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Fast and Memory Efficient Text Image
Compression With JBIG2

Yan Ye Member, IEEEand Pamela CosmaB8enior Member, IEEE

Abstract—In this paper, we investigate ways to reduce encoding halftones. In JBIG2, the coding of text is based on pattern
time, memory consumption and substitution errors for textimage matching techniques [1]. JBIG2 defines two modes for text
compression with JBIG2. We first look at page striping where - compressionpattern matching and substitutig®M&S) [10],
the encoder sphts_ the input image into horizontal stripes and [11] andsoft pattern matchingSPM) [12]. For general graphic
processes one stripe at a time. We propose dynamic dictionary g dentified h d. basic bi
updating procedures for page striping to reduce the bit rate  data not identified as text, the encoder uses a basic bitmap
pena|ty it incurs. Experiments show that Sp|itting the image coder such as SpeCIerd by JBIG1 or T.6. This is called Cleanup
into two stripes can save 30% of encoding time and 40% of coding.
physical memory with a small coding loss of about 1.5%. Using  On a typical page of text, there are many repeated characters.
more stripes brings further savings in time and memory but the \we call the bitmap of a character instance a “symbol.” We

return diminishes. We also propose an adaptive way to update ; ; ;
the dictionary only when it has become out-of-date. The adaptive can extract symbols from the input image using a standard

updating scheme can resolve the time versus bit rate tradeoff and cONnected component analysis algorithm [13]. In English and
the memory versus bit rate tradeoff well simultaneously. We then Many other languages, most characters are represented by one
propose three speedup techniques for pattern matching, the most connected piece and hence are extracted as one symbol. For
time-consuming encoding activity in JBIG2. When combined characters that contain separated parts, e.g., English letter “i”
together, these speedup techniques can save up to 75% of the totalgr «j ” we use a postprocessing step to identify a dot (a small
encodlng time with at most 1.7% of bit rate penalty. Finally, we symbol) and put it back onto its stem to form one symbol.
look at improving reconstructed image quality for lossy compres- . .
sion. We propose enhanced prescreening and feature monitored Rather than godlng all the pixels of e?‘Ch symbol on the page,
shape unifying to significantly reduce substitution errors in the We code the bitmaps of a representative subset and put them
reconstructed images. into the symbol dictionary Then, each symbol on the page is
Index Terms—IBIG2, pattern matching, soft pattern matching, coded by g_lVlng Its pos_ltlon on_ the page and the index of its
substitution, text image compression. best matchlng symbol in the d|9t|qnary. In the PM&S mode,
the bitmap of the best match dictionary symbol gets directly
substituted for the current symbol on the reconstructed page.
. INTRODUCTION In the SPM mode, we transmit a lossless coding of the current

HE JBIG2 standard [1], [2] is the new international starsymbol’s agtual bitmap based on that of its matching dic'gionary
T dard for bilevel image compression. Bilevel images haymbol. This lossless coding, called refinement coding, is done
only one bit-plane, where each pixel takes one of two possilﬂé context-based arlthmetlc coding using a context drawn from
colors. Prior to JBIG2, facsimile standards such as ITU-T refoth the best match bitmap, and the already coded part of the
ommendations T.4, T.6, and T.82 (JBIG1) [3]-[7] provided On|zurrent bitmap [1]. In our work, we use the Hamming distance
for lossless compression of bilevel images. JBIG2 is the first oR&S€d matching criterion which measures the percentage of dif-
that also provides for lossy compression. A properly designf&[€nt pixels between two symbols.
JBIG2 encoder not only achieves higher lossless compressiod N€ idea of text image compression based on pattern
ratios than the other existing standards, but also enables VBIjiching appeared several decades ago [10], [11]. However,
efficient lossy compression with almost unnoticeable inform&1€ main obstacle to its practical implementation was its high
tion loss [8]. cost. From the point of view of physical memory consumption,
A typical JBIG2 encoder first segments an image intBUffering the entire input page (or a big portion of it as in page
different regions [9] and then uses different coding mechanisi&iPing) is much more expensive than buffering only a few
for text and for halftones. In this paper, we are concerned witRes Of the input page, as needed in T.4, T.6, or T.82 (JBIG1).
compressing text images. We define text images as bilef@Pm the point of view of encoding time, pattern matching is
images which consist mainly of repeated text characters gffynputationally very intensive. Recent advances in the CPU

possibly some general graphic data (e.g., line art) but ﬁ\@d memory technologle_s have made |t_ possible tp practically
implement pattern matching based text image coding systems.
However, it is still of great importance for many applications
Manuscript received July 10, 2001; revised April 15, 2003. The associate @~ |imit physical memory consumption and/or to encode
itor coordinating the review of this manuscript and approving it for publicatio : . . .
was Prof. Trac D. Tran. faster. In this paper, we investigate several t_echr_nque_s to lower
Y. Ye is with the Video Group, Qualcomm, Inc., San Diego, CA 92121 usAnemory consumption and to reduce encoding time in JBIG2.

(e-mail: e-mail: yye@qualcomm.com). To save physical memory, JBIG2 allowsge stripingwhere
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striping also reduces encoding time. The disadvantage of pdgesed dictionaries, and propose a new static dictionary design
striping is that it offers lower compression efficiency comparechlled the modified-class design. To reduce the bit rate penalty
to coding the page as a whole. However, since text symbatgurred by page striping, we propose dynamic dictionary up-

on the same page are usually very similar, when coding thating techniques for the singleton exclusion dictionary and the
current stripe, some of the existing dictionary symbols can beodified-class dictionary. We investigate the encoding trade-
re-used to reduce the compression loss. In JBIG2, this is dai#fs between memory and bit rate and between coding time and
by sending a 1-bit flag for each dictionary symbol to signalit rate when using different dynamic dictionary construction

to the deCOder Whether the current Symb0| iS to be retaingg']emes' In particuiar’ we propose an adaptive dictionary up_

or discarded after the current stripe is decoded. In this papgsting scheme that can resolve both tradeoffs favorably at the
we propose dynamic dictionary updating procedures to retai§me time.

useful dictionary symbols and discard obsolete ones [15]. We
also investigate two encoding tradeoffs in page striping: the Static Symbol Dictionary Design

coding time versus bit rate tradeoff and the memory usageI thi . take loss| . |
versus bit rate tradeoff. We propose an adaptive dictionar, N IS SEclion, We take 10SsIess compression as an example.

updating scheme that can resolve both tradeoffs favorably ; g will address lossy compre_ss_ion in furthe_r detail in _Sec-
the same time. tion IV. The one-pass (OP) dictionary [12] is formed in a

