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Abstract—Block coding based on the discrete cosine trans-
form (DCT) is very popular in image and video compression.
Pre/post-filtering can be attached to a DCT-based block coding
system to improve coding efficiency as well as to mitigate blocking
artifacts. Previously designed pre/post-filters are optimized to
maximize coding efficiency solely. For image and video com-
munication over unreliable channels, those pre/post-filters are
sensitive to transmission errors. This paper addresses the problem
of designing pre/post-filters which are more error resilient. Re-
construction performance is measured by how low the average
reconstruction error is, and how uniformly the reconstruction
error is distributed. A family of pre/post-filters is designed to pro-
vide desired tradeoffs between coding efficiency and robustness
to transmission errors. Experiments show that these filtering op-
erators can achieve superior reconstruction performance without
sacrificing much coding performance.

Index Terms—Block coding, discrete cosine transform (DCT),
error resilience, pre/post-filtering.

1. INTRODUCTION

LOCK coding based on the discrete cosine transform

(DCT) [1] is the basis for many international compression
standards from JPEG for image coding to the MPEG family
and the H26x family for video coding. It enjoys the DCT’s
excellent energy compaction capability within a data block,
low complexity, and high flexibility on a block-by-block basis.
Unfortunately, its coding efficiency heavily suffers from ig-
noring correlation between blocks. More annoyingly, blocking
artifacts (reconstruction discontinuities at block boundaries re-
sulting from quantization mismatches) manifest at low bitrates.
The problem roots in the fact that DCT-based block coding
partitions the signal into nonoverlapped blocks, and each block
is transformed and quantized independently.

A remedy to DCT-based block coding is replacing the DCT
with a lapped transform (LT) [2]. The key that LTs can greatly
improve coding efficiency and reduce blocking artifacts is the
overlapping property: Basis functions of LTs are longer than the
block size. Analysis filtering extends to the neighboring blocks
and correlation between blocks is largely compensated. A data
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block is reconstructed by overlap-adding contributions from
several coefficient blocks and quantization mismatches along
the boundaries are significantly reduced due to the smoothing
effect.

An equivalent but more elegant way to improve DCT-based
block coding is recently proposed in [3]: employing pre-fil-
tering in the encoder and post-filtering in the decoder along the
block boundaries of the DCT coding framework. Pre/post-fil-
tering combined with the DCT can be viewed as a particular im-
plementation of LTs. Here, the overlapping principle is achieved
by pre/post-filtering. Among others, two attractive features of
the approach are as follows:

» pre/post-filtering operates in the time domain and is com-
pletely outside the existing DCT-based infrastructure;

* the complicated overlapped operation is implemented by
two simple stages of nonoverlapped block operations (a
pre/post-filtering stage and a DCT/IDCT stage).

It has been demonstrated that with pre/post-filtering, DCT block
coding can achieve much better performance at a cost of slightly
increased complexity [4], [5].

Due to the growing interest in image/video delivery over
unreliable channels such as wireless networks, error-resilient
image/video coding has lately received a lot of heavy attention.
A comprehensive review on techniques combating transmission
errors can be found in [6]. For block coding, it has been estab-
lished that using LT instead of the DCT can greatly reduce the
visual effect of lost blocks. The reason is that the information
of a data block is distributed into several coefficient blocks
because of overlapping. Thus, if a coefficient block is lost,
partial information of that data block is still available, and the
spatial region affected by the lost block increases making the
reconstruction error less intensive locally.

For data compression, transforms are generally designed
to maximize their coding efficiency under certain complexity
and/or regularity constraints. Those transforms are sensitive to
transmission errors. In [7], Hemami designed a set of lapped
orthogonal transforms (LOTs), {T6, T7, T8, T9}, more im-
mune to transmission errors. Compared to conventional LOTs,
although T6-T9 bases do not decrease reconstruction errors on
average, errors are distributed across all transform coefficients
more uniformly, resulting in visually better reconstructions.
The robustness of T6-T9 has been further proven by a multiple
description coder presented in [8]. Using the same design
method but with a different reconstruction method, Chung and
Wang designed another set of error-resilient LOTs [9].

The problem of designing pre/post-filters optimized for
coding efficiency has been extensively investigated in [3]
and [10]-[12]. This paper concentrates on the design of

1057-7149/$20.00 © 2006 IEEE
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error-resilient pre/post-filters. Due to the connection between
pre/post-filters and LTs, the paper can be viewed as an exten-
sion to Hemami’s pioneering work of designing error-resilient
LOTs. However, we shall proceed to show that the proposed
pre/post-filtering approach provides many advantages over the
conventional direct LOT design.

