IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE 2006

1471

Locally Adaptive Wavelet-Based Image Interpolation

S. Grace Chang, Zoran Cvetkovié, Senior Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—We describe a spatially adaptive algorithm for image
interpolation. The algorithm uses a wavelet transform to extract
information about sharp variations in the low-resolution image
and then implicitly applies interpolation which adapts to the
image local smoothness/singularity characteristics. The proposed
algorithm yields images that are sharper compared to several
other methods that we have considered in this paper. Better
performance comes at the expense of higher complexity.

Index Terms—Image interpolation, locally adaptive, nonlinear
interpolation, wavelet.

1. INTRODUCTION

HE CLASSIC problem of image interpolation refers to ex-

tracting information from the given image to fill in the un-
known pixels values. It is used for magnification and zooming
purposes, which are the applications we have in mind. The chal-
lenge is to process the image in such a way as to keep the mag-
nified image sharp. Traditional methods, such as bilinear inter-
polation or spline approximation, inherently assume smooth-
ness constraints on the signal and, as a result, they typically
generate blurred images. The subjective quality of the interpo-
lated images can be improved by employing more sophisticated
image models as has been explored in many different directions
in the signal processing literature, including edge-directed in-
terpolation, various methods that use projections onto convex
constraints, morphological filtering, etc [1]-[14]. The problem
of image interpolation has been also studied within the com-
puter vision framework where it is normally approached using
probabilistic modeling that relies on extensive training [15],
[16]. In this paper, we study a wavelet-based method which at-
tempts to extract information about local regularity and sharp
variations in a low-resolution image and use that information
to apply different interpolation functions that adapt locally to
image smoothness/singularity characteristics.

Points of sharp variations, or singularities, are among the
most meaningful features of a signal. For images, these points
typically correspond to edges, or boundaries between regions.
Information about singularities can be obtained by multiscale
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edge detection methods developed in the computer vision
community [17]-[20]. The multiscale edge detection can be
formulated in the wavelet framework (e.g., as the Canny edge
detector [20] is equivalent to finding the local maxima in
the wavelet transform). This multiscale edge characterization
framework will be used here, as it allows both a convenient
analysis of edges and a model for the interpolation algorithm
introduced in this paper.

For a family of wavelets, the wavelet-transform modulus
maxima capture the sharp variation points of a signal, and
their evolution across scales characterizes the local Lipschitz
regularity of the signal [21]-[23]. For example, Fig. 1 shows
a one-dimensional (1-D) signal and its wavelet transform at
several scales. This signal includes singularities, such as a step
and an impulse, and other sharply varying regions. Each of
these sharp variations induces peaks in the wavelet transform
across scales, and the values of the peaks corresponding to
the same singularity change across the scales according to an
exponential function, the exponent of which depends on the
singularity.

The proposed interpolation algorithm will first capture and
characterize sharp variation points based on the multiscale
wavelet analysis. This characterization is then used to estimate
the high-frequency information necessary to preserve sharpness
of the edges. From the model of the problem, one can iden-
tify constraints on the estimate and, thus, refine the estimate
iteratively. The major difference between the proposed method
and other nonlinear or locally adaptive schemes is that by
means of wavelet analysis, it adapts to singularities of different
kinds (e.g., step-like edges, relatively smooth edges, Dirac-like
behavior, variations which are continuous but not continuously
differentiable, etc.).

The outline of the proposed method has been previously de-
scribed in a conference paper [24] where many important prac-
tical issues and investigations could not be addressed either be-
cause of the required brevity or the lack of their complete under-
standing at that time. However, the ideas presented in [24] have
led several interesting developments on the topic of wavelet-
based image enhancement and interpolation [25]-[30]; hence,
we felt that this more in-depth treatment of the proposed algo-
rithm would be in place.

The paper is organized as follows. Section II introduces the
wavelet-transform framework, and relates the multiscale edge
detection to the wavelet analysis. The discussion starts in con-
tinuous time, followed by issues due to discretization. In Sec-
tion III-A, details of the interpolation problem model and algo-
rithm are discussed in the 1-D case for clarity. This algorithm is
extended to reconstruct two-dimensional (2-D) images in Sec-
tion III-C. Results and comparisons with traditional interpola-
tion methods are presented in Section I'V.
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Fig. 1. A 1-D waveform and its wavelet transform for three scales, showing the propagation of extrema points across the scales.

II. MULTISCALE EDGES AND THE WAVELET TRANSFORM

In this section, we review work by Mallat [22], [23] and
Meyer [21] which relates edge detection algorithms to the
wavelet transform.

Most traditional edge detectors extract sharp variation points
by examining the first derivatives of the signal or its smoothed
version. This is because an inflection point indicates a neigh-
borhood of signal variation, and an inflection point in the signal
domain corresponds to the local extremum of its first deriva-
tive. Furthermore, a local extremum of the first derivative with
large magnitude corresponds to a region of sharp variation in the
signal domain, while one with small magnitude corresponds to
a region of slow transition. This edge detection strategy can be
formulated in the wavelet framework as follows.

Let A(z) be a smoothing function which satisfies
lim, 400 () = 0and [7°_6(z)dz = 1. Assume that §(z) is
differentiable and define a function ¢ (z): ¢ (z) = df(z)/dz. A
wavelet is defined to be any function which integrates to zero.
Hence, 1(z) can be considered as a wavelet. Now let v, ()
denote the dilated version of the wavelet function

1 T
bier= Lo ()
where s is the scale. The wavelet transform of f at scale s and
position z, denoted by W f(z), is given by the convolution
Wsf(x) = f(x)*1)s(x). From the linearity of convolution and
differentiation, it is easy to verify that

Woia) = f(a) « (s 5 ) -

d

s (f0(@) ()

where

r=1a(2).

