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Binary Halftone Image Resolution Increasing
by Decision Tree Learning

Hae Yong Kim, Member, IEEE

Abstract—This paper presents a new, accurate, and efficient
technique to increase the spatial resolution of binary halftone im-
ages. It makes use of a machine learning process to automatically
design a zoom operator starting from pairs of input—output sample
images. To accurately zoom a halftone image, a large window and
large sample images are required. Unfortunately, in this case, the
execution time required by most of the previous techniques may
be prohibitive. The new solution overcomes this difficulty by using
decision tree (DT) learning. Original DT learning is modified to
obtain a more efficient technique (WZDT learning). It is useful
to know, a priori, sample complexity (the number of training
samples needed to obtain, with probability 1 — §, an operator with
accuracy €): we use the probably approximately correct (PAC)
learning theory to compute the sample complexity. Since the
PAC theory usually yields an overestimated sample complexity,
statistical estimation is used to evaluate, a posteriori, a tight error
bound. Statistical estimation is also used to choose an appropriate
window and to show that DT learning has good inductive bias. The
new technique is more accurate than a zooming method based on
simple inverse halftoning techniques. The quality of the proposed
solution is very close to the theoretical optimal obtainable quality
for a neighborhood-based zooming process using the Hamming
distance to quantify the error.

Index Terms—Decision tree learning, halftoning, inverse
halftoning, probably approximately correct (PAC) learning, reso-
lution increasing.

1. INTRODUCTION

OST OF today’s ink-jet and laser printers cannot actu-

ally print grayscales. Instead, they print only tiny black
dots on paper (color devices are not considered here). Thus, any
grayscale image has first to be converted into a binary image
by a digital halftoning process before the printing actually takes
place. Halftoning techniques simulate shades of gray by scat-
tering proper amounts of black and white pixels. That is, given
a grayscale image G : Z? — [0, 1], halftoning generates a bi-
nary image B : Z? — {0,1} such that for any pixel p

B(p) = G(p)

where B(p) is the average value of the image B in a neighbor-
hood around the pixel p.

There is an enormous variety of halftoning techniques. The
two most widely known basic methods are error diffusion and
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ordered dithering [1], [2]. There are many other halftoning tech-
niques, for example, dot diffusion and blue noise masks [1], [2].
Some of them are designed for specific printer technologies, for
whatever limitations the printer might have in printing small iso-
lated dots or finely interspersed black and white dots.

Many image-processing tasks are based on the windowed op-
erators (W operators). A W operator is an image transformation
where the color of an output pixel is a function of colors of its
neighboring pixels in the input image. Some works have pro-
posed using machine learning framework to design automati-
cally a W operator starting from input—output training sample
images [3]-[10]. Specifically, we have proposed to store the W
operator created by machine learning process in a tree-shaped
data structure [4], [6]. We use here a similar idea to design the
windowed zoom operator (WZ operator) in order to increase the
resolution of binary halftone images.

In the literature, there are many papers on grayscale image
resolution increasing. Surprisingly, only a few papers have ever
been written on binary image zooming [7], [9], [10]. These
techniques are all based on some kind of machine learning
technique and can accurately zoom printed or handwritten
characters. Moreover, these techniques can also be trained to
perform some simple image processing together with resolu-
tion increasing. For example, they can attenuate noise at the
same time as they increase resolution. Unfortunately, these
techniques cannot consider a large neighborhood to decide
the colors of the resolution-increased pixels, because their
running times skyrocket with the growth of window and sample
sizes. A small window (for example, 3 X 3 or 4 x 4) is quite
good to zoom printed or handwritten characters, but it cannot
accurately zoom halftone images. Our experiments have shown
that windows as large as 8 X 8 or 9 x 9 are needed to accurately
zoom halftone images.

This paper presents an improved machine learning-based bi-
nary image resolution-increasing algorithm that allows even a
halftone image to be accurately zoomed. The new technique is
based on decision tree learning (DT learning). To the author’s
best knowledge, this is the first technique that can accurate and
directly zoom halftone images. The tree-shaped data structure
allows us to write efficient algorithms. Thus, the training time
complexity of the new technique is only O(wm logm), where
w is the window size and m the sample input image size. The
application time complexity is only O(n logm), where n is the
size of the image to be zoomed. This means that the performance
deteriorates only very slowly as the window and sample sizes in-
crease. This property makes it possible to use a large window
and large sample images. The new technique can be used to
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zoom printed or handwritten characters as well. As a remark,
the new technique is unable to accurately zoom images gener-
ated by error diffusion [1], [2] or by any halftoning algorithm
where the output colors are not chosen as a function of colors
in a local neighborhood. Note that the output of error diffusion
at a particular pixel actually depends on all previous processed
pixels. However, surprisingly, DT learning can accurately in-
verse halftone error diffused images, as we showed in a recent
paper [11].

Inverse halftoning is a technique used to recover the grayscale
image from a halftone binary image [12], [13]. A simple inverse
halftoning consists merely on a low-pass filter, for example, a
Gaussian filter. It is possible to zoom halftone images using an
inverse halftoning algorithm (see Section V-F). Our approach
presents a number of differences from the inverse halftoning-
based zooming techniques.

1) In our approach, it is not necessary to have access to the
halftoning process itself. It is enough to have an input—output
training set of halftone images. The latter is a milder re-
quirement than the former because if one has access to the
halftoning process, any amount of in—out sample halftone
images can be obtained. The converse does not hold.

