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Optimal Context Quantization 1n Lossless
Compression of Image Data Sequences

Sgren Forchhammer, Xiaolin Wu, and Jakob Dahl Andersen

Abstract—In image compression context-based entropy coding
is commonly used. A critical issue to the performance of con-
text-based image coding is how to resolve the conflict of a desire
for large templates to model high-order statistic dependency of
the pixels and the problem of context dilution due to insufficient
sample statistics of a given input image. We consider the problem
of finding the optimal quantizer ) that quantizes the K -dimen-
sional causal context C; = (X;_¢;, X¢15,0..,X¢—¢, ) of a
source symbol X; into one of a set of conditioning states. The
optimality of context quantization is defined to be the minimum
static or minimum adaptive code length of given a data set. For
a binary source alphabet an optimal context quantizer can be
computed exactly by a fast dynamic programming algorithm.
Faster approximation solutions are also proposed. In case of
me-ary source alphabet a random variable can be decomposed
into a sequence of binary decisions, each of which is coded using
optimal context quantization designed for the corresponding
binary random variable. This optimized coding scheme is applied
to digital maps and «-plane sequences. The proposed optimal
context quantization technique can also be used to establish a
lower bound on the achievable code length, and hence is a useful
tool to evaluate the performance of existing heuristic context
quantizers.

Index Terms—Adaptive code length, context modeling, context
quantization, dynamic programming, entropy coding.

I. INTRODUCTION

HIS paper considers issues of designing efficient entropy

codes for image compression. A key problem in sequential
source coding of a discrete random sequence X, X1, Xo, ... 1is
the estimation of conditional probabilities P(X;|X?~1), where
Xt 1 denotes Xy, X1,...,X¢_1, the prefix of X;. The estima-
tion is based on a model. Given a class of models, the number
of parameters must be carefully selected. Algorithm Context [1]
dynamically selects a variable-order subset of the past samples,
X1, called the context, C;. The algorithm organizes the con-
texts in a tree and it can be shown to be universal. Many practical
source coders choose a priori a model with fixed complexity,
based on domain knowledge such as correlation structure and
typical data length, and estimate only the model parameters.
For instance, the JBIG standard for binary image compression
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uses the contexts of a fixed size template. The actual coding is
implemented by sequentially applying arithmetic coding based
on the estimated conditional probabilities. Estimating the con-
ditional probabilities P(X;|C}) directly using count statistics
from past samples can face severe context dilution problems if
the number of symbols in the context is large, or if the symbol
alphabet is large. To avoid this problem, the state-of-the-art loss-
less image compression algorithm CALIC [2] and the JPEG
2000 entropy coding algorithm EBCOT [3] quantize the con-
text, C; into a relatively small number of conditioning states,
and estimate P(X;|Q(C})) instead, where (@ is a context quan-
tizer. Also a state-of-the-art compression scheme, PWC (Piece-
wise-constant image model) [4] for palette and graphic images,
applies heuristic context quantization. These heuristic context
quantizers have produced some of the best performing image
compression algorithms, despite the fact that they are not strictly
universal. A pivotal issue for these source coders is the design
of the context quantizer Q).

Optimal context quantization for minimum code length was
formulated and treated in [2], [5]. Off-line optimal context
quantizer design algorithms were proposed to minimize the
static code length for binary representations. These algorithms
attempt to find a context quantizer () with a given number
of conditioning states that minimizes the conditional entropy
H(Y:|Q(C})), for a particular bit Y; in the binary representa-
tion of X;. Only quantizers () of a linear structure, imposed
by a projection, were considered in that work. The globally
optimal context quantizer for minimum conditional entropy in
the original high-dimensional context space was presented in
[6] given the conditional probability density functions. It turns
out that this problem is one of optimal vector quantization
design with respect to the Kullback-Leibler distance. Such
a vector quantizer was called minimum conditional entropy
context quantizer (MCECQ). For a given data set, designing
the context quantizer by minimizing the adaptive code length
was also introduced in [7] and [8]. Encouraged by the success
of the "heuristic quantizers’ we focus on this more general class
of context quantizers, although they are not strictly universal
as e.g., the tree structured algorithm Context [1]. In this paper
we study the issues in estimating the conditional probabilities
and applying the context quantization (CQ) techniques to a
given data set, as well as fast dynamic programming algorithms
to design optimal context quantizers. The fast algorithms are
based on (decomposition in) binary decisions. The complexity
of the algorithms is also analyzed. In order to verify the efficacy
of optimal context quantization experiments were carried out
applying the proposed CQ schemes to digital maps and the
a-plane sequences of MPEG4. The focus of these experiments
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is to optimize entropy coding in the spatial domain. In Sec-
tion II, the theory of MCECQ [6], [8] is introduced. Section III
examines the problems involved when real data are used, and
proposes fast solutions based on dynamic programming for
binary variables. Section IV presents CQ design algorithms,
suitable binary decomposition to facilitate CQ design, and a
CQ-based compression scheme. Some experimental results are
given in Section V.