* Fewer free parameters and constraints are involved.

* Pre/post-filter based LTs are more computationally effi-
cient than T6-T9.

* Orthogonality is not imposed since biorthogonal LTs
are more desirable because they have higher coding
efficiency and are better at eliminating coding artifacts.

*  We sometimes do not even impose perfect reconstruction
(PR): Several post-filters can be switched between dy-
namically to improve reconstruction quality.

e Unlike T6-T9, which can only improve error distribution,
pre/post-filters can be designed to improve not only error
distribution but also notably decrease average error, re-
sulting in improved reconstructions.

The rest of the paper is organized as follows. The next section
reviews the pre/post-filtering framework and the relationship be-
tween pre/post-filtering and LTs. In Section III, reconstruction
criteria are defined and investigated. Error-resilient pre/post-fil-
ters are designed in Section IV based on the simple mean re-
construction method. Section V evaluates the performance of
the pre/post-filters and the paper is concluded in Section VI.

Notation wise, we use Iy, Jy, O to denote the N x N
identity matrix, the NV x N reversal matrix, and the N x N
null matrix, respectively. Also, [f (7, j)] v represents an N x N
matrix with f(7,7) as its element at the ith row and the jth
column, where f(.,.) is a certain function. The AR(1) image
model [13] with unit variance crg and intersample correlation
p = 0.95 is assumed throughout.

II. PRE/POST-FILTERING

The pre/post-filtering framework [3] is illustrated in Fig. 1:
The N x N pre-filtering block operator P and the N x N
post-filtering block operator T operate on the boundaries of the
N-point DCT without affecting the existing DCT-based infra-
structure. We can partition P and T into square (N/2) x (N/2)
submatrices
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DCT-based existing infrastructure

post-filtering

Pre/post-filtering framework.

In the encoder, the time domain input signal x is first mapped
into the pre-filtered signal p by P

[PZ—l} _p |:XZ—1:| o [Pooxz_l + Ppix,,
1 = 1 =
P Xn

Piox),_;, + Ppix},
and then the DCT maps p into the frequency domain signal ¢
which is then quantized, entropy coded, and transmitted to the
decoder

©))

3)

where Cp is the N x N type-II DCT matrix. In the decoder,
the IDCT and the post-filter T perform the inverse operations

Can = Cn

pn =Cy'én, 4)
Xp_1 Pr_1 Toob;,_; + To1p!,

)= = e e ©
n P 10Pn—1 + 111D,

where ¢, p, x are the received c, the reconstructed p and x,
respectively. Here, x is segmented into nonoverlapping blocks
of length IV and the N-point column vector x,, is the nth block
X,
,

Xn
The same convention applies to p, c, ¢, p, and x. It can be shown
[3] that the pre/post-filtering framework generates an /V-band

2N-tap (N x 2N) LT with the following forward transform:

consisting two N/2-point halves x! and X7, i.e., X,, =

P10 P11 Oﬂ Oﬁ
and inverse transform
To1 0%
T Ox | 4
F = 0¥ Tey Cy- 7
OJ_V T01

Overlapping is realized by employing pre/post-filtering across
DCT blocks.

Although any N x N matrix can be used as pre/post-filters, we
are only interested in pre/post-filters with a specific structure as
shown in Fig. 2: two stages of butterflies with an (N /2) x (N/2)
matrix between them
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This simple structure offers near optimal coding performance
[3]. So, pre/post-filters are uniquely specified by the (N/2) x
(N/2) matrices V and U. Consequently, designing pre/post-fil-
ters (N2 /4 free parameters) is far more tractable than designing
LTs directly (2N? free parameters). Furthermore, pre/post-fil-
tering is reasonably computationally efficient (N2 /4 multipli-
cations per block).
With the above structurally imposed solution, we have
P=JyPIy, T=JnxTIy. (10)
Consequently, rows of H and F are either symmetric or anti-
symmetric, and so linear phase is robustly enforced by the struc-
ture [3]. PR requires

U=v-L (11)
To impose orthogonality, we need
Uu=v1i=vT (12)

By manipulating V and U, any amount of overlap with a neigh-
boring block up to N/2 samples is possible. For example, if
we set V.= U = Iy, then pre/post-filtering is turned off
(P = T = Iy) and we go back to the standard DCT-based
system. Overlap longer than N/2 samples could be desirable for
image coding and error concealment [14]. This can be achieved
by using more than one stage of pre/post-filtering, each stage
can increase the amount of overlap by N/2 samples. However,
this is beyond the scope of this paper.

