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Abstract—We propose a novel method for image reconstruction
from nonuniform samples with no constraints on their locations.
We adopt a variational approach where the reconstruction is for-
mulated as the minimizer of a cost that is a weighted sum of two
terms: 1) the sum of squared errors at the specified points and
2) a quadratic functional that penalizes the lack of smoothness.
We search for a solution that is a uniform spline and show how it
can be determined by solving a large, sparse system of linear equa-
tions. We interpret the solution of our approach as an approxima-
tion of the analytical solution that involves radial basis functions
and demonstrate the computational advantages of our approach.
Using the two-scale relation for B-splines, we derive an algebraic
relation that links together the linear systems of equations speci-
fying reconstructions at different levels of resolution. We use this
relation to develop a fast multigrid algorithm. We demonstrate the
effectiveness of our approach on some image reconstruction exam-
ples.

Index Terms—B-splines, multigrid algorithm, multiresolution
reconstruction, nonuniform interpolation, radial basis functions
(RBFs), thin-plate splines, variational reconstruction.

I. INTRODUCTION

THE PROBLEM of nonuniform sampling and reconstruc-
tion has received considerable attention in the recent past.

Examples include sampling and reconstruction schemes for the
space of band-limited signals [1]–[4] and more general shift in-
variant wavelet-like spaces [5]. Most of the works in this area
address the problem with a restriction on the distribution of
sample points, usually the maximum gap between the sample
points. However, in many applications, such as shape recon-
struction, landmark interpolation, image recovery from the con-
tours, etc., such restrictions are not practical.

When there is no restriction on the distribution of sample
points, the reconstruction problem is not uniquely defined and,
hence, ill posed. One way to handle such a problem is to adopt
a variational approach where the reconstruction is formulated
as an optimization problem. The cost function is typically a
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weighted sum of two terms: 1) the sum of squared errors at the
specified points and 2) a regularization term, usually a quadratic
functional that penalizes the lack of smoothness. The regulariza-
tion term takes care of the ill posedness of the problem and gives
a meaningful reconstruction. The weighting is set up such as to
find a compromise between fitting the data well and penalizing
reconstructions that are not smooth enough. The presence of the
regularization is crucial for dealing with large sampling gaps; it
allows these to be filled in a smooth way using the information
from the surrounding samples.

The optimal solution for the variational formulation is given
by the method of radial basis functions (RBFs) which are also
known as thin-plate splines when a particular type of regular-
ization is used. Thin-plate splines are optimal when the regular-
ization belongs to a class rotationally invariant semi-norms [6]
that are appropriate for most of the practical applications. The
solution is expressed as a linear combination of shifted RBFs
positioned at the location of the data points [6]–[8]. The op-
timal weights are determined as the solution of a linear system
of equations.

While thin-plate splines are undoubtedly among the preferred
techniques for dealing with nonuniform interpolation in mul-
tiple dimensions [9], [10], they tend to break down numerically
when there are too many data points. The main difficulty is that
the linear system to be solved is ill conditioned. Moreover, the
matrix is not sparse. Hence, solving the system soon becomes
overly expensive; the complexity is in , where is the
number of sample points. Various solutions have been proposed
for reducing this complexity and improving the numerical be-
havior [11], but there is still a long way to go for making them
practical. Another fundamental limitation is that computing the
weights is only a part of the effort. Indeed, the solution has to be
resampled numerically if it is to be displayed on a regular grid;
this will cost an additional operations, where is the
number of grid points.

In one dimension, the situation is not as dramatic because
the optimal solution can be expressed in terms of nonuniform
B-splines which are compactly supported as opposed to the
RBFs which are not; this is the key for obtaining an efficient
solution [12]. Unfortunately, this is not possible in higher
dimensions; i.e., there are no compactly supported functions
that reproduce spline-related RBFs.