II. CONTEXT QUANTIZATION

This section introduces two recent concepts of context quanti-
zation based on minimizing the conditional entropy [6], [8] and
minimizing the adaptive code length [7], [8], respectively. In
[8] the results were formulated for an abstract context alphabet.
Here they are summarized for a finite set of contexts. Let X be
a discrete random variable, and let the random variable C be a
jointly distributed random vector drawn from a finite set. The
elements, c, of the set specifies the context. Given a positive in-
teger M, we wish to find the quantizer @ : C — {1,2,..., M}
that minimizes the cost function in question.

A. Minimum Conditional Entropy Context Quantization

The Minimum Conditional Entropy Context Quantization
(MCECQ) [6], [8] was introduced based on minimization of the
conditional entropy H (X |Q(C)) given the probability density
functions P(X|C') and the number of quantized contexts, M.
Clearly, H(X|Q(C)) > H(X|C) by the convexity of H. Thus
in this setting the aim is to minimize the increase in conditional
entropy for a given limited M. The quantization regions
Apm = {c : Q(c) = m}, m = 1,..., M, of an (optimal)
minimum conditional entropy context quantizer are generally
quite complex, and may not even be convex or connected.
However, their associated sets of probability density functions
B, = {Px|c(-|c) : ¢ € A} are simple convex sets in the
probability simplex for X, owing to the necessary condition
for optimal Q[8].

The solution is especially simple for a binary random vari-
able, Y, as the probability simplex is one-dimensional. In this
case, the quantization regions B,, are simple intervals. If the
random variable Z is defined as Py | (1|C) (the posterior prob-
ability that Y = 1 as a function of C'), then the conditional
entropy H(Y|Q(C)) of the optimal context quantizer can be
expressed by

M
H(Y|Q(C)): ZP{Z € [qm—lvqm)}H(Y|Z E[Qm—lan))

m=1

(D
for some set of thresholds {¢,,} dividing the unit interval into
M contigous quantization intervals B,,. Therefore the optimal
MCECAQ can be found by searching over the set of interval end
points, {¢,» }. This is a scalar quantization problem, which can
be solved exactly using dynamic programming. Thus for a bi-
nary variable, Y, the problem of optimal MCECQ design is re-
duced to one of scalar quantization, regardless of the dimension-
ality of the context space. Once the scalar problem is solved, the
optimal MCECQ cells A,, are given by

Ay = {C : PY|C(1|C) € [quhqm)}' 2

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004

In [9] the minimum conditional entropy criterion above
was applied to compute optimal context quantizers for the
application of bi-level image compression (tested using the
leave-one-out approach [9]). The authors showed that the cost
function (1) satisfies the so-called ’concave Monge property’,
which is a strong monotonicity that can be exploited to greatly
reduce the search domain of dynamic programming. As a result,
the optimization of {¢,,} in (1) may be solved in O(NM),
where N is the number of raw, ie. unquantized contexts before
quantization.

B. Context Quantization by Minimum Code Length

In MCECQ it is assumed that the probability density func-
tions P(X|C) are known. In that case it would be more effi-
cient (compression wise) to use P(X|C) directly in the coding
rather than applying context quantization. In practice, however,
a training set or the data sequence to be coded is used to esti-
mate P(X|C). In this case instead of using MCECQ designed
for an assumed P(X|C'), the context quantizer is designed to
minimize the actual adaptive code length of the given data set,
2T [8]. This principle is described below.

Let I be the size of the finite alphabet of =. Let n; denote the
counts of the symbol 7 in context c. A simple estimator of the
probability that the next occurrence is ¢ in context c is given by

i+ 0
Blile) = 2 3

Z n; + 16
1=0

where ¢ is a parameter of the estimator. The ideal adaptive code
length for the data set 27 is

T
L($T|C) = Z — log pi(x¢|cy) @

t=1

where c; is the context of z; and p;(z¢|c;) is given by sequen-
tially updating the counters (3) based on the causal part, z*~!,
of the data.

Let N;(c) be the occurrence count for symbol ¢ in context ¢
over the whole data set. For a given sequence x” , the total code
length L(z7|Q(c)) out of the adaptive context-based arithmetic
coding may be computed based on the set of counts {N;}(c)
over the contexts c, because the order of the symbol appearrance
within a context class does not change the ideal adaptive code
length. For a given context quantizer, with quantization regions
Apm = {c : Q(c) = m}, m = 1,..., M, the counts after
quantization are given by

Ni(m) = Y Ni(c). 5)

cEA,

Let L,, denote the ideal adaptive code length of all symbols
whose contexts fall into CQ cell A,,. Let T;,, be the total number
of occurences of symbols whose contexts fall in A,,.

T —1 I—1 Ni(m)—1

L, = Zlog(k—}—]é)—z Z log(j +6) (6

k=0 i=0 ;=0
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where the last term only sums over values of ¢ for which
N;(m) > 0. The context quantizer )(c) minimizing the total
code length is determined by

M

min L,, = min L(zT|Q(c)). 7
iy 3 B = iy TG

This defines the optimal context quantizer (M, Q(c)) for the
given data set, 27, with respect to the adaptive code length,
(when the cost of the context quantizer itself is neglected).
If more than one value of M attains the minimum in (7) the
smallest of these is chosen. The optimization problem may
be defined based on the set of counts {N;}(c). Therefore the
dimensionality is the size of the alphabet, regardless of the
order as well as the dimensionality of the contexts, c.

