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Abstract
Electron tomography allows for the determination of the three-dimensional structures of cells and
tissues at resolutions significantly higher than that which is possible with optical microscopy.
Electron tomograms contain, in principle, vast amounts of information on the locations and
architectures of large numbers of subcellular assemblies and organelles. The development of reliable
quantitative approaches for the analysis of features in tomograms is an important problem, and a
challenging prospect due to the low signal-to-noise ratios that are inherent to biological electron
microscopic images. This is, in part, a consequence of the tremendous complexity of biological
specimens. We report on a new method for the automated segmentation of HIV particles and selected
cellular compartments in electron tomograms recorded from fixed, plastic-embedded sections
derived from HIV-infected human macrophages. Individual features in the tomogram are segmented
using a novel robust algorithm that finds their boundaries as global minimal surfaces in a metric
space defined by image features. The optimization is carried out in a transformed spherical domain
with the center an interior point of the particle of interest, providing a proper setting for the fast and
accurate minimization of the segmentation energy. This method provides tools for the semi-
automated detection and statistical evaluation of HIV particles at different stages of assembly in the
cells and presents opportunities for correlation with biochemical markers of HIV infection. The
segmentation algorithm developed here forms the basis of the automated analysis of electron
tomograms and will be especially useful given the rapid increases in the rate of data acquisition. It
could also enable studies of much larger data sets, such as those which might be obtained from the
tomographic analysis of HIV-infected cells from studies of large populations.

Index Terms
Distance functions; electron tomography; energy-based segmentation; geodesics; high resolution;
HIV; minimal surfaces; volume segmentation

I. Introduction
TRANSMISSION electron microscopes have conventionally been used in biomedical research
to obtain two-dimensional (2-D) projection images of thin objects such as molecules, cells,
and tissues. Such images can be recorded in most modern electron microscopes at
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magnifications ranging from ~ 100× to ~ 1000 000×. The use of electron microscopes, is,
however, not limited to imaging in 2-D. Using emerging methods in electron tomography (see
[1] for a recent review), it is now also possible to routinely determine three-dimensional (3-D)
structures using principles that are very similar to those used in technologies such as
computerized axial tomography. Thus, one can record a series of images of a given object over
a wide range of tilt angles and combine them using back projection algorithms to generate a
3-D volume of the imaged object.

A key problem in biological electron tomography is that the images obtained are at relatively
low signal-to-noise ratios (SNRs). In part, this is because of the tremendous complexity of
biological specimens; for example, a single human cell can contain thousands of copies of tens
of thousands of proteins packaged in a variety of multi-protein complexes and organelles of
differing shapes and sizes. A second factor comes from the potential of electrons to damage
organic matter, which necessitates the use of electron doses that are high enough to obtain
measurable contrast, but low enough to minimize structural damage. The rapid, quantitative
interpretation of the vast amount of data in tomograms of cells and tissues, therefore, poses a
challenging problem. This issue is becoming increasingly important now because of the rapid
advances in instrument automation that have led to dramatic enhancements in the speed of data
collection. We are interested in developing approaches for 3-D segmentation of features in
cellular tomograms that can work robustly and rapidly despite the low SNRs. This is a
fundamental step in the automatic analysis of large amounts of data for statistical inference.

As a test case, we use tomograms recorded from human macrophages infected with HIV,
although clearly the computational techniques here developed are not limited to this (important)
example. The cells were fixed, embedded in plastic in the presence of uranyl acetate and
sectioned in an ultra-microtome to produce sections with thicknesses in the range of 100–150
nm. These sections were placed on an electron microscopic grid coated with a thin carbon film,
and imaged in a Tecnai 12 electron microscope operating at 120 kV equipped with a LaB6
filament. Tomograms were constructed using standard back-projection algorithms as
implemented in the IMOD reconstruction package [2].

Fig. 1 shows slices from a tomogram recorded from a small region of cells infected with HIV.
Within this slice, there are several identifiable features which bear a resemblance to the slice
of either an assembled virion or enclosed membranous entities with varying interior density
relative to the cytoplasmic medium. Our goal is to detect these structures with minimal user
bias, analyze them, and establish a correlation of the nature and extent of these features with
progression of viral infection.

Here, we deal specifically with solving the segmentation problem, which is of fundamental
importance for the subsequent analysis of the data and is usually the first step required in many
such applications. As recent advances in image acquisition technology allow analysis at the
scale of large populations (see [3] for some of our efforts on the automatization of data
collection), availability of robust and computationally efficient segmentation techniques is of
paramount importance.

