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Abstract—The limitations of commonly used separable exten-
sions of one-dimensional transforms, such as the Fourier and
wavelet transforms, in capturing the geometry of image edges are
well known. In this paper, we pursue a “true” two-dimensional
transform that can capture the intrinsic geometrical structure
that is key in visual information. The main challenge in exploring
geometry in images comes from the discrete nature of the data.
Thus, unlike other approaches, such as curvelets, that first develop
a transform in the continuous domain and then discretize for
sampled data, our approach starts with a discrete-domain con-
struction and then studies its convergence to an expansion in the
continuous domain. Specifically, we construct a discrete-domain
multiresolution and multidirection expansion using nonseparable
filter banks, in much the same way that wavelets were derived from
filter banks. This construction results in a flexible multiresolution,
local, and directional image expansion using contour segments,
and, thus, it is named the contourlet transform. The discrete
contourlet transform has a fast iterated filter bank algorithm that
requires an order operations for -pixel images. Furthermore,
we establish a precise link between the developed filter bank and
the associated continuous-domain contourlet expansion via a di-
rectional multiresolution analysis framework. We show that with
parabolic scaling and sufficient directional vanishing moments,
contourlets achieve the optimal approximation rate for piecewise
smooth functions with discontinuities along twice continuously
differentiable curves. Finally, we show some numerical experi-
ments demonstrating the potential of contourlets in several image
processing applications.

Index Terms—Contourlets, contours, filter banks, geometric
image processing, multidirection, multiresolution, sparse repre-
sentation, wavelets.

I. INTRODUCTION

E FFICIENT representation of visual information lies at the
heart of many image processing tasks, including compres-

sion, denoising, feature extraction, and inverse problems. Effi-
ciency of a representation refers to the ability to capture sig-
nificant information about an object of interest using a small
description. For image compression or content-based image re-
trieval, the use of an efficient representation implies the com-
pactness of the compressed file or the index entry for each image
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in the database. For practical applications, such an efficient rep-
resentation has to be obtained by structured transforms and fast
algorithms.

For one-dimensional (1-D) piecewise smooth signals, like
scan-lines of an image, wavelets have been established as the
right tool, because they provide an optimal representation
for these signals in a certain sense [1], [2]. In addition, the
wavelet representation is amenable to efficient algorithms; in
particular it leads to fast transforms and convenient tree data
structures. These are the key reasons for the success of wavelets
in many signal processing and communication applications; for
example, the wavelet transform was adopted as the transform
for the new image-compression standard, JPEG-2000 [3].

However, natural images are not simply stacks of 1-D piece-
wise smooth scan-lines; discontinuity points (i.e., edges) are
typically located along smooth curves (i.e., contours) owing to
smooth boundaries of physical objects. Thus, natural images
contain intrinsic geometrical structures that are key features in
visual information. As a result of a separable extension from
1-D bases, wavelets in two-dimensional (2-D) are good at iso-
lating the discontinuities at edge points, but will not “see” the
smoothness along the contours. In addition, separable wavelets
can capture only limited directional information—an important
and unique feature of multidimensional signals. These disap-
pointing behaviors indicate that more powerful representations
are needed in higher dimensions.

To see how one can improve the 2-D separable wavelet trans-
form for representing images with smooth contours, consider
the following scenario. Imagine that there are two painters,
one with a “wavelet”-style and the other with a new style,
both wishing to paint a natural scene. Both painters apply a
refinement technique to increase resolution from coarse to fine.
Here, efficiency is measured by how quickly, that is with how
few brush strokes, one can faithfully reproduce the scene.

Consider the situation when a smooth contour is being
painted, as shown in Fig. 1. Because 2-D wavelets are
constructed from tensor products of 1-D wavelets, the
“wavelet”-style painter is limited to using square-shaped
brush strokes along the contour, using different sizes corre-
sponding to the multiresolution structure of wavelets. As the
resolution becomes finer, we can clearly see the limitation of
the wavelet-style painter who needs to use many fine “dots” to
capture the contour.1 The new style painter, on the other hand,
explores effectively the smoothness of the contour by making
brush strokes with different elongated shapes and in a variety of
directions following the contour. This intuition was formalized

1Or we could consider the wavelet-style painter a pointillist!
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Fig. 1. Wavelet versus new scheme: illustrating the successive refinement
by the two systems near a smooth contour, which is shown as a thick curve
separating two smooth regions.

by Candès and Donoho in the curvelet construction [4], [5],
reviewed below in Section II.

For the human visual system, it is well-known [6] the recep-
tive fields in the visual cortex are characterized as being lo-
calized, oriented, and bandpass. Furthermore, experiments in
searching for the sparse components of natural images produced
basis images that closely resemble the aforementioned charac-
teristics of the visual cortex [7]. This result supports the hypoth-
esis that the human visual system has been tuned so as to cap-
ture the essential information of a natural scene using a least
number of visual active cells. More importantly, this result sug-
gests that for a computational image representation to be effi-
cient, it should based on a local, directional, and multiresolution
expansion.

Inspired by the painting scenario and studies related to the
human visual system and natural image statistics, we identify a
“wish list” for new image representations.2

1) Multiresolution. The representation should allow images
to be successively approximated, from coarse to fine res-
olutions.

2) Localization. The basis elements in the representation
should be localized in both the spatial and the frequency
domains.

3) Critical sampling. For some applications (e.g., compres-
sion), the representation should form a basis, or a frame
with small redundancy.

4) Directionality. The representation should contain basis
elements oriented at a variety of directions, much more
than the few directions that are offered by separable
wavelets.

5) Anisotropy. To capture smooth contours in images, the
representation should contain basis elements using a va-
riety of elongated shapes with different aspect ratios.

Among these desiderata, the first three are successfully pro-
vided by separable wavelets, while the last two require new con-
structions. Moreover, a major challenge in capturing geometry
and directionality in images comes from the discrete nature of
the data: The input is typically sampled images defined on rect-
angular grids. For example, directions other than horizontal and
vertical look very different on a rectangular grid. Because of
pixelization, the notion of smooth contours on sampled images
are not obvious. For these reasons, unlike other transforms that
were initially developed in the continuous domain and then dis-
cretized for sampled data, our approach starts with a discrete-do-

main construction and then studies its convergence to an expan-
sion in the continuous domain.