Hence, the wavelet transform of the signal at scale s is equiva-
lent (up to a constant) to taking the first derivative of f * 6, the
signal smoothed at scale s.

As elucidated in [31], the notion of viewing an image at dif-
ferent scales is very natural for its understanding and analysis.
The role of the scale s determines how global or local the signal
features are that we want to capture. At a given scale, an ex-
tremum point in W, f(z) of large magnitude has the physical
meaning of locating a sharp transition region in f * ., while
an extremum of small magnitude indicates a region of relatively
slow variation. In the case that §(xz) is Gaussian, the detection
of extrema points corresponds to the Canny edge detector [20].
Note that a Gaussian 6(z) is the unique function with the prop-
erty of not creating additional spurious extrema points at larger
scales [31]. Therefore, for edge characterization, it is important
to choose a filter which is Gaussian or approximately Gaussian.

The extension of the multiscale edge detection to two dimen-
sions is straightforward. Let 6(z,y) be a smoothing function
which integrates to 1 and converges to zero at infinity, and let
0s(x,y) denote the dilation of §(z,y)

1 Ty

52 b ( s’ s ) ’

The image f(z,y) is smoothed by 6,(z,y), and its gradient
V(f85)(x,y) is computed. The direction of the gradient vector
at (z,y) is the direction at which f(z,y) has the sharpest vari-
ation. An edge point is defined to be a point (zg,yo) at which
|V (f*05)(x,)| is the maximum along the direction of the gra-
dient vector, and it is an inflection point of f x ;.

To relate multiscale edges to the two-dimensional (2-D)
wavelet transform, first define ¢! (z,y) = 06.(z,y)/0x and
2 (z,y) 00s(x,y)/0y, respectively. The wavelet trans-
form of f(x,y) consists of two components W1 f(z,y) =

0s(x,y) =
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fxyl(z,y) and W2f(x,y) = f*2(z,y), and it is related
to the gradient vector by

e Rl st

The singularities in images occur at points where the modulus

VIWEE(

is maximum in the direction of the gradient vector. Modulus
maxima form contours in the two-dimensional wavelet trans-
form domain and an extension of the 1-D edge detector would
require tracking the propagation of those contours across the
scales. That process would add considerable complexity to the
proposed interpolation algorithm; hence, we will consider a sep-
arable 2-D algorithm. That is, W} f(x,y) and W2 f(x,y) will
be treated separately, row by row and column by column, as in
the 1-D case.

From the previous discussion, it is clear that the value of the
wavelet transform at scale s measures the smoothness of the
signal smoothed at scale s. Furthermore, a sharp variation in-
duces a local extremum in the wavelet transform which prop-
agates across scales. To illustrate, we return to Fig. 1 which
shows a waveform and its wavelet transform at the dyadic scales
s = 27, for j = 1,2, 3. Bach isolated singularity produces ex-
trema points which propagate across scales, and the power law
according to which the values these extrema evolve across the
scales characterizes the local Lipschitz regularity of the func-
tion. In particular, a function f(z) is uniformly Lipschitz o over
an interval (a, b) if and only if there exists a constant K > 0
such that for all z € (a, b), the wavelet transform of f(z) satis-
fies [21]

= sﬁ(f x0s)(z,y).

M, f(z,y) = z,y)|? + W f(z,9)?

(Wef(z)| < Ks®. @)
If f(x) is differentiable but not continuously differentiable at
Zo, then it is Lipschitz 1 at x( and the corresponding wavelet
transform maxima behave as O(s) around z(. The larger the «,
the more regular or smooth the function is. If f(x) is discon-
tinuous but bounded in the neighborhood of xg, then « = 0
at zg, and the corresponding maxima remain constant across
the scales. On the other hand, the Dirac function has a negative
Lipschitz exponent o = —1, and it produces wavelet transform
modulus maxima which evolve as O(1/s).

A. Discretization Issues

For discrete processing, any continuous-time signal must also
be sampled before being processed. Thus, a signal is measured
at a finite resolution. Its wavelet transform can only be computed
over a countable and finite range of scales. In many applica-
tions, it suffices to compute the wavelet transform at the dyadic
scale s = 27 with j = 1,2,..., which also allows a fast dis-
crete computation. The fast computation algorithm, the design
of the discrete filters, and their relations with underlying contin-
uous filters are well explained in [23], to which the readers are
referred for more details. Here, only the necessary results and
notations will be introduced.
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Let the finest scale be s = 1, and the coarsest scale computed
to be s = 2”. Define a smoothing operator at scale s = 27 to be
Soi f(x) = f * ¢asi(x), 5 =0,1,...,.J, where

bo(w) = %¢>(f)

and ¢(z) is a function which satisfies certain properties such that
the difference, or details, between So; f and Soj+1 f is Wo, f,
as defined in (1). Now let D = {d,}ncz be a discrete se-
quence such that there exists a (non-unique) continuous function
f(z) € Ly(IR) satisfying Sy f(n) = d,, for all n € ZZ. Hence,
we assume that the underlying signal is the continuous func-
tion f(x), but only the discretized version S; f(n) is available
for processing. For a particular class of wavelets, one can com-
pute from the discrete sequence D = {S; f(n)},.cz the uni-
form sampling of the wavelet transform of f(z) at dyadic scales
s > 1. Let the following notations denote these discrete samples
Wi f = {Wai f(n+ €)Inez and S, f = {S2i f(n + €) }nez
where e is the shift due to convolution with ¢, and 1)5;. The
set of signals {(WQ‘iJ i<j<r, SgJ f} forms the discrete dyadic
wavelet transform of D = {S; f(n)}nez. Henceforth, the dis-
cussion will concern discrete sequences; thus, to simplify nota-
tion, the discrete sequence f[n] will denote the samples Sy f[n],
and Wy, f[n] will denote the discrete dyadic transform of f[n]
(note the omittance of the superscript d).