IITI. EMPIRICAL CONTEXT QUANTIZATION — BINARY CASE

The practical significance of the optimal CQ algorithms pre-
sented is that they offer constructive means of optimizing source
codes for minimum code length via high-order context mod-
eling. Measuring the code length of the same data set that is
used for the CQ optimization establishes a lower bound on the
achievable code length.

In the following development our focus is on designing and
implementing CQ for actual coding and the scope in the rest
of the paper is restricted to CQ for coding binary decisions.
Non-binary variables, x, may be decomposed into a sequence
of binary decisions, y, and coded using the proposed method.
The estimator (3), with I = 2, is often the basis of the adaptive
probability estimation for coding binary data with é € [0, 1].

One approach to CQ design is first to estimate the probabili-
ties of Py | using (3) and the probabilities of the contexts P(C')
for a large training data set. Thereafter the dynamic program-
ming MCECQ design algorithm is applied to compute the con-
text quantizer which minimizes the conditional entropy (1) for
a given M. This MCECQ solution could also be characterized
as a minimum static code length solution (when the costs of the
context quantizer and the probability parameters are neglected).
The conditional entropy H (Y|Q(c))(1) in MCECQ is a non-
increasing function in M. But the actual adaptive code length
(achievable description length) of a given input sequence is not,
due to the impact of model cost. Thus context quantizers of dif-
ferent resolutions (M) should be evaluated by the corresponding
adaptive code lengths on the data set to determine the value of M
yielding an overall mimimum. Using the adaptive code length
as cost function, the optimal value of M is determined within
the CQ calculation.

A. Minimum Code Length Context Quantization

This section presents a solution to CQ design for minimum
adaptive code length of a given binary data set. We refer to the
procedure as Minimum (adaptive) Code Length Context Quan-
tization (MCLCQ). Lets consider adaptive context based coding
of a binary sequence y7. Let 0 and 1 be the labels of the binary
variable Y. The probability estimate (3) is sequentially updated
on the fly for each of the binary input symbols. The quantizer
cells of the optimal solution to (7) may be defined by the set of

counts, { No(c), N1(c)}, for all the contexts. The counts are dis-
crete as opposed to the probability simplex. We have not been
able to prove or specify conditions ensuring convexity of the
quantization partition when using the adaptive code length.

In our implementation, we restrict ourselves to quantizer cells
specified by contigous intervals A4, = {c : 153z|c(1 lc) €
[¢m—1,qm)}- Under this restriction the solution may be found
by dynamic programming as for the MCECQ. The probability
estimates P(Y'|C) that are used for ordering the contexts prior
to the dynamic programming procedure are obtained from the
final counts on the data set, using (3) with 6 = 0.

In calculating the adaptive code length for potential quantiza-
tion classes, the probability estimator (3) is used with ¢ set to the
value used in the coding procedure we are optimizing for. The
adaptive code lengths used in the dynamic programming are cal-
culated based on the counts, (Ny(c), N1(c)), for each possible
context cell (quantizer interval). Since the dynamic program-
ming algorithm uses the actual adaptive code length for a given
finite sequence as the cost function (for fixed §), it can automati-
cally decide the optimum number of coding contexts M. This is
simply done by increasing the number of context quantizer cells
in the bottom-up dynamic programming process, until reaching
the point when the actual code length starts to increase.

If the size of the training set is normalized to be of the length
of an input sequence to be coded, then the dynamic program-
ming algorithm can automatically decide the optimal number,
M, of coding contexts for this input size and the  value chosen.
The MCLCQ procedure above may also be used for on-line con-
text quantization. In this case ¢ is set to a small value in the initial
sorting of P(Y|C).

B. Complexity of Context Quantization — Binary Case

Let L,,(No, N1) denote the ideal adaptive code length of
context quantizer cell A,, given the counts (Ny(c), Ni(c)) =
(No, N1) as in the binary case of (6). Then we have

T2 (6 + ) T2y (8 + 9)

s (25 +)