The outline of the rest of the paper is as follows. After re-
viewing related work in Section II, we propose a multiresolution
and multidirection image expansion using nonseparable filter
banks in Section III. This construction results in a flexible mul-
tiresolution, local, and directional image expansion using con-
tour segments, and, thus, it is named the contourlet transform. It
is of interest to study the limit behavior when such schemes are
iterated over scale and/or direction, which has been analyzed in
the connection between filter banks, their iteration, and the as-
sociated wavelet construction [2], [8]. Such a connection is ex-
plored in Section IV, where we establish a precise link between
the proposed filter bank and the associated continuous-domain
contourlet expansion in a newly defined directional multires-
olution analysis framework. The approximation power of the
contourlet expansion is studied in Section V. We show that with
parabolic scaling and sufficient directional vanishing moments
(DVMs), contourlets achieve the optimal approximation rate for
2-D piecewise smooth functions with (twice continuously
differentiable) contours. Numerical experiments are presented
and discussed in Section VI.

II. BACKGROUND AND RELATED WORK

Consider a general series expansion by (e.g., a
Fourier or wavelets basis) for a given signal as

(1)

The error decay of the best -term approximation provides
a measurement of the efficiency of an expansion. The best

-term approximation (also commonly referred to as non-
linear approximation (NLA) [1]) using this expansion is defined
as

(2)

where is the set of indexes of the -largest . The quality
of the approximated function relates to how sparse the ex-
pansion by is, or how well the expansion compacts the
energy of into a few coefficients.

Recently, Candès and Donoho [4], [5] pioneered a new ex-
pansion in the continuous 2-D space using curvelets. This
expansion achieves essentially optimal approximation behavior
for 2-D piecewise smooth functions that are except for dis-
continuities along curves. For this class of functions, the best

-term approximation error (in -norm square)
using curvelets has a decay rate of [5], while
for wavelets this rate is and for the Fourier basis it is

[1], [2]. Therefore, for typical images with smooth
contours, we expect a significant improvement of a curvelet-like
method over wavelets, which is comparable to the improvement
of wavelets over the Fourier basis for 1-D piecewise smooth
signals. Perhaps equally important, the curvelet construction
demonstrates that it is possible to develop an optimal represen-
tation for images with smooth contours via a fixed transform.
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The curvelet transform was developed initially in the con-
tinuous domain [4] via multiscale filtering and then applying
a block ridgelet transform [9] on each bandpass image. Later,
the authors proposed the second generation curvelet transform
[5] that was defined directly via frequency partitioning without
using the ridgelet transform. Both curvelet constructions require
a rotation operation and correspond to a 2-D frequency partition
based on the polar coordinate. This makes the curvelet construc-
tion simple in the continuous domain but causes the implemen-
tation for discrete images—sampled on a rectangular grid—to
be very challenging. In particular, approaching critical sampling
seems difficult in such discretized constructions.

The reason for this difficulty, we believe, is because the typ-
ical rectangular-sampling grid imposes a prior geometry to dis-
crete images; e.g., strong bias toward horizontal and vertical di-
rections. This fact motivates our development of a directional
multiresolution transform like curvelets, but directly in the dis-
crete domain, which results in the contourlet construction de-
scribed in this paper. We would like to emphasize that although
curvelet and contourlet transforms have some similar properties
and goals, the latter is not a discretized version of the former.
More comparisons between these two transforms are provided
at the end of Section IV.

Apart from curvelets and contourlets, there have recently
been several approaches in developing efficient representations
of geometrical regularity. Notable examples are bandelets [10],
the edge-adapted multiscale transform [11], wedgelets [12],
[13] and quadtree coding [14]. These approaches typically
require an edge-detection stage, followed by an adaptive repre-
sentation. By contrast, curvelet and contourlet representations
are fixed transforms. This feature allows them to be easily
applied in a wide range of image processing tasks, similar to
wavelets. For example, we do not have to rely on edge detec-
tion, which is unreliable and noise sensitive. Furthermore, we
can benefit from the well-established knowledge in transform
coding when applying contourlets to image compression (e.g.,
for bit allocation).

Several other well-known systems that provide multiscale
and directional image representations include: 2-D Gabor
wavelets [15], the cortex transform [16], the steerable pyramid
[17], 2-D directional wavelets [18], brushlets [19], and complex
wavelets [20]. The main differences between these systems
and our contourlet construction is that the previous methods
do not allow for a different number of directions at each
scale while achieving nearly critical sampling. In addition,
our construction employs iterated filter banks, which makes
it computationally efficient, and there is a precise connection
with continuous-domain expansions.

III. DISCRETE-DOMAIN CONSTRUCTION USING FILTER BANKS

A. Concept

Comparing the wavelet scheme with the new scheme shown
in Fig. 1, we see that the improvement of the new scheme can be
attributed to the grouping of nearby wavelet coefficients, since
they are locally correlated due to the smoothness of the con-
tours. Therefore, we can obtain a sparse expansion for natural
images by first applying a multiscale transform, followed by a

local directional transform to gather the nearby basis functions
at the same scale into linear structures. In essence, we first use
a wavelet-like transform for edge detection, and then a local di-
rectional transform for contour segment detection. Interestingly,
the latter step is similar to the popular Hough transform [21] for
line detection in computer vision.

With this insight, we proposed a double filter bank struc-
ture (see Fig. 7) [22] for obtaining sparse expansions for typical
images having smooth contours. In this double filter bank, the
Laplacian pyramid (LP) [23] is first used to capture the point
discontinuities, and then followed by a directional filter bank
(DFB) [24] to link point discontinuities into linear structures.
The overall result is an image expansion using basic elements
like contour segments, and, thus, are named contourlets. In par-
ticular, contourlets have elongated supports at various scales, di-
rections, and aspect ratios. This allows contourlets to efficiently
approximate a smooth contour at multiple resolutions in much
the same way as the new scheme shown in Fig. 1. In the fre-
quency domain, the contourlet transform provides a multiscale
and directional decomposition.

We would like to point out that the decoupling of multiscale
and directional decomposition stages offers a simple and flex-
ible transform, but at the cost of a small redundancy (up to 33%,
which comes from the LP). In a more recent work [25], we
developed a critically sampled contourlet transform, which we
call CRISP-contourlets, using a combined iterated nonseparable
filter bank for both multiscale and directional decomposition.