The forward discrete dyadic wavelet transform is character-
ized by two filters: a lowpass filter h[n] and a highpass filter
hi[n]. Let h§[n] and h{[n] be the filters obtained by upsam-
pling ho[n] and hq[n], respectively, by a factor of 27 (i.e., in-
serting 27 — 1 zeros between the coefficients). The wavelet trans-
form of a signal f € [3(Z7) can be computed through the con-
volution with h((] )[n] and hgj [n] in a recursive manner

Wy f = .—ijlf*h] Y :
2 Aj—1 2 (j71)1 7= 12J (3)
SQJf = SZJ'*lf*hO

where S1f = f, hgo) = hg, and h§°> = hy. Let the wavelet
transform operator VW denote the linear operator mapping f to
{Sqs fyWaif,j = 1,...,J}. The operator W can be imple-
mented by the octave-band nonsubsampled filter bank, provided
the multiplication with \; coefficients is incorporated appropri-
ately. The multiplicative coefficients ); are needed to compen-
sate for the deviation in the estimation of the Lipschitz regularity
introduced by discretization. More specifically, the constants A ;
are found empirically so as to make the discrete time step func-
tion have Lipschitz regularity « = 0. Obviously, the values of
A; are dependent on the chosen wavelet. The quadratic spline
filters are used for our work because they approximate coarsely
the Gaussian function and its first derivative and they also can
be used in fast implementation of the discrete dyadic wavelet
transform [23]. These filters are shown in Fig. 2. Their coeffi-
cients and the associated constants \; are in Table I. For perfect
reconstruction to be possible, it is necessary and sufficient that
there exist a synthesis pair ho[n] and hy[n] which satisfy the
perfect reconstruction condition

Ho(z)Ho(z) + H1(2)Hy(z) = “)

where Hy(z), H1(z2), HQ(Z), and ﬁ:l(z) are the z-transform of
the filters ho[n], h1[n], ho[n], and hq[n], respectively. The in-
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Fig. 2. Quadratic spline wavelet and smoothing function used in this work.
The continuous-time smoothing function ¢(x) in (a), and wavelet ¢>(z) in (b).
The corresponding FIR coefficients of the smoothing function (lowpass filter
ho[n]) in (), and of the wavelet (highpass filter 24[n]) in (d).

TABLE 1

FILTER COEFFICIENTS OF THE QUADRATIC SPLINE WAVELETS
AND ASSOCIATED A FACTORS

n H() Hl H() H1 L ] /\]
-3 -0.001953125 | 0.0078125 || 0 | 1.0
-2 0.125 | -0.01367125 | 0.046875 110.75
-1 | 0.125 0.375 | -0.04296875 | 0.1171875 || 2 | 0.6875
0] 0.375 | 0.5 | 0.375 | 0.04296875 0.65625 31 0.6719
1] 0375 | -0.5 | 0.125 | 0.01367125 0.1171875 || 4 | 0.6680
2 || 0.125 0.001953125 | 0.046875 5 | 0.6670
3 0.0078125 || 6 | 0.6668

verse wavelet transform reconstructs the original signal by pro-
gressively adding finer and finer details onto the coarse residual
signal Sy f. It can be calculated recursively as

Sosm1 f= AW, fxhI7V48,, ph S0 =g g1, 1
®)
where il((]o) = hg and }Nzgo) = h,. The inverse wavelet transform
operator W~ can be implemented as a nonsubsampled syn-
thesis octave band filter bank. Note again that the A; constants
are needed to offset the scaling in the wavelet transform (3).
The discrete dyadic wavelet transform is a redundant
representation of a function. An arbitrary set of sequences
{9;}j=1....0+1 is not necessarily the wavelet transform of
some function f in l3(Z7). It is the wavelet transform of some
function f € I3(Z7Z) if and only if

WV ({g;}i=1....041)) = {gi}i=1,. 041 (6)

If the set of sequences {g;}j=1.....s+1 satisfies (6), then we say
that it belongs to the range of the wavelet transform operator
W. The operator WW ™! is thus the projection operator onto
the range of the wavelet transform.

In practice, there are only finitely many, N, available sam-
ples of f[n], which creates a problem at the boundary in the
computation of the wavelet transform. To mitigate this problem,
the signal is extended with mirror symmetry. This periodiza-
tion avoids creating a spurious first-order discontinuity at the
boundaries.

The 2-D forward and inverse wavelet transforms can be com-
puted in a recursive manner similar to the 1-D case, imple-
mented with the nonsubsampled filter banks shown in Fig. 3.
For the 2-D wavelet transform, we choose separable filters, as
shown in Fig. 3, where the 1-D filters Hy, H1, FIO, and Fll are
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the same as in the 1-D wavelet transform. For perfect recon-
struction in the 2-D case, an additional filter L is needed, which
satisfies L(z) = (1 + Ho(z)Ho(z))/2. Readers interested in
more detail about this synthesis 2-D filter bank are referred to
[23] and [32].

III. INTERPOLATION ALGORITHM

The interpolation algorithm is first explained in one dimen-
sion for clarity. The discussion concentrates on magnification
by a factor of two. Magnifications for other factors which are
powers of two can be achieved by iteratively performing this
algorithm. First, the main concepts will be introduced in Sec-
tion III-A, and the details will be given in Section III-B. The
2-D algorithm will be developed in Section III-C.