In this paper, we circumvent the above mentioned difficulties
by searching for the solution of the regularized reconstruction
problem in the space of uniform splines where the basis func-
tions are now attached to the reconstruction grid, as opposed to
the data points. We consider Duchon’s class of semi-norms for

1057-7149/$20.00 © 2005 IEEE



ARIGOVINDAN et al.: VARIATIONAL IMAGE RECONSTRUCTION 451

regularization. In other words, we are proposing to discretize
thin-plate splines using uniform B-splines with a degree that is
matched to the underlying semi-norm. In this way, we have at
least the guarantee that the solution in one dimension coincides
with the theoretical one, provided that the sample points are on
the reconstruction grid. This helps to say qualitatively that the
solution, in general, will not be very different from the exact an-
alytical one.

The proposed approach has many advantages over using
RBFs. First, the linear system for getting the B-spline coeffi-
cients is well conditioned. Second, the system matrix is sparse
resulting in much faster computation. Third, the formulation
lends itself quite naturally to an efficient multiresolution and
multigrid implementation, thanks to an interscale relation that
is derived in the paper. This reduces the complexity of solving
the linear system to , where is the number of grid
points. Fourth, after solving the linear system, there is no ex-
pensive resampling step as in RBF reconstruction. The samples
at the grid locations are obtained by a simple digital filtering
[13]. Finally, we should note that unlike other purely discrete
variational formulations of the image reconstruction problem
[14]–[16], we get a solution that is defined in the continuous
domain with all the corresponding advantages.

The present algorithm offers a lot of a user flexibility. The
number and location of the data points can be arbitrary without
any incidence on the computational speed. One can reduce mea-
surement noise by imposing more or less smoothness on the so-
lution (regularization). One can also reconstruct the image at
any desired resolution (step ); the solution will converge to the
analytical one (RBF) as gets sufficiently small—the rate is
given by the order of the spline.

The paper is organized as follows. In Section II, we set up
the variational reconstruction problem in the continuous domain
and provide its analytic solution which involves RBFs. In Sec-
tion III, we present our B-spline formulation and derive the cor-
responding linear system of equations. We also derive the inter-
scale relation that relates the system matrices at various levels
of resolution. We present the algorithm in the fourth section and
give experimental results in the fifth section.

II. VARIATIONAL RECONSTRUCTION

A. Problem

Given measurements at locations , the
basic interpolation problem is to construct a continuously de-
fined function, , such that . Since this problem
is obviously ill posed, one needs to introduce some additional
constraint that makes the solution unique. In the variational ap-
proach [6], one searches for the solution that minimizes the cost
function

where is the vector of all possible partial derivative operators
of order . For example, for and

In practice, the measurements are often noisy or lacking pre-
cision, and it is not necessarily desirable to reconstruct a func-
tion that interpolates the data exactly. One, therefore,
relaxes the interpolation constraint, trading some closeness of
fit against more smoothness on the solution [6], [17]. In that
case, the reconstruction is formulated as the minimizer of

where is a so-called regularization parameter that works as a
tradeoff factor. Note that, in this second version, we have an ap-
proximation problem rather than an interpolation. Interestingly,
we can get back to the first case by selecting to be arbitrarily
small (but nonzero).

B. Classical Solution

The solution of the above problem is well known in approx-
imation theory and statistics [17], [18]. Duchon [6] was one of
the first to establish that the solution can be written as

which is made up of two terms. The first is a linear combination
of so-called RBF which are radially symmetric and positioned
at the sampling locations. The second term is a polyno-
mial that lies in the kernel of the smoothness semi-norm—i.e.,

—and has no contribution to the cost function. The
RBFs which solely depend on , are given by

if is even
if is odd

where is the radial distance from the origin. They belong to a
specific class of RBFs called thin-plate splines. The above ana-
lytical formula specifies a vector space for the solution. To fully
describe the latter, one still needs to determine the appropriate
weights through the solution of a linear system of equations. To
this end, one defines the two weight vectors
and where the s are the coefficients of the
polynomial with being the basis
for the kernel of (e.g., monomials in and ). The numer-
ical solution for the approximation problem is given by

where , and .
For the two-dimensional (2-D) case , the RBFs are

given by . For the first order semi-norm

the RBF is . For the second order semi-norm

the RBF is .
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Since RBFs do not have a finite support, the matrices in the
above system of equation are dense. Also, since the magnitude
of the functions grow with distance from the centre, the ma-
trices are poorly conditioned. This makes RBFs impractical and
numerically unstable when the number of samples is large.