2) In spite of the milder requirement, the images obtained
using the new technique are more accurate than those gener-
ated by simple inverse halftoning-based zooming techniques.
We used a Gaussian low-pass filter and neighborhood aver-
aging as the inverse halftoning processes.

3) We did not compare our method against more sophisti-
cated inverse halftoning techniques. Nevertheless, we demon-
strate that the quality of our process is very close to the op-
timal obtainable quality for a neighborhood-based zooming
process, using the Hamming distance to quantify the error.
In order to provide a solid theory to our technique, we

place it in the context of the probably approximately correct
(PAC) learning framework. This theory brings forward the
sample complexity, that is, a superior bound for the amount of
samples needed to get an operator with the error rate at most
¢ with the probability at least (1 — §). As PAC learning does
not provide an accurate estimation of the error rate, we use
statistical estimation to evaluate, a posteriori, the error rates of
the obtained and optimal operators. Statistical estimation is also
used to compare different learning algorithms and to choose an
appropriate window.

Some of the experimental results presented in this paper were
published elsewhere [8]. We also inherit the notation for the
W-operator learning theory from a previous work. Section II
formalizes W-operator learning as a computational learning
problem. That section covers three subsections defining
the problem and describing the noise-free and noisy cases.
Section IIT applies statistical estimation theory to W-operator
learning. Section IV discusses different learning algorithms,
covering k-nearest neighbor (NN) learning and DT learning.
Section V describes halftone image resolution increasing by
DT learning along with some experimental data. Finally, we
present our conclusions in Section VI.

The programs and images used in this paper can be down-
loaded from http://www.lps.usp.br/~hae/software/halfzoom.
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II. BINARY W-OPERATOR LLEARNING
A. Problem

We begin by stating some results of machine learning theory
applied to the design of binary W operators. The reader is re-
ferred to other material [7], [14]—[16] for more information. We
stress that the problem we are addressing in Sections II-IV is
not resolution increasing by a WZ operator, but the automatic
design of W operators. WZ operators are examined in Section V.

Let us define a binary image as a function Q : Z? — {0,1}.
The support of a binary image () is a finite subset of Z? wherein
the image is actually defined. An image is considered to be filled
with a background color out of its support.

A binary W-operator V¥ is a function that maps a binary image
into another, defined via a set of w points called window V?/ =
{W1,..., Wy}, W; € 7%, and a concept or characteristic func-
tion ¢ : {0,1}* — {0, 1} as follows:

\IJ(Q)(p) =1 (Q(Wl + p)7 SR Q(Ww + p))

where p € Z2. A point W; of the window is called a peephole.

Let the images A®, AY, Q%, and QY be, respectively, the
training input image, the training output image, the image to be
processed and the (supposedly unknown) ideal output image.
We can suppose that there is only one pair of training images
(A” and AY). If there are many pairs, they can be “glued” to-
gether to form a single pair.

Let us denote the content in A* of window V_V) shifted to p €
Z? as a® and call it the training instance or the sample input

P
pattern at pixel p

ay = [47 (Wi + ), A"(Wa +p)...... A"(Wiy + )
e {0,1}.

Each pattern aj; is associated with an output color or classifica-
tion AY(p) € {0,1}. Let us denote the data obtained when all
pixels of A* and AY are scanned by

and call it the sample sequence or the training sequence (m
is the amount of pixels of images A” and AY). Each element
(ap,,AY(pi)) € a is called an example or a sample. Let us
similarly construct the sequence

4=, Q1)) (@, Q" (pn))

from Q@ and Q¥ (n is the quantity of pixels of Q* and V) and
call it the test sequence. Each ¢y is called a query pattern or
an instance to be processed and the output Q¥(p;) € {0,1} is
called the ideal output color or the ideal classification.

The learner or learning algorithm A is called upon to con-
struct a W-operator U based on A% and AY such that, when U
is applied to Q”, the resulting processed image Q¥ = W(Q™)
is expected to be similar to the ideal output image Q¥. More
precisely, the learner A should construct a characteristic func-
tion or hypothesis 1/; based on the sample sequence @ such
that, when 1) is applied to a query pattern g, , its classification
Q¥ (p;) = 1/;((1;1_) is expected to be the same as Q¥(p;) with
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high probability. The function 1/3 and the window I/?/ together
represent the W-operator .

B. Noise-Free Case

Let us distinguish noise-free from noisy cases. Our target
problem (halftone image resolution increase) is noisy and so are
almost all practical problems. However, the study of noise-free
problems helps us to better understand the underlying concept.

In a noise-free environment, there is a clearly defined target
concept ¢ : {0,1}* — {0,1} to be learned. In such an
environment, we can suppose that the training instances aj,
are drawn randomly and independently from the space {0, 1}"
with a probability distribution P. Furthermore, the output
colors AY(p;) are generated by applying the target function 1
to aj, thatis, AY(p;) = v(ay,) for all pairs (ay, , AY(p;)) € a.