Lm(]\/vo7 Nl) = — IOg

®

where H?251(5 +j) =1 if N, = 0. These adaptive code
lengths (8) can be computed in O(1) time independent of the
interval length by a fast algorithm proposed by [10]. The idea
is to use table look-up to compute the adaptive code length
for small values of the counts, and use Stirlings approxima-
tion for the products in (8) for large values when such an
approximation yields high precision. With the fast adaptive
code length computation technique, one can precompute and
store the adaptive code lengths for all possible quantizer in-
tervals. This preprocess takes O(N?) time, where N is the
number of distinct unquantized raw contexts. Aided by the
intermediate results of the preprocess (adaptive code lengths
of all possible quantizer intervals), the dynamic programming
algorithm can be completed in O(M N?) time. Unfortunately,
we have verified that the cost function of adaptive code length
does not satisfy the “concave Monge property” (also known
as quadratic inequality). Only for the MCECQ version of the
problem the “concave Monge property” is satisfied and the
computational complexity of designing an M-level optimal
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context quantizer can be reduced from O(M N?) to O(MN)
[9] by applying a technique called matrix search to quantizer
design as shown by Wu [11]. However, since MCLCQ is an
off-line design process, the O(M N?) complexity to achieve
the minimum adaptive code length is acceptable. If this com-
plexity is deemed too high, one can settle for the minimum
static code length (MCECQ) in O(M N) time. A good com-
promise is to design the context quantizer for the minimum
static code length, but still use adaptive arithmetic coding in
all coding contexts to adapt to changing source statistics. In
our experiments, adaptive arithmetic coding using a context
quantizer designed for the minimum static code length obtains
code lengths that are only one percent longer than if the context
quantizer is designed for the minimum adaptive code length.

Further speed up of the dynamic programming algorithm is
achieved by merging all the raw contexts that have the same
counts. This can reduce the number of initial contexts subject
to quantization significantly. This will not affect the optimal so-
lution because those contexts would be merged anyway by the
CQ scheme above. The estimator (3) is optimal if the events in
a context are independent and the prior distribution initially is
beta distributed with nuissance parameter §. In this view all the
contexts of the same counts have the same posterior distribution
of the parameter p(0|c), which also suggests that they should be
quantized into the same context cell.

For an analysis of worst-case complexity, we develop a bound
for the maximum number (V') of contexts having distinct coun-
ters (No(c), N1(c)). Given a training set of size T, the case
leading to the maximum value of N’ is considered: All contexts
have distinct counters and the sum of the counts is as small as
possible. This case is characterized by having j distinct sets of
counters for contexts with j — 1 occurences. For a given T', the
maximum value of N’ is obtained by having no duplicate set of
counters and ’filling up’ the sets starting with the small values
of j. Let J' be the minimum value of .J satisfying

J
dG-1j>T )

i=2

<

For the given value of T'

(10)

7
> i>N
j=2

gives a bound on the number of contexts with distinct counters.
Combining (9) and (10) shows that the number of contexts, N’,
with distinct counters is O(7T2/3). Inserting in the complexity
expression above gives O(MT*/?) for MCLCQ in the binary
case and O(MT?/?) for MCECQ optimization in the binary
case. Reading the data and contexts of the training set is of
course O(T'). This shows that the CQ optimization itself using
dynamic programming for the binary case is quite manageable.

Additional reduction in the computations of the dynamic pro-
gramming training on data set may be achieved by merging
all contexts having identical probability estimate, p(0|c). The
effect of this depends somewhat on the parameter of § chosen
for the estimate.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004

C. Quantizer Mapping

Besides the complexity of CQ optimization there is the re-
source issue of handling and representing an arbitrary quantizer
mapping. In two-pass coding, the representation of the quantizer
as a preamble may also challenge the efficiency.

The simplest way of implementing an arbitrary quantizer
mapping @ is to use a look-up table. But since |C|, the number
of all possible raw contexts, is very large for high-order
contexts, building a huge table of |C| entries for @ is clearly
impractical. However, one can use hashing techniques to avoid
excessive memory use of the Q(c) table by exploiting the fact
that the actual number of different raw contexts appearing in an
input sequence is much smaller than |C|.

Another approach for reducing the high space complexity
of the mapping () is to modify the structure and partition a
high-order context C' into two (or more) subcontexts C7 and
C5 of lower order, and then use multiple tables of smaller sizes
to implement the context quantizer in some product form. One
such technique proposed by Wu ez al. [12] is based on the as-
sumption of a Bayesian-type conditional probability estimate,
given the subcontext values, c¢; and co:

P,y (e1]0)Pe,jy (€2]0)P(0)
_ZO1Pcl|Y(C1|$)ch|Y(Cz|$)P($)
’ (11)
where c¢; and ¢y denote the context values of C; and C», re-

spectively. In adaptive arithmetic coding, a quantized version of
the Bayesian estimate may then be used

Py|c,c,(0leicr) =

N

P(Ql(cl)|0)P(€22(02)|0)P(q

2 P(Qi(er)|z)P(Qa(c2)[z) P(2)
- (12)

where ()1 and Q2 are MCECQ quantizers of disjoint contexts

C1 and C5. This technique reduces the quantization table from
a size of |C1| - |Cs| into two tables of total size |Cy| + |Ca].

~

Pyic,c,(Olcier) =

IV. CQ-BASED CODING SCHEME

For use in a coding scheme, the context quantization may
be calculated based on the counts obtained from a training set
and thereafter fixed, or it may adaptively be calculated based
on counts from a causal part of the data set. In the latter case,
the encoder and decoder must apply the same context quanti-
zation algorithm to the causal data. Finally CQ may be used
in a two-pass manner: collecting statistics, performing CQ and
coding the context mapping as a preamble before coding the
data set itself. The two-pass coding raises the question of coding
the context mapping which we do not consider here instead fo-
cussing on the first solutions.