C. Relation to B-Splines

For the unidimensional problem, the thin-plate RBF is given
by , which is a polynomial of degree ,
with a discontinuity of order at the origin. This im-
plies that the solution is a polynomial spline of degree
with knots at the s. It turns out that these splines have basis
functions, the so-called nonuniform B-splines, which are com-
pactly supported and, therefore, much better conditioned than
the RBFs [12], [19]. The corresponding numerical technique
is called “smoothing splines” and is widely used in practical
applications [18]. In the special case where the samples are
uniformly spaced, i.e., , there is still another sim-
plification since all the B-splines become shifted replicates of
each other. The corresponding solution can be represented as

, where is the central
B-spline of degree . This means that the approximation
problem can be discretized exactly if we work with B-splines of
size . Moreover, the expansion coefficients of the smoothing
spline can be evaluated very efficiently by recursive digital fil-
tering [13]. Now, if there are gaps in the samples but the avail-
able ones are positioned on the grid (integer multiples of ),
then the solution can still be expressed as a linear combination
of B-splines with step size , but the algorithm does not have
a simple filtering interpretation anymore. The two cases of in-
terest to us are and , which lead to piecewise linear
and cubic spline solutions, respectively.

Unfortunately, for dimensions higher than one, there are no
compactly supported functions that span the same space as the
RBFs. Thus, a uniform B-spline discretization of the problem is
not rigorously exact anymore. However, a B-spline basis with
a degree that is matched to remains the best possible choice
among all tensor product shift-invariant bases, because it has a
high-enough order of differentiation and it is compatible with
the optimal one–dimensional solution. The slight discrepancy
with the optimal analytical solution that this may generate is
largely compensated by the computational advantages (sparse
matrices, multiresolution) provided by this type of representa-
tion. Additionally, the error can be made arbitrarily small by
decreasing the sampling step . In this last respect, B-splines
offer another advantage: for a given support size, they are the
refinable functions that result in the smallest discretization error
[20]. Specifically, for the B-spline of degree which is of sup-
port , the approximation error decays like ,
which is the maximum rate possible [21]. In other words, they
provide the best quality for a given computational cost.

III. B-SPLINE DISCRETIZATION AND THE SOLUTION

In this section, we present the proposed B-spline discretiza-
tion of the problem and specify its solution. We discretize the
variational reconstruction problem by searching for the optimal
solution within the space of uniform splines.

A. B-Spline Formulation

Given a set of noisy measurements of the image at sam-
pling locations , the approximation problem is now to
find a uniform spline of the form

(1)

such that

(2)

is minimized. Obviously, the degree of the B-spline should be
chosen such that the regularization term does not blow up; i.e.,

.
The analytical part of this discretization process is to express

the second part of the cost function in terms of the expansion
coefficients . The regularization term is

where

Define . Then

which yields

where

(3)

Define

(4)

Then
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TABLE I
REGULARIZATION FILTERS.4 (z) = (z � 2 + z ) (CENTRAL FINITE

DIFFERENCE OPERATOR OF ORDER 2n); B (z) = � (k)z
(DISCRETE B-SPLINE KERNEL OF DEGREE n)

Hence

Finally

with ; in other words, the
regularization term is a quadratic form of the s with a special
convolutional structure.