B. Pyramid Frames

One way to obtain a multiscale decomposition is to use the
LP introduced by Burt and Adelson [23]. The LP decomposi-
tion at each level generates a downsampled lowpass version of
the original and the difference between the original and the pre-
diction, resulting in a bandpass image. Fig. 2(a) depicts this de-
composition process, where and are called (lowpass) anal-
ysis and synthesis filters, respectively, and is the sampling
matrix. The process can be iterated on the coarse (downsampled
lowpass) signal. Note that in multidimensional filter banks, sam-
pling is represented by sampling matrices; for example, down-
sampling by yields , where is an
integer matrix [8].

A drawback of the LP is the implicit oversampling. How-
ever, in contrast to the critically sampled wavelet scheme, the
LP has the distinguishing feature that each pyramid level gen-
erates only a one bandpass image (even for multidimensional
cases), and this image does not have “scrambled” frequencies.
This frequency scrambling happens in the wavelet filter bank
when a highpass channel, after downsampling, is folded back
into the low frequency band, and, thus, its spectrum is reflected.
In the LP, this effect is avoided by downsampling the lowpass
channel only.

In [26], we studied the LP using the theory of frames and over-
sampled filter banks. We showed that the LP with orthogonal fil-
ters (that is, the analysis and synthesis filters are time reversal,

, and is orthogonal to its translates with re-
spect to the sampling lattice by ) provides a tight frame with
frame bounds are equal to 1. In this case, we proposed the use of
the optimal linear reconstruction using the dual frame operator
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Fig. 2. LP. (a) One level of decomposition. The outputs are a coarse approximation a[nnn] and a difference b[nnn] between the original signal and the prediction.
(b) The new reconstruction scheme for the LP [26].

Fig. 3. DFB. (a) Frequency partitioning where l = 3 and there are 2 = 8 real wedge-shaped frequency bands. Subbands 0–3 correspond to the mostly horizontal
directions, while subbands 4–7 correspond to the mostly vertical directions. (b) The multichannel view of an l-level tree-structured DFB.

(or pseudo-inverse) as shown in Fig. 2(b). The new reconstruc-
tion differs from the usual method, where the signal is obtained
by simply adding back the difference to the prediction from the
coarse signal, and was shown [26] achieve significant improve-
ment over the usual reconstruction in the presence of noise.

C. Iterated Directional Filter Banks

Bamberger and Smith [24] constructed a 2-D DFB that can
be maximally decimated while achieving perfect reconstruc-
tion. The DFB is efficiently implemented via an -level binary
tree decomposition that leads to subbands with wedge-shaped
frequency partitioning as shown in Fig. 3(a). The original con-
struction of the DFB in [24] modulating the input image and
using quincunx filter banks with diamond-shaped filters [27].
To obtain the desired frequency partition, a complicated tree ex-
panding rule has to be followed for finer directional subbands
(e.g., see [28] for details).

In [29], we proposed a new construction for the DFB that
avoids modulating the input image and has a simpler rule for
expanding the decomposition tree. Our simplified DFB is intu-
itively constructed from two building blocks. The first building
block is a two-channel quincunx filter bank [27] fan filters (see
Fig. 4) that divides a 2-D spectrum into two directions: hori-
zontal and vertical. The second building block of the DFB is a
shearing operator, which amounts to just reordering of image
samples. Fig. 5 shows an application of a shearing operator
where a direction edge becomes a vertical edge. By adding
a pair of shearing operator and its inverse (“unshearing”) to be-
fore and after, respectively, a two-channel filter bank in Fig. 4,
we obtain a different directional frequency partition while main-
taining perfect reconstruction. Thus, the key in the DFB is to use
an appropriate combination of shearing operators together with
two-direction partition of quincunx filter banks at each node in a
binary tree-structured filter bank, to obtain the desired 2-D spec-
trum division as shown in Fig. 3(a). For details, see [29, Ch. 3].

Fig. 4. Two-dimensional spectrum partition using quincunx filter banks with
fan filters. The black regions represent the ideal frequency supports of each filter.
QQQ is a quincunx sampling matrix.

Fig. 5. Example of shearing operation that is used like a rotation operation for
DFB decomposition. (a) The “cameraman” image. (b) The “cameraman” image
after a shearing operation.

Using multirate identities [8], it is instructive to view an
-level tree-structured DFB equivalently as a parallel channel

filter bank with equivalent filters and overall sampling matrices
as shown in Fig. 3(b). Denote these equivalent (directional)
synthesis filters as , , which correspond to the
subbands indexed as in Fig. 3(a). The corresponding overall
sampling matrices were shown [29] to have the following
diagonal forms:

for
for

(3)

which means sampling is separable. The two sets correspond
to the mostly horizontal and mostly vertical set of directions,
respectively.
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Fig. 6. Impulse responses of 32 equivalent filters for the first half channels,
corresponding to the mostly horizontal directions, of a six-level DFB that uses
the Haar filters. Black and gray squares correspond to+1 and�1, respectively.
Because the basis functions resemble “local lines,” we call them Radonlets.

From the equivalent parallel view of the DFB, we see that the
family

(4)

obtained by translating the impulse responses of the equivalent
synthesis filters over the sampling lattices by , provides
a basis for discrete signals in . This basis exhibits both
directional and localization properties. Fig. 6 demonstrates this
fact by showing the impulse responses of equivalent filters from
an example DFB. These basis functions have quasilinear sup-
ports in space and span all directions. In other words, the basis
(4) resembles a local Radon transform and are called Radonlets.
Furthermore, it can be shown [29] that if the building block filter
bank in Fig. 4 uses orthogonal filters, then the resulting DFB is
orthogonal and (4) becomes an orthogonal basis.

D. Multiscale and Directional Decomposition: The Discrete
Contourlet Transform

Combining the LP and the DFB, we are now ready to describe
their combination into a double filter bank structure that was
motivated in Section III-A. Since the DFB was designed to cap-
ture the high frequency (representing directionality) of the input
image, the low frequency content is poorly handled. In fact, with
the frequency partition shown in Fig. 3(a), low frequency would
“leak” into several directional subbands; hence, the DFB alone
does not provide a sparse representation for images. This fact
provides another reason to combine the DFB with a multiscale
decomposition, where low frequencies of the input image are
removed before applying the DFB.

Fig. 7 shows a multiscale and directional decomposition
using a combination of a LP and a DFB. Bandpass images from
the LP are fed into a DFB so that directional information can
be captured. The scheme can be iterated on the coarse image.
The combined result is a double iterated filter bank structure,
named contourlet filter bank, which decomposes images into
directional subbands at multiple scales.