The segmentation of individual features is formulated as the computation of surfaces of
minimal energy on a metric space that depends on image features. Such techniques have been
extensively used in the literature both for 2-D and 3-D object segmentation. The idea is to first
design an energy functional (combining image driven and regularizing terms) that is minimized
at the object of interest. Thereafter, the problem becomes one of nonconvex optimization
usually solved by following a gradient descent flow that gives a local minimizer of the energy.
Initialization of the flow is a key step that will allow recovery of the desired object provided
the initial guess is close to the correct minima. Availability of robust optimization techniques
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is then very important, not only because they guarantee finding the correct minima, but also
because they allow us to concentrate on the design of the segmentation energy which will
ultimately determine the performance of the algorithm.

In this paper, we propose a novel algorithm to obtain a surface estimate that is already the
segmenting boundary or else sufficiently close to it, so only a few steps of the gradient descent
flow will be required to get the optimal surface. The only requirement of the algorithm is to
know the position of a point inside each volume of interest. Full tomograms are segmented in
a semi-automatic fashion: A single point inside each cell is first specified by the user selecting
only those structures that correspond to simple closed boundaries (this is done by inspection
of all slices in the 3-D volume, other cells are ignored at this early stage). For each selected
point, we automatically segment the surrounding structure using the proposed algorithm.1

The paper is organized as follows. In Section II, we review the energy-based segmentation
framework in the planar (2-D) and volumetric (3-D) settings, motivating the need of our
technique. In Section III, we describe the proposed 3-D segmentation algorithm. Section IV
shows various segmentation results and presents preliminary statistical analysis of two
tomograph sets. We conclude with a discussion in Section V.

II. Previous Work and Background on Energy-Based Segmentation
Electron tomographic images generally display very low SNRs, and the task of segmenting
features of interest is a very challenging one. The landscape of the segmentation energy will
present a number of local minima demanding the application of robust optimization techniques.
In this section, we review the energy-based segmentation framework as presented, for example,
in [4].

A. Energy-Based Segmentation
Let Γ be a contour embedded in ℜn that represents the boundary of interest (a curve for n = 2,
a surface for n = 3). Its intrinsic length/area is

∫
Γ

g(Γ)dλ (1)

where g : ℜn → (0, ∞] is the image derived metric that takes small values at boundary points
(thin dark regions in the case of our data) and large values elsewhere in the image. By
minimizing the quantity in (1), Γ is encouraged to go through areas of small cost (corresponding
to boundaries) yielding the desired segmentation. Using calculus of variations, the
corresponding gradient descent flow is

Γt = (gκ − ∇g ⋅ N→)N→

where N→  is the normal to the contour and κ is the curvature (n = 2) or mean curvature (n = 3).
This evolution can be implemented in the level set framework [5], by embedding the contour
Γ as a level set of a higher dimensional function φ. The evolution for φ that embeds the motion
of Γ is

φt = gκ| ∇φ| + ∇g ⋅ ∇φ. (2)

1The detection of this single point inside the 3-D shape of interest is independent of the search for the minimal surface. Thereby, we limit
our discussion to the segmentation itself, while the automatic finding of the inner point will be reported elsewhere. Even if the selection
of this point is left fully manual, the computation speedup and reduced user intervention are extremely significant when compared with
the fully manual procedures currently employed for this data.
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The scalar metric has typically the form g = f(I) + w, where f depends on the input image I, and
w is a constant that can control the smoothness of the minimizing contour. Given an initial
contour Γ0, the minimizer is obtained as the steady-state solution of the gradient descent flow
in (2). Although this technique has proven to be very successful and is considered state-of-the-
art for many medical imaging disciplines (it is for example part of the ITK initiative,
www.itk.com), it strongly depends on the choice of the initial contour Γ0 which has to be close
to the desired minima. Many algorithms have been proposed in the literature that provide
different mechanisms trying to drive the surface toward the desired minima, e.g., [6]–[8].
Although they offer improved performance they can still get trapped in unwanted minima,
producing a surface which does not correspond to the desired segmentation.

Graph-based algorithms have also been applied to solve the minimal surface problem [9],
[10]. In this setting, boundary conditions are specified as two sets—object and background—
and the surface is found as the optimal cut across the graph separating the two sets. Edge costs
can be derived from the continuous metric but accuracy is dependent on the neighborhood
system. Although metrification artifacts can be reduced by increasing the number of directions,
computational complexity grows rapidly. The level of accuracy attainable with tractable
complexity is not enough for the examples presented here given the large size of volumes and
the significant amount of noise.

Similarly, in [11], the authors address the computation of optimal surfaces simulating a
continuous maximal flow between a source and sink set. The algorithm has to be initialized
with discrete maximal flow algorithm and uses a multiscale approach to accelerate convergence
of the associated flow. Although increased accuracy can be achieved with this approach,
computational complexity is still an issue (at least for the size of volumes we handle in this
paper).