We shall only apply context quantization to binary random
variables. Non-binary variables X; are decomposed into a se-
quence of binary decisions when being coded. A simple choice
is to code the bits of the binary representation of each value z;.
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A. Binary Decomposition

In general, any binary decomposition of the values x; may be
used. We shall use the approach of ordering the possible values
and let each decision code whether the value is the next in order
until the actual value has been coded. We consider two ways
of ordering the values: 1) Based on an order of individual pixel
values within the context. 2) Dynamic ordering based on the
adaptively estimated likelihood of the possible values. As an ex-
ample of the first type of ordering, PWC [4] starts by coding the
binary decision whether the current pixel z; is equal to the pre-
vious pixel, z;_1. This is done by coding a so called edge-map.
The dynamic ordering is elaborated below.

B. Two-Level Context Based Prediction

The current nonbinary value z; may be decomposed in order
of decreasing estimated conditional binary probabilities. Such
a binary decomposition is context specific and data dependent.
The decomposition is used as well in the CQ design as in the
actual coding. Let 27 denote the training data and z; the ¢’th
sample of zT. The training data is traversed once, and statistics
are gathered for the unquantized contexts, c. Based on the sta-
tistics for the causal part 2!~ the values are ordered by p(z:|c),
which are estimated using (3). Thereafter the values are con-
sidered one by one in order of decreasing probability until the
actual value is found. Statistics is gathered for each of these bi-
nary decisions. After the statistics for the training data have been
gathered, CQ is applied to the contexts, c, for each of these bi-
nary decisions. In our tests on image sequences the previous
image is used as the training data, 27, for the current image,
2T . The conditional probabilities p(z;|c) used for the binary
decomposition in the actual coding are based on the statistics of
the previous image, 27, and the causal part of the current image,
oL,

Very likely new contexts or new values in a given context will
appear in the data being coded. These cases are handled sepa-
rately using an escape technique. The new contexts are there-
after included without quantization.

C. CQ Coding Scheme

Based on a combination of the techniques above, we present a
CQ coding scheme for image sequence data. The coding scheme
is specified by 1) binary decomposition, 2) context quantization,
and 3) adaptive coding. In the coding step the statistic counts are
reset to zero before each image. Thus the probability estimates
of the binary variables p(z; = i|Q)(c)) are based on the statistics
of the causal part, 2*~! of the current image. Based on these
estimates the data may be coded using arithmetic coding.

The scheme is aimed at sequences of computer generated
image data as maps, graphics, a-planes etc. Single images as in-
dividual maps may be tiled and the scheme applied to a sequence
of these tiles. Each image or tile in the sequence is referred to
as a frame.

The coding of each pixel value is decomposed in binary de-
cisions, supplemented by m-ary decisions for ease of imple-
mentation. The coding of z; is completed when its value is
defined by an affirmative answer to a question. The context,
¢ = (T4_t,,---,Tt_tz),is defined by a template.

The basic version is presented first: Is the current pixel value
x; equal to

1) the west pixel value, x;_1? (B)
2) the most probable value of the context pixels,
Tt—_ty,.--,Tt—t,, (besides that of the west pixel)?
B)
3) one of the remaining context pixel values?
4) the most probable (remaining) symbol value seen in the
context, c? (B)
where (B) marks binary decisions. If the value has not been
coded by affirmative answer to one of the questions above, the
actual value among the remaining colors is coded using the full
context, c. These values are referred to as escape values. Binary
CQ based on (3) — (7) is applied directly to the binary decisions
above. For questions 2 and 4, binary CQ based on (3) — (7) with
two-level contexts is applied as described in Section IV-B. An
individual CQ is carried out for each of the binary questions.
The last question may be repeated (three times is default in the
basic version). In the nonbinary question 3, only one context is
used.

The basic version uses one template defining unquantized
contexts, ¢. An extended version is introduced below which may
apply a different (smaller) template (¢’) for questions 4 and 5. In
this extended version, the last coding of the escape values above
using the full context is replaced by the (nonbinary) questions:
Is the current pixel value, x; equal to

5) a remaining symbol value seen in the context, ¢’?
6) a remaining symbol value seen in the causal part of the
current frame, z'~1, or the previous frame, 27 ?

If the value has not been coded by the decisions above, it is
coded out of the remaining symbol values of the alphabet.
Question 5 is coded using the unquantized context, ¢’. Question
6 simply assumes a uniform distribution over the remaining
values.

A few comments to this scheme may be in place. The first
question is always asked. Once the value has been determined no
more questions are asked. One or more of the questions after the
first may be void depending on the unquantized context and the
values having appeared in it. The questions 3, 5 and 6 are coded
as nonbinary; the actual value is coded or an escape symbol tells
to proceed to the next question. Contexts not present in the data
set, on which the CQ is based, are included without quantization
when they appear.

The decomposition scheme above is partly inspired by PWC
[4] and RAPP [13], which are efficient coders for palettized and
graphic images. In principle PWC starts with the same question
(coding the edge map) and RAPP [13] codes if the value is equal
to one of the values in the (4 pixel) template.