The coding performance of a pre/post-filter pair is measured
via the coding gain of the corresponding LT

Nl
N Lizo 0

Grc = 10logyg (H1 - 02f2)

13)

where o7 and f? are the ith diagonal entry of HR,,H” and
FTF | respectively, whereas R, = [p'i_j |]2 n is the autocorre-
lation matrix of the input signal. To compute the coding gain,
we always assume PR(U = V~1). If the orthogonality condi-
tion holds, then ff = 1 and (13) reduces to

N-1
% Yico O

(5" o?)

(14)

2| T

GTC =10 logw

(Left) Structure of pre-filter and (right) post-filter (drawn for N = 8).

A significant observation is that the coding gain is not that
sensitive to the pre/post-filter choices as long as 'V is well-posed
(both V and V1! are far from singular). One reason for this
is that energy compaction is mainly done by the DCT, which
has near-optimal energy compaction within the data block;
pre/post-filtering only affects the coding gain moderately by
taking away correlation between blocks. So, we can often vary
V to achieve other desired properties without sacrificing much
coding efficiency.

III. RECONSTRUCTION CRITERIA

The imperfect transmission of an /N-point coefficient block
c, affects the reconstruction of a 2N-point signal block
T .
[(x_1)7, (xn)T, (x},1)T] . Let us define the reconstruction
error e,, and its auto correlation matrix R.. as

X1 X1
e, = | X, - | xn 15)
Xpt1 Xfq,+1
Ree =E {eqe }. (16)
The ith(i = 0,---,2N — 1) diagonal entry of R.., €2, is the

mean-squared error (MSE) of the ¢th reconstructed sample of
the block.

The expected reconstruction quality is fully specified by e?.
The objective quality of the reconstructed block in terms of the
peak signal-to-noise ratio (PSNR) depends on the MSE for the
entire block

2N—-1 1
MSE = Z ¢; = 737 (Ree).

Obviously, a reconstructed block with a smaller MSE has a
higher PSNR.

Besides the MSE, the distribution of e? also has a significant
impact on the visual quality of the reconstructed image. A more
uniform error distribution has less artifacts and is visually more
pleasing. The reconstruction gain can be defined as

2N—-1 2

]._-[7 =0 z
1 2N—1 o
IN Do €
which measures how uniform the distribution is. A more

uniform error distribution results in a larger Gr. The Gg
achieves its maximum value of 1 when we have a completely

a7)

Gr= (18)
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uniform error distribution, i.e., e% is expected to be the same
for every reconstructed sample. Note that G is defined in
the time domain since visual quality is directly evaluated
in the time domain.

If the block post-filtering operation in (5) does not involve any
lost coefficients, PR is always preferred (U = V1), However,
if (5) does involve lost coefficients, a post-filter that is not a
perfect inverse of the pre-filter (U # V1) may produce better
reconstruction quality. Since the decoder knows the locations
of the lost coefficients, online adaptive switching between the
post-filters according to the availability of the coefficients can
be trivially achieved in the pre/post-filtering framework.

IV. OPTIMAL PRE/POST-FILTER DESIGN

From the previous section, an N x N pre/post-filter pair is
uniquely specified by two (N/2) x (N/2) matrices: V asso-
ciated with the pre-filter and U associated with the post-filter.
Designing an error-resilient pre/post-filter pair is equivalent
to finding a V /U combination to optimize the corresponding
Grc, MSE, and Gg. Unfortunately, Gr¢c, MSE, and Gr can
not reach their optimal values simultaneously. We typically set
up an optimization procedure to maximize a weighted sum,
Grc — a x 10log,,(MSE) + 8 x 10log 10(Gg), taking V
and U as arguments, where o and 3 are nonnegative weights.
The choice of the weights highly depends on the loss pattern.
For example, we should bias G more if a small percentage
of coefficients was lost.

