pbject“ image that contain
.. hich inl th ts th furt most of the energy. (b) Distribution of total input image energy among FRAT
Jections, which are mainly smooth, compacts the energy fur t'lﬁg)jections. Only the top 30 projections are shown in the descending order.

into a few FRIT coefficients.

B. Image Denoising Step 2) Hard-thresholding of FRIT coefficients with the uni-

The motivation for the FRIT-based image denoising metha@rsal threshold” = o/2log N whereN = p? pixels.
is that in the FRIT domain, linear singularities of the image are Step 3) Inverse FRIT of the thresholded coefficients.
represented by a few large coefficients, whereas randomly lo+or an image which is smooth away from linear singularities,
cated noisy singularities are unlikely to produce significant cedges are visually well restored after Step 3. However due to the
efficients. By contrast, in the DWT domain, both image edggseriodic property of the FRIT, strong edges sometimes create
and noisy pixels produce similar amplitude coefficients. Therewrap around” effects which are visible in the smooth regions
fore, a simple thresholding scheme for FRIT coefficients cayf the image. In order to overcome this problem, we optionally
be very effective in denoising images that are piecewise smoeiimploy a 2-D adaptive filtering step.
away from singularities along straight edges. Step 4) (Optional) Adaptive Wiener filtering to reduce the
We consider a simple case where the original image is cofwrap around” effect.
taminated by an additive zero-mean Gaussian white noise oin some cases, this can enhances the visual appearance of the
variancer?. With an orthogonal FRIT, the noise in the transformestored image.
domain is also Gaussian white of the same variance. Therefor@he above FRIT denoising algorithm is compared with the
it is appropriate to apply the thresholding estimators that wesi@alogous wavelet hard-thresholding method using the same
proposed in [29] to the FRIT coefficients. More specifically, outhreshold value. Fig. 14 shows the denoising results on the real
denoising algorithm consists of the following steps. image. The FRIT is clearly shown to be more effective than the
Step 1) Applying FRIT to the noisy image. DWT in recovering straight edges, as well as in term of SNRs.
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scheme in employing the ridgelet transform would first utilize
a quad-tree division of images into suitable blocks where edges
look straight and then apply the finite ridgelet transform to each
block.

APPENDIX
ORTHOGONAL WAVELET TRANSFORM FORNONDYADIC
LENGTH SIGNALS

In the construction of the orthonormal FRIT, we need wavelet
bases for signals of prime lengthin addition, those bases have
to satisfy theCondition Z in Lemma 1. Letn = 27 be the
nearest dyadic number jothat is smaller than or equal o
Suppose thagt — n is small, then one simple way of taking the
wavelet transform on a sequencep$amples is to apply the
usual wavelet transform on the firstsamples and then extend
it to cover the remaining — n samples.

Let {v,,: m € Z,} to be the basis vectors of an orthonormal
wavelet transform of length with .J decomposition levels. We
assume periodic extension is used to handle the boundary. Sup-
pose thatyy corresponds to the single scaling coefficient or the
mean value, then all other vectors must have zero mean (see
Lemma 1). Denotet”*} be the vector wittk entries, all equal to
c. Consider the following vectors defined ifR?

(1{p}>/80
1=ty 1)/31

(
wo = (1{’)72}, —p+2, 0)/32
(

(b)

§
I

1e=nt _pyn, O{n—l}) / Spn

Wy_pi1 = (’Ul, 0{1’_"})

Wy =

©

. . .. . . . w,—1 = |V 1 O{p—n}
Fig. 14. Comparison of denoising on the “object” image. (a) Using DWT; SNR p= n—b :

= 19.78 dB. (b) Using FRIT; SNR= 19.67 dB. (c) Using FRIT and Wiener

fiter; SNR = 21.07 dB. Here, s, is the scale factor such thidw,|| = 1. The orthog-

onality of the new sefw;: k£ € Z,} can be easily verified
VII. CONCLUSION AND DISCUSSION given the fact thaf{wv,,,: 1 < m < n} are orthonormal vectors

We presented a new family of discrete orthonormal tranfith 2610 mean Thereforduwy: k € Z,} is an orthonormal

. . . . asis forR? that satisfies th€onditionZ. For a lengtlhp input

forms for images based on the ridgelet idea. Owning to 0\5éctor = ( ), the transform coefficients cor-

thonormality, the proposed ridgelet transform is self-invertingTe o:d;auxoilvilér. : ';x”:‘k’ <1 canbe computed offi-
the inverse transform uses the same algorithm as the forwird” ks Cp-—n=hsp-i, omp

ntly using the usual DWT withi levels on the first. samples

transform—and has excellent numerical stability. Experiment%'f_ ( ). The last scaling coefficient is then
results indicate that the FRIT offers an efficient representatign _ \*0» 1>+ +» Tn=1): 9

for images that are smooth away from line discontinuities cl;(replaced byp —n + 1 coefficients corresponding to the basis

straight edges. A Matlab code implementing the transforms aﬁ%a?rswk’ b f: 0, ..., p—n. Thus the new basis iR* also
experiments in this paper is available at an author's Web pag"’éS ast transforms.
http://www.ifp.uiuc.edu/~minhdo.

However, it is important to emphasize that the ridgelet trans-
form is only suited for discontinuities along straight lines. For The authors thank Prof. A. Kuba and Prof. G. Herman for
compleximages, where edges are mainly along curves and th@oeting us to the references [20], [21], P. L. Dragotti and
are texture regions (which generate point discontinuities), tRe Shukla of EPFL for many stimulating discussions, and the

ridgelet transform is not optimal. Therefore, a more practicedviewers for their constructive remarks.
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