A JBIG2 coding system for text images consists of seversfduential way. The encoder matches each newly extracted
components: symbol extraction, pattern matching, aritﬁymbo_l with the current dictionary. If the lowest r_nlsmatch
metic/Huffman integer/bitmap coding, and so on. To speed {f}'nd is below a preset threshold, the new symbol is encoded
arithmetic bitmap coding, JBIG2 allows typical prediction (TPYith refinement coding using the best match as its reference.
as specified in JBIG1 [5] and typical prediction for residu&therwise, the new symbol is encoded directly using a JBIG1
(TPR) as proposed in [14]. In this paper, we focus instedge of arithmetic coder; this is called direct coding. Either
on reducing the encoding time spent on pattern matching. W&y, the new symbol is added to the dictionary. The main
lossless SPM mode, our experiments show that, even using @igadvantage of the OP dictionary is that it contains many
simple Hamming distance matching criterion, pattern matchisgngletons which are symbols never referenced by any other
can take as much as 90% of the total encoding time. In trggmbols [17]. Singletons are detrimental to coding efficiency
paper, we propose three speedup techniques that significabégause they do not provide any useful reference information
reduce the amount of pattern matching time while losinget dictionary indices are assigned to them anyway, thus
little in coding efficiency. These speedup techniques are mdrereasing the average length of all indices. By excluding
efficient than page striping in terms of trading off compressiosingletons from the OP dictionary, we obtain the singleton
and coding time. Nevertheless, page striping is still necessastlusion (SE) dictionary.
for applications with limited physical memory. Previously we have proposed the class-based (CLASS) [18]

In lossy compression, we consider one more figure of meréind tree-based (TREE) [19] symbol dictionary designs for
the reconstructed image quality. Criteria such as Peak SignaPM-based JBIG2. Compared with the simpler OP and SE
Noise Ratio (PSNR) commonly used in measuring gray-scalgtionaries, the CLASS and TREE dictionaries can improve
image quality are not suitable for bilevel images. For bilevgbmpression by up to 8% for lossless and 17% for lossy com-
text images, itis Very important to be able to COI’reCtly reco ession [8] In this paper' we propose a new dictionary design
nize as many text characters as possible at the receiver. ffied the modified-class (MC) design [15] which combines
pair of corresponding characters in the original and the recQfs ideas of the CLASS and TREE designs. Design of the MC

structed images are perceived to be different by a human @fetionary follows two steps. At the first step, as in the CLASS

server, then a subst|tut|o_n error has occurred. In_ th|_s paper, M‘@sign, we group all extracted symbols into classes by pointing
use the number of substitution errors as a quantitative mea to their closest match. For each class. we choose its

for the reconstructed image quality, and we propose teChn'thlgﬁresentative as the symbol with the lowest average mismatch

for suppressing substl_tut|on Errors. . within the class. We put all representatives into the dictionary.
This paper is organized as follows. In Section II, we elabci_-he second step follows the idea of the TREE design. We

rate on page striping and propose to update the current dICt(I:%hneCt each pair of symbols with a weighted edge where

nary from dictionaries for previous stripes. We give results g aht is th . tch bet the t bols-
the savings in time and memory usage and the bit rate pena{ hwelg 'St h € m'S”_‘atf_ scotrr(]a etr\ivef{ahn ﬁ I(‘;VOthSymtho S
incurred. We also compare the performance of five dictionafy"'€ miSmatch score is bigger than the thresnold, then there

no edge connecting the symbol pair. This way we obtain

construction schemes when used in page striping. In Section th1,10 ¢ -~ ;
we propose three speedup techniques for pattern matchingMAtching graphs among all dictionary symbols (i.e., class

Section IV we propose ways to suppress substitution errors'gpresentatives). We then construct minimum spanning trees

the reconstructed images for lossy PM&S and lossy SPM. W¥STs) from these matching graphs using Kruskal’s algorithm
conclude our paper in Section V. [20]. For each MST, we choose its root randomly as any node

with degree bigger than 1 [19], [8]. The MC design improves
over the CLASS design because the reference relationships
Il. DYNAMIC DICTIONARY CONSTRUCTION FORPAGE STRIPING @mong all dictionary symbols as given by the MSTs have the
lowest total mismatch (the CLASS design uses the concept of
In this section, we quickly review four previous dictionary desuper-classes which are suboptimal). The MC design is also
signs, the one-pass, singleton exclusion, class-based and tceeaputationally less complex than the TREE design.
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B. Dynamic Dictionary Update connecting the four gray nodes. However, the mismatch scores
and reference relationships among the pre-existing symbols are
Page striping is an encoding mode defined in the JBIGReaningless because the decoder already has their bitmaps.
standard [1] that allows the encoder to split the input page iniderefore, we can connect all existing symbols with zero-weight
horizontal stripes of approximately equal sizes and encode @uges [the dash-dotted gray edges in Fig. 1(b)]. We then go on
stripe at a time. Page striping lowers memory requiremergad apply the usual Kruskal’s algorithm. This guarantees that
for both the encoder and the decoder. Another benefit of pagch resulting MST has at most one gray node representing
striping is that it reduces the encoding time by reducing tleprevious dictionary symbol; some MSTs may have no gray
time spent on pattern matching. To decide which symbat®des if they consist of new symbols from the current stripe
from the input page will go into the dictionary, the encodesnly. For an MST containing one existing dictionary symbol,
needs to perform pattern matching on all extracted symbalkis symbol is used as the tree root since its bitmap is already
Therefore, if the input page contain§ symbols in total, known to the decoder. For an MST containing only symbols
and page striping is not used, the time needed for pattdrom the current stripe, its root is selected randomly as any
matching is proportional tav2. By splitting the image into node with degree bigger than 1 as in the static design. After the
two stripes, the pattern matching time can be approximatetgw dictionary is decided, those previous dictionary symbols
cut in half (2 x (N/2)> = NZ2/2). However, page striping that are not used in the new dictionary are considered obsolete
lowers compression efficiency if the encoder sends completelgd will be excluded.
separate dictionaries for each stripe. To reduce this coding loss,
rather than coding each stripe completely separately, we re
some of the dictionary symbols from previous stripes to co