The key of the design procedure is to find the error autocor-
relation matrix R.. according to the specific loss pattern and
the recovery method. Without loss of generality, we assume the
same simple scenario in [7]: A coefficient block is either lost or
received completely, and a lost block is recovered by the mean
of its perfectly received neighboring blocks

én = _(cn—l + cn—l—l)- (19)

2
This mean reconstruction method has been proven to be effec-
tive [15]. Other reconstruction methods do not affect the design
procedure; only R.. might take a different form.
Under the pre/post-filtering framework, (19) is equivalent to

. 1
p(n) = i(pnfl + pn+1) (20)

and so the recovery can be performed in the time domain after
the IDCT.
If we define

T,
C=Iy—-A
D=Iy-B @1)
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itis straightforward to show that the error autocorrelation matrix
Ree is given by

Ree =F {eneg}

D ON RO R{ DT ON

B [ON C} [Rl Ro} [ON CT]
[ A ON_ _RZ R3T- _DT ON_
_ON B_ _Rg Rg_ _ON CT_
[ D ON_ _RZ R:I;— _AT ON_
_ON C_ _Rg Rg_ _ON BT_

L[ A o] [Re RETIAT 0n]

_ON B_ _RE) R4_ _ON BT_

where Ro = [pl" 7l|x, Ry = [pN T )N, Ro = 1/2(Ry +
RT), R3 = 1/2(Ro + pNR1), Ry = 1/2(Ro + pN'R2), and
Rs = (1/2)R1 + (1/4)(p* R1 + RY).

If the PR condition U = V! is assumed, then we have
A + B = Iy and (22) reduces to

_ A ON AT 0N
Ree - |:0N B} Rerr |:0N BT (23)
where the 2N x 2N matrix
3 Jimil _ IN+i=il _ |N+j—il
Rerr = Ep - p - p
IN+imj 4 2N+j—i
+2 P } (24)
4 2N

is consistent with the definition in [7]. This is a direct conse-
quence of using the same scenario. Noting that the top-left quad-
rant and the right-bottom quadrant of R, are the same ma-
trix denoted as £, and coupling with the fact that Tr(XY) =
Tr(YX), we have

1 1 - -
MSE = 2NTr(Rse)—2NTr((A A+B"B)¢)

1 My +IxKIy  JsL
:_Trq R A i 21;#1(}5) (25)

8N
where K=V TV 14+ VTV, andL =V TV 1-VTV. If
the orthogonality condition V~! = V7 is also assumed, then
K = 2Iy/; and L = 05, and since Tr(€) = (1/2)Tr(Rerr),
(25) reduces to
1
MSE = i Tr(Rerr)- (26)
So, if orthogonality is imposed, a particular pre/post-filter pair
does not affect the MSE of the entire signal block. Noticing that
an orthogonal transform does not change the MSE of e(n), this
is the exact analogy of Hemami’s conclusion that the particular
LOT does not affect the MSE of the entire coefficient block [7].
However, this is not true anymore if orthogonality is absent, and
some V /U pairs may give significant lower MSEs, resulting in
much better reconstructions.
It is worth pointing out that our design procedure does not in-
volve the DCT. This greatly simplifies the computation of R...

Moreover, with the help of (10), it is straightforward to show that
B= JNAJN and C = JNDJN. Next, since RO = JNR(]JN,
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Ro =JINRoIn,and Ry = InR4J y, if we denote the top-left
and bottom-right quadrant of R.. as{ and L, respectively, then

L =(CRy —BRy)CY — (CRy, — BR4)B”
=Jn (DINRoINy — ATJNR)IyD”
—(DINR2IN — AINR4)INAT) Iy

:JNUJN; (27)

so the diagonal entries of R.. are even symmetric, i.e.,
e3n_1_;=€2(i=0,1,...,N-1)ande?(i = 0,1,..., N—1)
can be computed as
e;=(D;Ro—A; R2)D] +(A; Ry—D; R2)A]  (28)

where we use A; and D; to denote the ith row of A and D,
respectively. If PR is desired, (28) can be shown to be reduced
toe? = A; EAT Ttis not necessary to compute R.. explicitly,
and only a small number of multiplications (around 4 N3, or N3
if PR is assumed) is needed to compute all e?.

Prior to a more practical example (N = 8), we first study a
simple illustrative example (N = 2) to shed some lights on how
the pre- and post-filters behave.

A. Case N = 2 With PR

In this case, both V. = v and U = 1/v are scalars. So,
Grc, MSE, and G are one-dimensional functions of v. Fig. 3
depicts the behavior of G, MSE and G for this example.
The first observation is that G, MSE and G obviously can
not achieve their optimal values simultaneously. Second, we al-
ways prefer a positive v since MSE(|v|) = MSE(—|v|) and
Gr(|v]) = Gr(—|v|) (MSE and G are even symmetric about
v) while Gre(|v]) > Gre(—|v|). Third, both |v| and 1/|v]
should be far from O since otherwise G will be small and
MSE will be large. Finally, there is a large range of v(v >
1) where Gr¢ is not very sensitive, and, thus, we can vary v
to achieve better MSE and/or G without adversely affecting
Grc.