The PWC algorithm uses a binary decomposition of which
a few details are given: To code the first binary decision, PWC
uses a 10-pixel context. A heuristic, predefined context quanti-
zation is applied to map the template pixels onto an edge map.
An edge between two 4-neighboring pixels records whether or
not they are identical. The edge map is defined by the edges be-
tween each of the four causal 4-neighbors of the current pixel
and all their causal 4-neighbors. Thus the quantized context is
defined by nine binary edge values. If the first decision does
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not suffice to determine the pixel value, the coding process con-
tinues with binary questions on whether the current pixel value
is identical to one of the three other causal 8-neighbors. Further
details are given in [4]. If initial guesses fail, PWC may resort
to coding a prediction error.

V. EXPERIMENTAL RESULTS

The CQ coding schemes of the previous section were applied
to digital maps and «-plane sequences. These test data are not
binary so the coding includes the decomposition in binary deci-
sions. First the CQ scheme is applied as an analysis of the per-
formance of some existing context quantization schemes. The
results of the CQ algorithms are measured by ideal code lengths,
i.e., calculating the adaptive code length based on estimates of
conditional probabilities.

A. Maps

The context quantization was applied to street maps. First we
focus on measuring the performance of coding the first question
(i.e., is the current pixel identical to the west pixel?) in the CQ
based coding scheme in comparison with existing methods ap-
plying a heuristic context quantization. A street map of Copen-
hagen [14], [15] having a resolution of 723 by 546 pixels with
12 colors was used. Table I gives the results for (optimal tem-
plate sizes) coding with a 5 pixel template directly compared
with context quantization by relative pixel patterns [13]-[15]
(9 pixels), edge patterns (as in PWC, 10 pixels), and a combina-
tion of 4 unquantized pixels and 3 pixels quantized by relative
pixel patterns. In comparison, Table II gives the optimal adap-
tive code length obtained by training the CQ on the very same
data set. MCLCQ and MCECQ gave the same code lengths
within the accuracy given in the table. MCLCQ automatically
finds the number of contexts to use. For MCECQ we searched
for the number of contexts yielding the shortest code length.
These CQ based code lengths can not be realized as they re-
quire that the decoder knows the exact context quantization. The
proposed optimal context quantizer technique may here be used
to establish a lower bound on the achievable (adaptive) code
length, and hence is a useful tool to evaluate the performance of
existing heuristic context quantizers. If a coder e.g., is restricted
to a template size of M = 5 pixels, it is seen that even op-
timal context quantization (0.316 bpp) provides little gain com-
pared to template coding (0.327 bpp) for this map. For larger
templates, the results in Table II suggest that improvement is
possible over the heuristic methods of Table I. For this map the
first question accounts for most of the code length (0.305 bpp
out of 0.381 bpp for the 7 pixel combination of unquantized and
relative pixels patterns). Table II also gives the number of con-
texts appearing in the data set as well as the number of context
classes after quantization. The total number of distinct contexts,
N, increases with increasing template size. The number of con-
texts with distinct counts, N’ is much smaller decreasing after
a maximum for a template size of nine. The optimal number
of classes, M, after CQ was 32 at the most in this experiment
(Table II).

Browsing maps on the internet, the previous map may be used
to train the CQ. The maps may also be tiled and requested se-
quentially. The tiles of maps already received may be used for
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TABLE 1
COPENHAGEN MAP. IDEAL CODE LENGTHS (BITS PER PIXEL) FOR CODING THE
FIRST (WEST PIXEL) QUESTION USING DIFFERENT CONTEXT DEFINITIONS.
(THE OPTIMAL TEMPLATE SIZE FOR EACH METHOD IS ALSO GIVEN)

TEMPLATE | REL. PATT. | EDGE PATT. | COMBINED
(5 PIXEL) (9 PIXEL) | (10 PIXEL) | (4+3 PIXEL)
0.327 0.322 0.331 0.305
TABLE 1II

COPENHAGEN MAP. IDEAL CODE LENGTHS (BITS PER PIXEL) CALCULATED
FOR THE FIRST (WEST PIXEL) QUESTION USING MCLCQ OR MCECQ AS A
FUNCTION OF THE TEMPLATE SIZE. (MCLCQ AND MCECQ YIELD THE SAME
CODE LENGTHS.) THE NUMBER OF DIFFERENT CONTEXTS APPEARING IN
ALL AND THE NUMBER OF CONTEXT CLASSES AFTER CQ BY COUNTS,
MCLCQ AND MCECQ ARE ALSO GIVEN

TEMP. | WEST PIX | CONTEXTS | COUNT | MCLCQ | MCECQ
SIZE (BPP) ) CQWN) | (M)

1 0.539 12 12 10 10
2 0.431 100 94 22 22
3 0.397 388 261 24 25
4 0.352 1064 488 27 27
5 0.316 2446 744 29 28
6 0.290 5025 1000 31 30
7 0.266 8279 1111 32 31
8 0.248 12505 1199 31 31
9 0.230 17728 1244 32 30
10 0210 23751 1200 32 31
11 0.192 30257 1178 30 30
12 0.175 37114 1117 31 30

coding the next tile. Tests were conducted on four street maps
[7]. For three of the maps, MCLCQ in the basic version reduced
the code length of PWC by 7-22%. For one of the images the
results were basically the same.