Specifically, let be the input image. The output after
the LP stage is bandpass images , (in the
fine-to-coarse order) and a lowpass image . That means,
the -th level of the LP decomposes the image into a
coarser image and a detail image . Each bandpass
image is further decomposed by an -level DFB into

Fig. 7. Contourlet filter bank. First, a multiscale decomposition into octave
bands by the LP is computed, and then a DFB is applied to each bandpass
channel.

bandpass directional images , . The
main properties of the discrete contourlet transform are stated
in the following theorem.

Theorem 1: In a contourlet filter bank, the following hold.

1) If both the LP and the DFB use perfect-reconstruction
filters, then the discrete contourlet transform achieves
perfect reconstruction, which means it provides a frame
operator.

2) If both the LP and the DFB use orthogonal filters, then the
discrete contourlet transform provides a tight frame with
frame bounds equal to 1.

3) The discrete contourlet transform has a redundancy ratio
that is less than 4/3.

4) Suppose an -level DFB is applied at the pyramidal level
of the LP, then the basis images of the discrete contourlet

transform (i.e., the equivalent filters of the contourlet filter
bank) have an essential support size of and

.
5) Using FIR filters, the computational complexity of the dis-

crete contourlet transform is for -pixel images.
Proof:

1) This is obvious as the discrete contourlet transform is a
composition of perfect-reconstruction blocks.

2) With orthogonal filters, the LP is a tight frame with frame
bounds equal to 1 [26], which means it preserves the

-norm, or . Similarly,
with orthogonal filters the DFB is an orthogonal transform

[29], which means . Combining

these two stages, the discrete contourlet transform satis-
fies the norm preserving or tight frame condition.

3) Since the DFB is critically sampled, the redundancy of the
discrete contourlet transform is equal to the redundancy of
the LP, which is .

4) Using multirate identities, the LP bandpass channel
corresponding to the pyramidal level is approximately
equivalent to filtering by a filter of size about ,
followed by downsampling by in each dimension.
For the DFB, from (3) we see that after levels
of tree-structured decomposition, the equivalent direc-
tional filters have support of width about and length
about (also, see Fig. 6). Combining these two
stages, again using multirate identities, into equivalent
contourlet filter bank channels, we see that contourlet
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Fig. 8. Examples of possible frequency decompositions by the contourlet
transform and contourlet packets.

basis images have support of width about and length
about .

5) Let and be the number of taps of the pyramidal and
directional filters used in the LP and the DFB, respectively
(without loss of generality we can suppose that lowpass,
highpass, analysis and synthesis filters have same length).
With a polyphase implementation, the LP filter bank re-
quires operations per input sample.2 Thus, for
an -pixel image, the complexity of the LP stage in the
contourlet filter bank is

(5)

For the DFB, its building block two-channel filter banks
requires operations per input sample. With an -level
full binary tree decomposition, the complexity of the DFB
multiplies by . This holds because the initial decomposi-
tion block in the DFB is followed by two blocks at half
rate, four blocks at quarter rate and so on. Thus, the com-
plexity of the DFB stage for an -pixel image is

(6)

Combining (5) and (6), we obtain the desired result.
Since the multiscale and directional decomposition stages are

decoupled in the discrete contourlet transform, we can have a
different number of directions at different scales, thus offering a
flexible multiscale and directional expansion. Moreover, the full
binary tree decomposition of the DFB in the contourlet trans-
form can be generalized to arbitrary tree structures, similar to
the wavelet packets generalization of the wavelet transform [30].
The result is a family of directional multiresolution expansions,
which we call contourlet packets. Fig. 8 shows examples of pos-
sible frequency decompositions by the contourlet transform and
contourlet packets. In particular, contourlet packets allow finer
angular resolution decomposition at any scale or direction, at the
cost of spatial resolution. In addition, from Theorem 1, part 4,
we see that by altering the depth of the DFB decomposition tree
at different scales (and even at different orientations in a con-

2Here, we assume all filters are implemented nonseparably. For certain filters,
separable filtering (maybe in polyphase domain) is possible and requires lower
complexity.

tourlet packets transform), we obtain a rich set of contourlets
with variety of support sizes and aspect ratios. This flexibility
allows the contourlet transform and the contourlet packets to fit
smooth contours of various curvatures well.

IV. CONTOURLETS AND DIRECTIONAL

MULTIRESOLUTION ANALYSIS

As for the wavelet filter bank, the contourlet filter bank has
an associated continuous-domain expansion in using the
contourlet functions. In this section, the connection between the
discrete contourlet transform and the continuous-domain con-
tourlet expansion will be made precisely via a new multires-
olution analysis framework that is similar to the link between
wavelets and filter banks [2]. The new elements in this frame-
work are multidirection and its combination with multiscale. For
simplicity, we will only consider the case with orthogonal fil-
ters, which leads to tight frames. The more general case with
biorthogonal filters can be treated similarly.

A. Multiscale

We start with the multiresolution analysis for the LP, which
is similar to the one for wavelets. Suppose that the LP in the
contourlet filter bank uses orthogonal filters and downsampling
by 2 in each dimension (that means in Fig. 2).
Under certain regularity conditions, the lowpass synthesis filter

in the iterated LP uniquely defines a unique scaling function
that satisfies the following two-scale equation

[2], [8]

(7)

Let

(8)

Then the family is an orthonormal basis for
an approximation subspace at the scale . Furthermore,

provides a sequence of multiresolution nested sub-
spaces , where
is associated with a uniform grid of intervals that
characterizes image approximation at scale . The difference
images in the LP contain the details necessary to increase the
resolution between two consecutive approximation subspaces.
Therefore, the difference images live in a subspace that is
the orthogonal complement of in , or

(9)

In [26], we show that the LP can be considered as an oversam-
pled filter bank where each polyphase component of the differ-
ence image in Fig. 2, together with the coarse image ,
comes from a separate filter bank channel with the same sam-
pling matrix . Let , be the synthesis
filters for these polyphase components. These are highpass fil-
ters. As for wavelets, we associate with each of these filters a
continuous function where

(10)
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Proposition 1 ([26]): Using in (10), let

(11)

Then, for scale , is a tight frame for

. For all scales, is a tight frame for

. In both cases, the frame bounds are equal to 1.
Since is generated by four kernel functions (similar to

multiwavelets), in general it is not a shift-invariant subspace.
Nevertheless, we can simulate a shift-invariant subspace by
denoting

(12)

where are the coset representatives for downsampling by 2 in
each dimension

(13)

With this notation, the family associated to a uni-
form grid of intervals on provides a tight frame
for .