A. Main Concepts of the Algorithm

The model of the interpolation problem is shown in
Fig. 4. The available signal {f[n],n = 0,...,N — 1}
is modeled to be obtained from the high resolution signal
{fo[n],m = 0,...,2N — 1}, which we wish to recover, by
lowpass filtering using the filter Ho(z) of our wavelet filter
bank followed by downsampling by a factor of two. Naturally,
one does not assume the exact knowledge of the lowpass filter
used in the sampling process. We conjecture that as long as
it is reasonable, the result of our algorithm will not depend
strongly on the choice of filters, and that has been confirmed
by the experimental results reported in Section IV. Further, we
have at our disposal the highpass filter H;(z) such that Hy(z)
and H,(z) together with a synthesis pair Hy(z) and H;(z),
constitute a perfect reconstruction nonsubsampled filter bank.
With this model, the goal of the interpolation algorithm is to
estimate the signals f, and g, at the output of Hy(z) and
H,(z), and then reconstruct an estimate of f; via the synthesis
filters. The algorithm consists of two stages: initial estimation
and refinement. R

1) Initial Estimation: An initial estimate f,, of the low-fre-
quency component f,, can be obtained by simply interpolating
f using, for instance, linear or spline interpolation. To find an
initial estimate of the high-frequency component g,,, first notice
that it contains information that would add sharpness to f. That
is, if there were a sharp edge in the length 2N signal f, then the
length N component f would contain a smoothed edge in this
region. The reconstruction based solely on f, would not be as
sharp as the original edge in fy. The information about the ad-
ditional sharpness resides in g,,, whose essence is well captured
by local extrema points, assuming that the filters used are ap-
propriate for multiscale edge characterization. Thus, the central
part of the initial estimation is to find the values and positions of
the local extrema in g,,. The detailed procedures are illustrated
in Fig. 5.

The first step in estimating g, is to identify the edge regions
via analysis of the available signal f. This identification is based
on extracting local extrema of the wavelet transform of f which
propagate across scales, and estimating the parameters in (2)
which characterize this propagation. The knowledge of an edge
location in f conveys knowledge about the edge location in g,
as well, up to a possible ambiguity of &1 in location, since the
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Fig. 3. The 2-D discrete dyadic wavelet transform. (a) Forward transform. (b) Inverse transform.
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Fig.4. Interpolation problem model for 1-D. The available signal f is modeled
as the subsampled lowpass component of a higher resolution signal f,, which
is the desired signal.
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wavelet transform of f is the decimated version, by a factor
of two, of the wavelet transform of fj starting from the scale
s = 2% (Fig. 6)
Wai fol2n] = Wai-1 f[n], @)
An edge information at f[zo] extracted from the analysis of
{Was f}j=1,2,...,; and characterized in the parameters K and o
of (2) translates to an edge at fo[2z¢]. That is, an extremum in
Wor fo can be estimated to be Wa1 fo[220] = Wao flzo] = K.
Naturally, the downsampling operation in (7) introduces
some ambiguity which needs to be addressed in the esti-
mation process. More specifically, the true extrema points
of {Wyi fo};=1,...741 may not have been sampled in the
downsampling process. Thus, the edge identified at f[z(] may
actually be at one of {fo[220 — 1], fo[2z0], fo[220 + 1]}. In
Section III-B, we will discuss constraints which allow possible
corrections of this ambiguity.
The edge characterization allows the estimation of significant
extrema points of g,,. To obtain an initial estimate of g,, that may

be closer to the real g, the points in between are then filled in
by linearly interpolating between the extrema points.

2) Refinement by Alternating Projection: The initial es-
timates of f, and g, can be further refined by identifying
constraints which they should obey. These constraints define
convex sets and one can use the projection onto convex sets
(POCS) method to find a solution existing in the intersection
of these sets, called the reconstruction set. The POCS method
alternately projects the signal onto the various convex sets until
it converges to a solution in the reconstruction set (provided that
it is nonempty). We identify three convex sets of constraints V),
S, and &, with the following meaning.

1) V: The waveforms { fus Ju } must belong to the range of
the wavelet transform; we denote this subspace by V.
S: f., must belong to a set S, which comprises of length
2N signals whose downsampled version is consistent
with f, the available signal.
&: The edge points of fj (estimated from the analysis of f)
should be reflected in local extrema of g,,. £ is comprised
of signals whose structure is consistent with the edge in-
formation, and g,, should reside in £.
The first two items are hard constraints in that they follow from
the consistency of the problem model in Fig. 4. The third con-
straint is based on the estimation of how the signal should be
at finer scales, and its purpose is to enhance the resolution of
the reconstructed signal beyond that achieved by the first two
constraints.

The projection operator Py, onto the subspace V is the oper-
ator in (6) and is pictorially illustrated in Fig. 7: it puts the pair

2)

3)
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(fu, §u) through the synthesis filter bank, followed by the anal-
ysis filter bank, where the filters obey the perfect reconstruction
property in (4).

The projection operator Ps for the convex set S needs to en-
sure that f,, is consistent with the available signal f. At the very
least, f,[2n] = f[n] must hold. In practice, better performance
could be achieved by placing restrictions, such as smoothness
constraints, on the odd samples fu [2n + 1] as well, especially
in regions of sharp variation. The details of this operator will be
discussed in the implementation section.

The high-frequency component g, must reside in the set £,
which consists of signals that are consistent with the estimated
edge information. However, only the estimated edge informa-
tion is available and, thus, one must allow some error tolerances.
In Section III-B, we discuss the structure of the set £ which al-
lows varying degrees of leniency on the values and locations of
the wavelet transform extrema, and finding a corresponding op-
erator Pg which projects g, onto £.

The enhancement algorithm iteratively improves the esti-
mates with the three projection operators Py, Ps, and Pg.

Let { ﬁso), @50)} denote the initial estimates of f, and g,. At

the end of the kth iteration, the estimates of fu and g, are
(£} = Pe(Ps(Py({ £V, 0870 1).