In general, limited 3-D evaluation makes it unclear how well these algorithms behave in the
presence of significant noise and very weak boundaries typical of tomography images.
Efficiently solving and adapting the energy-based segmentation framework presented above
to our data, 3-D electron tomograms, is part of the goal of this work.

B. Closed Geodesic Curves in the Plane
Of particular relevance to our work is the approach in [12], where the authors propose an
algorithm for computing planar geodesics between two given points using a noniterative
procedure. In a two-step process, they first compute the intrinsic distance function from one
(user selected) end point to the rest of the domain, and a back propagation procedure from the
second (user selected) point gives the actual geodesic joining both points. Intrinsic distances
in the first step are efficiently computed using the fast marching algorithm [13]–[15].

The above technique can actually be applied for the computation of closed contours by adding
the restriction of an interior point. That is, we now look for curves of minimal length that have
p0 as an interior point. A nice construction to enforce this constraint was introduced in [16],
where a discontinuity (“image cut”) is introduced in the image domain and the image metric
scaled to be g/ρ, where ρ is the distance to p0 [see Fig. 2, left]. Since curves cannot go across
the discontinuity, this becomes now a problem of computing periodic geodesics between the
two sides of the cut. This is reminiscent of the computation of geodesics between points [12]
described above, only that the periodicity constraint has to be enforced. Scaling the metric by
1/ρ eliminates the bias toward small circular curves around p0.

The above construction can be related to polar-transformed segmentation techniques [17],
[18], where the image is first transformed into a polar domain, to then search for periodic
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minimal paths between sides of the polar grid2 (see Fig. 2, right). Minimal paths are then
converted back to the original Cartesian grid and a closed contour is guaranteed.

Although these two approaches can be related to each other, they are not mathematically
equivalent (a rigorous analysis of the precise relationship is beyond the scope of this paper, we
refer the reader to work on that direction [20]). However, let us provide a simple qualitative
argument in favor of carrying computations in the polar domain which is consistent with results
systematically obtained on real tomographic images. Assuming the resolution of both grids is
comparable in some sense, the geometry of the polar grid seems to be more compatible with
our particular problem as it imposes a stronger bias toward geodesics with circular trajectories
when compared to the equivalent Cartesian implementation. This effect becomes significant
when images are very noisy and edge information is excessively weak, a situation frequently
found on real tomograms, as shown in Fig. 3.

Regarding the location of the interior point, both constructions will produce the closed contour
surrounding p0 with the lowest possible energy as defined in (1) on the corresponding domain.
Given the intrinsic dependence on p0, the resulting minimizers will be determined to some
extent by the particular location of the interior point. For example, in the case of uniform g =
1, geodesics will be concentric circles centered in p0 (i.e., determining completely the location
of minimizers). For nonuniform high-contrast g, p0 becomes only a geometric constraint and
geodesics will be guided mainly by image content. Fig. 4 illustrates this behavior in real
examples.

Note that the previous discussion is only valid for curves that cross the discontinuity/cut only
once; for our goal, we do not need to handle the case with multiple crossings as done in [16].

C. Minimal Surfaces From Cross Sections
Another group of techniques (related to our approach) solve the 3-D minimal surface problem
by sectioning the 3-D domain with 2-D planes and finding geodesics restricted to the cutting
sections. If we assume that each such 2-D geodesic corresponds to the intersection of the 3-D
minimal surface with the slicing plane, we can recover the surface as the collection of 2-D
geodesic curves. In general, geodesics restricted to volume cross sections are not necessarily
contained in the minimal surface. For example, consider the problem of finding the minimal
surface within two parallel rings (boundary condition) with homogeneous metric throughout
the volume (g = 1) (see Fig. 5, top). It is well known that the solution is the catenoid surface
provided the spacing between the rings is appropriate. If we slice the volume with planes in
the vertical direction, geodesics restricted to these planes will be straight lines (because the
metric is homogeneous), in clear disagreement with the 2-D cross sections of the catenoid
(catenary curves). If the metric is ideally heterogeneous, e.g., uniform in the background and
has a small value g = ε on the dark curved wall (see Fig. 5, bottom), planar geodesics coincide
with minimal surface cross sections. Of course, for real data, obtaining ideally heterogeneous
metrics is not possible. It is then just intuitive that the minimal surface will try to stick to low
g values (in an effort to minimize its intrinsic area) and that 2-D geodesics will have a better
chance to coincide with cross sections of the minimal surface.

This is the implicit assumption in 3-D reconstruction algorithms from planar cross sections
[21]–[23], that recover the surface as a collection of boundary curves from individual slices.

