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Variational Denoising of Partly Textured Images
by Spatially Varying Constraints

Guy Gilboa, Nir Sochen, and Yehoshua Y. Zeevi

Abstract—Denoising algorithms based on gradient dependent
regularizers, such as nonlinear diffusion processes and total
variation denoising, modify images towards piecewise constant
functions. Although edge sharpness and location is well preserved,
important information, encoded in image features like textures or
certain details, is often compromised in the process of denoising.
We propose a mechanism that better preserves fine scale features
in such denoising processes. A basic pyramidal structure-texture
decomposition of images is presented and analyzed. A first level of
this pyramid is used to isolate the noise and the relevant texture
components in order to compute spatially varying constraints
based on local variance measures. A variational formulation with
a spatially varying fidelity term controls the extent of denoising
over image regions. Our results show visual improvement as well
as an increase in the signal-to-noise ratio over scalar fidelity term
processes. This type of processing can be used for a variety of tasks
in partial differential equation-based image processing and com-
puter vision, and is stable and meaningful from a mathematical
viewpoint.

Index Terms—Image denoising, nonlinear diffusion, spatially
varying fidelity term, texture processing, variational image pro-
cessing.

I. INTRODUCTION

PARTIAL differential equation (PDE) methods have been
widely used over the past decade for image denoising

with edge preservation. These methods are either based on
the axiomatic approach of nonlinear scale space (nonlinear
diffusions), or on the variational approach of energy functional
minimization. Details regarding the interaction and close rela-
tions between these approaches can be found, for example, in
[1] and [35].
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A classical variational denoising algorithm is the total varia-
tion (TV) minimizing process of Rudin–Osher–Fatemi (ROF)
[28]. This algorithm seeks an equilibrium state (minimal en-
ergy) of an energy functional comprised of the TV norm of the
image and the fidelity of this image to the noisy input image

(1)

This is further generalized by the -formulation [10] with the
functional

(2)

The Euler–Lagrange (E–L) equation is

(3)

where is a scalar controlling the fidelity of the solu-
tion to the input image (inversely proportional to the measure
of denoising). Neumann boundary conditions are assumed. The
solution is usually found by a steepest descent method

(4)

When the noise is approximated by an additive white process of
standard deviation , the problem can be formulated as finding

(5)

where (note that, for noise of an impulsive type, this
method is not suitable; see, e.g., [6] and [23]). In this formula-
tion, can be considered as a Lagrange multiplier, computed by

(6)

The solution is attained by iteratively evolving (4) and updating
(6) until convergence. As (5) uses a scalar constraint (and a
scalar ), we refer to it as the scalar problem. The actual func-
tion with which we work in this paper is .
The process that results from this function is an approximation
of TV which is easy to implement by standard discretization of
the E–L equations since it has no singularity at zero gradient.
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Also, when the descent is implemented by an explicit method,
the time step bound is maximal (bounded by the standard CFL).

We choose it as a representative of variational denoising pro-
cesses.

The performance of this, and other PDE-based methods, have
shown impressive results, especially for nontextured images.
The implicit assumption that underlies the formulation of these
flows/equations is the approximation of images by piecewise
constant functions, which are in the space of bounded variations
(BV). We recall that a signal is in BV if

where is the distributional gradient (see definition in [11]).
In some sense, they produce an approximation of the input
image as the so-called “cartoon model” and, thus, naturally
dispose of the oscillatory noise while preserving edges (in some
cases even enhancing them, e.g., [26]).

A good cartoon model captures much of the image impor-
tant information. Yet, it has several obvious drawbacks: tex-
tures are excluded, significant small details may be left out, and
even large-scale features, that are not characterized by domi-
nant edges, may be disregarded. The purpose of this paper is to
show that a relatively simple modification of the above equation
yields a denoising algorithm that better preserves both the struc-
tural and textural information of the image.

Following Meyer’s work [19], recent studies in the field sug-
gested the use of weaker norms than , such as and ,
for the data fidelity term [2], [3], [25], [33] . These modern tech-
niques can better distinguish between structural and oscillatory
components and tend to reduce less contrast of the structural
part. However, when used for denoising (as opposed to decom-
position), these procedures still recover mainly the structural
image components, where textures may be over smoothed. The

-norm (and its various approximations) is low for oscillating
patterns and, therefore, does not penalize much both noise and
most types of textures. The TV norm, on the other hand, penal-
izes strongly oscillating patterns. Therefore, this type of energy
minimization is still not very well adapted to capture textural
parts of the image (see Fig. 6 for a comparison example).