The learner A considers some set H C ({0,1}* — {0,1})
of possible hypotheses when attempting to learn the target con-
cept ?. If no information on 1) is available, the learner should
assume H = ({0,1}* — {0,1}). However, some a priori in-
formation can greatly simplify the learning process since it can
reduce the cardinality of the hypothesis space H. For example,
emulating an erosion ¥ with the information that ¥ is an ero-
sion is much easier than emulating ¥ when no prior information
is available [7, ex. 1-3]. Similarly, the cardinality of the hypoth-
esis space can be reduced if one knows in advance that only a
few patterns can appear in the input images (A* and Q%). At
the W-operator training stage, the learner A receives a sample
sequence « and searches for a hypothesis 1/3 = A(E) in space
H.

Let us define the true error (t-error) of the hypothesis 1,7) as
the probability that 1,7) will misclassify an instance g;,, drawn at
random according to P

t-errorp (1)) = P{qZ, € {0, 1} () # ¥ (g%}

According to the PAC theory [14], [15], any consistent learner
using a finite hypotheses space H with target function ¢ € H
will, with probability at least (1 — 6), output a hypothesis 1) with
error at most ¢, after observing m examples drawn randomly by
P, as long as

m> é [m (%) + 1n(|H|)} (1)

where |H| is the cardinality of the set H. A learner is consis-
tent if it always outputs hypotheses that perfectly fit the training
data. The bound (1) is often a substantial overestimate, mainly
because no additional assumptions were made on the learner but
the consistency. Some elucidative examples of the use of (1) can
be found in [7].

C. Noisy Case

In order to model the noisy case, let us suppose that each
example (a5, AY(p)) € @ has been generated independently
by an unknown joint probability distribution P in the space
{0,1}* x {0,1}. Let us also suppose that each test element
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(qp.,Q%(pi)) € q has been independently generated with the
same distribution P.

The t-error of a hypothesis ¢/ should now be defined as the
probability that ¢ will misclassify an example (g, QY (p:))
drawn at random according to P

t-errorp () =

P{(qr.Q"(p:) € {0,13" x {0,1}dh(qr,) # Q¥(pi)} -

In a noisy situation, there is no clearly defined target function.
Instead, there is an optimal function ¢* with minimal t-error. Let
the empirical error (e-error) of a hypothesis 1) over a sequence
@ be defined as the proportion of errors committed when 1) clas-
sifies instances in

e-ermor (1) = — [{(aF,, AV(p) € @ [0(a5,) # AV(p))

where m is the length of a. Note that the e-error is simply the
normalized Hamming distance.

Let I/AJ be the hypothesis with minimal e-error over a
and let 4" be the hypothesis with minimal t-error. Then

Prft-errorp(t)) — t-errorp(1*) > €] < 8, as long as H is finite
and the length m of  satisfies [16]

1 1
m > 222 [ln <5> +1n(2|H|)} . 2)

Unfortunately, the sample complexity given by (2) is even
more overestimated than that of (1). Given a sample sequence
a, the empirically optimal (e-optimal) hypothesis 1/; can easily
be constructed. Let us define that a learner A is e-optimal
if it always generates hypotheses that are e-optimal over the
training sequence. If A is e-optimal, given a query pattern g, ,
what should be 1/3(q$) = A(E)(q;f) its classification? Let
(a7 ,AY(r1)),..., (a5, AY(rN)) be the N training examples
of qgl_, ie., affj = q}’jﬁ_, 1 < j £ N (suppose that these are the
only examples of ¢, in E). As there is noise, the N examples
may disagree in the classification of g, . To minimize e-error,
the classification should be decided by the majority of votes of
these training samples

l/}((];) — mode(Ay(r1)7 ceey Ay(’I”N)).

Note that every e-optimal learner is consistent in a noise-free en-
vironment. See [7] for an elucidative example of the use of (2).

III. STATISTICAL ESTIMATION

This section is a very short summary of the use of statis-
tical estimation to compute a tight bound for the error rate.
This theory is explained didactically by Mitchell [14] and by
us [7], even though we use slightly different notation for the
error rates: “error—" (or “error? ”) is the same as “e-error—" (or
“e—errorz”); and “errorp 7 is the same as “t-errorp.” Contrary
to prior formulae, the statistical estimation can only be applied
after designing the W operator, with the additional condition
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that the ideal output image Q¥ is available. If the ideal output Q¥
is available, a simple reckoning of nonmatching pixels between
QY and Qy provides the e-error rate (e-errorg (1/;)) Given the
observed accuracy of a hypothesis over a limited sample of data,
it is possible to know how well this estimates the accuracy over
additional examples, i.e., it is possible to estimate t-el"I'OI'p(QZJ)
[7, (3) and (4)].

In a noise-free case, it suffices to know a tight upper bound
for the designed operator’s t-error rate (t-error p(q/AJ)). However,
in noisy cases, the minimal error (t-errorp(1)*)) must also be
estimated. In this case, an operator can be considered a good
solution if its t-error is close to the minimum because the de-
signed operator will never get a t-error smaller than the min-
imum. Unfortunately, we have no means to directly estimate
t-errorp(¢)*) because the optimal operator 4* is unknown. In
order to estimate t-errorp (™), let us first construct the hypoth-
esis 1/3*, which is e-optimal over q . If the learner A is e-optimal,
then ¢)* = A(;) Note that we are training the operator with
the very images (Q*, QY) that will be used in the test. Then,
e-error- (1/3*) can be measured experimentally and it can be used
to estimate t-errorp(1)*)[7].

Often, we are interested in comparing the performance of
two learning algorithms A and A, instead of two specific hy-
potheses. For example, we may want to determine whether the
inductive bias of DT learning is more effective than others. We
may also want to compare the effectiveness of two different win-
dows to determine if one is statistically better than another. The
techniques for comparing different learning algorithms are de-
veloped in [7].