2The main problem when computing periodic geodesics is to find the endpoint position, say, in the first column of the polar domain, in
optimal time. To do so, we first compute the distance of all points in the last column to the first one (this can be done in a single fast
marching computation setting all points in the first column to zero distance). Similarly, we also compute the distance of all points in the
first column to the last one. We select as endpoint the row position that minimizes the sum of both distances computed above. This is a
fast approximate solution (see [17]–[19] for alternative techniques).
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As we are computing sections originating from a single surface, it is reasonable to assume that
curves in consecutive planes are close to each other (provided consecutive slices are close
together). An intuitive way to force this condition is by first integrating image information
across sections and then use the accumulated values to compute geodesics at individual
sections, as done in [24] and [25]. The authors in [25] propose an algorithm that finds the
minimal surface given a pair of curves as boundary conditions. Intrinsic distances are first
computed from one of the curves (to the rest of the space) and geodesics from points in the
second curve are projected into planes around a symmetry axis that joins the centroids of both
curves. The surface is then recovered by interpolating between the individual geodesic curves.
A similar approach applied to a problem with slightly different geometry is presented in [24]
for solving the stereo correspondence problem. In this case, the minimal surface cuts
horizontally through a rectangular domain, see Fig. 6. The metric is first accumulated on each
vertical slice (from back to front) resulting in an intermediate distance volume which is then
used as a new metric to obtain geodesics in the orthogonal vertical direction (from left to right).
Both techniques resemble the two step procedure described at the beginning of Section II-B.

Integrating image information across sections by no means guarantees recovery of a smooth
surface, i.e., geodesics in consecutive slices (computed with accumulated image values as the
metric, as done in [24] and [25]) may be arbitrarily far from each other. Moreover, they may
also be poorly localized because local image information is lost after performing the
integration. This is illustrated in Fig. 7 where we show geodesics obtained using raw image
values as the metric, compared to geodesics obtained using accumulated image values (from
back-to-front slices) as the metric. Additional regularity constraints must then be enforced,
e.g., [24], where geodesic curves are restricted to a band of width b around the geodesic in the
previous slice. But the choice of b becomes critical, as too small bs will result in over smoothed
surfaces that poorly follow the minimal surface (the object boundary), and bigger bs will not
properly enforce the smoothness constraint. We address these issues in Section III-A.

III. Computing Minimal Surfaces With an Internal Point
Motivated by the robustness of techniques described in Section II-B for the 2-D case, we will
apply similar methods for the segmentation of volumetric data. The equivalent formulation in
three dimensions is to find a closed surface S that minimizes the intrinsic area given by (1),
with the restriction that a given point p0 is interior to the surface. Unlike planar geodesics
around a point, there are no constructive procedures to find the closed minimal surface in this
case. However, approximate methods can be designed that give at least a good initial guess
assuming the metric g is well designed and heterogeneous “enough” throughout the surface of
interest, i.e., g vanishes on S. If this is the case, cross sections of the minimal surface will
coincide with planar geodesics on the cutting sections (as discussed in Section II-C), and the
surface can be recovered as a collection of 2-D geodesic curves.

We then consider a spherical coordinate system centered in p0.3 The transformed domain will
be a volume with ρ ∈ [0, ρmax] spanning the vertical axis, θ ∈ [0, 2π] and φ ∈ [0, π] spanning
the two horizontal axis as shown in Fig. 8.

Such a construction has a number of desirable features.
• The surface of star-shaped objects can be completely covered by two pencils of

parallel vertical planes (this will be fundamental for the design of the minimization
algorithm).

3This follows the equivalent construction in the polar domain described for the planar case.

Bartesaghi et al. Page 6

IEEE Trans Image Process. Author manuscript; available in PMC 2006 December 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• Similar to the planar case, the spherical change of coordinates introduces a scaling
that eliminates the global minima of zero energy. If using an homogeneous metric g
= 1, all spheres centered in p0 (horizontal planes in spherical space) will have the same
intrinsic area eliminating the bias toward small area surfaces.

• Boundary conditions in the transformed domain are straightforward to enforce (this
will be used extensively in the search algorithm).

This construction restricts the class of objects we can deal with to star-shaped surfaces (this is
good enough for the application at hand). That is, given the interior point p0, the algorithm can
compute all surfaces that accept a parametrization of the form ρ = f(φ, θ) where ρ, φ and θ are
the spherical coordinates centered in p0 (as before), and f is uniquely defined for all pairs (φ,
θ). Note that this includes convex and nonconvex surfaces provided p0 is appropriately chosen
(see Fig. 9). So, in general, the position of the interior point is important and will determine
the surface that we get as a result of the algorithm. On the other hand, the 3-D structures we
deal with in this paper belong to a much more restricted class of surfaces (usually close to
convex) so the actual position of the point is unimportant as long as it is inside the structure of
interest. Following the discussion at the end of Section II-B, it is the strength of image
boundaries what determines the actual degree of dependence of the resulting surface with
respect to the location of p0.