B. Multidirection

In the iterated contourlet filter bank, the discrete basis (4)
of the DFB can be regarded as a change of basis for the con-
tinuous-domain subspaces from the multiscale analysis in the
last section. Suppose that the DFBs in the contourlet filter bank
use orthogonal filters. Although in the contourlet transform, the
DFB is applied to the difference images or the detail subspaces

, we first show what happens when the DFB is applied to the
approximation subspaces .

Proposition 2: Let

(14)

for arbitrary but finite3 . Then the family is an

orthonormal basis of a directional subspace for each
. Furthermore

(15)

for and (16)

(17)

Proof: This result can be proved by induction on the
number of decomposition levels of the DFB, in much the
same way as for the wavelet packets bases [30] (see also
[2]). We only sketch the idea of the proof here. Suppose that

is an orthonormal basis of a subspace . To

increase the directional resolution, an extra level of decompo-
sition by a pair of orthogonal filters is applied to the channel
represented by that leads to two channels with equivalent
filters and . This transforms the orthonormal basis

3The situation when the number of levels l of the iterated DFB goes to infinity
involves a regularity study for the DFB, which will be treated elsewhere.

into two orthonormal families

and . Each of these families generate a

subspace with finer directional resolution that satisfies the
“two-direction” (15). With this induction, starting from an
orthonormal basis of , we obtain orthonormal
bases for all directional subspaces , hence (16) and (17).

C. Multiscale and Multidirection: The Contourlet Expansion

Applying the directional decomposition by the family (4)
onto the detail subspace as done by the contourlet trans-
form, we obtain a similar result.

Proposition 3: Let

(18)

The family is a tight frame of a detail direc-

tional subspace with frame bounds equal to 1, for each

. Furthermore, the subspaces are mutu-
ally orthogonal across scales and directions.

Proof: This result is obtained by applying Proposition 1
to the subspaces in Proposition 2.

Fig. 9(a) illustrates the detail directional subspaces in
the frequency domain. The indexes , , and specify the scale,
direction, and location, respectively. Note that the number of
DFB decomposition levels can be different at different scales
, and in that case will be denoted by .

Recall that is not a shift-invariant subspace. However, the
following result establishes that its subspaces are, since
they are generated by a single function and its translations.

Proposition 4: Let

(19)

Then, for

(20)

Proof: The definition of in (11) implies that
. Applying this to (12) we

have . In other words,
are periodically shift-invariant with even shifts in . From (3),
we see that when , sampling by is also even in each
dimension. Thus, from (18) with a change of variable we obtain

Therefore, the translated family of

(21)

is a frame of . As a result, the subspace is defined on
a rectangular grid with intervals or ,
depending on whether it is mostly horizontal or vertical [see
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Fig. 9. Contourlet subspaces. (a) Multiscale and multidirection subspaces
generated by the contourlet transform which is illustrated on a 2-D spectrum
decomposition. (b) Sampling grid and approximate support of contourlet
functions for a “mostly horizontal” subspace W . For “mostly vertical”
subspaces, the grid is transposed.

Fig. 9(b)]. The reason that is an overcomplete

frame for is because it uses the same sampling grid of the

bigger subspace .
Substituting (10) into (12) and then into (19), we can write

directly as a linear combination of the scaling functions
as

(22)

The discrete filter is roughly equal to the summation of
convolutions between the directional filter and bandpass fil-
ters s, and, thus, it is a bandpass directional filter. It can be
verified that with orthogonal filters in both the LP and the DFB,
for all , , ,

(23)

Integrating the multidirection analysis over scales we obtain the
following result for the contourlet frames of .

Theorem 2: For a sequence of finite positive integers
the family

(24)

is a tight frame of . For a sequence of finite positive
integers , the family

(25)

is a tight frame of . In both cases, the frame bounds are
equal to 1.

Proof: This result is obtained by applying Proposition 3 to
the following decompositions of into mutual orthogonal
subspaces

and

Finally, similar to the link between wavelets and filter banks
[2], the following theorem precisely connects the continuous-
domain expansions by contourlet functions in (24) and(25) with
the discrete contourlet transform in Section III-D.

Theorem 3: Suppose are inner
products of a function with the scaling func-
tions at a scale . Furthermore, suppose the image is de-
composed by the discrete contourlet transform into coefficients

, and . Then

and

(26)

Proof: Suppose that and
is decomposed by the LP into the coarser image

and the detail image . Then using (7), (10), and (12), it is
easy to verify that

and

Subsequently, using (19), the output of an -level DFB given
the input image can be written as

The contourlet transform has several distinguishing features
that are important to emphasize.

1) The contourlet expansions are defined on rectangular
grids and, thus, offer a seamless translation (as demon-
strated in Theorem 3) to the discrete world, where image
pixels are sampled on a rectangular grid. To achieve this
“digital-friendly” feature, the contourlet kernel functions

have to be different for different directions and
cannot be obtained by simply rotating a single function.
This is a key difference between the contourlet and the
curvelet systems in [4], [5].

2) As a result of being defined on rectangular grids, con-
tourlets have 2-D frequency partition on centric squares
(see Fig. 8), rather than on centric circles for curvelets [4],
[5] and other systems defined on polar coordinates.

3) Since the contourlet functions are defined via iterated
filter banks like wavelets, the contourlet transform has
fast filter bank algorithms and convenient tree structures.

4) It is easy to see that with FIR filters, the iterated con-
tourlet filter bank leads to compactly supported contourlet
frames. More precisely, the contourlet function has
support of size and .
In other words, at each scale and direction, the set

“tiles” the plane [see Fig. 9(b)].
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Fig. 10. Parabolic scaling relation for curves. (a) The rectangular supports of the basis functions that fit a curve exhibit the quadric relation: width / length .
(b) Illustrating the evolution of the support sizes of contourlet functions that satisfy the parabolic scaling.

5) The contourlet construction provides a space-domain
multiresolution scheme that offers flexible refinements
for the spatial resolution and the angular resolution (see
remarks at the end of Section III-D).

V. CONTOURLET APPROXIMATION AND COMPRESSION

The proposed contourlet filter bank and its associated contin-
uous-domain frames in previous sections provide a framework
for constructing general directional multiresolution image rep-
resentations. Since our goal is to develop efficient or sparse ex-
pansions for images having smooth contours, the next important
issues are: 1) what conditions should we impose on contourlets
to obtain a sparse expansion for that class of images and 2) how
can we design filter banks that can lead to contourlet expansions
satisfying those conditions? We consider the first issue in this
paper; the second one is addressed in another paper [31].