B. Implementation Details

The association of extrema points across scales and the char-
acterization of Lipschitz regularities are not so simple when we
deal with real data. Wavelet transform extrema points due to
closely spaced sharp variations may interfere with each other
and make association difficult. This interference also compli-
cates the estimation of the parameters in (2), and these compli-
cations will be discussed below. The estimation of g, will be
elaborated, as well as the the exact structure of the sets S and £
and their respective projection operators.

1) Associating Extrema Across Scales: To extrapolate the
extrema points, we need to first select important singularities
and associate the corresponding extrema points across scales.
Since Wy f contains an abundance of extrema which are not
necessarily due to global structures, the extrema selection is, in-
stead, done at a coarser scale s = 22. For each extremum at
scale s = 22, the algorithm searches in the other scales for ex-
trema associated with it.

Due to various reasons, not all extrema are observed to prop-
agate from scale 27 to 27+, Extrema points at fine scales in-
duced by closely spaced singularities may merge into one ex-
tremum point at coarse scales. Also, because the wavelet trans-
form is discretized in both scale and space, one may not always
observe the extrema points evolving across scales. For these rea-
sons, it is sometimes difficult to associate the extrema points
and, thus, some empirical rules are used. Suppose we are an-
alyzing the mth singularity which induces extrema points at
a location x%) in scale s = 29. The values of x%) are un-
known except for xsrzl), since the association starts from 1;53)
in scale s = 22. We search in other scales in a small neigh-
borhood around 375,%) to find extrema points which obey the
following rules. These extrema must be of the same sign and
must all be maxima (or minima). Furthermore, it is reasonable
to assume that the extrema values should not differ too much
from scale to scale and that not all types of singularities are
important for image quality; thus, we restrict the ratio between
two extrema points of consecutive scales to be within a range
1/215 < [Wa flaD])/|Wass1 flz5T]] < 215, In this way
we focus on singularities which correspond to Lipschitz regu-
larity « [as defined in (2)]) in the range o € (—1 — ¢€,1 + ¢)
and allow some margin to account for possible merging of local
extrema as well as for possibly missing an actual extremum due
to downsampling. The choice of the range of « is not critical
as long as it is not too large. In [25], the authors report results
obtained by focusing only on step edges, that is, singularities
which correspond to « = 0, which simplifies the described al-
gorithm and still exhibits good performance.
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2) Estimating High-Frequency Component g,: Let us first
rewrite the relationship in (2) in discrete-time and explicitly
show the dependence of the local Lipschitz parameters on the
different singularities. This results in

W fle)] = Kom(27)°,
where LL‘%) is the location of the local extremum at scale 27 cor-
responding to the mth singularity, c,, is the Lipschitz regularity
of f at the singular point, and K, is a nonzero constant. The
objective is to estimate K, and «,,, and then extrapolate to
an extremum point at scale s = 2° through estimating its lo-
cation a:,(3) and value Wyo f[xgg)]. Recall that the relation be-
tween g, Wai fo, and Wa; f is Wait1 fo[2n] = Wa; f[n] and
gul2n] W fo[2n] = Wao f[n]. Thus, this extrapolation pro-
vides the first step in obtaining an estimate of the high-frequency
component Wa: fy (or g,,) by first estimating Woo f.

For those singularities whose sequence of extrema,
Wai f [a:,(fl)] j = 1,...,J is available, the parameters o,
and K, in (8) can be estimated via linear regression on

®)

IOgZ(WQJf[x%)]) :10g2Km +Jam J: ]-7J
An initial estimate of the extremum point of the wavelet trans-
form of f at scale 2° is then given by Wao f[a:g,?)] =K, =

Ju [2:5,(2)]. The extrema location in scales s = 2° and s = 2! is

assumed to be the same, that is, we let w,(f,],) = wg ).

The extrema extrapolation yields an estimate of the extrema
positions and values in g, [21’52)]. An initial estimate of the re-
maining points are obtained by linearly interpolating between
consecutive extrema points.

3) Projection Operator Ps for S: From the problem model
in Fig. 4, it follows that Ps must, at the very least, assign
ful2n] = fln]. In practice, this constraint alone does not
prevent the spurious oscillations which often occur in sharp
variation regions. To avoid this artifact, each odd sample
fu[2n + 1] is bounded within an interval determined by the
smoothness of f,,[2n] in that vicinity.

Let f,[n] be a length 2N bicubic spline interpolated version
of f[n]. Also, let the discrete Laplacian gradient of f[n] be de-
fined as V f[n] = f[n] —(1/2)(f[n — 1] + f[n+ 1]). The upper
bound on the odd samples of f;, is made to be HI¢, 2n+1] =
ful2n + 1]+ ¢ % (|Vf[n]| + |V f[n +1]|). The value of ¢ = .5
was used. Similarly, the lower bound LO, [2n +1] is calculated
asLOy, 2n + 1) = ful2n+ 1] —ex (|Vf[n]| + |V fn + 1])).

To summarize, the operator Ps modifies fu by assigning f
to the even samples and bounding the odd samples to within the
interval [LO¢, [2n + 1], HI [2n + 1]].

4) Projection Operator Pe for £: Being the highpass com-
ponent, the waveform g,, should reflect sharp variations in fj.
From the analysis of the wavelet transform of f, we have some
knowledge of the extrema values and positions in g,. Hence,
the set £ can be thought of as the set of waveforms minimizing a
specified cost function which penalizes when the extrema values
do not conform to this knowledge. The operator P¢ modifies g,
in a way such that the result has a lower cost.