Volumetric reconstructions obtained by electron tomography have significantly better
horizontal resolution compared to the vertical one. For this reason, inspection of the raw data
for selecting the interior points is usually done in the horizontal direction. Therefore, once an
interior point is specified, we first compute a planar geodesic in the selected horizontal slice
that will serve as boundary condition for the minimal surface problem. The implicit assumption
is that boundaries in the selected slice are strong enough (in the sense that a user was able to
detect the presence of a feature of interest) for the 2-D segmentation techniques to get the
correct result. The automatic detection of this interior point p0 should also be based on this and
possible directions will be reported elsewhere.

Once we obtained the segmentation curve in the horizontal slice, we show how to find its
correspondent through the spherical change of coordinates. As the origin of the transformation
was selected to be the interior point, this initial curve will be on the z = 0 plane (see Fig. 8).
The crossings of the curve with the y axis will map through the spherical transformation into
horizontal straight lines at the planes φ = 0 and φ = π (see Fig. 8, right). If we split the referred
curve (at the crossings with the y axis) in two portions, one will correspond to the θ = π plane
and the other to the θ = 0 plane, and because we are dealing with closed surfaces, we must
force the curve at θ = 2π to be the same as the one at θ = 0 to satisfy the periodicity constraint.
We then have an easy way to enforce boundary conditions in the spherical transformed domain,
namely, that geodesics in both vertical directions will have their endpoints fixed at the curves
we just constructed.

A. Computing the Minimal Surface
Similar to the techniques in Section II-C, we adopt a slice by slice approach that implicitly
enforces the constraints associated to the closed minimal surface problem.

The algorithm is based in the following two observations.

1. As pointed out in Section II-C, geodesics restricted to planar sections of the domain
will approximate minimal surface cross sections provided their intrinsic length is
small (g is properly designed). Intuitively, the minimal surface will stick to low g
regions in an effort to locally minimize its intrinsic area.
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2. As we are dealing with a 2-D manifold, we want geodesics in the two orthogonal
directions to be in agreement with each other. Since planes in both vertical directions
(θi and φj) will be sectioning a single surface, geodesics in two orthogonal cutting
planes should go through a common point in three dimensions (the triple intersection
of the two planes and the surface), see Fig. 10.

The individual steps of the algorithm are designed to benefit from the above observations and
also to satisfy the boundary conditions.

1. For each slice, θi and φj of the g image compute the intrinsic geodesic curve restricted
to that slice joining the two fixed endpoints (obtained as the intersection of the current
slice with the boundary curves on the spherical transformed domain). Assign to the
current slice a cost value ν = (∫ cg(C)dl)/(∫cdl) i.e., the ratio of the intrinsic to the
Euclidean length of the geodesic curve. Intuitively, this cost will be low for curves
that go through regions of low g and higher otherwise.

2. Repeat until all slices in the volume have been processed.

3. Select the unprocessed slice with the lowest cost v.

4. For g restricted to that slice, compute the geodesic curve between the corresponding
fixed endpoints.

5. Overwrite g at the current slice with a constant background value (e.g., the brightest
value in the original image) except at the positions along the geodesic, see Fig. 11.
By doing this, we are encouraging geodesics in the orthogonal direction to be in
agreement with already computed ones.

By first processing slices with lower cost values, we are relying on areas where boundary
information is strong. As we continue to process sections of increasing cost, we start gradually
enforcing the restriction that geodesics in both directions should be in agreement with each
other. This is done by overwriting processed volume sections with new image values that
encourage geodesics in the other direction to go through the already computed positions (see
Fig. 11. Sections with higher costs will increasingly see the modified values (that enforce the
surface restriction) in substitution of the original image values (see Fig. 12). Although the
procedure just described captures the overall location of the minimal surface, it may not
guarantee (depending on the metric) smoothness of the surface everywhere. We then perform
a second sweep throughout the volume (along slices in both directions in no particular order)
and compute geodesic curves using the modified image values. Even though evolution with
the gradient descent flow in (2) will do the job, it will be computationally inefficient (may
require computation of significant number of iterations) because some portions of the produced
surface approximation may be far away from their optimal location.