A. Parabolic Scaling

In the curvelet construction, Candès and Donoho [4] out that
a key to achieving the correct NLA behavior by curvelets is
to select support sizes obeying the parabolic scaling relation
for curves: . The same scaling relation has
been used in the study of Fourier integral operators and wave
equations; for example, see [32].

The motivation behind the parabolic scaling is to efficiently
approximate a smooth discontinuity curve by “laying” basis el-
ements with elongated supports along the curve (refer to the
new scheme in Fig. 1). Suppose that the discontinuity curve is
sufficiently smooth—specifically a curve, then locally—by
the Taylor series expansion—it can be approximated by a para-
bolic curve. More precisely, with the local coordinate setup as
in Fig. 10(a), we can readily verify that the parametric represen-
tation of the discontinuity curve obeys

when (27)

where is the local curvature of the curve. Hence, to fit the
discontinuity curve at fine scales the width and the length of
the basis functions have to satisfy

(28)

For the contourlet frame in (24), we know that when an
-level DFB is applied to the pyramidal scale , the con-

tourlet functions have support size of and

. Hence, to make the contourlet expansion
satisfy the parabolic scaling, we simply have to impose that
the number of directions is doubled at every other finer scale.
An example of such a frequency decomposition is shown
in Fig. 8(a). More precisely, suppose that at a scale we
start with an -level DFB, then at subsequently finer scales

, the number of DFB decomposition levels is

for (29)

Fig. 10(b) graphically depicts a contourlet frame satisfying
the parabolic scaling. As can be seen in the two pyramidal levels
shown, as the support size of the basis element of the LP is re-
duced by four in each dimension, the number of directions of the
DFB is doubled. Combining these two stages, the support sizes
of the contourlet functions evolve in accordance to the desired
parabolic scaling.

B. Directional Vanishing Moment

For the wavelet case in 1-D, the wavelet approximation theory
brought a novel condition into filter bank design, which earlier
only focused on designing filters with good frequency selec-
tion properties. This new condition requires wavelet functions
to have a sufficient number of vanishing moments, or equiva-
lently, the highpass filter in the wavelet filter bank must have
enough “zeros at .” The vanishing-moments property is
the key for the sparse expansion of piecewise smooth signals by
wavelets [2]. Intuitively, wavelets with vanishing moments are
orthogonal to polynomial signals, and, thus, only a few wavelet
basis functions around the discontinuities points would “feel”
these discontinuities and lead to significant coefficients [33].

In the contourlet case, our target for approximation is piece-
wise smooth images with smooth contours. The key feature of
these images is that image edges are localized in both location
and direction. More specifically, a local region around a smooth
contour can be approximated by two polynomial surfaces sepa-
rated by a straight line. Thus, it is desirable that only few con-
tourlet functions whose supports intersect with a contour and
align with the contour local direction would “feel” this discon-
tinuity. One way to achieve this desideratum is to require all
1-D slices in a certain direction of contourlet functions to have
vanishing moments. We refer this requirement as the directional
vanishing moment condition.



2100 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 12, DECEMBER 2005

Fig. 11. Illustrating the DVM condition in the space and Fourier domains.
(Left) In the space domain, all the shown slices of �(t ; t ) have vanishing
moments. (Right) In the frequency domain, �(! ; ! ) is “flat” along the line
u ! + u ! = 0. The hatched regions represent the essential frequency
support of �(! ; ! ).

Definition 1 (Directional Vanishing Moment): A 2-D func-
tion is said to have an -order directional vanishing mo-
ment in the direction if all 1-D slices of that func-
tion along the direction , where

, have vanishing moments

for all (30)

It can be shown that in the Fourier domain, the DVM condi-
tion (30) is equivalent to requiring and its first
derivatives in the direction to be zero along the line

(see Fig. 11). We refer to this equivalent DVM con-
dition in the Fourier domain as having “ -order zeros along the
line .”

For a contourlet function constructed from an iterated
filter bank as in (22), it has an -order DVM along direction

if the discrete-time Fourier transform of the
associated filter also has -order zeros along the line

. This provides a condition for designing the
contourlet filter bank. In an extreme case, contourlet functions
with ideal frequency response (i.e., with sinc-type filters) have
DVMs on every direction such that the line
is outside their ideal angular frequency supports [see Figs. 9(a)
and 11]. For FIR filter and when and are integers,
the DVM condition is satisfied if the -transform
can be factorized as

(31)

We note that the DVM property also holds in other 2-D expan-
sions. In particular, 2-D separable wavelets have DVMs in the
horizontal and vertical directions, which make wavelets espe-
cially good in capturing horizontal and vertical edges. Ridgelets
[9], which offer an optimal representation for 2-D functions that
are smooth away from a discontinuity along a line, have DVMs
in all but one direction.

C. Contourlet Approximation

In this subsection we will show that a contourlet expansion
that satisfies the parabolic scaling and has sufficient DVMs (this
will be defined precisely in Lemma 1) achieves the optimal NLA
rate for 2-D piecewise smooth functions with discontinuities
along smooth curves. As we will be interested in the asymp-
totic rates, not in the constants, we use the notation

Fig. 12. Interaction between a contourlet (denoted by the ellipse) and a
discontinuity curve (denoted by the thick curve).

when there exists a constant such that . If
and , then we write .

First, notice that since the contourlet expansion is a frame,
the approximation error by keeping only coefficients as in
(2) obeys

(32)

We consider compactly supported contourlets, which are ob-
tained from iterated contourlet filter banks with FIR filters. Re-
call that for a contourlet frame (24) to satisfy the parabolic
scaling, has to follow (29). For simplicity, we set
and .4 This generates a contourlet frame that at scale

has directions and each contourlet function
has support size of and .

For convenience, in this section the support size of a contourlet,
width and length, is measured along the short and long dimen-
sions of the contourlet itself (see Fig. 12) instead of the hori-
zontal/vertical spacing as shown in Fig. 9(b). Based on Fig. 9(b),
we see that these two measures are related by a ratio between 1
and , and, thus, this change of measures does not affect our
asymptotic analysis. Using (18) it can be verified that (also note
that the support size of is )

(33)

Consider a function defined on the unit square that is
except for discontinuities along a and finite length curve

. We classify contourlets into type 1, whose support intersects
with ; and type 2, whose support does not intersect with .