When N > 2, experiments show that the aforementioned
observations still hold when determinant of V and | V| takes the
place of |v]. So, in the optimization procedure, we only consider
the pre/post-filters with [V| < 0 or |[V| &~ 0 or 1/[V| =~ 0. This
greatly improves the convergence time as well as the robustness
of the optimization process.

B. N =8

In this case, the optimization involves 32 (16 if PR is as-
sumed) free parameters, and the MATLAB function fminsearch
can quickly approach a near optimal solution. Table I tabulates
several pre/post-filter designs and compares the resulting LT,
{P1, P2, P3, P4}, with several other existing transforms: the
DCT, the LOT with the known maximum coding gain 9.22 dB
(LOT,pt) [31, the biorthogonal LT with the known maximum
coding gain 9.61 dB (LT, ) [3], and T6 and T9 in [7] (we skip
T7 and T8 because they give performance between T6 and T9).
All transforms except for T6 and T9 fit in the pre/post-filtering
framework. P1 achieves the lowest MSE, while P2 and P3 bias
coding performance more. PR is not assumed for P3 and P4, and
online dynamic switching as described in Section III is neces-
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Fig. 3. (Top) Behavior of Gr¢, (middle) MSE, and (bottom) G i in the case
of N =2 withPR(V =vand U = 1/v).

sary. The only difference between P4 and the LT, is that P4
can switch post-filters.

As expected, all orthogonal transforms (the DCT, the
LOTps, T6, and T9) have the same MSE; yet, coding gains
and reconstruction gains vary widely. With the DCT, G = 0
and the ill error distribution results in severe blocking artifacts.
T6 and T9 have better reconstruction gains than the DCT and
the LOT4p¢, but with much worse coding gains.

Compared to the orthogonal transforms, none of our designs
(P1-P4) is orthogonal, but each can achieve a lower MSE and/or
a higher G without heavily sacrificing coding gain. Note that
P4 has the same pre-filter, and, thus, the same coding gain as the
LTopt, while by dynamically switching the post-filter, it has a
lower MSE and a much higher Gr.

Fig. 4 shows the actual distributions of e? for selected trans-
forms. For transforms with low reconstruction gains (the DCT
and the LT,;), the errors concentrate on the center 8-point
block, while, for the others, errors are distributed to other pixels.
Clearly, P4 has a more uniform error distribution than the L'T,p¢
does. Finally, note that on average the error distribution curve
for P1 is well under the others since P1 has a far lower MSE.

V. TRANSFORM PERFORMANCE

Accurately simulating a real image communication system is
beyond the scope of this paper. We benchmark transform perfor-
mance using the following simple setup: Positions of lost blocks
are known to the decoder and the coded information of a block is
assumed to be packetized into one packet. We test the following
five block loss patterns.

e S0: No loss.

e S1:25% regular loss as shown on the left of Fig. 5.

e S2:50% regular loss depicted in the middle of Fig. 5.

e S3:25% random loss.

e S4: 50% random loss.

For S3 and S4, we repeatedly discard the information of the
block at arandom position until enough blocks are lost. Scenario
SO corresponds to perfect channels; S1 and S2 occur in mul-
tiple description coding where an image is coded as several in-
dependent descriptions; and S3 and S4 simulate the case that an
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TABLE 1
PRE/POST-FILTER DESIGNS AND COMPARISONS BETWEEN THE RESULTING LTS AND SEVERAL OTHER STANDARD TRANSFORMS