This edge information, however, is estimated and, thus, prone
to inaccuracy especially when using data containing more than
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just isolated singularities. The downsampling process intro-
duces errors as well. Knowing that a certain set of points are
edge points implies that the other points are not. Thus, one
needs to prevent additional spurious edges being created during
the reconstruction. With this in mind, there are various degrees
of leniency that can be employed when constructing the cost
function. We can either 1) constrain g, to retain the initial
estimates throughout the reconstruction; 2) allow the values
to be within an allowable range; or 3) have no constraints at
all on the values. Approaches 1) and 3) are extreme cases,
assigning either infinite cost for wrong values or no cost at all.
The allowed interval of approach 2) serves as a moderation,
and yields better results. In the following, we will not construct
explicitly an analytical cost function, but rather describe how
Prc modifies the input to conform to the edge information.

Extrema Location: Because the initial estimate of g, is
obtained by interpolating from the estimate of the subsampled
waveform g, the sampling may be such that we miss the true ex-
trema and obtain instead the adjacent points. Thus, for each ex-
tremum of g,,, the points immediately next to it are also allowed
to be extrema points to account for this ambiguity. More specif-
ically, if we initially determine z£2) to be an extremum point
in the length-N signal § (which translates to location 2:1:,2) in
Ju), then after the projection Ps Py, 2:5,(2) may not be an ex-
tremum point of g,, any longer. If the point of interest is a max-
imum (minimum) point, then the abscissa corresponding to the
greatest (smallest) of {g,, [2$52) —1], gu [2$52)],f/u [2$52 + 1]}
is assigned as the new local maximum (minimum).

Between Extrema Points: The points between adjacent
extrema need also to be constrained to prevent spurious “edges.”
For example, by definition, the points between a pair of adjacent
maximum and minimum points should have values bounded
by these extrema values and, furthermore, the slopes of these
in-between points should be monotonic so that there is no
other extrema among them. Such a consistent reconstruction
can be achieved by a simple algorithm proposed in [32] which
reconstructs a signal from only its wavelet extrema points. For
the interpolation problem, it has been found experimentally that
these constraints are too restrictive for reconstructing g, since
the extrema information is estimated and more leniency should
be allowed. Therefore, “softer” constraints will be described.

In predicting the extrema points of g,, only a subset of
them could be extrapolated from the coarser scales due to the
fact that coarser scales typically have fewer extrema than finer
scales. Thus, for each extremum predicted in g,, we only
assume that it is valid locally. For each maximum (minimum)
examined, the points in a small neighborhood around it (a
seven-point-centered window is used) are clipped to be less
(greater) than or equal to this maximum (minimum) point. Since
we are working with gray-scale images, another optimization
is to clip all of the pixel values to be within [0,255]. These
constraints are very lenient, and we prefer them over the
more restrictive ones when analyzing real data, where it is
difficult to ensure the robustness of capturing all of the extrema
points. In our previous work in [24], we used strict constraints,
such as bounding extrema values, to be within an estimated
range, and enforcing monotonicity between consecutive extrema
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points. This sometimes resulted in images with some unpleasant
artifacts, such as overly pronounced edges or small streaks.
Here, we find that the softer constraints yield much more
pleasant-looking results.

C. Enhancement Algorithm for 2-D Images

In general, analyzing a 2-D problem by treating the two coor-
dinates independently is not an optimal approach. However, for
computational reasons, we propose here to treat the two coordi-
nates separately. The problem model for the 2-D case is analo-
gous to the 1-D case, and is illustrated in Fig. 8 for clarity. To
reiterate, the goal is to extrapolate from f information about f,,
J1u ef Wi 21 fo,and g2, def W 21 fo, which are the necessary
components of fq.

1) Initial Estimates: In the wavelet transform, the data
are filtered by the separable 2-D filter bank as discussed ear-
lier. The wavelet transform generates the row components
{W1,9; f}j=1,...7, the column components {W5 5 f};j=1,...7,
and the low resolution component S; f, all of which are N x V.
Bicubic spline interpolation is used to obtain the initial estimate
of the size 2N x 2N signal f,. We observed that a better per-
formance is achieved if bicubic spline interpolation is used for
the initial estimate of f,, compared to pixel replication, bilinear
interpolation, or interpolation by zeros. That is because the
intersection of the convex constraints imposed by our algorithm
consists of more than one image, so the alternating projections
converge to different images depending on the starting point.
Therefore, the initial estimate should be a more natural image.
The ith row of {W; 55 f}j=1,...7 is used to estimate the 2ith
row of the scale s = 2° row component as in the 1-D case.
After interpolating this row to length 2N, we have an initial
estimate of the 2ith row of W s fy. Having only extrema
constraints on the even lines may result in jagged edges during
the reconstruction process. To mitigate this artifact, we estimate
the extrema of an odd row based on its two neighboring even
rows. Typical images have smooth contours which traverse
numerous rows or columns. Thus, for a given extremum on the
2ith row, if there is an extremum on the (2i 4+ 2)th row which
is of the same type (i.e., both maxima or both minima) and
same sign, and is in a close proximity (within 4 pixels), then
we assume there is an extremum of the same type and sign on
the (24 + 1)th row. The location and value are taken to be the
average of the corresponding extrema on the neighboring rows.
For simplicity, averaging is used rather than fitting a smoothed
curve across these lines since the considered neighborhood is
small, and the difference in location is not significant. A similar

{ Interpolate l——fu I;Io(z,)flo(zy)

Interpolation problem model for 2-D.
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KX

analysis is also done on the columns of {W5; f};—1 . s to
obtain an estimate of W5 o1 fj.

2) Alternating Projections: The estimates fu, J1,u>and Ga 4
are iteratively refined using constraints analogous to those pro-
posed in the 1-D case. The 2-D version of Py, Ps, and Pg will
be described.