In the filter component (4), is the discrete B-spline
kernel of order , convolved with the finite differ-
ence operator of order . This can be verified by using the fol-
lowing properties of splines [13]: 1) the derivative of a B-spline
is a B-spline of reduced degree convolved with a finite differ-
ence operator; 2) the convolution of two B-splines results in a
B-spline of increased order. Table I gives the regularization fil-
ters for the first order and the second order semi-norms.

To introduce the corresponding matrix formulation, we define
the coefficient and data vectors

Then the cost is given by

where

and is a block-circulant matrix that correspond to the discrete
filter . Through vector differentiation, we get the mini-
mizer of the above cost as a solution of the following equation:

(5)

where and

B. Interscale Relation

Let us now consider signal reconstructions at different scales.
Specifically, let be the reconstruction grid size (scale ) and

(6)

Fig. 1. (a) Upsampling operation. (b) Downsampling operation.

be the reconstructing function. A key property of the central
B-spline of odd degree is the two-scale relation

(7)

where is the binomial filter. Consider a set of

coefficients representing a 2-D signal at scale . It is well
known from wavelet theory [22], [23] that the same signal can be
represented at scale by the coefficients that are ob-

tained by upsampling and filtering with . The schematic
is given in the Fig. 1(a) where . This oper-
ation can be represented by a matrix that is obtained from
the circulant matrix corresponding to the filter after sup-
pression of its odd index columns. The adjoint operation is the
downsamping operation represented in the Fig. 1(b). The equiv-
alent matrix is .

The coefficient vector of the image recon-
struction at scale must satisfy the equation

(8)

with where the matrices and are defined
as in the previous section with being replaced by . The block
circulant matrix is generated from the filter

where

(9)

(10)

(11)

The following theorem gives an important property of the fil-
ters .

Theorem 1: The filters satisfy

where with being the 2-D
version of the binomial filter in the two-scale relation (7) and
where (2,2) denotes down sampling by a factor of 2 in each
dimension.

Using the above theorem, we prove the following.
Corollary 1: The system matrices at scales and are

related by

(12)

(13)

where is the subsampling matrix described in this section.
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Proof: Applying the two-scale relation, we get
. Hence

and

(14)

Now, consider . The equivalent filter is
. By Theorem 1, it is equal to , which is

equivalent to writing

(15)

Combining (14) and (15), we get

IV. RECONSTRUCTION ALGORITHM

We have shown that the reconstruction problem is equivalent
to solving a system of linear equations [cf. (5)]. A key prop-
erty is that the present system is sparse and well conditioned in
contrast with the RBF method where the matrix is dense and ill
conditioned. We also have the flexibility to choose the step size

with the guarentee that the solution converges to the analyt-
ical one (RBF) when is sufficiently small. The main difficulty
here is that the number of unknowns for a given step size

is typically very large. Therefore, the choice of the method for
solving the linear system becomes crucial in order to do the re-
construction in affordable time. Enabled by the right choice of
the basis functions and our theorem on interscale relation, we
develop an efficient multiresolution algorithm to achieve fast re-
construction.

A. Multiresolution Strategy

Since the dimension of the linear system is very large and de-
pends upon the resolution of reconstruction, one naturally thinks
of multiresolution.

Let be the required resolution and . Then, the
coarsest resolution will be . The idea is to solve
exactly and to interpolate the solution to the next finer scale
using the two-scale relation for B-spline [13]. This serves as
initialization for the computation of , and so on. At the
end of the process, gives the reconstruction at the required
resolution.

Note that the regularization matrix has a generic form in-
dependent of the resolution, while the matrix is clearly scale
dependent since it is defined by the sample points. Because of
the compact support of B-splines, the cost for the direct eval-
uation of is the same at each scale and is proportional to
the number of data points, which is typically quite large. To cut
down on this cost, we evaluate the matrix at the fine scale and
use our interscale relation to derive the matrices at coarser res-
olutions. Here, the computation is by sparse matrix multiplica-
tion which makes the complexity now depend on the resolution
level. This enables us to compute all the matrices very efficiently
with complexity ; that is, a complexity that is propor-
tional to the number of grid points (i.e., the number of unknown
B-spline coefficients).