35

Transform | A | U | Gr¢ | MSE | Ggr
DCT I I4 8.31 0.200 0
0.8072 0.5594 0.1436  0.1218
-0.5718 0.6992 0.4214 0.0814 T
LOTopt 01218 -0.4443  0.8600 0.2193 v 9-22 | 0.200 | 0.44
-0.0814 -0.0286 -0.2492 0.9646
0.9550 0.7833 0.3548  0.2391
-0.5520 0.9008 0.6188 0.2354 _1
LTopt 0.1123 -0.3646  1.0916 0.3904 v 9-61 | 0.212 1 0.37
-0.0295 0.0081 -0.1196  1.1879
T6 Not Applicable Not Applicable 7.83 0.200 | 0.55
T9 Not Applicable Not Applicable 6.50 0.200 | 0.85
-1.6769  0.6005 -0.3369  0.1006
-0.7091 1.2843 -0.4077  0.1601 _1
Pl [ 01774 07553 -1.1195 0.1202 } v 6.95 | 0.140 | 0.67
-0.1131 0.1046 -0.8291  0.9090
0.5183 -0.3612 -1.2530 0.8415
0.1582 0.8663 -1.2547  0.5062 1
b2 [ 11711 0.2693 -0.4468 0.4451 ] v 8.41 | 0.153 | 0.64
-0.0511 0.2264 -0.2225 0.9502
switching between V! and
_8'282‘; 8'2282 'g'gégg :géigg [ 03200 -0.5082  0.5482 -0.2454 1
P3 ' ’ ’ ’ 0.2222 0.0874  -0.2836 0.3959 9.17 0.161 0.59
0.5262 -0.4003 0.8138 0.1117
-0.0742 0.1439  -0.0503 0.9080 -0.1779 0.1938 0.1714 s
L -0.0801 0.0443 -0.3094 1.1220 |
switching between V! and
0050 0T8I 038 021 1 | e UGN
P4 ' ’ ’ ’ 0.1654 0.2505 -0.1447 -0.0100 9.61 0.209 0.62
0.1123  -0.3646 1.0916  0.3904
-0.0295 0.0081 -0.1196 1.1879 0.0530 -0.0054 0.2076 0.2568
L -0.0848 0.0348 -0.2124 0.7750 |
TABLE 1I
RECONSTRUCTION RESULTS IN TERMS OF PSNR (WITHOUT QUANTIZATION) UNDER VARIOUS LOSS PATTERNS
Transform [ ST [ S2 | S3 | sS4 [ st | S2 | 83 | s4
Lena Barbara
DCT 2741 | 24.26 | 26.30 | 22.64 || 26.62 | 23.49 | 26.00 | 21.65
LOT,, 2742 | 24.23 | 26.32 | 22.66 26.61 | 23.48 | 26.01 | 21.64
LT opt 27.07 | 23.91 26.11 22.59 26.53 | 23.18 | 25.85 21.49
T6 27.40 | 24.23 26.38 22.68 26.60 [ 23.55 | 25.99 | 21.74
T9 27.30 | 24.33 26.51 22.67 26.59 | 23.42 | 25.93 | 21.66
P1 30.88 | 26.73 | 29.23 | 24.85 || 28.09 | 24.84 | 27.26 | 22.97
P2 29.79 | 26.15 | 28.35 | 24.32 26.75 | 23.39 | 21.97 | 22.17
P3 28.57 | 25.38 27.34 | 23.56 27.04 | 23.87 | 26.46 | 22.27
P4 27.15 | 24.05 | 26.30 | 22.90 26.19 | 23.02 | 25.82 | 21.65
05 -6~ DCT 2
Soal g~ -5 DCT, || 2[1]2
H L1 ARRAE
300 AR [E
Foal | 2[1]o[1]2
w 2[1]2
o1l R 2
% 5 10 i
08 ' ' —— Fig. 5. (Left)  25% regular block loss, (middle) 50% regular block loss, and
So4F i Ei (right) layers of neighbors where “0,” “1,” and “2” label the first layer, second
g layer, and third layer, respectively. Black blocks are lost blocks.
— 03+ B
.§0.2> b
8ol | loss may happen for S3 and S4. To reconstruct a lost block, we
p ‘ ‘ [ search the nearest layer of neighbors with at least one received
0 5 10 15

image is coded in a single description and transmitted through
a channel with random packet loss. Large contiguous areas of

pixel location

Fig. 4. Error distribution.

block in a diamond order as shown on the right of Fig. 5. In
other words, blocks in layer n + 1 are never considered unless
all blocks in layer n are lost. The block is reconstructed as the
mean of the received blocks of that layer. The 8-bit 512 x 512
Lena and Barbara images are used as the test images.
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Fig. 6. Portions of reconstructed Lena image without quantization, suffering from 25% regular loss. From left to right, top row: original; DCT (27.41 dB);
LOT,p¢ (27.42 dB). Middle row: LOT, ¢ (27.07 dB); T9 (27.30 dB); P1(30.88 dB). Bottom row: P2 (29.79 dB); P3 (28.57 dB); P4 (27.15 dB).