IV. INDUCTIVE BIASES AND ALGORITHMS

A. k-NN Learning and Data Structures

In Section II, we supposed that the learner was e-optimal (or
consistent) in order to compute sample complexity. E-optimality
alone does not fully specify a learning algorithm because there
are many different e-optimal learners. To completely specify a
learner, an inductive bias must be chosen as well. The inductive
bias is the policy by which the learner generalizes beyond the
observed training data in order to infer the classification of new
instances.

Random inductive bias is the simplest: a learner with random
bias classifies any unseen pattern at random. Any sensible in-
ductive bias will outperform this naive generalization policy. We
use it only as a benchmark so that we can measure, by compar-
ison, the performance of the other inductive biases.

The k-NN strategy is a simple, but powerful, inductive bias. It
corresponds to the assumption that the correct classification of
an instance is that which is most similar to the classification of
other neighbor instances. This is especially true for W-operator
and WZ-operator learning problems because it is natural and
intuitive to assign visually similar patterns to the same class.
According to the k-NN rule, for each query pattern g, , the k
most similar training input patterns must be sought in . As we
are dealing with binary images, the distances between the query
pattern and the training input patterns may be measured using
the Hamming distance (i.e., the number of nonmatching bits) or
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a weighted Hamming distance. The output is defined as the most
common classification among the k nearest training examples.
Clearly, this original k-NN rule is not e-optimal. Nevertheless,
we can modify it slightly to make it e-optimal.

1) If the query pattern appears one or more times in the
training sequence, its classification will be the majority of
votes of only these training instances.

2) If the query pattern was never seen before, search for its
k most similar instances in the training sequence and take the
majority of their votes.

We call this modified rule empirically optimal k-NN (ek-NN)
learning. EL-NN learning seems to be very appropriate for use
in W-operator learning. However, to be really useful, there must
be efficient data structures and algorithms. Let us examine three
alternative implementations of ek-NN learning.

1) In the brute-force algorithm, learning consists of simply
storing the training data. For each query pattern, the entire
sample sequence is scanned to find the k£ most similar training
patterns. This process is excessively slow.

2) In some cases, the use of a look-up table (LUT) can ac-
celerate this process. The LUT allows us to implement exact
ek-NN learning and is extremely fast to evaluate. However,
its demand for memory and training time increases exponen-
tially as the window grows. Therefore, this method is imprac-
tical for large windows.

3) Another alternative is a data structure named k-dimen-
sional tree (kd-tree) [17]-[19]. The memory usage of a
kd-tree is O(wm), a fair quantity (w is the window size
and mm is the number of training samples). A kd-tree can be
constructed in time O(wmlogm), which means that con-
struction is very fast. Given a query pattern, a quick searching
in the kd-tree finds a candidate for the NN. Unfortunately, a
time-consuming backtracking process is needed afterwards
to find the true NN. The backtracking process can be modi-
fied to discover the k£ NN instead of the NN. Some decades
ago, the kd-tree algorithm’s complexity for searching the
NNs of n query patterns was believed to be O(nlogm) [17],
[18]. Later studies have shown that this complexity is in fact
O(nwmd=1/®)) [19]. This means that the computational
performance of searching degrades quickly as the attribute
space dimension (the window size in our problem) increases,
soon becoming as bad as the brute-force.

B. DT Learning

Ek-NN learning cannot be applied to design large WZ opera-
tors because there are no fast data structures and algorithms that
allow its implementation. Therefore, we are compelled to search
for alternatives. Let us examine DT learning [14]. It is one of the
most widely used methods for approximating discrete-valued
target functions. The learned function is represented by a tree (in
our problem, a binary tree). Actually, the decision tree is very
similar to the kd-tree. The main difference lies in the searching
stage: there is no backtracking process in the decision tree. This
makes searching very fast, in practice, millions of times faster
than the kd-tree, overcoming the deficiency that makes it impos-
sible to use the kd-tree in WZ operator learning. The elimination
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of backtracking also eliminates the need to store input patterns
in the leaves, cutting down memory use.

DT learning is e-optimal. This property fixes the output
values for all query patterns that appear at least once in the
sample sequence. On the other hand, if the learner has never
seen the query pattern, the output value is chosen according
to DT learning’s inductive bias: prefer trees that place high
information gain attributes close to the root over those that do
not. This custom makes the behavior of DT learning similar
to that of ek-NN learning. It also closely approximates the
inductive bias known as “Occam’s Razor”: Prefer the simplest
hypothesis that fits the data.

To explain the construction of a decision tree, let be given m
sample input patterns with the corresponding output colors

E = ((a’f)l?Ay(pl))? R (a;m,Ay(pm)))

where a;; € {0,1}*, and AY(p;) € {0,1}.

In the decision tree generating process, a splitting attribute
s € [1,...,w] is chosen and the pattern space {0, 1}* is split
into two halves. All sample patterns with black in the attribute s
will belong to one half-space and those with white to the other.
In each splitting, an internal node is created and the splitting
attribute s is stored in it.