the current stripe. This is based on the observation that thepage striping reduces memory usage and encoding time but
fonts and sizes of the text characters in one page are usugiiurs a bit rate penalty. In this paper, we focus on two encoding
very similar. We propose separate updating processes for {hfieoffs in page striping: the tradeoff between encoding time
SE dictionary and the MC dictionary. and bit rate and the tradeoff between memory usage and bit rate.
Updating an SE dictionary is straightforward. For each neWe compare several dictionary construction schemes for page
symbol in the current stripe, the encoder matches it with nsiriping in terms of their performances in both tradeoffs.
only all the previous symbols in the current stripe, but also all Depending on the characteristics of the text in the input
the symbols from the dictionary used for the previous stripe. Tipage, we should use different dictionary construction schemes
encoder then uses its closest match as its reference symbolfandpage striping. If the text contained in the first stripe is
adds the new symbol to the dictionary. After the current strievery accurate representation of the text in the entire page,
is processed, the encoder examines the new dictionary andteen we can design the dictionary only once from the first
cludes all singletons from it. Those previous dictionary symbaosiripe and use it throughout the entire page. We call this
that are not used by any symbol in the current stripe are also e static schemeOn the contrary, if the text in the current
punged. This way, new symbols useful for the current stripe ggtipe is completely different from that in the previous stripe
included in the new dictionary, and old dictionary symbols th&é.g., the previous stripe contains regular English text and the
are obsolete are discarded. current stripe contains math symbols), then we should design a
The design of an MC dictionary consists of two steps, ttmompletely isolated dictionary for the current stripe using only
first of which is to form classes and choose representatives.téxt symbols from the current stripe. We call this thelated
the dictionary updating procedure, we perform this step on teeheme The more general case is that some text symbols in
combined set of all previous dictionary symbols and all netine current stripe are similar to those in previous stripes but
symbols from the current stripe. If a previous dictionary symbdihere are also new symbols not seen before. In this case, we
has the lowest average in-class mismatch, it will be naturakjnould use the proposed dynamic updating procedures to reuse
selected as the representative, which means the encoder eantain previous dictionary symbols, discard those that are
directly reuse its bitmap without sending it to the decod@bsolete, and add new symbols from the current stripe into the
again. In the case that the symbol with the lowest in-clagiictionary if necessary. We can update the dictionary for every
mismatch is not an existing dictionary symbol, if there is anew stripe (we call it thelynamic schemeor we can update
existing dictionary symbol whose average in-class mismatchtige dictionary for every other stripe (we call it thgnamic-2
slightly higher than the lowest one but the difference betweschemi Compared to the static or the isolated scheme, the
them is below a preset threshold, we still choose the existidgnamic scheme reduces the bit rate penalty incurred by page
dictionary symbol as the representative. This allows us to masieiping but also takes longer to encode. This is because the
use of many previous dictionary symbols; we only choosedynamic scheme needs to perform additional pattern matching
new symbol as the representative if all the existing ones detween symbols in the current stripe and symbols in the
too inaccurate. The second design step is to form MSTs for theevious dictionary, and decide which ones to reuse, to discard,
dictionary symbols. In Fig. 1, we show pre-existing dictionargr to add. Compared to the dynamic scheme, the dynamic-2
symbols in gray and new ones from the current stripe Btheme reduces the encoding time by updating the dictionary
black. Numbers along the edges indicate the mismatch scohedf as frequently. However, how often the dictionary is updated
between the symbols. With these mismatch values [Fig. 1(a3hould ultimately depend upon the rate at which text symbols
Kruskal's algorithm will produce an MST that includes edgeshange from stripe to stripe. Since this text change rate is not

e.eEncoding Tradeoffs in Page Striping



YE AND COSMAN: FAST AND MEMORY EFFICIENT TEXT IMAGE COMPRESSION WITH JBIG2 947

- 5 TABLE |
/. \ ToTAL COMPRESSEDFILE SIZES FORLOSSLESS ANDLOSSY CODING
71 )
3 I R

USING THE FIVE DICTIONARIES

1
- \ \a LOSSLESS LOSSY

~~_ 6 3 ’,a’ -l 6 g”,’
/;4 £ //4 g BYTES | IMP. | BYTES | IMP.
a a—z2 a a—: 0P 480,098 | - |[313,378| -
Ng Ra SE 458,138 | 4.6% | 278,443 | 11.17
(a) counting mismatch scores for all symbols  (b) setting mismatch scores to zero among CLASS 442 ? 395 7 . 97. 257 ’ 252 1 7 . 97‘
the pre—existing symbols TREE 439 N 913 8. 4% 262 N 933 16. 1%
MC 442,075 | 7.9% | 255,993 | 18.3Y%

Fig. 1. Forming MSTs when updating an MC dictionary. Gray symbols are
previous dictionary symbols; black ones are newly selected ones from the
current stripe. (a) Counting mismatch scores for all symbols and (b) setting

mismatch scores to zero among the pre-existing symbols. This database contains about 980 scanned document im-
ages. The 10 images we selected are mostly streak-free,

known beforehand and is often not constant within a page, not obviously skewed, from various sources, and contain

we propose an adaptive dictionary updating technique that  mainly text, little line art and no halftones. All ten im-

automatically decides if the existing dictionary has become  ages have 300 dpi resolution. Eight of the images have

out-of-date (i.e., enough symbols in the current stripe can not  the same size 2592 3300 pixels, while NO3H has size

be represented by the existing dictionary symbols) and updates 2480x 3508 and S012 2536 3308.

the dictionaryonly when it is out-of-date. We will call this the | experiments are carried out on a Pentium Pro 200 MHz,

adaptive sc_hemg . running Red Hat Linux 6.0, with 64 MB physical memory. We
1) Adaptive Dictionary UpdateOne property thatthe adap'_measure encoding time (in sec) using the function “clock( )"

tive dictionary updating scheme must have is that the deCis'Qﬁd peak memory usage (in MB) using the Unix command
about whether the dictionary has become out-of-date must‘lggp.,,

made quickly. A complicated decision will prolong the encoding, ;- ~ode was not specifically optimized for speed or memory
time and negatively affect the time versus bit rate tradeoff. iciency.

propose a sim_ple and fast procedu_re_ to autpmatically decide ifl) Modified-Class Dictionary:Table | summarizes the
the dictionary is out-of-date. The dictionary is updated at MOgfgjess and lossy coding efficiencies of all the five dictionaries
every two stripes. This means if the dictionary has just been Yosp S cLASS TREE. and MC). Detail on how lossy coding
dated for the previous stripe., then the encoder wiII.use it Eltgjperformed will be presented in Section IV. We show the av-
rectly to code the current stripe. But during the coding of g6 coded file sizes and also the percentages of improvement
current stripe, the encoder calculates two values, the average, the least efficient OP dictionary. Compared to the OP
mismatch and the percentage of unmatched symbols for the QyiEsionary, the compression improvements from the CLASS,
rent stripe. These two values show how well the symbols in thee and Mc dictionaries are approximately the same, about
current stripe can be represented by the existing dictionary sygd; o |ossless coding and 16-18% for lossy coding. For

bols. The encoder then compares these two values for the Gyyess compression, the proposed MC design is basically the

dictionary has become out-of-date. The encoder then switcrb%%t compression.

on the UPDATI_EDICT flag and updates the dictionary for the_ 2) Encoding Tradeoffs in Page Stripindn this section,
subsequent stripe. Note that the cqlculatlon of 'Fhe average mysc"show the savings in encoding time and memory usage
match and unmatcheq percentage is very fz_ist ;lnce.|t can be oHen page striping is applied. Fig. 2 plots encoding time, peak
ried out at the same time as the current stripe is being enCOdﬁ«Qmory usage, and coded file size as functions of the number
of stripes into which a page is split. The dynamic scheme and
the isolated scheme using the SE design and the MC design
Unless otherwise stated, all experimental results presenteéia compared. The results shown are for lossless compression;
this paper are obtained from a set of 12 test images from twpnilar results are obtained for lossy compression.
sources. The savings in encoding time from page striping are shown
1) Two CCITT images that are mainly textual: f@D0 and in Fig. 2(a). By splitting a page into two stripes, the isolated
f04_200. Their resolution is 200 dpi, size 1728339 scheme reduces encoding time by 45% for both dictionaries
pixels. (close to the theoretical savings of 50%); the dynamic scheme
2) Ten images (IGOH, JOOO, NO3F, NO3H, NO3M, NO046ieduces encoding time by 32% for the MC dictionary and 26%
NO4D, NO4H, N057, and S012) selected from the Unfor the SE dictionary. The dynamic scheme provides less time
versity of Washington Document Image Database | [21jeduction because, instead of starting from scratch for each

D. Experimental Results
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Fig. 2. Coding time, peak memory usage, and coded file size as functions of the number of stripes used.

stripe, it needs to consider those previous dictionary symbols
and decide how to use them. Splitting the input image into
more stripes brings more savings in encoding time but the
returns diminish. Comparing the four curves with the curye
(dotted curve) in Fig. 2(a), we see that the four curves deviate
from the curvel /n as the number of stripes increases. This is
because the total encoding time consists of two parts, pattern
matching and other encoding activities (e.g., symbol extraction,
arithmetic bitmap and integer coding, etc.). While the pattern
matching time is roughly inversely proportional to the number
of stripes, the time spent on the other activities does not go
down as the number of stripes increases. In the next section, we
will show that, for a fixed input image, the time spent on these
other encoding activities is almost fixed.