We handle the computation of the coefficient vectors at each
scale from their initializations using the multigrid iteration de-
scribed below.

B. Multigrid Iteration

A multigrid iteration is obtained by using classical iterators
as the building blocks. We first describe the classical iterative
scheme and then the multigrid iteration. A classical iterative
scheme gives a way to get a refined estimate of the solution from
a given estimate. Let be the current estimate of the solution
for level . A refinement step is represented as follows:

(16)

where denotes an approximate inverse and is a damping

factor. For the estimate , the error and the residue are
given by

When in (16) is the diagonal of , then the iterator is called
damped-Jacobi; if, instead, it is the lower triangular part of ,
the algorithm yields the so-called Gauss–Seidel iterator. Both
implementations have the same computational complexity. See
[24] for a comprehensive treatment of such numerical schemes.

It is important here to note that such iterators have a
smoothing effect on the error. The larger the , the smoother the
error, and for sufficiently large , there will not be significant
improvement in the error anymore. Since the error is smooth
after a few relaxations (iterations), it can be well represented
at lower resolution. In other words, one can try to compute the
error at a coarser scale.

To do this, we first consider the residual equation

Then, the computation of error is formulated as

where is obtained by filtering and downsampling ; that
is

Here, is the lower dimensional version of the error to be
computed. is computed by the same iterative scheme with
zero initialization. Afterward, one gets back the error

, which is used to correct . This is called coarse-grid
correction.

The advantage is twofold. First, it is computationally efficient
to iterate in lower dimension. Second, a smooth error becomes
somewhat bumpier at a coarser resolution. Hence, relaxation on
the coarser grid further reduces the error. However, the coarse
grid correction is not perfect and also introduce some amount of
nonsmooth error. Hence, it is customary to do a few relaxations
after coarse-grid correction. The overall scheme is computation-
ally more effective than relaxation at the finest grid. However,
when the dimension of the system at the coarser grid is large,
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Fig. 2. Schematic of multigrid V-cycle.

relaxation will also stall there. Since the problem here is ex-
actly the same as the original one, one can think of applying the
same three-step procedure recursively. This is called a multi-
grid V-cycle [24], [25]. Fig. 2 gives the schematic of multigrid
V-cycle. Here, is the initialization for V-cycle that is obtained
by interpolating (solution for the level ) using the
B-spline two-scale filter.

Whenever applicable, multigrid algorithms are extremely ef-
ficient; in fact, they are among the best numerical methods avail-
able. There are also some general convergence proofs [24] that
are directly applicable to our case because of the existence of
the interscale relation (12) that relates the systems of equations
at successive scales.

The parameters that affect the computational complexity of a
multigrid V-cycle are the number of iterations before and after
the coarse-grid correction and , respectively.

C. Implementation Issues

The forgoing discussions cover the main philosophy of
our method. However, to get the full benefit of the multires-
olution/multigrid algorithm described above and to make the
algorithm almost real time, efficient implementation of the
building blocks in the algorithm is crucial. The implementation
should meet stringent constraints on computational complexity
and storage requirements.

To get a flavor of what is involved, let us consider the struc-
ture of the matrix or for cubic reconstruction. The ma-
trix is block-band diagonal of width seven, and each block is
band diagonal of width seven. The whole matrix is symmetric
and each block in the matrix is symmetric as well. In our imple-
mentation, we exploit this structure to reduce storage require-
ments. The nonredundant elements are stored in a sparse format

without explicit indexing. The basic matrix iterators and mod-
ules (especially Gauss–Seidel iteration) are coded specifically
for this sparse format.

The sample matrix is computed from the sample points
directly into the above mentioned sparse format. The matrices

are also precomputed using relation (12) directly
into the sparse format exploiting the special structure of . In
this way, we are able to compute the matrices
with around multiplications in the case of recon-
struction with linear splines.