B. «-Planes

Experiments were conducted coding MPEG4 «-plane
sequences. MPEG4 is an object-based video compression
standard. MPEG4 coding using video objects, may associate
an a-plane (see Fig. 1) with each frame of a video object. The
a-plane specifies, on a pixel basis, how the video objects in the
foreground should be blended into the background. An initial
application area could be in storage of high quality object based
video.

The adaptive CQ schemes, including the binary decom-
position, were applied to (lossless) coding of three MPEG4
a-plane sequences Logo, Weather and Rain. Each frame has
a resolution of 720 by 486 pixels which are traversed row
by row. The sequences are coded frame by frame without
using motion compensation. The context quantizer is designed
based on the previous frame. The results of the Logo sequence
(children, layer 2) are depicted in Figs. 2-4. The first frame
is kept out of the results, coding the remaining 299 frames
having a total of 104 Mpixels. Fig. 2 plots the total ideal
code length for the first binary decision (the west pixel) as
a function of the template size for the Logo sequence. This
decision is fully coded based on binary CQ. For a template
size of 9, the average number of different contexts per frame
was 2579 over the sequence. Mapping contexts with the same
counts reduced the average number of different contexts to
179. The optimal CQ algorithms reduced this to as little as
11. The best results were obtained finding the template pixels
using a greedy search. In each pass of the data set, the best
one out of the neighboring pixels of the template of size n is
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Fig. 1. An a-plane image from test sequence Logo. Left) Full frame having
21 different pixel values. Right) Enlargement of part of the frame.
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Fig.2. Ideal code lengths as a function of the template size for the first question

for the Logo sequence. The template pixels were found by greedy search or
2-norm distance.

chosen for the template of size n + 1. Fig. 2 also depicts the
result using templates which grow in size by incrementally
adding the next nearest causal neighbor (in 2-norm distance
to the pixel to be coded).

For the first question applying the edge map quantization
heuristic for a 10 pixel template (as in PWC) gives an ideal code
length of 359 808 bytes. This is significantly reduced to 121 237
bytes applying the MCLCQ to the same template pixels.

Fig. 3 as a function of the template size. MCLCQ using tem-
plate pixels determined by greedy search gives the best result,
eg. 318 780 bytes for a 9 pixel template. The MCECQ results
using a greedy template are almost as good requiring 321 024
bytes in comparison. For this MCECQ result we searched for
the number of contexts (M = 24) yielding the shortest ideal
code length. The CQ results are better than what is obtained by
quantization by counts and much better than the result without
context quantization. It may be noticed that the CQ algorithms
are robust for increasing template size whereas the performance
of the full context version deteriorates above 5 template pixels.
This demonstrates the effectiveness of CQ as a technique of
combating the context dilution problem.

The CQ schemes were also compared with the best methods
in the literature for lossless image coding, including palettized
images. Tables III and IV give the results for the three MPEG4
a-sequences: Logo, Weather and Rain (destruction, layer
8). As for Logo the first frame is kept out. For the Weather
sequence the remaining 299 frames were coded. For the Rain
sequence the remaining 168 frames were coded. Table III
shows that PWC, 2D-PPM and RAPP all outperform CALIC
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Fig. 3. Ideal code lengths for the Logo sequence as a function of the template
size. The template pixels were found by greedy search or 2-norm distance.
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Fig. 4. Code lengths, frame by frame, for the Logo sequence comparing
MCLCQ and MCECQ with RAPP, PWC and 2D-PPM.

TABLE 1II
ToTAL CODE LENGTHS (BYTES) FOR a-PLANE SEQUENCES CODED
INDIVIDUALLY
SEQUENCE PWC | 2D-PPM RAPP CALIC
LOGO 820,484 535,730 | 1,067,216 | 2,616,770
WEATHER | 1,050,212 | 1,262,516 883,104 | 1,151,512
RAIN 3,863,470 | 4,159,430 | 4,209,170 | 3,799,541
TOTAL 5,734,166 | 5,957,676 | 6,159,490 | 7,566,823
TABLE IV

ToTAL IDEAL CODE LENGTHS (BYTES) FOR c-PLANE SEQUENCES CODED
USING STATISTICS OF THE PREVIOUS FRAME

SEQUENCE | MCLCQ PWC | 2D-PPM
LOGO 274,785 792,129 336,873
WEATHER 778,455 786,798 914,984
RAIN 3,277,285 | 3,678,917 | 3,430,093
TOTAL 4,330,525 | 5,257,844 | 4,681,950