Fig. 2(b) shows the peak memory usage as a function of the
number of stripes used. We see that the dynamic and isola) ?ggl
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3. Coded file size as a function of coding time for page striping using five
onary schemes: static, isolated, dynamic, dynamic-2, and adaptive. The MC

schemes using both SE and MC designs require basically Hagign results are shown as example.

same amount of physical memory. This is because although the
dictionaries of the four curves are of different sizes, the memory
needed to buffer the dictionaries only accounts for a very small
percentage of the total memory usage. Most of the memory is
for buffering a page or page stripe. By splitting a page into two
stripes, we save about 40% of the peak memory consumption.
Using more stripes brings more savings in memory consump-
tion but with diminishing returns. The curves flatten out after
six stripes as each stripe becomes small enough that the memory
needed to buffer it no longer dominates.

While page striping reduces encoding time and memory
usage, this comes at the price of reduced compression efficiency.
As shown in Fig. 2(c), the compressed bit rates increase
steadily as the page is coded using more stripes. Using dynamic
dictionaries minimizes this bit rate penalty. For the MC design,
the isolated scheme with eight stripes has 18% higher bit rate
than with one stripe, but the dynamic scheme reduces this
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Fig. 4. Coded file size as a function of memory usage for page striping using
dictionary schemes: static, isolated, dynamic, dynamic-2, and adaptive. The

rate penalty to 13%; for the SE design, the isolated scheme design results are shown as example.

with eight stripes has 18% higher bit rate than with one stripe,

but the dynamic scheme reduces this bit rate penalty to 11#b.Fig. 3). The dashed lines in Fig. 3 are the lower convex
Fig. 3 provides a convenient way to evaluate the tradedftlll for all the operating points. Points on this lower convex
between coding time and bit rate by showing what bit rateull achieve the best compression using the shortest encoding
can be achieved at a given coding time using a certain digne. In Fig. 3, this lower convex hull is defined by the static
tionary scheme. Fig. 3 compares the five dictionary schemssheme (square markers). The proposed adaptive schee (*

aforementioned. The number of stripes used varies from omarkers) operates very close to the lower boundary of convex
to eight. Using only one stripe (i.e., whole page) encodésill, achieving time versus bit rate tradeoff similar to that of
the slowest but produces the smallest coded file size (ttiee static scheme. The dynamic scheme (“xX” markers) is the
lower-right corner in Fig. 3); using eight stripes runs the fastelgtast time efficient dictionary scheme as it operates the farthest
but produces the biggest coded file size (the upper-left corrfesm the lower convex hull.
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TABLE I
CODING MULTIPAGE DOCUMENTS USING THREE DICTIONARY SCHEMES FOR THESE DESIGN
UW 4-PG UW 5-PG OUR 11-PG
SIZE % IMP. SIZE % IMP. SIZE % IMP.
ISOLATED || 125,488 72,229 - 222,222 -
STATIC 118,803 5.3 69,565 3.7 210,846 5.1
DYNAMIC 120,606 3.9 69,205 4.2 199,414 10.3
TABLE 1lI
CODING MULTIPAGE DOCUMENTS USING THREE DICTIONARY SCHEMES FOR THEMC DESIGN
UW 4-PG UW 5-PG OUR 11-PG
SIZE % IMP. SIZE | % IMP. SIZE I % IMP.
ISOLATED || 121,356 - 70,417 - 214,552 -
STATIC 119,202 1.8 70,171 0.3 213,649 0.4
DYNAMIC 118,454 2.4 68,125 3.3 196,990 8.2

To compare the performance in the memory versus bit rgthenomenon is that the static scheme using the SE design also
tradeoff by the five dictionary schemes, we plot coded file sizchieves 4-5% of improvement over the isolated scheme (see
as a function of peak memory consumed in Fig. 4. Similarliffable II). When coding a single-page document, the SE dictio-
the input images are coded as one to eight stripes. The dashaq is usually twice as big as the MC dictionary, containing re-
lines show the lower convex hull for all the operating pointslundant bitmap information; it is therefore less efficient due to
The dynamic scheme (“x” markers) now defines this lowdrigh index coding cost [8]. When coding a multipage document,
convex hull, meaning that it achieves the best compressibawever, it is advantageous to use a bigger and more redundant
using the least system memory. The static scheme (squdigtionary throughout all the pages because it gives the symbols
markers), which achieves the best time versus bit rate trade@fém later pages a broader range of choices. We hardly see any
becomes the least efficient in resolving the memory versus bitprovement from the static scheme using the MC design be-
rate tradeoff. The proposed adaptive schemg” (fnarkers) cause the MC design is too specifically designed for only the
still operates very close to the lower convex hull. Combin€itst page. Fig. 5 shows the dictionary size growth curves from
with the results shown in Fig. 3, we conclude that the adaptipage to page. For our 11-page test set, from the fourth page on,
scheme is a robust scheme in resolving both encoding tradedfffs dictionary size becomes steady, showing that the encoder has
well. Hence the adaptive scheme is a suitable choice for mgstthered most useful bitmap information contained in this doc-
applications, where system memory and encoding time amment set. The other two test sets do not contain enough pages
both very important system parameters. to show this trend.

3) Multipage Document CompressioMultipage docu-  Fig. 6 shows the time versus bit rate tradeoff for the five
ment images are a set of images scanned from the same soudiotionary schemes when tested on multipage documents com-
preferably from consecutive pages. Some issues of compresdimged with page striping. The results are averaged over the three
multipage document images are addressed in [22]. In multipageltipage test sets. Five values for the number of stripes per
document compression, the same dictionary updating procegsage are used, 1, 2, 4, 8, and 16. At the lower-right corner in
used in page striping can also be applied to take advantagdha figure, each page is encoded as a whole (the number of
the text correlation across pages. stripes is one). At the upper-left corner, each page is processed