Recent studies which perform decomposition to three cat-
egories—structure, texture and noise—by PDEs and wavelets
[4], [29] seem to be an appropriate solution also for denoising
of natural images. We believe that our approach can complement
and improve the results presented in these papers. As the weight
parameters of these methods are not spatially varying, a con-
stant “ratio” is implicitly assumed between structures, textures
and noise components throughout the image. Whereas noise can
often be regarded as spatially invariant (e.g., white Gaussian
noise), textures and structures are not homogenously spread in
the image (in terms of variance). Another new approach is the
use of Bregman iterations proposed by Osher et al. [24]. In this
method, as well, a scalar weight parameter is used. Our ap-
proach may, therefore, be introduced in the future also for these
new types of more sophisticated (and complicated) denoising
schemes.

Inorder tokeep thepresentationof the ideasimpleandfocused,
we retain, in this paper, the more classical variational regulariza-
tion based on the gradient magnitude and fidelity term.

II. CARTOON PYRAMID MODEL

The cartoon model has been defined and investigated in the
early 1980s [7], [12] was further elaborated in [20] and [21] and
is widely used as the basic underlying model for many image de-
noising methods. In the continuous case, the cartoon has a curve

of discontinuities, but, everywhere else, it is assumed to have
a small or a null gradient . A multilayered image represen-
tation was suggested by [18], mainly for compression purposes.
However, the wavelet compression (thresholding) technique for
extracting the cartoon part, by using a very high compression
factor, produces blurry results which do not preserve well edges.

The TV and other gradient-dependent filters are especially
good for extracting the cartoon part of the image. We use them,
therefore, as a simple pyramid (scale space) of rough image
sketches at different scales. Let us define a cartoon of scale ,
using the process, as follows:

(7)

where is the steady state of (4). See [31] and [30] for a similar
definition of the scale. Let us define the residue as the difference
between two scales of cartoons

(8)

We shall refer to the noncartoon part of scale as the residue
from level zero

(9)

This cartoon and residue data structure is analogous of the
pyramid of wavelet approximations. By using the definitions of
(7) and (8) and integrating the E–L equation (3), we deduce the
following basic properties.

Proposition 1: The cartoon pyramid model has the following
scale properties.

1) The cartoon of scale 0 is the input image. .
2) The cartoon of scale is the mean of the input image.

.
3) The mean of any residue is zero. .
4) A cartoon image can be built from residues of larger scales.

.
Proof: To prove Property 1, we denote

. Let us assume in the
sense for any large . Specifically, there exists such

that and for ,
where . Then

which contradicts our assumption.
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TABLE I
EXAMPLE OF A CARTOON PYRAMID. LEFT COLUMN: SCALE s = 1=�,
SECOND COLUMN: CARTOON PART C , THIRD COLUMN: NONCARTOON

PART NC , RIGHT COLUMN: RESIDUE R [WHERE THE VALUES

OF (n;m) ARE (0; 1); (1;10); (10;100); (100;1), FROM

SECOND ROW DOWN, RESPECTIVELY]

Property 2 can be proved using [1, p. 79, Prop. 3] where we
deduce that converges to the mean image value in the
sense .

For Property 3, we use [1, p. 79, Prop. 2] to show that
, , and, therefore

Property 4 is verified by expanding the sum expression

In Table I, a cartoon pyramid example is shown. See [32] for
an alternative pyramidal structure suggested recently.

In the case in (2) where we have the ROF model
[28], one can relate the scale and residue directly with the

-norm (or star norm) presented in [19, p. 30] (see also the

discrete version defined in [3]). The space is closely related
to the dual of . The norm penalizes oscillatory
and piecewise constant functions in an inverse manner to TV:
whereas the TV norm of oscillatory signals is high and their
norm is low, piecewise constant signals have a low TV norm
and a high norm. For example, a signal in
and zero elsewhere has a -norm approaching zero as ,
whereas its total-variation in this case approaches . For more
on this subject, we refer the reader to [2]–[4], [19], [22], [25],
and [33].