The projection operator Py is simply a one-level 2-D in-
verse wavelet transform followed by a one-level 2-D forward
wavelet transform. The operator Ps first makes the assignment
ful2n1,2n9] = f[n1,no] for the even samples. To constrain
the odd samples, we define f,, [rn1,n9] tobe a 2N x 2N bicubic
spline interpolated version of f[n1,ns], and the discrete Lapla-
cian gradient of f to be

V flna, no] =f[na, o] — i(f[nl — Lno]+
+ fln1 + L,na] + flni,ne — 1] + fln1,n2 + 1]).
)
The upperbound on the samples of f,[n1,ns] is taken to be
Hiy, [0y, 1] = fu[na, na]+
+wlny, na] * Upsample(|V f[ny,ns]|)  (10)

where the second term is the convolution between a weighting
function w(n1, no| depicted by the matrix

N NN N
N~ = N
NG N [N

and the upsampled version of |§ fln1,m2]| (upsampled by a
factor of 2 in each direction). The lower bound LO ¢, [n1, n2]
is defined similarly, but with a subtraction substituting the ad-
dition in (10). The operator Ps then bounds f,[n1,ns2] to be
within [LOfu [7117 7’L2]7 HIfu [7’L17 712]]

Each of the 2N available rows of g, ,, and the 2N available
columns of g ,, are treated as a separate 1-D problem, and are
projected onto £ using the 1-D operator Pg described in Sec-
tion III-A.

IV. EXPERIMENTAL RESULTS

The performance of the algorithm will be compared with sev-
eral standard methods, such as bilinear interpolation, bicubic-
spline interpolation, and bicubic-spline interpolation followed
by unsharp masking and also with the edge-directed interpola-
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Fig.9. Interpolation of the Barbara image, with the even-length low-pass filter ¢4 [n]. (2) Original 256 x 256 image. (b) Lowpass, available image 128 X 128. (c)
Wavelet-based interpolation. (d) Bicubic spline interpolation with unsharp masking and prefiltering. (e) Edge-directed interpolation. (f) Bicubic spline interpolation.
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Fig. 10. Interpolation of the Lena image with the odd-length low-pass filter »[n]. (a) Original 256 x 256 image. (b) Lowpass, available image 128 x 128. (c)
Wavelet-based interpolation. (d) Bicubic spline interpolation with unsharp masking and prefiltering. (e) Edge-directed interpolation. (f) Bicubic spline interpolation.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on July 09,2010 at 13:49:44 UTC from IEEE Xplore. Restrictions apply.



CHANG et al.: LOCALLY ADAPTIVE WAVELET-BASED IMAGE INTERPOLATION 1481
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Fig. 11. Interpolation of the Baboon-A image, with the odd-length lowpass filter 2 [12]. (a) Original 256 X 256 image. (b) Lowpass, available image 128 x 128. (c)
Wavelet-based interpolation. (d) Bicubic spline interpolation with unsharp masking and prefiltering. (e) Edge-directed interpolation. (f) Bicubic spline interpolation.
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Fig. 12. Interpolation of the Baboon-B image, with the lowpass filter 3[n] = ho[n]. (a) Original 256 X 256 image. (b) Lowpass, available image 128 x 128. (c)
Wavelet-based interpolation. (d) Bicubic spline interpolation with unsharp masking and prefiltering. (e) Edge-directed interpolation. (f) Bicubic spline interpolation.
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Fig. 13. PSNR as a function of iterations. The curves are for images with 1 (+———), @2 (0 — - — 0), and 3 (- - - *). (a) Barbara. (b) Lena. (c) Baboon-A.
(d) Baboon-B.
tion proposed in [14]. Unsharp masking is a commonly used separable filter p[ny,ns] = @[ni]¢[nz]. The three choices of

method for boosting the high-frequency portion of a signal.
The general operation is to take the input f[n1,ns] and yield
v[ny, ne| = flni, na] + Aulni, ne] where A > 0, and u[ny, ns]
is a defined gradient at location [n1, n2]. A commonly used gra-
dient is the discrete Laplacian defined in (9), and a commonly
used value for A is 1. We consider two types of bicubic-spline
interpolation: the method which involves a prefiltering step,
as described in [33], so that the known pixels are reproduced
exactly, and the traditional spline “interpolation” which consists
of applying just the bicubic-spline filter. The filters used in the
wavelet decomposition are given in Table I, and three levels of
decomposition are computed.

In order to obtain peak signal-to-noise ratio (PSNR) mea-
surements in addition to the visual judgement, we take a
2N x 2N image, fo[n1,ns], filter it with some lowpass filter
©[n1,ns], and downsample it to obtain the available N x N
image f[n1,n2]. The choice of the filter ¢[ni,n2] is a param-
eter which we wish to test to see how sensitive the algorithm
is with this choice. Each 2-D lowpass filter y[ni,ns] is a

@[n] are p1[n] — 12-tap symmetric lowpass filter generated by
the MATLAB firl(11, 0.5) function, p2[n] — 11-tap symmetric
lowpass filter generated by the MATLAB fir1(10, 0.5) function,
and @3[n] — the same filter hg[n] used in the wavelet analysis.
The even-length filter has a delay of 1/2, while the odd-length
filter has a delay of zero. The reason for choosing ¢3[n] is to
obtain a benchmark to see how well the algorithm can perform
when we “cheat” by knowing the nature of degradation from
Joto f.