For type 1 contourlets, ideally we would like only contourlets
that “align” with the discontinuity curve to produce significant
coefficients. Therefore, the key issue is to characterize the decay
of type 1 coefficients as contourlets “turn” away from the direc-
tion of . Let be the angle between the principal direction
of a type 1 contourlet and the local tangent direction of

where the contourlet intersects (see Fig. 12). At scale , since
contourlets span directions almost uniformly between
0 and , within a square block of size we can re-index these
directions by , where , so that .

4Other values of l only changes the constant but not the exponent in the
approximation rate.
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Let be the length of that intersects with the support
of . From Fig. 12 we see that

(34)

Let denotes the hatched region in Fig. 12, which is the
support region of that contains the intersection with and
is “sandwiched” between two lines parallel to . Because is

, using the Taylor expansion as in (27) [also see Fig. 10(a)],
the width of is . Thus, using (33) and (34), we can
bound the integral of inside the region by

(35)

The bound in (35) turns out to be critical for the desired ap-
proximation rate. Therefore, we need to bound the integral of

outside region to be the same order. If we “re-
move” the region , then we can consider the discontinuity
curve as a straight line of direction that intersects the support
of with a length . The following lemma, which is
proved in Appendix, provides a sufficient condition for the con-
tourlet function to obtain the desired decay rate.

Lemma 1: For , suppose the scaling function
and the contourlet function has a -order DVM along
a direction that makes an angle with the discontinuity di-
rection , where

(36)

Then, for every and

(37)

Remark 1: The condition in Lemma 1 requires contourlets to
have DVMs on denser sets of directions at finer scales. In partic-
ular, for , it requires that each contourlet function has
third-order DVMs on a set of directions with maximum angular
gap , which is the same order as the essential angular sup-
port of in the frequency domain. For larger , this condition
is relaxed at the cost of requiring higher-order DVMs. This con-
dition is satisfied with the ideal frequency response contourlets
as discussed at the end of Section V-B. At the moment, it re-
mains as a conjecture that such a condition can be obtained at
the asymptote with compactly supported contourlets. However,
in practice, we only process up to a finite scale and Lemma 1
guides us to construct contourlets to have DVMs on as many di-
rections as possible, especially around the directions of discon-
tinuity curves. This strategy was taken in [31], which leads to
good approximation performance. An alternative strategy is to
design contourlets close to having the ideal frequency response
and, thus, make directional moments approximately vanish.

With Lemma 1, combined with (35), we have the following
decay of type 1 contourlet coefficients indexed by and

(38)

In addition, since the discontinuity curve has finite length,
the number of type 1 coefficients with these indexes is

(39)

From (38), for a type 1 coefficient to have magnitude above
a threshold , it is necessary that and .
Thus, the number of type 1 coefficients with magnitude above
is

(40)

Using the last bound, we can write as a function of the
number of coefficients as

Therefore, the sum square error due to discarding all except
largest type 1 coefficients satisfies

(41)

Next, consider type 2 contourlets, whose support is included
in a region where is . For these contourlets, the corre-
sponding coefficients behave as if . Suppose
that the scaling function has accuracy of order 2, which is
equivalent to requiring the filter in (7) to have a
second-order zero at [34], that is for all

(42)

Then, for , we have

(43)

Thus, the sum squared error due to discarding all except
type 2 contourlet coefficients down to scale satisfies

(44)

Combining (41) and (44), and using (32), we obtain the
following result that characterizes the approximation power of
contourlets.

Theorem 4: Suppose that a compactly supported contourlet
frame (24) satisfies the parabolic scaling condition (29), the con-
tourlet functions satisfy the condition in Lemma 1, and the
scaling function has accuracy of order 2. Then for a
function that is away from a discontinuity curve, the

-term approximation by this contourlet frame achieves

(45)

Remark 2: The approximation rate for contourlets in (45)
is the same as the approximation rate for curvelets, which was
derived in [5] and [35]. For comparison, the approximation error
of the same function by wavelets decays like (see for
example [2]). Because the “complexity” of is at least equal
to the “complexity” of the discontinuity curve, which is a
curve, no other approximation scheme can achieve a better rate
than [1]. In this sense, the contourlet expansion achieves
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the optimal approximation rate for piecewise smooth functions
with contours.

D. Contourlet Compression

So far, we consider the approximation problem of contourlets
by keeping the largest coefficients. For the compression
problem, we have to account for the cost to encode quantized
coefficients, as well as the cost to index the retained coeffi-
cients. Fortunately, as can be seen from the last subsection, the

retained contourlet coefficients are well organized in tree
structures. Specifically, from coarse to fine scales, significant
contourlet coefficients are successively localized in both lo-
cation (contourlets intersect with the discontinuity curve) and
direction (intersected contourlets with direction close to the
local direction of the discontinuity curve). Thus, using em-
bedded tree structures for contourlet coefficients that are similar
to the embedded zero-trees for wavelets [36], we can efficiently
index the retained coefficients using 1 bit per coefficient.

Suppose that contourlet coefficients are uniformly quantized
with step size and coefficients with magnitude below

are discarded. Instead of using fixed length coding for the
quantized coefficients, a slight gain (in the log factor, but not
the exponent of the rate-distortion function) can be obtained
by variable length coding. In particular, we use the bit plane
coding scheme [8] coefficients with magnitude in the range

are encoded with bits. Because of (40), the
number of coefficients in this range is . In ad-
dition, the total number of retained coefficients is .
Thus, the number of bits needed for compression, which is
equal to the sum of indexing and quantization costs, is bounded
by

(46)

The compression distortion is equal to the sum of the trun-
cation distortion in (45) and the quantization distortion

(47)

Combining (46) and (47) we obtain the following result for the
operational rate-distortion function by contourlets.

Corollary 1: Under the assumption of Theorem 4, a con-
tourlet compression system that uses embedded zero-trees and
bit plane coding achieves

(48)

VI. NUMERICAL EXPERIMENTS

All experiments in this section use a wavelet transform with
“9–7” biorthogonal filters [37], [38] and 6 decomposition levels.
For the contourlet transform, in the LP stage we also use the
“9–7” filters. We choose “9–7” biorthogonal filters because they
have been shown to provide the best results for images, partly
because they are linear phase and are close to being orthogonal.
In the DFB stage we use the “23–45” biorthogonal quincunx
filters designed by Phoong et al. [39] modulate them to obtain

Fig. 13. Examples of the contourlet transform on the Peppers and Barbara
images. For clear visualization, each image is only decomposed into two
pyramidal levels, which are then decomposed into four and eight directional
subbands. Small coefficients are shown in black while large coefficients are
shown in white.