V. EXPERIMENTAL RESULTS

For our experiments, we consider three kinds of scenarios:
1) reconstruction from a subset of samples of a given digital
image; 2) reconstruction after a geometric transformation of a
given image; and 3) reconstruction from sparse samples of a
synthetic phantom. In the first case, the inputs sample points
are obtained by randomly choosing the pixels or choosing the
pixels along some selected contours. In the second case, the
input sample points are obtained by a geometric transformation
of a uniform grid points. In the last case, we choose samples
from a synthetic phantom along some lines. We provide the sam-
ples to our algorithm in a list format .

In all our experiments, we consider two settings: 1) linear
spline reconstruction with Duchon’s first semi-norm as the regu-
larization; 2) cubic spline reconstruction with Duchon’s second
semi-norm as the regularization. Unless stated otherwise, we ad-
justed empirically for the best visual results. We observed that
the most favorable value of is image specific and typically
proportional to the noise variance when the data is corrupted by
noise.

A. Reconstruction From Incomplete Data

For the experiments in this category, we define the reconstruc-
tion error as , where is the original
image and is the reconstructed image. Note that this will be
an underestimate of the performance of the algorithm—espe-
cially when the initial data is sampled arbitrarily—since it does
not correspond to the objective function that we minimize in our
formulation of the problem.

We first applied the algorithm on a face image. We subsam-
pled the image by applying a binary mask obtained by thresh-
olding the Laplacian of the image. Fig. 3 gives the reconstruc-
tion error for both linear and cubic reconstructions for various
numbers of input samples. Cubic spline reconstruction gives
lower reconstruction error as one would expect. Fig. 4 com-
pares the reconstructed images from 20% of the samples. This
example demonstrates that our algorithm is able to handle both
large and small gaps simultaneously in an efficient way.

In Fig. 5, we give lower resolution reconstructions from the
same set of samples. One can clearly see the artifacts; they are
somewhat reduced in the case of cubic spline reconstruction.

Fig. 6 displays reconstruction results for an MRI brain image.
The reconstruction was from 30% of samples that were retained
in the same way as in the previous experiment. In this case, the
improvement of the cubic spline reconstruction over the linear
one is more visible even though both images have same re-
construction error. The image from linear spline reconstruction
shows more bright spots than that of cubic spline reconstruction.
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Fig. 3. Reconstruction error for various degrees of subsampling.

Fig. 4. Reconstruction from high Laplacian points. Sampling density: 20%. (a)
Original image (Madhuri Dixit). (b) 20% of samples. (c) Reconstructed image
using linear splines. (d) Reconstructed image using cubic splines.

This is due to the fact that the contours are less prominent than
those of the previous image and that regularization with second
order semi-norm is more suitable when there are discontinuities
in the contours. Fig. 7 shows the images for a larger smoothing
factor. In this case as well, both cubic spline and linear spline
reconstructions have the same reconstruction error. However,
cubic spline reconstruction is smoother than the linear one with
less artifacts (bright spots). Fig. 8 gives lower resolution recon-
structions of the MRI image from the same set of samples as in
the Fig. 6. One can clearly see the artifacts in this case too.

Fig. 5. Lower resolution reconstruction. (a) Linear spline reconstruction
with a = 4. (b) Cubic spline reconstruction with a = 4. (c) Linear spline
reconstruction with a = 8. (d) Cubic spline reconstruction with a = 8.