Tables Il and Ill compare the coding efficiency on threas 16 stripes. The lower convex hull (given as the dashed lines)
multipage document image sets using three dictionary schengestill mostly defined by the static scheme. The adaptive and
(the isolated, static, and dynamic schemes) combined with tiignamic-2 schemes operate very close to the lower boundary,
SE design and the MC design, respectively. Among the thregth a couple of points falling on it. For the memory versus bit
test sets, two are from the University of Washington Documerste tradeoff, we observe the same relationship between the five
Image Database I, one of four pages (NO4H, NO4l, NO4lschemes as shown in Fig. 4.
and NO4M) and the other of five pages (NO1F, NO1G, NO1H, Summary: Page striping reduces encoding time and physical
NO1l, and NO1J). They are from the same source, but not framemory usage with reasonably low bit rate penalty. In page
consecutive pages. Their scanning conditions are unknowstriping, compared to sending isolated dictionaries for each
The third set is an 11-page document we scanned in from [28{ripe, dynamically updating the dictionary can significantly
at 300 dpi. The scanned pages are consecutive and the scanrédgce the bit rate penalty incurred. The proposed adaptive
conditions are consistent for all pages. dictionary updating scheme is robust and can resolve both

Tables Il and 11l show that, compared to the isolated schentbe time versus bit rate tradeoff and the memory versus bit
the dynamic scheme can improve compression by up to 8% fate tradeoff favorably at the same time. The same dynamic
the MC design and 10% for the SE design. Another interestidictionary updating techniques can be applied to multipage
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all the other symbols in tre2. In addition, we know that all
other trees are sufficiently dissimilar to tréebecause no edge
. between them has weight lower than the threshold. Therefore,
to find the best match for symbd in the dictionary, it is
likely that we need to search among only those symbols that
belong to MSTT". To do this, we maintain &ee-ID value for
each symbol on the page, which specifies the MST to which
this symbol’'s representative belongs. To find the matching
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= UW4-PG MG dictionary symbol for the current symbol, we only search
o mg:;’g: by among those dictionary symbols that have the samee-ID.
5007 0 UW5-PG,SE | | This can significantly reduce the number of dictionary symbols
o 832”:2% & against which the current symbol is matched. Whether this
o . : . - o limited search algorithm will suffer significant bit rate penalty
PAGE NUMBER depends on how many symbols actually belong to the same

MST as their best dictionary matches. Later in this section, we

Fig. 5. Di_ctionary size gr_ow_th from page to page fo_r the three test ‘multipagthow that this limited search a|gorithm can save encoding time
document image sets. Solid lines are for the MC design and dotted lines for g}e

SE design. almost no coding loss.
o B. Early Jump-Out Based on Previous Best Match
X
22 " " " T : . . .
o X DYNAWIC When matching one symbol with another, we save the
2 3 STATIC I previous lowest mismatch score; the pattern matcher compares
2 o + ADAPTIVE || on-the-fly the current accumulated mismatch score against the
19} ‘. 1 previous lowest one. If the current mismatch is already above
180 \pX ] the previous lowest, then we terminate the current matching
o

process. Computing the Hamming distance between two sym-

CODED FILE SIZE (BYTES)
3

B | bols is fast because it only requires the exclusive-OR (XOR)
16 b s ] operation and incrementing the mismatch score accordingly.
57 woe ] Since comparing the two mismatch scores also takes time, and
14} \\'3 +o ‘o 1 we do not want t_hls time to be comparable to_ the Hamming
pab T el N N | distance calculation where we hope to save time, we do the
s ) ) . , , , integer comparison of mismatch scores only once per line.
0 M0 el T tsegy 2 ¥ At the end of each line, the current accumulated mismatch is

checked; if it exceeds the previous lowest, the pattern matching
Fig.6. Coded file size as a function of coding time for page striping when usptocess terminates.
in multipage document compression. Five dictionary schemes are compared:

static, isolated, dynamic, dynamic-2, and adaptive. The MC design results &€ Enhanced Prescreening
shown as example. ’

Before matching a pair of symbols, it is advantageous to pre-
document image compression and improve the compressRFHEEN them by certain features. There is no need to apply pat-

ratio by up to 8-10%. tern matching to two symbols that are obviously dissimilar. For
example, symbols that differ greatly in size (e.g., a capital “D”
IIl. SPEEDUPTECHNIQUES FORPATTERN MATCHING and a comma “,”) are obviously dissimilar. The encoder in [12]

_ _ o _prescreens using symbol sizes; only symbols with similar sizes
In the previous section, we proposed dictionary constructi¢fefined as not more than 2 pixels different in either dimension)

schemes for page striping that can reduce memory usage gpglgiven to the pattern matcher. Prescreening is intended to re-
encoding time with minimal sacrifice in coding efficiency. Induce the number of unnecessary pattern matching calls that will
this section, we propose three speedup techniques for pattgsR return a match. At the same time, prescreening should not

matching. Compared to page striping, these techniques ¢gfe out potentially good matches. Otherwise it will incur a high
better resolve the tradeoff between coding time and bit rate. pjt rate penalty. Therefore, the ideal prescreening rules out all

- - “unmatchable” symbols and passes on all “matchable” symbols
A. Limited Dictionary Symbol Search to the more expensive pattern matching subroutine.
To design the MC dictionary, we group all symbols into Other features can be used in prescreening besides symbol

classes, choose class representatives to go into the dictionsize. One such example is to use symbol area and/or perimeter
and form MSTs for all the dictionary symbols. Suppose [@3], [24]. However, these two features are not particularly
symbolS belongs to a certain clags, whose representative ishelpful for two reasons: they are correlated with symbol size,
symbol R, which, after the MST construction procedure, landand they are usually sensitive to scanning noise and digiti-
in MST T. Therefore we know that the mismatch betweemation parameters such as contrast [13]. A useful feature for
symbol S and symbolR must be small (though not always theprescreening introduced in [13] is called the quadrant centroid
smallest), and that symbdl is similar (to different degrees) to distance. It is calculated as follows. We divide each symbol into
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TABLE IV
USING THE THREE PROPOSEDSPEEDUP TECHNIQUES IN SPM JBIG2. DTAL ENCODING TIME(IN SEC), TIME SPENT ON PATTERN
MATCHING (IN SEC), AND THE ENCODED FILE SIZE (IN BYTES) ARE SHOWN

TOTAL TIME MATCH TIME CODED SIZE
SEC | % GAIN | SEC [% GAIN | BYTES [% LOSS
NONE 99.44] - [oo.86] - [36,738] -
TID 85.82 | 14 [77.15| 15 | 36,742
EJO 85.12 | 14 | 76.47] 16 | 36,738
TID+EJO 71.18 | 28 [62.63| 31 | 36,742
S+0Q 31.95| 68 23.29] 74 |37,128

PRESCRN S+H+C 61.85 38 63.65 41 36,938
S+Q+H+C || 28.70 71 20.09 78 37,342
ALL 26.20 74 17.62 81 37,359

IR O R OO0
N O N =OolO|C

TABLE V
USING THE THREE PROPOSEDSPEEDUP TECHNIQUES IN PM&S JBIG2. TOTAL ENCODING TIME (IN SEC), TIME SPENT ON PATTERN
MATCHING (IN SEC), AND THE ENCODED FILE SiZE (IN BYTES) ARE SHOWN