Observe that unlike the techniques discussed in Section II-C, the minimal surface will be
accurately located (because we are not using accumulated image values across sections to
compute geodesics), and the smoothness constraint is being implicitly enforced without the
need to deal with bands of fixed width or other adhoc constraints.4

B. Image Derived Metric
The image derived metric g highlights specific features of interest, e.g., edges, depending on
the particular application. Its design process requires choosing the particular shape of the g
function and usually the selection of a scale parameter. For the case at hand, and considering
the robustness of the algorithm we have developed, we simply use g = I + w, since the envelope

4The smoothness of the resulting surface is implicitly controlled by the constant w in the metric, as described in Section II-A.
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of features to be segmented is stained more darkly than the background (see Fig. 1). Therefore,
the raw volumetric data can drive the segmentation algorithm directly and the minimal surface
will be attracted toward the dark boundaries. Given the complexity of the images (noise level,
proximity of features, missing boundaries, background clutter, fiducial markers, etc.), we found
that any kind of regularization or selection of scale parameter will inevitably hinder the
subsequent segmentation. This is in contrast with the metric we used in [26] that can enhance
the boundaries of interest, but requires computation of derivatives on a regularized version of
the image. Again, given the noisy nature of the images, we have found that any amount of
regularization may discard valuable boundary information, e.g., causing neighboring
boundaries to merge, weak boundaries to disappear, and other common problems of this type.
The segmentation technique we reported in [26] required the use of the more sophisticated
image metric cited above. Now, because of the improved robustness of the one presented here,
we can use the raw image directly and get the best possible (unbiased) localization of
boundaries.

IV. Three-Dimensional Tomogram Segmentation Results
Full tomograms are processed by first manually selecting the interior points at individual
features and then automatically segmenting each structure using the technique described above.
The 16-bit volumetric data of a single tomogram has a horizontal resolution of 2048 × 2048
pixels in 120 vertical slices (requiring about a gigabyte of storage only for the raw data), and
each tomogram contains more than a hundred individual vesicular features. The segmentation
for each 3-D structure is run independently and in a serial fashion. Individual subvolumes are
cropped out in regions 256 × 256 × 120 in size. The resolution of spherical transformed volumes
is such that the number of voxels remains roughly the same as in the cropped region and is
about 128 × 360 × 180 (ρ, θ, and φ, respectively) voxels big. As an optional refinement step,
we can use the surface estimate as initial condition for the gradient descent of (2) and usually
very few iterations are required to achieve the steady-state solution. For all the examples in
this paper, only two iterations were needed. The running time for each subvolume is less than
1 min in a 2.1-MHz laptop computer including the data cropping, back-and-forth coordinate
transformation, minimal surface search and refinement with the gradient descent flow. The
processing of entire tomograms takes then less than 2 h and can well be optimized or
parallelized to significantly reduce computation time.

In Fig. 13, we show surface contours on top of slices of unprocessed tomogram for a
representative feature of interest. The segmented surface shows an excellent fit to the
boundaries of the vesicular features. Several other examples are shown in Fig. 14.

We also show that the segmentation algorithm can be used to classify the volumes in terms of
the mean internal density. We show classified 3-D reconstructions in Fig. 15 and results for
full tomograms in Fig. 16. Regions are automatically classified (represented with different
colors) based on differing internal average grey values, which presumably represent different
stages of virus assembly.

Once all relevant structures are segmented, we can also perform some simple statistical analysis
on the results. As each volume is obtained as an implicit function, geometry computations (e.g.,
size, average gray value, shape, etc.) are easily obtained. In Fig. 17, we show histograms of
the average gray level (density) distributions inside the selected volumes in two different
tomograms. Note that we can clearly classify structures into two groups: the ones with a filled
(dark) interior and the empty (brighter) ones. Furthermore, looking at the spatial distribution
of gray values inside each of them, more sophisticated criteria can be devised to classify into
the different types presented in Section I.
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Fig. 17 also shows the size distribution of the segmented vesicles within each tomogram. Note
that as overall thickness of the tomogram is under 150 nm, and the virion/vesicular entities are
~100 nm wide, only a few objects are captured completely inside the volume. Acquisition of
serial tomograms from successive sections that are stitched together computationally should
allow analysis of larger volumes, therefore providing even more reliable statistics on the
segmented volumes.

V. Discussion
In this paper, we report a new algorithm specifically designed for the semi-automated
segmentation of critical features in cellular tomograms obtained by electron microscopy. This
work then addresses the fundamental challenge of translating the high volume of image
information contained in 3-D tomograms into useful quantitative terms.

The proposed technique has a number of advantages/improvements over existing ones.
• The geometry of the spherical transformed domain is particularly suitable for the

computation of star-shaped surfaces around a point, even when boundary image
information is very weak or has significant gaps.

• Using this construction, well established techniques for the efficient computation of
planar geodesics can be used as building blocks to process full 3-D images by proper
manipulation of volumetric image information so all geodesics correspond to sections
of the same surface.

• The segmentation is directly determined by raw image values, eliminating the need
of intermediate edge indicator functions g, that may be expensive to compute,
sensitive to the choice of parameters, and also introduce unnecessary bias in the
segmentation.