To obtain an optimized tree, at each splitting stage the at-
tribute s must be chosen so that the information gain is max-
imized. Thus, at each splitting, the information gain for all at-
tributes is computed and the attribute with the greatest infor-
mation gain is chosen as the splitting attribute. The information
gain is the expected entropy reduction caused by partitioning the
examples according to the attribute s

Gain(a, s) = Entropy(a)

b — -
— | —Entropy(a,, =o) + = Entropy(a,,=1)
m

where a,”_, (a,’_;) is the subsequence of a containing all
samples whose value of attribute s is black (white). We use the
notation v, to denote the value of attribute s. The entropy of
a sample sequence @ with b black output colors (and conse-
quently 7 — b white colors) is

- b b —b -b
Entropy(a) = —— log, <—> _m log, (m_) .
m

m m m

For each one of the two half-spaces obtained, the splitting
process continues recursively, generating smaller and smaller
subspaces. This process stops when each subspace contains
either only samples with the same output color or only samples
with the same input pattern (but with two different output
colors). In the first case, a terminal node is created and the
output color is stored in it. In the second case, a terminal node
is also created. In order to ensure e-optimality, the mode of the
output colors is evaluated and stored.

The constructed decision tree represents the character-
i§tic functi013 I/AJ Given a query pattern g, its output color
QY(pi) = (q;,) is evaluated by performing a search in the
decision tree. The searching process begins in the root node.
In each internal node, the direction to follow (left or right) is
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Fig. 1. A 3 x 3-windowed zoom operator with the zoom factor f = 2.
chosen according to the query pattern’s value in the splitting
attribute s. The process is repeated until a terminal node is
reached. The value of the characteristic function 1[) is the output
color stored in the terminal node.

Given m samples and n query points, it can be shown that a
decision tree can be built in average time O(wm logm). The
application takes O(nlogm) and memory use complexity is
O(m). This analysis shows that both construction and searching
are extremely fast, while memory use is economical, even for
high dimensions.

V. HALFTONE IMAGE RESOLUTION INCREASE
BY DT-LEARNING

A. WZ Operator Design by DT learning

In this section, we use the theory developed so far to in-
crease the resolution of halftone images. Let us define the win-
dowed zoom operator (WZ operator), a concept very similar
to the W operator. A WZ operator U is defined via a window
the zoom factor. This paper covers only binary zooming by an
integer factor f. Moreover, to simplify notation, we assume
that the column and the row zoom factors are equal. For ex-
ample, f = 2 increases the spatial resolution twice in each
coordinate. Each characteristic function is a Boolean function
; : {0,1}* — {0, 1}. The functions 1); convert an input pixel
p into f2 output pixels y; based on the content of the window
W shifted to p, i.e., for 0 < i < f2

yi = V(Q)(fp +di) = i(Q(W1 +p),. ..

W and f? characteristic functions 1y, . . ., Pg2_1, where f is

,Q(Wy +p))

where p € 72 and d; is the displacement vector associated
with the sth characteristic function. For example, in Fig. 1,
the characteristic functions )y, . . . , 3 convert the pixel p into
pixels o, - . . , y3 based on the content of the 3 x 3 neighboring
window.

A WZ operator can be imagined as a set of f2 W operators.
The design of one WZ operator is comparable to the design of f?
W operators. Consequently, a computer program that designs W
operators can be applied f2 times to design a WZ operator with
the zoom factor f. However, in WZ operator design, all the f2
sample sequences have the same sample input patterns, despite
the fact that they may have different output colors. This fact
can be explored to write faster and memory-saving programs,
specially designed for WZ operator learning.

To zoom a halftone image using original DT learning, f>
independent decision trees must be constructed and applied.
This is a waste of time and computer memory. We propose to
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use, in the WZ operator design problem, slightly altered DT
learning in order to save time and space. We call it WZDT
learning. The alteration consists of choosing the splitting at-
tribute s € [1,...,w] that makes the resulting two half-spaces
to contain an as equal as possible number of sample points (in-
stead of choosing the attribute that maximizes the entropy gain).
The new criterion is computationally simpler than the original.
Surely, the new test is not as good as the maximization of the
entropy gain. However, as the sample size grows, the behaviors
of the WZDT and DT learning methods become more and more
similar. For large samples, the WZDT and DT learning methods
are quite identical (see Section V-E). Moreover, the new crite-
rion does not depend on the output values, while the original
criterion does. Consequently, using the new criterion, all £ de-
cision trees will be exactly the same, except for their output
values. So, one single decision tree, where f 2 output values are
stored in each leaf, can represent a WZ operator. This improves
the memory use roughly by a factor of f2. The speed should also
be improved by a factor of f2. However, as the new criterion is
computationally simpler than the original, the acceleration in
practice is much greater than f2 (Section V-E).

In the next subsections, we use equations originally written
for W-operator learning in the scope of WZ operator learning.

B. Sample Complexity and Statistical Estimation of Error Rate

In this subsection, we use the PAC learning theory explained
in Section II to compute the sample complexity. The accuracy
of this sample complexity is then measured using the statistical
estimation expounded in Section III. We adopt a zoom factor of
f = 2 and a 4 x 4 window.