TOTAL TIME MATCH TIME CODED SIZE

SEC [ % GAIN | SEC [ % GAIN | BYTES | % LOSS
NONE 24.05 | - 10.78 - 41,404 -
EJO 22.81 5 9.53 12 41,404 | ©
S+Q 16.28 | 32 2.86 | 73 [41,730| 0.8
PRESCRN | S+H+C [[19.48[ 19 [ 6.22 | 42 [41,566| 0.4
S+Q+H+C || 16.07 | 33 2.61 76 41,925 1.3
ALL 16.04 | 33 2.60 | 76 [41,925| 1.3

four quadrants and calculate the centroid for each quadra®BM JBIG2 encoder. Table V shows the corresponding results
To prescreen two symbols, we calculate the distance betwdena lossless PM&S JBIG2 encoder. We only show lossless
each pair of corresponding quadrant centroids, sum the faading results here because for SPM, lossy coding takes extra
distances and compare the total to a preset threshold. A sntiatle to preprocess the input image, while lossy PM&S will
total distance means that the two symbols have similar massode faster because no residual coding (coding the original
distribution in all four quadrants; only such symbol pairs anenage again based on the lossy version already sent using
passed on to pattern matching to be further examined. refinement coding) [2], [8] is needed. For both cases, the
According to our experiments, in the English language, usirgnount of extra time needed or saved is fixed for a given
the Hamming distance based matching criterion, letter pairs thgbut image. Therefore, we only consider lossless coding now;
are among the most easily confused include “b” and “h,” “clossy coding will be considered in further detail in the next
and “e,” and “i,” and “l.” In this paper, we propose two topologsection. The first rows (NONE) in Tables IV and V refer to using
ical features for prescreening: number of holes and numberraf speedups and prescreening only by size, using a size offset
connected components. Prescreening by these two featuresthagshold of 2 pixels (size difference can not be bigger than 2
effectively prevent the above symbol pairs from being handgikels in either dimension). Using tighter size offset thresholds

over to the pattern matcher. (i.e., 1 or O pixels) can further reduce the encoding time but
) at the price of higher coding loss. In SPM (see Table V),
D. Experimental Results pattern matching accounts for up to 90% of the total encoding

In this section, we show experimental results on the thrége. The rest of the encoding time is a fixed value of around
speedup techniques proposed, the limited dictionary seafh s. For the PM&S mode (see Table V), pattern matching
algorithm based on tree-ID (TID), early jump-out (EJO), andccounts for up to 45% of the total encoding time. The rest
enhanced prescreening (PRESCRN). We consider two figuafghe encoding time is a bigger fixed value of around 13.3 s.
of merit, the encoding time saved and the bit rate penaltsing the NONE rows as the basis for comparison, we give
incurred. the percentages of time saved and coding loss incurred from

We use the same 12 test images and the same compeggh individual speedup technique and several combinations
platform as in Section II-D. Results are averaged over all teft them. The limited dictionary search technique (TID) saves
images. Table IV gives the total encoding time, time spe#b% of the pattern matching time, while causing almost no
on pattern matching, and coded file size for each individuapding loss. Note that TID is only applicable to the SPM
technique and different combinations of them, for a lossleswde using the MC dictionary design. The early jump-out
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TABLE VI gx10° . , .
PRESCREENINGPASS RATES WHEN DIFFERENT FEATURESARE USED -~ *  DYNAMIC ONLY
1 i STATIC ONLY
b i B X DYNAMIC+SPEEDUP |
” g | S+Q l S+H+C | S+Q+H+C 48 78 O STATIC+SPEEDUP
% passes || 19.7 | 4.7 | 11.8 ] 4.0 U,;?46 o0
o )
544 5!‘3]5:2{
@ Vs
technique (EJO) saves 16% and 12% of the pattern matching %42 4¢§’?
time in SPM and PM&S, respectively. EJO incurs no bit rate @ sm%e xy
penalty. In SPM, we can combine TID and EJO together to g 4  \3,°  *¢.
achieve a pure 31% time gain with no coding loss. Enhanced “‘3\,5 2 I
prescreening is the most efficient way to save encoding time. 38 \:-4--ifi___ x 2
Adding the quadrant centroid distance to the size prescreening ‘ ‘ T T T
(S+ Q) saves almost/4 of the pattern matching time, while 0 10 20 30 40 50 60 70

incurring a bit rate penalty of around 1%. Adding the numbers ENCODING TIME (S2¢)

of holes and connected compone(fis- H+ C) saves 40% of _ . . .
. . . . .. Fig. 7. Combining page striping and the proposed speedup techniques

the pattern matching t'me7 which is less eﬁ"?'ent than the Qgether. Dynamic (“x” markers) and static (square markers) schemes are

feature. HoweverH + C incurs only a 0.5% bit rate penalty.compared. Numbers in figure represent number of stripes used.

Combining all these speedup techniques together saves 81%

0 . : )
and 76% of the pattern matching time in SPM and PI\/l&ss’cheme (square markers) are shown because in page striping

respectively. In terms of total encoding time, these numbet Tese two schemes bound the performance curves (see Fig. 3).

translate into savings of 74% and 33%, respectively. The qj e MC dictionary results are shown as an example. The lower

rate penalty incurred is relatively small, 1.7% for SPM and : : X : :
1.3% for PM&S. convex hull (dashed lines) is defined by the static scheme using

the speedup techniques (black square markers). For the dynamic

Without the TID technique, each symbol searches among gfheme, a big performance gap between using the speedup tech-
dictionary symbols for its best match. For our testimage set, thigyues (black “x” markers) and not using the speedup tech-
means the average search range is 638 dictionary symbols. Wiuies (gray “x” markers) is observed. The same performance
the TID limited search method, however, the average seagghy, for the static scheme is far less significant. This is because
range is reduced to only 34 dictionary symbols, a 95% redugre dynamic scheme involves more pattern matching than the
tion. Consequently, the time spent on finding dictionary matchggatic scheme; the propose speedup techniques all aim at re-
for all symbols is reduced to 5.30 s with TID from 19.66 gjycing the pattern matching time. Note that with the speedup
without TID. Without the EJO technique, the pattern match@gchniques, the dynamic scheme now operates very closely to
will examine in full every pair of symbols passed on to it i.., ifhe lower convex hull. Since the dynamic dictionary achieves
will go over 100% of the bitmap area before making a decisiog. given tradeoff point using more stripes, it is more memory
With EJO, however, experiments show that on average only 44%icient.
of the bitmap area will be examined. Furthermore, on averagerinally, in Fig. 8 we compare lossless SPM (black markers)
89% of all the pattern matching calls resultin early terminationng pM&S (gray markers) with and without the proposed
Although EJO has to spend extra time comparing integer Migseedup techniques being applied (“NONE” and “ALL”
match scores, it still reduces the average number of CPU claglgrkers). We show results using three size offset thresholds,
cycles used to match two symbols from 68 to 60. Animportapt 1 or 0 pixels. Clearly SPM completely defines the lower
advantage of the TID and EJO techniques is that they save ggnvex hull (dashed lines) in Fig. 8. In [8] we showed that
coding time almost *for free,” meaning without bit rate penaltgp\ achieves better lossless compression at the price of longer
(see Tables IV and V). To see how enhanced prescreening helRgoding time. SPM is more time consuming mostly because it
effectively rule out unlikely matches, we list the percentages giquires more extensive pattern matching. However, with the
prescreening passed in Table VI. Using the symbol size (S) fefoposed speedup techniques for pattern matching, the SPM
ture alone is not efficient enough; around 20% of the symbghcoding time can be significantly reduced; since these tech-
pairs will still be given to the pattern matching process. Addingiques only incur very small bit rate penalties, SPM's higher
the number of holes and number of connected compoiiAts  coding efficiency is still mostly retained. If achieving high
H + C) reduces the pass rate to 12%; adding the quadrant cgfing efficiency is of the utmost importance for an application,
troid distance(S + Q) only 5% of the symbol pairs can pasgpen it should use SPM with a loose prescreening criterion (e.g.,
prescreening. Note that adding the Q feature also results in adif sjze offset threshold to 2 pixels). If the application is willing
rate penalty twice as big as addibig+ C (see Tables IV and o tolerate a small coding loss in order to encode faster, then it
V). By combining all three features together with symbol sizghould use SPM with all speedup techniques and use very tight
(S+Q+ H+ C), we can further reduce the prescreening paggescreening thresholds (e.g., set size offset threshold to 0).
rate. Note that EJO and TID should always be used when applicable.