• Computational efficiency is unmatched by existing 3-D segmentation techniques
allowing for the first time processing of large volumes of data.

Moreover, the combination of all these features gives a technique that allows accurate analysis
of multiple tomograms as demanded by current applications in electron tomography, a task
hardly achievable with the mostly manual segmentation techniques currently used in the field
[27], [28].

Three-dimensional reconstructions show the robustness of the technique to the various artifacts
characteristic of electron microscopy images, and are in clear agreement with features in the
volumetric image data. The results we show cannot be obtained with existing techniques which
either yield poorly localized contours, fail to recover the correct minima of the energy, or have
demanding computational requirements. Conducting extensive testing in over two hundred
individual structures, we have proven the feasibility of quantitative analysis techniques for the
processing of large data sets in tractable computational time. Classification based on size or
average gray value are just examples of what can be accomplished once the segmentation stage
has been completed. The significance of this kind of analysis at this level of resolution may
have important biological implications.

Note that the detection of interior points can be done entirely automatically, for example, by
detecting singularities of the distance function to robust edges [29]. However, the structure of
the tomograms is so complex (membranes merged together, boundaries with large gaps,
presence of neighboring structural elements, etc.), that it will require intensive post processing
to get rid of false positives and to account for false negatives. Besides, a trained user can select
all particles in a tomogram relatively fast (about 5 to 10 min), which is already a significant
improvement compared to fully manual processing. We should also note that, at the present

Bartesaghi et al. Page 10

IEEE Trans Image Process. Author manuscript; available in PMC 2006 December 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stage of the investigation, our goal is to select as many features as possible in order to minimize
user bias in particle selection.

We also demonstrate that our methods are applicable for the quantitative analysis of subcellular
features in HIV-infected macrophages. HIV particles in cells are generally present in a variety
of maturation states. The immature form of the virus has a clear interior but a wide outer band
of uncleaved Gag protein that is darkly stained, while the mature form of the virus has a dense
core in the middle and a thin outer boundary corresponding to the bilayer membrane.
Intermediate states where the Gag coat has been partially cleaved are also frequently detectable.
In addition, infected macrophages can accumulate vesicular compartments whose composition
is not well understood, that seem to have neither a visible Gag shell nor an internal core. The
shapes, sizes, and textures of these different types of particles encountered in infected cells
represents a complex continuum of structures, and the methods we have established here
provide tools to make quantitative assessments of the relative frequencies and variations in
distributions at different stages of infection. In addition to the overall definition of the types
of particles, we also expect that information on their location in the cell will provide new
insights into the trafficking of the virus inside the cell, since many efforts at the development
of HIV vaccines are aimed at disrupting the assembly of the virus. Thus, the automated
segmentation and classification of particle features could provide tools for quantization of the
relative efficiencies of drugs aimed at inhibiting different steps in the viral maturation pathway.

As explained above, there is a wide spectrum of viral shapes and sizes that are present in
infected cell, and, for the purposes of developing the algorithm, we have used a simplified
approach to distinguish between particles that have detectable central density which would
likely correspond to a mature virus, and those with a clear and an unstained interior that are
likely to correspond to either immature viruses or empty vesicular compartments. As the
resolution of the images improves, we expect to add other discriminators to classify the
variation in viral morphology. For example, in recent unpublished work, we have shown that
improved imaging conditions allow us to delineate the boundary of the internal core in a mature
virus. Similarly, we are now able to clearly determine the inner and outer boundaries of the
shell of the immature virus. We, therefore, expect that, as the images improve in quality, it will
be possible to use more sophisticated methods to discriminate among the different types of
viral states observed in the cell.