Let us use (2) to estimate the size m of the training sequence
needed to obtain, with a confidence level of 99%, a WZ operator
' with the t-error rate at most 14.5% higher than the t-error of
the optimal 4 x 4 operator

w25 fin(3) + el

! |:1n <0'21> +1In(2) + 2'¢ x In(2)

T 2% 0.1452
~71.1 x 108,

We used two pairs of independent binary sample images
[Fig. 2(a)—(d)], respectively, the images Peppers (A%, AY) and
Lena (Q%, QY). They have been halftoned at 150 and 300 dpi
using the HP LaserJet driver for Microsoft Windows, with the
“coarse dots” option. A” and Q* are 1050 x 1050 and AY and
QY are 2100 x 2100. Thus, image A® is large enough to yield
the requested accuracy, since 1050 x 1050 = 1.1 x 105. A WZ
operator W was constructed by the WZDT learning. Training
took 4 s and the application only 1.2 s in a Pentium III at 1 GHz.

On the other hand, in order to establish a tight error bound, the
e-error of ¥ [i.e., the proportion of nonmatching pixels between
images Fig. 2(d) and (e)] was measured and found to be 7.540%.
Using [7, (3)], we conclude with 99% confidence that the t-error
of W lies within the interval (7.540+0.032)%. As we explained
in Section III, the e-optimal WZ operator over the test images
can be generated by any e-optimal learner using the test images
(Q*,QY) as training samples. Thus, using Fig. 2(c) and (d) as
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training samples, the e-optimal 4 x 4 WZ operator U™ was de-
signed by WZDT learning. Processing the image to-be-zoomed
[Fig. 2(c)] with U*, we obtained image Fig. 2(f). The e-error
of this image [the proportion of nonmatching pixels between
Fig. 2(d) and (f)] was 6.830%. The e-error of the e-optimal op-
erator U* is an estimation of the t-error of the unknown truly
optimal 4 x 4 WZ operator U*. Using [7, (5)], we conclude
with 99% confidence that the t-error of ¥* is at least (6.830 —
0.028)%. Consequently, with confidence higher than 99%, the
t-error of W is at most 0.77% higher than the t-error of the truly
optimal operator U*, that is

t-errorp (1)) — t-errorp(1p*) < 0.0077.

This result confirms that (2) yields an overestimated error rate,
because 0.77% is much smaller than 14.5%. The larger the
window, the more inflated the estimate of sample complexity
yielded by (2), soon becoming extremely overestimated and
useless.

C. Choosing an Appropriate Window

In this subsection, we select an appropriate window to zoom
halftone images at the resolution 150 dpi generated by the HP
LaserJet driver, option “coarse dots” (Fig. 2). The 4 x 4 window
we used in the last subsection has yielded too high an e-error
rate (7.540%). We have tested WZDT learning with three
completely independent sets of images using square windows
of different sizes. The sample images sizes were 1050 x 1050
and 2100 x 2100 pixels. The e-errors obtained are depicted
in Table I. The 8 x 8 window yielded the smallest e-errors in
all three tests. This comes as no surprise since the HP driver
likely uses a dot diffusion algorithm [1] defined within the
8 x 8 window. Thus, it seems that the 8 x 8 window is the best
choice.

However, one may ask if we have statistical evidence to state
that the 8 x 8 window is the best choice. Using [7, (8)] we can
show that, for example, the 8 X 8 window is better than the
10 x 10. We can conclude, with 95% confidence, that the ex-
pected difference of the two t-errors is at least 0.096%, when
m = 1050 x 1050 samples are used, that is

E t—errorp(q/;gxg) — t—errorp(i/;mxm)} > 0.000 96.

.|

However, we cannot state that the 8 X 8 window is better than
9 x 9 with 95% confidence. More data must be gathered to get
enough information to form statistical evidence.

D. Comparing Different Inductive Biases

In this subsection, we compare different inductive biases. We
performed 11 tests with WZDT learning, original DT learning,
e5-NN learning, el-NN learning, and random inductive bias,
always using a 4 x 4 window. We could not carry out tests
using a larger window (for example 8 X 8) because ek-NN
learning is too slow: According to our estimate, it would take
six days to perform one test using the brute-force algorithm and
100 million years using the look-up-table implementation. In
order to make the differences evident, rather small (100 x 100,
200 x 200) training images (A", AY) were used. On the other
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(b) Sample output image AY at 300 dpi.

.o

AR

G el c o'ate"! '

(e) Zoomed-image Q¥, using 4 x 4 window. Sample sizes:  (f) Empirically optimal image 2)*(@%), using 4 x 4 window.
1050 x 1050 and 2100 x 2100 pixels. The test images (Figures 2(c) and 2(d)) were used as the training
samples.

(g) Zoomed-image QY, using 8 x 8 window. Sample sizes: 9610 x 1050 and 19220 x 2100 pixels.

Fig. 2. Resolution increase of images halftoned by the HP LaserJet driver, using “coarse dots” option and the WZDT learning. The difference from the ideal
output was on 1.466% of pixels.