Fig. 7 compares the impact on the time versus bit rate tradeBfir other applications with intermediate requirements, different
from the proposed speedup techniques and from page stripiogmbinations of the speedup techniques and page striping offer
Results from the dynamic scheme (‘X' markers) and the statidfferent tradeoffs.
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10 20 30 40 50 &0 70 80 a0 100 Fig. 9. Examples of similar symbols with different features. The rightmost
ENCODING TIME (SEC) figures show the difference bitmaps. Black error clusters cannot be ignored

because the features would change. Gray error clusters can be ignored.
Fig. 8. Comparison between SPM and PM&S when the proposed speedup

hni . . o
techniques are used B. Lossy SPM: Feature-Monitored Shape Unifying

S The th q q hni To achieve lossy compression with SPM, the encoder pre-
ummary: The three proposed speedup techniques can b‘?bcesses the input image to introduce information loss. In [12]

duce encgding time by as much as 75% while.only sufferingtﬁ],ee processing techniques are proposeeck elimination
small coding loss of at r.nost.1.7%. The;se techniques offer _b?té‘?fge smoothingandshape unifyingSpeck elimination wipes
tradeoffs between coding time and bit rate than page striping ¢ very tiny symbols (symbols no bigger thanc2). Edge

By applying these techniques to the SPM mode, we obtain t%oothin f . ey . .
. > . g fixes jagged edges by flipping protruding single
image coding systems that encode both efficiently and fast. 1, q pixels or indented single white pixels along text edges.

Shape unifying tries to make the current symbol bitmap as

IV. RECONSTRUCTEDIMAGE QUALITY CONTROL INLOSSY  similar as possible to its reference bitmap, without introducing
COMPRESSION too much visual change. This is achieved by flipping pixels in

the current bitmap if they are isolated areas of difference with

All the results given in the previous section are for lossle o reference bitmap. We use the term ‘“isolated” to mean a
coding. In this section, we concentrate on lossy coding by takilig>< 1 1x 2. or 2x 1Fl)3.lock of pixels. The modified bitmap is

into account one more figure of merit, the number ofsubstitutic%n . . .
: . . 1hen losslessly coded with refinement coding.
errors in the reconstructed images. We propose to effectively.

suppress substitution errors in lossy PM&S and SPM by usin%-.rh.e a(_jvantage. of pgrmntmg_ only |sol_ated errors in shape
; , : unifying is that visual information loss in the reconstructed
the features introduced in Section I11I-C.

image is almost imperceptible. However, such a restriction also
puts a limit on the lossy coding efficiency. To improve the
coding efficiency, shape unifying should allow not just isolated
In PM&S, when a matching dictionary symbol is founderrors, but some clustered ones as well, as long as the risk of
the encoder substitutes it for the actual current symbaharacter substitution is kept low. To limit this risk, we propose
Therefore, PM&S is inherently lossy. When lossless codirtg monitor the shape unifying procedure using two features,
is required, after transmitting the lossy image, the encodidie number of holes and the number of connected components.
uses a residual coder to refine the lossy image to its origirfédr each cluster of differences between the current bitmap
version [2]. Using the Hamming distance matching criterioand its match, if eliminating it will not cause the features
and a mismatch threshold of 20%, lossy PM&S results in matry change, we go on with shape unifying and eliminate this
substitution errors between letter pairs such as “i” and “ldifference cluster; otherwise, we preserve it to prevent a likely
“b” and “h,” “u” and “n,” and so on. To reduce substitutionsubstitution error from occurring. As an example, Fig. 9 shows
errors, a tighter mismatch threshold (e.g., 10%) can be appli¢ite “b” and “h” pair and the “i” and “I" pair and the difference
however, this increases the encoding time and the coded fibaps between them. In Fig. 9(a), we can change the “b” bitmap
size. Alternatively, a more sophisticated matching criteriomot only at the isolated single-pixel location, but at all the
(e.g., the CTM technique proposed in [27]) can be appliegray pixel locations, as they will not cause the internal hole in
but such criteria are usually very computationally intensive. %" to disappear. But, the black 10-pixel cluster of differences
simple and effective way to suppress substitution errors isdown at the bottom must be preserved. Otherwise a reader
use the enhanced prescreening as proposed in Section llw@uld perceive an “h” instead of a “b.” Similarly, in Fig. 9(b),
For example, prescreening with the feature number of hole® can change the “i” bitmap at all the gray locations but not
can easily prevent “b” and “h” from being confused; using that the black ones because changing the black locations will
number of connected components easily distinguishes betweanse the “i” bitmap to be connected into one whole piece,
“i” and “I;” and quadrant centroid distance can often tell “uresulting in a substitution error. Though not shown in Fig. 9,

and “n” apart. feature monitoring can also help prevent substitutions between

A. Lossy PM&S: Enhanced Prescreening
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TABLE VII
APPLYING ENHANCED PRESCREENING TOLOSSY PM&S. AVERAGE COMPRESSEDFILE SIZE (BYTES), ENCODING TIME (SEC) AND PERCENTAGE OF
SUBSTITUTION ERRORSARE SHOWN

| SIZE | TIME [ % SUB. ERR.
TH = 20%, PRESCRN = §
TH = 20%, PRESCRN = S+Q+H+C
TH = 10%, PRESCRN = S

TABLE VIII
APPLYING SHAPE UNIFYING WITH AND WITHOUT FEATURE MONITORING TO LOSSY SPM. AVERAGE COMPRESSEDFILE SIZE (BYTES),
ENCODING TIME (SEC) AND PERCENTAGE OFSUBSTITUTION ERRORSARE SHOWN