TABLE III
RECONSTRUCTION RESULTS IN TERMS OF PSNR (CODED AT 1 bpp BY L-CEB) UNDER VARIOUS LOSS PATTERNS
Transform | SO [ S1 | S2 | S3 [ s4 ] so [ s1 | s2 | S3 | &4
Lena Barbara
DCT 39.78 | 27.24 | 24.22 | 26.18 | 22.63 37.35 | 26.28 | 23.43 | 25.80 | 21.64
LOT,,¢ 39.95 | 27.25 | 24.19 | 26.21 | 22.65 38.38 | 26.42 | 23.43 | 25.86 | 21.63
LT op 40.26 | 26.94 | 23.88 | 26.01 | 22.59 38.87 | 26.20 | 23.16 | 25.72 | 21.49
T6 37.21 | 27.10 | 24.15 | 26.16 | 22.66 32.59 | 25.88 | 23.31 | 25.38 | 21.65
T9 35.64 | 26.89 | 24.20 | 26.18 | 22.63 31.69 | 25.47 | 23.25 | 25.18 | 21.63
P1 34.74 | 29.41 | 26.23 | 28.27 | 24.64 31.13 | 26.84 | 24.19 | 26.31 | 22.68
P2 38.38 | 29.33 | 26.02 | 28.05 | 24.28 35.76 | 26.37 | 23.30 | 25.90 | 22.14
P3 39.97 | 28.33 | 25.30 | 27.17 | 23.54 37.80 | 26.75 | 23.76 | 26.23 | 22.23
P4 40.26 | 27.02 | 24.03 | 26.20 | 22.86 38.87 | 26.02 | 22.98 [ 25.69 | 21.74

Table II tabulates reconstruction results in terms of PSNR
if the images are transmitted without quantization. Clearly, a
transform with a smaller MSE gives a higher PSNR. All LOTs
produce about the same PSNR since they have the same MSE.
Here, the L'T,¢ does not outperform any of the LOTs. This is
one of the reasons that orthogonal transforms are more pop-
ular in error-resilient coding so far. P1-P4 offer significantly
higher PSNRs compared to the other transforms. By dynami-
cally switching the post-filters, P4 consistently outperforms the

LT,p¢. Several reconstructed portions of the Lena image are
shown in Fig. 6. Although the images constructed with the DCT,
the LOT,p¢, and T9 have the same PSNR, the visual quality dif-
fers significantly since they have different reconstruction gains.
Comparing to the DCT reconstruction, blocking artifacts are re-
duced in the LOT,¢ construction, and even more suppressed
in the T9 reconstruction. Although yielding a lower PSNR, the
LT ,p¢ reconstruction is visually better than the DCT reconstruc-
tion. The P1-P4 reconstructions are superior than the others
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TABLE 1V
RECONSTRUCTION RESULTS IN TERMS OF PSNR (CODED AT 0.25 bpp BY L-CEB) UNDER VARIOUS LOSS PATTERNS
Transform | SO [ S1 [ s2 | S3 [ sS4 | so [ st | s2 | S3 [ s4
Lena Barbara

DCT 33.05 | 26.63 | 24.03 | 25.71 | 22.54 28.23 | 24.83 | 22.87 | 24.46 | 21.32
LOT 33.61 | 26.72 | 24.02 | 25.82 | 22.57 29.78 | 25.29 | 23.02 | 24.90 | 21.43
LT opt 34.34 | 26.55 | 23.78 | 25.73 | 22.56 || 30.03 | 25.18 | 22.83 | 24.84 | 21.34
T6 28.29 | 26.23 | 23.69 | 25.57 | 22.64 25.43 | 23.65 | 22.35 | 23.39 | 21.10

T9 28.22 | 25.28 | 23.56 | 24.82 | 22.26 24.61 | 23.20 | 22.15 | 22.96 | 20.95

P1 28.05 | 26.45 | 24.85 | 25.96 | 23.84 24.71 | 23.58 | 22.62 | 23.36 | 21.68

P2 31.97 | 28.06 | 25.52 | 27.13 | 24.05 27.06 | 24.47 | 22.62 | 24.19 | 21.69

P3 33.72 | 27.64 | 25.04 | 26.67 | 23.44 28.98 | 25.28 | 23.22 | 24.94 | 21.90

P4 34.34 | 26.63 | 23.92 | 25.89 | 22.81 30.03 | 25.00 | 22.65 | 24.80 | 21.47

Fig. 7. Portions of reconstructed Lena image (coded at 0.25 bpp), suffering from 25% random loss. From left to right, top row: locations of loss; DCT (25.71 dB);
LOT.pe (25.82 dB). Middle row: LT, (25.73 dB); T9 (24.82 dB); P1 (25.96 dB). Bottom row: P2 (27.13 dB); P3 (26.67 dB); P4 (25.89 dB).

in term of PSNRs and the distortion is almost imperceptible
in the P1 reconstruction. Benefiting from dynamic post-filter
switching, artifacts in the P4 reconstruction are visibly less an-
noying than those in the LT, reconstruction.