[2], which serves as a benchmark for lossless coding of natural
images. This indicates that these alpha sequences display more
similarity with graphics and palettized images than natural
images. The 2D-PPM scheme [16] combines classic PPM
(prediction by partial matching) coding with a template defined
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in the two dimensional image plane. The optimal choices of
(max.) template size used with the 2D-PPM were 5 pixels for
Logo, 2 pixels for both Weather and Rain. PWC and 2D-PPM
gave the best results in Table III. The best MCLCQ (Table IV)
significantly outperforms all of the methods in Table III. The
MCLCQ coding scheme uses statistics (but not specific pixel
values) from the previous frame, whereas PWC and the other
techniques just code individual frames. In order to also make
use of the previous frame PWC and 2D-PPM were modified
such that the statistics were initialized by that of the previous
frame. (Actually these code lengths were estimated by taking
the code length of two consecutive frames and subtracting the
code length of the first frame. Therefore the header size was
also removed from these results.) Table IV gives the results.
These interframe results for PWC and 2D-PPM gave code
lengths which were 21% and 8% longer, respectively, than the
MCLCAQ code length for the test set (Table IV). MCLCQ used a
12 pixel template combined with a 9 pixel template for escapes
and asking question 4 five times for Logo. MCLCQ used a
4 pixel template combined with a 1 pixel template for escapes
for Weather and a 3 pixel template combined with a 1 pixel
template for escape for Rain. For both of these sequences the
template pixels are chosen by 2-norm distance and only asking
question 4 once. The optimal choices of (max.) template size
for 2D-PPM were 8 pixels for Logo, 4 pixels for Weather and
2 pixels for Rain.

Fig. 4 depicts the results frame by frame for the best settings
of the extended MCLCQ and the basic MCECQ compared with
2D-PPM (with and without initialization), PWC and RAPP for
the Logo sequence. The two low plateaus of the CQ results re-
flect parts with very high frame to frame correlation. But also
outside these parts of the sequence, the MCLCQ scheme outper-
forms the other algorithms. Only the interframe 2D-PPM comes
close in performance. For this sequence the average number of
decisions per pixel were only 1.03 binary and 0.01 nonbinary
decisions (in the basic version).

The Logo sequence is lossless coded very efficiently with
MCLCQ using as little as 0.021 bpp. Rain is considerably more
difficult to code requiring 0.45 bpp. Table V gives the results
of applying MCLCQ, PWC and 2D-PPM to quantized versions
of the Weather and Rain sequences. The quantizer is a slightly
modified version of a Lloyd scalar quantizer [17] quantizing to
16 levels. MCLCQ used a 4 pixel template combined with a
3 pixel template for escapes for Weather and a 7 pixel template
combined with a 4 pixel template for Rain. Question 4 was asked
twice in both cases. For 2D-PPM, the optimal (max.) template
sizes of 3 for Weather and 4 for Rain were used.

Including some of the techniques of PWC and 2D-PPM in
MCLCQ would probably lead to even better results. PWC re-
sorts to prediction of values which are different from the nearest
neighbors. 2D-PPM decreases the context size until the context
has been seen before. Another candidate for improvement is due
to the fact that MCLCQ sets the counters used for the actual
coding to zero before each frame. The PWC and 2D-PPM results
were improved by carrying over the statistics from the previous
frame (Table IV). The optimal choice is probably to initialize the
estimates eg. using a down scaling of the counters from the pre-
vious frame. Finally for the a--planes, the temporal redundancy
could also be exploited at pixel level. From an applications point
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TABLE V
ToTAL IDEAL CODE LENGTHS (BYTES) FOR QUANTIZED «v-PLANE SEQUENCES
CODED USING STATISTICS OF THE PREVIOUS FRAME.

SEQUENCE | MCLCQ PWC | 2D-PPM
WEATHER | 354,437 | 409,374 | 412,254
RAIN 821,168 | 1,092,836 | 865,883
TOTAL | 1,175,605 | 1,502,210 | 1,278,137

of view issues as transmission errors, packetization, random ac-
cess should also be addressed depending on the application.
The emphasis of this work has been to demonstrate efficient
coding based on the new CQ design. The techniques could also
be applied within the entropy coding in lossy coding schemes.

VI. CONCLUSIONS

New techniques for optimal context quantizer design for min-
imum static and minimum adaptive code length calculated for a
given data set were presented. The techniques were developed
for optimizing contexts in which a binary random variable may
be coded by adaptive arithmetic coding. Non-binary data can
also be coded by these techniques if they are decomposed into a
binary representation. Fast CQ design algorithms based on dy-
namic programming were developed and analyzed, especially
with respect to the adaptive code length (the case of MCLCQ).
In a specific application, the new CQ design algorithms were
used to evaluate the performance of existing heuristic context
quantizers used to compress digital maps. Also, in conjunc-
tion with a binary decomposition based on the (estimated) like-
lihood of the possible values of the input random variable, a
coding scheme was developed for image (sequence) data. This
approach may be used for tiles of an image as well, for ex-
ample, in browsing of digital maps. Good results were demon-
strated by the ideal code lengths calculated for MPEG4 a-plane
sequences, surpassing those of current state-of-the-art lossless
techniques such as PWC and CALIC.
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