hand, the test images (Q*, Q) were fairly large (1050 x 1050, The results are depicted in Table II. The WZDT learning av-
2100 x 2100) to get an accurate estimate of the t-error rate. erage error rate is higher than the rates of three other learning
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TABLE I
EMPIRICAL ERRORS OBTAINED USING WZDT LEARNING WITH WINDOWS OF DIFFERENT SIZES
A4X4 | 3Xx5 | 6X6 | 7TXx7 | 8x8[9%x9 | 10x10 | 11x 11
test 1 (%) 7.540 | 2.644 | 2.025 1.806 1.710 | 1.772 1.870 2.013
test 2 (%) 6.105 | 2.431 2.330 | 2.374 | 2.249 | 2.305 2.486 2.616
test 3 (%) 7.546 3.676 | 2.589 | 2.359 | 2.354 | 2.525 2.688 2.740
average (%) | 7.064 | 2917 | 2315 | 2.180 | 2.104 | 2.201 2.348 2.456
TABLE II
EMPIRICAL ERRORS OF DIFFERENT LEARNING ALGORITHMS
WZDT leaming | original DT-lcarning | ¢5-NN lecarning | ¢1-NN lcarning | random inductive bias
test 1 (%) 8.699 8.664 8.592 8.602 9.262
test 2 (%) 14.647 14.897 13.791 13.604 15.924
test 3 (%) 11.541 11.796 11.563 11.471 13.150
test 4 (%) 11.801 11.263 11.707 11.771 13.961
test 5 (%) 14.700 13.434 15.922 13.925 18.349
test 6 (%) 10.699 10.295 10.403 10.386 11.200
test 7 (%) 14.439 14.436 13.384 13.898 17.369
test 8 (%) 12.644 12.677 12.109 12.004 13.891
test 9 (%) 14.483 13.965 13.675 13.995 17.660
test 10 (%) 17.521 17.951 15.996 16.425 22.370
test 11 (%) 22.523 20.982 20.267 20.362 24.607
average (%) 13.978 13.669 13.401 13313 16.158
TABLE 1II
EMPIRICAL ERRORS DECREASE AS THE SAMPLE IMAGES SIZES INCREASE
1050 x 1050 | 3190 x 1050 | 6400 x 1050 | 9610 x 1050 | 1050 x 1050
(1 pair) (3 pairs) (6 pairs) (9 pairs) (e-optimal)
WZTD- e-error (%) 1.710 1.561 1.494 1.466 1.111
learning training (s) 11.04 37.35 84.36 146.11 10.49
application (s) 1.64 2.47 3.35 4.01 1.65
original e-error (%) 1.617 1.547 1.489 1.464 1111
DT-learning training (s) 538 2320 7 x 108 128 x 103 540
application (s) 29 3.9 4.0 4.8 3.1
algorithms (original DT, e5-NN and el-NN). This result was TABLE 1V
expected because we have chosen WZDT learning due to its EMPIRICAL ERRORS OBSERVED USING INVERSE HALFTONING-BASED ZOOMING
computational performance, with the resulting sacrifice of the Gaussian standard deviation / | empirical error (%)
accuracy of the obtained WZ operator. We can perform tests to neighborhood averaging
decide if the observed differences in the error rates are statis- window size (pixels)
tically significant. For example, using [7, (8)], it can be shown 2.0 3.192
with 95% confidence that the expected difference between the 23 2.144
t-error rates of the WZDT and el-NN learning algorithms is at Gaussian 25 1.962
least 0.330%, using m = 10000 training samples. However, a low-pass 28 1.929
similar result cannot be derived for the expected difference be- inverse halftoning 3.0 2012
tween t-errors of the WZDT and DT learning methods. The dif- 33 2107
. . 4.0 2.286
ferences between errors tend to vanish as the sample size grows, - -
. . neighborhood averaging 7T 2.875
as we show in the next subsection. : halftoni X8 o7
. mverse halrtonin, .
On the other hand, the e-errors of WZDT learning are remark- & 5% 7470

ably smaller than the e-errors of random inductive bias. Using
[7, (8)] again, it can be shown with 95% confidence that random
inductive bias is expected to commit at least 1.442% more errors
than WZDT learning, using m = 10000 training samples. This
clearly shows that the inductive bias of WZDT learning helps to
lessen the error rate, even if it is not as effective as other com-
putationally more expensive inductive biases.

E. DT and WZDT Learning Algorithms

In this subsection, we thoroughly examine the variation of
e-error as the number of training examples increase, in order to
obtain the best possible WZ operator 0. We perform all tests
using a 8 X 8 window, since it seems to be the best window for
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was on 1.429% of pixels.

the application we are addressing. We only test the WZDT and
DT learning algorithms because ek-NN learning is excessively
slow.

Table III depicts the experimental results. We used, as
sample images, one, three, six, and nine pairs of images with
(1050 x 1050, 2100 x 2100) pixels, glued together horizontally
but separated by some amount of white columns to form a single
pair. The pair of test images was “Lena,” with (1050 x 1050,
2100 x 2100) pixels (obviously, the set of training images does
not include “Lena”). As expected, e-errors decreased as the
sample size increased. However, e-errors decreased very little
from six to nine pairs of sample images, suggesting that there
may already be enough training samples, and, thus, the error
may be converging to some lower bound.

As the sample images increase, the differences between the
WZDT and DT learning algorithms e-errors decrease. For large
sample images (nine pairs of 1050 x 1050 and 2100 x 2100 im-
ages), the two e-error rates are practically the same: 1.466% and
1.464%. However, training takes 870 times longer in original
DT learning than in WZDT learning. Hence, in practice, WZDT
learning is the best algorithm to be used for the design of the WZ
operator.

The last column of Table III gives the error of the empiri-
cally optimal WZ operator, obtained using the test images as the
training samples. The best e-error obtained by WZDT learning
is 1.466% [the second to last column of Table III and Fig. 2(g)]
and the smallest possible e-error is 1.111% (the last column
of Table III). Using [7, (4) and (5)], we conclude with 95%

s

(c) Zoomed-image Q¥, using 8 x 8 window. Sample sizes: 9610 x 1050 and 19220 x 2100 pixels.