However, the above simulation results only reflect reconstruc-
tion performance. In practice, we have to take coding perfor-
mance into account. We use a JPEG-like block-based coder,
L-CEB [4], to simulate an error-resilient block image coding
system. The only differences between L-CEB and JPEG are:

1) LTs can take the place of the DCT in L-CEB and 2) L-CEB
uses more advanced entropy coding. We assume that block loss
occurs after decoding and blocks belonging to a specific loss
pattern are reconstructed prior to performing the inverse trans-
form. The coding and communication framework is fixed. Only
different transforms are tested, ensuring the comparison is as
fair as possible.

Tables IIT and IV list the reconstruction results in terms of
PSNR for different transforms and different loss patterns when
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Fig. 8.

Portions of reconstructed Barbara image (coded at 1 bpp), suffering from 10% random loss. From left to right, top row: locations of loss; DCT (29.69 dB);

LOT,p (29.61 dB). Middle row: LT op¢ (29.47 dB); T9 (28.29 dB); P1 (28.62 dB). Bottom row: P2 (29.45 dB); P3 (30.05 dB); P4 (29.55 dB).

the images are coded by L-CEB at 1 and 0.25 bpp, respectively.
The SO columns only illustrate coding performance since there
is no coefficient loss. Under this real-life communication envi-
ronment, penalized by their bad coding performance, the overall
performance of T6 and T9 in terms of PSNR is notably worse
than that of the DCT, the LOT; and the LT,p¢ most of the
time. On the other hand, our new designs P1-P4 generally offer
much more reasonable performances. Again, P4 yields a con-
sistent improvement over the LT,,;. Several reconstructed por-
tions of Lena and Barbara are shown in Figs. 7 and 8. The re-
constructs from P1-P3 are more pleasing than the others. The P4
reconstruction has less annoying artifacts than that of the L'Tp¢
and LOT,p reconstruction.

Our experimental results well illustrate the superior overall
performance of the proposed transforms P1-P4. Notice that P1
performs best at 1 bpp, but at 0.25 bpp, P2 or P3 offer better
visual quality. This illustrates the fact that we should design
error-resilient transforms according to the channel bandwidth as
well as the expected loss pattern. With a higher loss percentage,
reconstruction performance is more important. Another rule of
thumb is that we should bias coding performance more at low
bitrates. The reason is that at low bitrates most coefficients are

quantized to zero and quantization errors become the dominant
factor.

VI. CONCLUSION

This paper presents the design of error-resilient pre/post-fil-
ters for the block DCT coding framework. The proposed solu-
tion can also be viewed as a fast and efficient method to de-
sign error-resilient LPs with low computational complexity. We
demonstrate that each designed pre/post-filter pair provides a
different tradeoff between compression and reconstruction per-
formance. Hence, a pre/post-filter pair should be selected based
on the channel characteristics as well as the desired bitrate. To
conclude the paper, our original contributions are briefly sum-
marized as follows.

*  Werevisit the block-based concealment problem from the
new angle of adding pre- and post-filtering linear opera-
tors outside of the traditional DCT coding framework.

e Several novel error-resilient transforms are developed
via: biorthogonal pre/post-filtering based on invert-
ible linear operators and nonperfect-reconstruction
pre/post-filtering based on dynamic switching at the
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decoder. Both approaches are proven to be capable of re-
ducing the MSE of the reconstructed images comparing
to the DCT and previous error-resilient LOT designs.

e Our solutions are highly practical. Every pre/post-filter
design has a fast-computable separable algorithm. Stan-
dard compliance can be ensured since pre- and post-fil-
tering operates outside of the existing coding/communi-
cation infrastructure. The proposed framework also leads
to a much simpler transform optimization process. Most
of the time, all free parameters are grouped together in
one square matrix.

* Coding and communication simulations suggest that our
current designs provide a significant performance gain
over previous similar concealment approaches, both ob-
jectively and subjectively.
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