The above examples demonstrate the ability of the algorithm
to reconstruct data when there are large sampling gaps, some-
thing that is typically not possible with the reconstruction al-
gorithms for bandlimitted functions mentioned in the introduc-
tion [2], [3]. However, we must admit that our algorithm will
fill the sampling gaps smoothly by extrapolating the available
information (samples). For this reason, it cannot correctly re-
cover image parts for which the contour or texture information
has been lost. Note that this effect may also be used to our advan-
tage for suppressing unwanted objects or features in images, as
demonstrated in the next example. Here, we started with the con-
tour map of Fig. 4(b) and applied a coarse binary mask to sup-
press all samples in the regions of the round spot on the face and
the rose in the lower left corner. The corresponding reconstruc-
tion is given in Fig. 9. It is still looking realistic, even though
the selected objects have entirely disappeared. This is due to the
regularization term that smoothly extrapolates the missing pixel
values from the surroundings.

The proposed algorithm is obviously also applicable to the
case of random subsampling, which is the context in which re-
construction algorithm for band-limited functions are usually
tested [2], [3]. An example of such a reconstruction is given in
Fig. 10. As one would expect, the quality is inferior to that ob-
tained with the reconstruction from high-Laplacian points using
the same percentage of samples ( versus 0.0145).
We have verified experimentally that the reconstruction errors
obtained under these conditions are essentially equivalent to
those of alternative techniques for bandlimited functions, pro-
vided that the reconstruction parameters are matched (same re-
construction density and small). This behavior is consistent
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Fig. 6. Reconstruction from high Laplacian points. Sampling density: 30%.
(a) Original image; (b) 30% of samples. (c) Reconstructed image using linear
spline, � = 1:5848� 10 . (d) Reconstructed image using cubic spline, � =

1:5848� 10 .

Fig. 7. Effect of�. (a) Reconstructed image using linear spline,� = 7:9430�

10 . (b) Reconstructed image using cubic spline, � = 7:9430� 10 .

with the property that a cubic spline is a very good approxi-
mation of a bandlimited function [26], and that our algorithms
provides the least squares solution as tends to zero (data term
only). A very significant advantage of our method is its compu-
tational speed; this is due to two important ingredients that are
specific to our formulation: 1) the use of compactly supported
basis functions and 2) a most efficient multigrid algorithm that
can solve the linear system of equations with a complexity that
is essentially proportional to the number of reconstructed sam-
ples.

Fig. 8. Lower resolution reconstruction. (a) Linear spline reconstruction
with a = 2. (b) Cubic spline reconstruction with a = 2. (c) Linear spline
reconstruction with a = 4. (d) Cubic spline reconstruction with a = 4.

Fig. 9. Reconstruction from partial contours. (a) Original image. (b) Input
samples. (c) Reconstructed image.
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Fig. 10. Reconstruction from random samples. (a) Original image. (b) 30%
of samples. (c) Reconstructed image. � = 3:086 � 10 . e = 0:0204.
(d) Rescaled error image.

B. Reconstruction With Geometric Transformation
(Texture Mapping)

Texture mapping typically refers to the process of geometri-
cally transforming a given source image or pattern in order to
simulate its mapping onto a three–dimensional surface. There
are potentially two ways to do this: 1) applying the inverse trans-
formation for each pixel position in the target image to get the
interpolated value from the source image; 2) applying the trans-
formation of each source pixel and using our nonuniform recon-
struction method to get the target image. The second method has
the clear advantage that it uses the information present in the
source image completely, whereas there might be some loss of
information with the first approach (unused pixels in the source
image). Our method will give the least squares fit in the regions
where the input samples (transformed source pixels) outnumber
the reconstruction grid points (target pixels). This reduces re-
construction artifacts. Fig. 11 gives an example of texture map-
ping generated using our algorithm, where the lena image is
mapped onto a cylinder. The key feature of our technique is that
there are no aliasing artifacts and that the sharpness of the pic-
torial information is essentially preserved when is small.

C. Phantom Reconstruction

Our next test image takes the value 255 inside a circular ring
and zero outside. We sample this phantom along some radial
lines. The data is sampled nonuniformly along the angular
dimension and uniformly in the radial direction. The recon-
struction is challenging because the samples are sparse and the
boundaries are lost. The results are given in the Fig. 12. One
can clearly see that the cubic spline reconstruction gives better
reconstruction of boundaries. This is due to the fact that the
underlying RBF for the first order smoothness semi-norm is less

Fig. 11. Example of texture mapping. Reconstruction with geometric
transformation.