Resolution increase of images halftoned by the HP LaserJet driver, using “fine dots” option and the WZDT learning. The difference from the ideal output

confidence that the t-error of the obtained operator is at most
(1.466 + 0.009)% and the t-error of the truly optimal operator
is at least (1.111 — 0.008)%. Very likely, this lower bound is
underestimated. In order to obtain the smallest e-error, we sup-
posed the ideal output image to be available during the training
stage. This does not happen in a real situation. Hence, the ob-
tained operator can be considered very close to the optimum
with respect to the Hamming distance.

F. Inverse Halftoning-Based Zooming

In this subsection, we compare WZDT learning with the
inverse halftoning-based zooming. Our experiments show that
WZDT learning is considerably more accurate than a simple
inverse halftoning-based zooming. Inverse halftoning-based
zooming can be described as follows.

1) Given a halftone image B, use an in-
verse-halftoning algorithm to get the
corresponding grayscale image G'. We have
tested two low-pass filters as inverse
halftoning algorithms: the Gaussian filter
and neighborhood averaging.

2) Increase the resolution of the
grayscale image G using any grayscale
zooming technique, obtaining a zoomed
grayscale image G’. We used linear in-
terpolation as the grayscale resolution
increasing technique.
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(c) Zoomed-image Qy, using 8 x 8 window. Sample sizes: 9610 x 1050 and 19220 x 2100 pixels.

Fig. 4. Resolution increase of images halftoned by the clustered dot-ordered dither algorithm using the WZDT learning. The difference from the ideal output

was on 1.387% of pixels.

3) Halftone the image G’,
zoomed halftone image B’.

to get the

The e-errors obtained are listed in Table IV. The smallest
e-error rate was 1.929% using a Gaussian filter and 1.947%
using a neighborhood-averaging filter. Both error rates are con-
siderably higher than 1.466%, which is the lowest error rate
obtained when using WZDT learning. The tests were repeated
two more times using different images and similar results were
obtained.

G. More Experimental Data

In this subsection, we apply WZDT learning to zoom halftone
images generated by different halftoning techniques.

Fig. 3 shows the zooming of the images halftoned by the HP
LaserJet driver, option “fine dots.” The best operator was ob-
tained using the 8 x 8§ window and a pair of sample images
with (9610 x 1050, 19220 x 2100) pixels. Applying it to the
image “Lena,” the processed image presented an e-error rate of
1.429%.

Fig. 4 shows the zooming of the images halftoned by the clus-
tered dot-ordered dithering algorithm provided by the program
“Image Alchemy” from “Handmade Software, Inc.” The pro-
cessed image had an e-error rate of 1.387%.

Input—output images do not necessarily have to use the
same halftoning technique. For example, we could use 150-dpi
images halftoned by the HP driver “coarse dots” as input
and 300-dpi images halftoned by the clustered dot-ordered

dithering algorithm as output. In this case, WZDT learning
converts one halftoning technique into another at the same
time as it increases the resolution. We tested this idea and the
processed image had an e-error rate of 1.494%. We also tested
the inverse: the conversion of a 150-dpi clustered dot-ordered
dither image into a 300-dpi HP coarse dots image. The resulting
e-error rate was 1.687%.

Finally, WZDT learning was applied to increase the reso-
lution of images obtained using an error diffusion algorithm.
Unfortunately, very bad results were obtained. Using the HP
driver option “error diffusion,” we obtained an e-error rate of
12.90%. Using Image Alchemy’s Floyd-Steinberg algorithm,
we obtained an e-error rate of 42.77%. These high errors were
expected because the error diffusion algorithm does not choose
an output color as a function of colors in a local neighbor-
hood. However, surprisingly, DT learning can accurately in-
verse-halftone error diffused images [11].

An error-diffused image can be zoomed by an inverse
halftoning-based zooming process, resulting in an image with
reasonable visual quality. However, the resulting e-error is very
high. An error-diffused image was inverse halftoned using a
Gaussian filter with a standard deviation of 2.8 pixels. The
resulting grayscale image was zoomed and error-diffused again.
The obtained e-error was 43.251%, although the visual quality
is moderate (to be compared with 42.77% obtained using
WZDT learning). The Hamming distance seems not to be an
appropriate measure to quantify the quality of images produced
by image processing procedures where “phase shifting” can
occur.



1146

VI. CONCLUSION

In this paper, we have analyzed the process of resolution in-
creasing of halftone images by a machine learning process. We
have examined the possibility of using k-NN learning but dis-
carded it because of its poor implementation performance. We
have presented DT learning as a fast solution to the problem
and proposed a modification named WZDT learning to make it
even more efficient and appropriate for WZ operator learning.
We have used the PAC learning theoretical framework to for-
malize the problem and to compute sample complexity. We have
employed statistical estimation to calculate, a posteriori, a tight
error rate. We have discussed the appropriate choice of window
and compared the accuracy and computational performance of
WZDT learning with those of other learning algorithms (k-NN
and original DT learning), concluding that WZDT learning is
the best solution in practice. We have shown that the Ham-
ming error rate of our method is very close to the minimal
theoretically obtainable error rate, using a neighborhood-based
zooming process. We have also shown that the new method is
more accurate than zooming based on simple inverse halftoning
techniques.
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