In addition to simple statistics, such as average gray value and volume of particles, we plan to
carry out shape analysis and classification of the segmented regions using novel computational
approaches for shape statistics being developed in the computer vision literature.
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Fig. 1.
Tomograms recorded from fixed, plastic-embedded, and stained sections of HIV-infected
macrophages. The left panel shows a 2.5-μ-wide slice from a tomogram and highlights the rich
variety of structural detail in the images. The upper-right expanded view corresponds to the
box indicated in the left panel. An additional view (obtained from a different tomogram) is
shown in the lower right panel. The features identified in the upper right panel are most likely
primary lysosomes, while those identified in the lower right panel represent budding (open
arrowhead) and mature (closed arrowhead) viral particles.
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Fig. 2.
Left: Geometric construction for computing closed geodesics with an interior point as presented
in [16]. A discontinuity is introduced at the positive x axis, and periodic minimal paths are
computed between the two sides of the cut. Right: Computing closed geodesics in a polar
transformed domain. The input image (left) is first converted to polar coordinates (right), where
a search is done for periodic minimal paths between the sides θ = 0 and θ = 2π of the polar
grid. The resulting curve is transformed back to the Cartesian domain guaranteeing a closed
curve.
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Fig. 3.
Computation of closed geodesics around a point in the Cartesian and polar domains. Each row
shows (from left to right) the input image, contour computed in the Cartesian domain, contour
computer in the polar domain, and comparison between the two. Top: If boundaries are strong
enough, both methods give similar results. Bottom: When dealing with noisy or weaker
boundaries, geodesics computed in the Cartesian domain begin to be poorly localized compared
to those obtained in the polar domain. This gives an empirical argument in favor of using polar
coordinates for the computation of closed geodesics (a rigorous quantitative analysis is not
provided here and will be reported elsewhere; see also [20]).
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Fig. 4.
Effect of interior point location when computing closed contours. Each row shows the raw
input image and contours computed using two different point locations. Top: If boundaries are
strong, the segmentation is not affected by the actual position of the point as long as it falls
inside the object of interest. Bottom: When dealing with noisy or weak boundaries, very poor
localization of the interior point can introduce significant bias on the segmentation result. Users
often and naturally avoid such poor localization of the point.
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Fig. 5.
Geodesics in volume cross sections do not necessarily coincide with cross sections of the
minimal surface. The two rings illustrate the boundary conditions. Top: Homogeneous metric
case, (from left to right) metric function g, the catenoid surface, 2-D geodesics restricted to
volume cross sections do not correspond to catenary curves. Bottom: Ideal heterogeneous case,
(from left to right) the metric has a small є value around the dark curved wall, the intrinsic
minimal surface “sticks” to low g values, planar geodesics intuitively coincide with surface
cross sections.
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Fig. 6.
In the stereo correspondence problem, we search for a minimal surface that cuts horizontally
through the rectangular 3-D domain. For each vertical xi slice, image values are accumulated
from the back of the volume to the front. The volume thus obtained is used as a new metric to
compute geodesics now restricted to yj sections.
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Fig. 7.
Top: Single-volume slice of raw data in the vertical direction (left), and corresponding
accumulated distances in back-to-front vertical slices as computed in [24] (right). Bottom: Note
how the geodesic curve obtained from the accumulated distances (red curve) is poorly localized
compared to the one using the raw data itself (green curve).
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Fig. 8.
Left: A spherical coordinate system with center in p0 is used to describe the volumetric data.
The spherical transformation is computed as: x = ρcosθsinφ, y = ρcosφ, and z = ρsinθsinφ. This
specific configuration minimizes the distortion introduced near the poles of the spherical
transform. Right: The transformed domain spans ρ ε [0, ρmax], θ ε [0, 2π] and φ ε [0, π] values.
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Fig. 9.
Class of admissible surfaces that can be obtained by the algorithm. Depending on the position
of the interior point, both convex and nonconvex surfaces can be successfully segmented. The
surface shown above can be segmented provided the interior point is appropriately chosen;
p0 would be a suitable choice, but not p1.
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Fig. 10.
Forcing planar geodesics to be in agreement with each other. Assuming individual geodesic
curves restricted to the θi and φj planes come from slicing the same surface, they must intersect
with each other at points on the surface.
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Fig. 11.
(a) Slice θi is to be processed. The geodesic between boundary points (left and right dots) is
computed using image values, (b) Slice θi is overwritten with a constant value (white) except
at positions on the geodesic curve. When we look at slices φ = φj the modified metric will be
encouraging geodesics in that direction to go through the already computed surface points.
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Fig. 12.
As the algorithm advances, more sections are being replaced with the modified metric so
geodesics are encouraged to go through the already computed surface points.
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Fig. 13.
Top: Raw image slices and the corresponding surface contours. Note how even the weakest
boundaries are nicely captured by the algorithm. Bottom: 3-D view of the extracted 3-D surface.
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Fig. 14.
Additional examples of 3-D segmented vesicular structures.

Bartesaghi et al. Page 29

IEEE Trans Image Process. Author manuscript; available in PMC 2006 December 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 15.
Two density classes are shown (in different colors) automatically classified according to the
average gray level inside the volumes.
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Fig. 16.
Classification results for full tomograms. Each tomogram contains more than a hundred
individual features that can be automatically classified once the segmentation is available. We
show 2-D slices of two different tomograms with the corresponding surface contours.
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Fig. 17.
Top: Histogram distribution of average gray levels inside segmented regions in two different
tomograms (left and right) from different regions of the infected cell. Horizontal axis shows
normalized average gray values. Bottom: Histogram distribution of volume size in segmented
regions within two tomograms (left and right) normalized with reference to the largest volume
in the set. Horizontal axis shows normalized volume.
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