Fig. 12. Reconstruction of boundary. (a) Input samples. (b) Linear spline
reconstruction. (c) Cubic spline reconstruction.

suitable for recovering lost boundaries. In fact, the analytical
RBF method with is not numerically stable in 2-D since
the RBF is unbounded at the sample locations.

In all the cases above, in order to make the comparison mean-
ingful, we set up the iterations such that the residue of the linear
system goes to the machine precision. To achieve this, it was re-
quired to have for a reconstruction in a 256 256
grid; it took 2 and 0.8 s on a 1.8-GHz Macintosh G5 system for
cubic and linear splines, respectively. However, we were able
get a visually acceptable reconstruction with
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that took 0.8 and 0.2 s using cubic splines and linear splines,
respectively. Also, we should mention that the number and the
distribution of input samples have negligible effect on the speed
of the algorithm. The speed is primarily determined by the size
of the reconstruction grid. This factor makes our method quite
attractive in the noisy situations where one needs to have more
input samples than the number of reconstruction grid points.

The present algorithm is very general; it includes previously
published spline algorithms as particular cases. For instance,
consider the case when the input data is a standard digital image.
When , the algorithm gives the smoothing spline approx-
imation of the image and is functionally equivalent to filtering
algorithm described in [27]. In fact, because of the multigrid im-
plementation, the computational complexity of our algorithm is
in the same order as that of the FFT algorithm given in [27] with
the advantage that the present scheme works for arbitrary sam-
ples. When , it gives the standard B-spline interpolation
[13]. One can also generate least squares pyramid, by choosing

and . By choosing an appropriate reconstruction
grid size and a diagonal affine transformation, one can achieve
least squares rescaling [28], as well as more general types of
geometric transformations as illustrated in the Fig. 11.

VI. CONCLUSION

We developed a new method for regularized image re-
construction from arbitrarily spaced samples. We chose to
reconstruct a continuously defined function that is a uniform
spline and selected a regularization term within Duchon’s class
of smoothness semi-norms. We interpreted our scheme as a
way to discretize the RBF method which gives the optimal
analytical solution of the approximation problem in the contin-
uous domain. The key point of our scheme is that it uses basis
functions (B-splines) that are well conditioned; this makes our
approach much more stable numerically and computationally
advantageous than the classical RBF method. We provided a
multiresolution formulation that allowed us to accelerate the
reconstruction by way of a fast multigrid algorithm; the key
ingredient here is an algebraic relation that links the recon-
struction equations at different resolutions. Our algorithm has a
number of advantageous features that should make it attractive
for practical applications.

1) The user can select the resolution of the reconstruction
grid. This parameter controles the tradeoff between com-
putational complexity and reconstruction accuracy. For
sufficiently small, the reconstruction converges to the so-
lution of the RBF problem.

2) The algorithm allows for a tradeoff between smoothness
and closeness of fit through the adjustment of the regular-
ization parameter . When , it provides an interpo-
lation of the data.

3) The algorithm has the ability to handle arbitrary sample
locations.

4) It has a complexity that depends primarily on the number
of reconstruction grid points. There is essentially no de-
pendence on the location and the number of samples,
which is unusual in this type of problem.

5) It provides a stable reconstruction in all cases. In partic-
ular, this means that the method has the ability to handle
large data gaps.

APPENDIX

Proof of Theorem

Define

Let be the two-scale filter. Since

we get

(17)

From (11), . Hence, from (17), we
get

(18)

where . Substituting yields

(19)

From (10), the above equation gives

(20)

Hence, . Now, from (9), we get

Due to separability

(21)

where . Note that the proof also car-
ries over to any refinable function other than splines.
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