Fig. 14. Comparing a few actual 2-D wavelets (five on the left) and contourlets
(four on the right).

the biorthogonal fan filters. Apart from also being linear phase
and nearly orthogonal, these fan filters are close to having the
ideal frequency response and, thus, can approximate the DVM
condition. The drawback is that they have large support which
creates a large number of significant coefficients near edges.
As mentioned before, designing optimized contourlet filters is a
topic to be studied further.

The number of DFB decomposition levels is doubled at every
other finer scale and is equal to 5 at the finest scale. Note that in
this case, both the wavelet and the contourlet transforms share
the same detail subspaces as defined in Section IV-A. The
difference is that each detail subspace in the wavelet trans-
form is represented by a basis with three directions, whereas in
the contourlet transform it is represented by a redundant frame
with many more directions. Fig. 13 shows examples of the con-
tourlet transform. We notice that only contourlets that match
with both location and direction of image contours produce sig-
nificant coefficients.
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Fig. 15. Sequence of images showing the nonlinear approximations of the Peppers image usingM most significant coefficients at the finest detailed subspace
W , which is shared by both the wavelet and contourlet transforms.

Fig. 16. Nonlinear approximation by the wavelet and contourlet transforms. In each case, the original image Barbara of size 512� 512 is reconstructed from
the 4096-most significant coefficients. Only part of images are shown for detail comparison.

A. Wavelets Versus Contourlets

To highlight the difference between the wavelet and con-
tourlet transform, Fig. 14 shows a few wavelet and contourlet
basis images. We see that contourlets offer a much richer set
of directions and shapes, and, thus, they are more effective in
capturing smooth contours and geometric structures in images.

B. Nonlinear Approximation

Next, we compare the NLA performances of the wavelet and
contourlet transforms. In these NLA experiments, for a given
value , we select the -most significant coefficients in each
transform domain, and then compare the reconstructed images
from these sets of coefficients. Since the two transforms
share the same detail subspaces, it is possible to restrict the com-
parison in these subspaces. We expect that most of the refine-
ment happens around the image edges.

Fig. 15 shows sequences of nonlinear approximated images
at the finest detailed subspace using the wavelet and the
contourlet transforms, respectively, for the input Peppers image.

The wavelet scheme is seen to slowly capture contours by iso-
lated “dots.” By contrast, the contourlet scheme quickly refines
by well-adapted “sketches,” in much the same way as the new
scheme shown in Fig. 1.

Fig. 16 shows a detailed comparison of two nonlinear approx-
imated images by the wavelet and contourlet transforms using
the same number of coefficients on the Barbara image. Con-
tourlets are shown to be superior compared to wavelets in cap-
turing fine contours (e.g., directional textures on cloths). In addi-
tion, there is a significant gain of 1.46 dB in peak signal-to-noise
ratio (PSNR) for contourlets.

C. Denoising

The improvement in approximation by contourlets based on
keeping the most significant coefficients will directly lead to im-
provements in applications, including compression, denoising,
and feature extraction. As an example, for image denoising,
random noise will generate significant wavelet coefficients
just like true edges, but is less likely to generate significant
contourlet coefficients. Consequently, a simple thresholding



2104 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 12, DECEMBER 2005

Fig. 17. Denoising experiments. From left to right, top to bottom are:
original image, noisy image (PSNR = 24:42 dB), denoising using wavelets
(PSNR = 29:41 dB), and denoising using contourlets (PSNR = 30:47 dB).

scheme [40] on the contourlet transform is more effective in
removing the noise than it is for the wavelet transform.

Fig. 17 displays a “zoom-in” comparison of denoising when
applying wavelet and contourlet hard-thresholding on the Lena
image. The contourlet transform is shown to be more effective in
recovering smooth contours, both visually as well as in PSNR.
A more sophisticated denoising scheme that takes into account
the dependencies across scales, directions and locations in the
contourlet domain using statistical modeling of contourlet coef-
ficients is presented in [41] shows further improvements.

VII. CONCLUSION

In this work, we constructed a discrete transform that pro-
vides a sparse expansion for typical images having smooth
contours. Using recent results from harmonic analysis and
vision, we first identified two key features of a new image
representation that improves over the separable 2-D wavelet
transform, namely directionality and anisotropy. Based on
this observation, we developed a new filter bank structure, the
contourlet filter bank, that can provide a flexible multiscale and
directional decomposition for images. The developed discrete
filter bank has a precise connection with the associated contin-
uous-domain contourlet expansion. This connection is defined
via a directional multiresolution analysis that provides suc-
cessive refinements at both spatial and directional resolution.
With parabolic scaling and sufficient DVMs, the contourlet
expansion is shown to achieve the optimal approximation rate
for piecewise smooth images with smooth contours.
Experiments with real images indicate the potential of con-
tourlets in several image processing applications. A Matlab
contourlet toolbox is freely available for download from the
Matlab Central (www.mathworks.com/matlabcentral).

Fig. 18. Interaction between of a contourlet with a line discontinuity.

APPENDIX

A. Proof of Lemma 1

For convenience, we make a change to a new coordinate
as shown in Fig. 18, where has vanishing moments

along the direction. We drop the location index as it is ir-
relevant here. Notice that since ,
the length of the intersection of the -axis with the support of

is . Also, for the same order, we can parameterize
the discontinuity line as .

The support of below the line can be divided
into two regions and as shown in Fig. 18. In region ,
for a fix , locally around the support of we can use the
Taylor expansion of along the -direction as (we write for
the -order partial derivative of with respect to )

. Sub-
stitute this into , then because of the
first two vanishing moments of along the direction, the
first two terms are canceled. With only the third term left, be-
cause of the support size of , we get

(49)

In the region , expand using the Taylor expansion as
, where contains second order

terms , , and . Then similar to (49), because of the sup-
port size of we have . Thus, it
remains to check .

Since is a linear combination of scaling functions
at scale as defined in (22); i.e.,

given we also have . Moreover, by taking the
derivatives of the last equation we get

(50)

Now, expand using the Taylor expansion along the di-
rection as

(51)
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For , because has vanishing
moments along the direction, we have

Therefore, only the last term in (51) remains, and thus

The last expression because of (50), (34), and
the assumption (36). This completes the proof.
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