ERR. SIZE. MONITORED UNMONITORED
THRES . SIZE | TIME | SUB. ERR. | SIZE TIME | % SUB. ERR.
2% ‘ . ( | 12,793 [ 112.29 0.11
4% 11,150 | 152.82 0.72 10,689 | 107.24 1.58
6% 10,627 | 151.82 1.58 9,932 | 105.66 4.08

certain letter pairs that have the same features, e.g., “n” ai® 434 bytes as opposed to 10 105 bytes), at 13 434 bytes/image
“u” or “e” and “0.” In comparing the bitmaps of “n” and “u,” the reconstructed images have satisfying quality; at only 10 105
there are basically two areas where a substantial numberbgfes/image, some important text information from the orig-
clustered pixels differ: the center top and the center bottoinal images is lost, which is expressed in the form of many
Modifying the upper cluster of pixels in the “n” bitmap to matctsubstitution errors that we see. Although not shown here, our
the “u” bitmap will cause the “n” to split into two separateexperiments also showed that without enhanced prescreening,
connected components. Monitoring based on the numbertbé bit rate goes down steadily as the mismatch threshold goes
connected components will prevent this. Likewise, modifyingp. With enhanced prescreening, however, further loosening the
the lower cluster of pixels in the “n” bitmap to match the “u’mismatch threshold will not result in further reduction in bit
will cause the lower opening in the “n” to close, generatingate; instead the bit rate hits a floor. This again shows that en-
one internal hole. Monitoring based on the number of holémnced prescreening can guard against excessive loss of impor-
will prevent this. If we were to consider modifying the uppetant text information in the images. Compared to using the tight
and lower pixel clusters simultaneously, the “n” bitmap coul@0% mismatch threshold, the substitution risk from enhanced
become a “u” bitmap and the topological features remain tipeescreening is only two times higher, while the encoding is
same. But we do not do that. By considering each differen28% more efficient and 66% faster.
cluster separately, the topological features block the bitmapFor lossy SPM, we list in Table VIII the coded file size,
alteration, thereby preventing a substitution error. Modifyingncoding time, and percentage of substitution errors for shape
the current symbols at more locations improves refinememifying with and without feature monitoring. We use three
coding efficiency by making symbols more similar to theierror size thresholds, 2%, 4%, and 6% of the symbol size. We
references. At the same time, ensuring certain feature valwestrict the size of a permissible error cluster because big error
are maintained allows us to suppress many cases of charachesters (even if they do not change the features) cause sig-
substitutions. nificant visual information loss. As a result, the reconstructed
image will contain a large number of distorted text characters.
Such distorted “garbage” characters, if they exist, are also
counted as substitutions and included in the numbers shown in
We first look at lossy PM&S and show how enhanced pr&able VIII. A bigger symbol can tolerate a bigger error cluster.
screening effectively suppresses substitution errors in additibherefore, we set the error size threshold to be proportional to
to reducing encoding time. Table VII shows the encoding timthe symbol size, i.e., difference clusters smaller than a certain
coded file size, and percentage of substitution errors for logsgrcentage of the symbol size are deemed ignorable. Compared
PM&S using different mismatch thresholds and prescreenitg the unmonitored version, feature monitored shape unifying
features. A tight mismatch threshold of 10% results in versuffers 55-65% fewer substitution errors at all three error size
rare substitution errors (about 1 in every 1000 symbols). Withresholds, meaning that it can more effectively avoid losing vi-
a looser threshold of 20%, when prescreening just by size, theally important text information. However, feature monitored
system suffers excessive substitution errors of around 3%, atéipe unifying is more computationally demanding because
the reconstructed images look confusing and sometimes objegery cluster of differences with size below the threshold has
tionable. With enhanced prescreening, the substitution risktis be checked to see if ignoring it will result in change of
made 12 times lower at 0.25%. Moreover, encoding is maflsatures. The feature monitored version takes about 40% longer
28% faster. Although the average coded file size is 33% biggerencode than its unmonitored counterpart.

C. Experimental Results
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basaltic

{a) original image

basaltic basaltlc basaltic

(b) PM&S th=10% e) 8PM,monitored,th=2%  (h) SPM,unmonitored,th=2%

basaltlc hasaltlc hasaltic

c) PM&S,th=20%,enhanced  (f) SPM,monitored,th=4% (i) SPM,unmonitored th=4%

hasaltle basaltic hasaltic

(d) PM&S,th=20% (9) SPM,monitored,th=6%  (j) SPM,unmonitored th=6%

Fig. 10. Portion of the original image NO3H and the reconstructed images under different error thresholds.

To compare lossy PM&S using enhanced prescreening withxt image coding with JBIG2. We first look at page striping
feature monitored lossy SPM, we compare the two shadadd propose dictionary updating procedures for the singleton
entries in Tables VII and VIII. At similar bit rates (13 024exclusion and modified class dictionaries. With these dynamic
and 13 434), monitored lossy SPM suffers six times fewepdating techniques, page striping using two stripes gives 30%
substitution errors (0.04% compared to 0.25%) but also takesdf5Ssavings in encoding time and 40% of savings in memory
times longer to encode (156 s compared to 10 s). Furthermazensumption, while suffering only 1.5% of bit rate penalty.
compared to using a tight 10% mismatch threshold in PM&8ore savings in time and memory can be obtained by using
(last row in Table VII), monitored SPM using a 2% thresholdnore stripes but with diminishing returns. We investigate two
(shaded entry in Table VIII) is 20% more efficient (13 024ncoding tradeoffs in page striping: the time versus bit rate
compared to 16 687) and/3 less subject to substitutiontradeoff and the memory versus bit rate tradeoff. We propose
errors (0.04% compared to 0.12%) but takes five times longan adaptive dictionary updating scheme that can achieve
to encode. For an application that does not require real-timebust performance in both tradeoffs when compared with
communications, lossy SPM is a better choice because it offeteer nonadaptive dictionary construction schemes. We then
better reconstructed image quality at lower or comparable pitopose three speedup techniques for pattern matching. When
rates. A real-time application, however, should choose tkkembined together, these techniques can reduce coding time by
PM&S mode with enhanced prescreening because it is mughto 75% while incurring at most 1.7% coding loss. Compared
faster and offers satisfactory quality. with page striping, the proposed speedup techniques can better

Finally, Fig. 10 shows a portion of the original image NO3Hesolve the time versus bit rate tradeoff. However, page striping
[Fig. 10(a)] and a set of reconstructed images from lossy still necessary for memory-limited applications. For lossy
PM&S and SPM using different system setups. For losgpmpression, in addition to bit rate, coding time, and memory
PM&S [Fig. 10(b)—(d)], enhanced prescreening effectivelysage, we also consider the number of substitution errors as the
suppresses the substitutions between “b” and “h” and “c” amdeasure for the reconstructed image quality. For lossy PM&S,
“e,” achieving quality similar to the tighter 10% threshold. Fowe use enhanced prescreening to reduce character substitutions
lossy SPM, at all three error size thresholds, feature monitoribg 12 times and save encoding time by 30% at the same time.
[Fig. 10(e)—(g)] successfully retains the internal hole in “bFor lossy SPM, we propose feature monitored shape unifying to
that is important for correct letter identification. suppresd /2 to 2/3 of the total substitution errors. Compared

Summary: When used in lossy PM&S, in addition toto lossy PM&S, lossy SPM using feature monitored shape
reducing 30% of encoding time, enhanced prescreening aamifying achieves better reconstructed image quality at similar
also effectively suppress 11 out of every 12 substitution errors. lower bit rate, but at the price of longer encoding time.

For lossy SPM, the proposed feature monitored shape unifying

can successfully suppress more than half of all substitution
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