The reconstructed images generally attain most of their
quality in few iterations and practically do not change after 7-8
iterations, both in visual quality and in PSNR measurements.
The measurements listed and images displayed are obtained
after 15 iterations. The results obtained using only the initial
estimate of the proposed algorithm and focusing only on
step-edge singularities, as reported in [25], also demonstrate
good performance compared to bilinear interpolation and
bicubic spline interpolation without prefiltering and unsharp
masking.
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TABLE 1I
COMPARING PSNR OF DIFFERENT METHODS WHEN THE GIVEN IMAGE IS
DOWNSAMPLED AFTER LOW-PASS FILTERING USING: (a) THE
EVEN-LENGTH FILTER {1 [n], (b) THE ODD-LENGTH FILTER 3 [n],
(c) THE FILTER 3[n] = ho[n]

Image || Wavelet | Bicub. | Linear | Bicub. + UnsharpMask
Barbara 21.36 21.20 | 21.36 20.50
Lena || 22.71 21.44 | 21.69 20.86
Baboon-A 21.86 21.66 | 21.90 20.91
Baboon-B 19.80 19.56 | 19.71 18.96
(a)
Image || Wavelet | Bicub. | Linear | Bicub. + UnsharpMask
Barbara 24.64 26.79 | 26.55 27.34
Lena 27.48 32.16 | 31.07 32.69
Baboon-A 25.32 27.37 | 26.98 27.79
Baboon-B 22.41 23.59 23.31 23.92
(b)
| Image || Wavelet [ Bicub. [ Linear | Bicub. + UnsharpMask |
Barbara 26.94 24.99 | 24.86 25.14
Lena || 32.46 27.86 | 27.49 28.13
Baboon-A || 27.57 | 25.53 | 25.35 25.72
Baboon-B || 26.06 24.62 | 24.45 24.76

()

Each set of experiments consists of taking one of the four
test images and one of the three ¢;[n] lowpass filters, and inter-
polating the images using four different interpolation methods.
Here, only one set of experiments for each test image will be
shown for wavelet interpolation, edge-directed interpolation,
traditional bicubic-spline interpolation, and bicubic-spline
interpolation preceded by the prefiltering step and followed
by unsharp masking. The Barbara experiment with filter ¢1[n]
is shown in Fig. 9, Lena with ¢s[n] in Fig. 10, Baboon-A
with 9[n] in Fig. 11, and Baboon-B with ¢3[n] in Fig. 12.
The images are also posted at www.kcl.ac.uk/cdspr/zc/im-
ages/name.tiff, where name is Barbara, Lena, BaboonA, or
BaboonB. Note that in the Barbara experiments, the interpolated
images show aliasing on the scarfs. This is through no fault of
the interpolation algorithms, but rather that the downsampling
operation, used to obtain the test image f, already introduced
aliasing. In all of the experiments, the wavelet interpolation
approach yields images considerably sharper than those from
linear, bicubic spline, or edge-directed interpolation, and also
improves, but less markedly, over the bicubic-spline method
used in combination with unsharp masking. We observed a
barely noticeable effect of the prefiltering step on the visual
quality of the interpolated images in the case of bicubic-spline
interpolation. Unsharp masking, on the other hand, did make a
difference.

Visually, experiments from the three different filters ¢;[n]
yield very similar results and conclusions, but the PSNR tells
quite a different story. Although the PSNR is not a good indi-
cation of image quality, it is nevertheless frequently used, and
the results are tabulated in Table II for the wavelet method,
bilinear interpolation, bicubic spline interpolation, and bicubic
spline interpolation with unsharp masking. The best numbers
are highlighted in bold. The PSNR results depend on the choice
of lowpass filter ¢;[n]. For the even-length filter 1[n],the
methods with the highest PSNR are either the wavelet or the
linear method. When the odd-length filter 2 |[n] is used, bicubic
spline interpolation with unsharp masking yields the highest
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PSNR. With @3[n] = hg[n], not surprisingly, the wavelet
approach yields the highest PSNR.

Fig. 13 shows the PSNR as a function of the iteration number
for the images Barbara, Lena, Baboon-A, and Baboon-B. Each
plot shows three curves, for the three choices of lowpass filter
©i[n]. As mentioned previously, the reconstructed image re-
mains visually indistinguishable after 7-8 iterations. The PSNR
also shows quick convergence, though it is not always mono-
tonically increasing. For filters ¢4 [n] and y2[n], the PSNR ac-
tually decreases after the third or fourth iteration, but for 3[n],
it is monotonically increasing. The reason for the monotonic in-
crease of PSNR when @3[n] = hg[n] is because, in that case,
our model for the process in which the low-resolution image
is obtained is correct, so the iterative procedure in every step
decreases the distance between the interpolated image and the
original, or an image which is very close to the original. On the
other hand, when filters other than hg[n] are used to generate
the low-resolution image, there is a discrepancy between the
assumed model and the actual process, so the alternating pro-
jections may converge to images which are not as close to the
original as they would have been had the model been accurate.
Nevertheless, our experimental results demonstrate that the vi-
sual quality of the images which the algorithm converges to is
not sensitive to the accuracy of the model and, therefore, the per-
ceptual quality of interpolated images steadily improves toward
a saturation level, despite the fact that the PSNR may decrease.

V. SUMMARY

We have proposed a wavelet-based method for image inter-
polation which attempts to capture and preserve sharp varia-
tions of different kinds. By characterizing edge points via the
wavelet transform, we extrapolate the extrema needed at a finer
scale for reconstruction of a higher-resolution image. The re-
sults show that the enhanced image is significantly sharper than
simple schemes, such as linear and bicubic-spline interpolation,
or edge-directed interpolation, and sharper, but less markedly,
than bicubic-spline interpolation used in conjunction with un-
sharp masking. The better performance comes at the expense of
significantly higher complexity. We believe, however, that the
method leaves space for many modifications that can further
improve its performance and reduce computational complexity,
and that the ideas and concepts presented in this paper indicate
a promising path for further research of image interpolation in
the direction of wavelet-based locally adaptive schemes.
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