Proposition 2: For the functional , we have the
following.

1) .
2) .
3) .

Proof: The first and third statements are direct conse-
quences of our pyramid definitions and Theorem 3 and Lemma
4 in [19]. The second statement is validated by the relation

, using the triangle inequality and
Statement 1.

Statement 1 states that the -norm of the noncartoon part is
strictly increasing (linearly), implying that larger and less oscil-
latory features are incorporated in this part with the growth of .
From Statement 2, one can view as a texture “band” of the
original image with specified upper and lower bounds of the
norm. Due to the convexity of the ROF model, the solutions for
similar values of are sufficiently close, and, therefore, we esti-
mate that should be, in fact, closer to its lower bound

, at least when and are of the same order. Statement 3
shows that the telescopic buildup of the cartoon image from
larger texture bands, as formulated in Statement 4 of Proposition
1, is finite in practice (excluding the mean image value ). For
other relations connecting the scale with the G-norm, see [31].

In order to construct the pyramid, the desired scales should be
specified. A simple mechanism, following Gaussian and Lapla-
cian pyramids or wavelet decompositions to detail and approx-
imation parts, is to use predefined scales, which grow exponen-
tially, such as , where is some constant (e.g.,
for a dyadic scale). In Table I three levels of a pyramid are shown
for , as well as the zero and infi-
nite scales.

In this pyramid, larger scales retain high frequencies (edges)
and one does not resample or decimate the image to a smaller
size. This gives more freedom for choosing any set of scale
values. Specifically, the multiscale decomposition can be image
driven. This topic demands more study and would not be elab-
orated in this paper. For some preliminary directions suggested
by the authors and colleagues on how to select image-driven
structure-texture splitting parameters, see [5] and [15].

A. Use for Denoising

The cartoon pyramid has a broad context and may give some
more theoretical insight on issues regarding structure, texture,
and scale.

For our denoising purposes, in the next section, we use only
one decomposition level which should contain the noise and the
textures at a similar scale or below that of the noise. In this
simpler case, a good representative scale could be selected using
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an estimate of the noise variance. We employ the constrained
problem, similar to (5) and impose

(10)

where controls the selected scale in terms of variance.
Typically, so that most noise and the relevant textures
of that scale are included in the residual part. In our natural
images experiment, we set .

Our model consists of three components: ,
where is the original image, is the Cartoon
approximation, is the remainder noncartoon part, and is
an additive noise. Note that we left the definition of “noncar-
toon" part vague. It, typically, consists of textures, small-scale
details, thin lines, etc. The only assumption we make is that it
has zero mean. Under this decomposition, the residue of the fil-
tered image is

(11)

Note that we distinguish between the “true" nonoscillatory part
and its approximation by the diffusion process by the tilde
upperscript.

III. PROBLEM

To obtain an adaptive scheme, we generalize the denoising
problem by imposing a spatially varying variance constraint. Let
us define first a measure to which we refer as the local variance

(12)

where is a normalized
and radially symmetric smoothing

window, is the expected value taken with respect to the
probability density on the set of all
quadruples . From the definition of the local vari-
ance, it follows that , where

(13)

We reformulate the scalar problem, stated in (5), in the context
of the adaptive problem as follows:

(14)

where , is a constant and is
assumed to be given a priori. We solve the optimization problem
using Lagrange multipliers

(15)

The E–L equation for the variation with respect to is

(16)

where, for any quantity , we define the locally averaged
quantity . We solve this
equation for by a gradient descent

(17)

In order to compute the value of , we multiply the EL equa-
tion (16) by and integrate over the domain . After
a change in the order of integrals in the term, we get

(18)

where

A sufficient condition is

(19)

Finally, the constant is obtained by solving ,
yielding

(20)

A. Automatic Texture Preserving Denoising

In the general case, we do not have much prior knowledge
on the image that can facilitate the denoising process. In our
model, we assume that the noise is additive, uncorrelated with
the signal (e.g., additive white Gaussian or uniform noise), and
that its variance can be estimated.

Our aim is to use the denoising mechanism in a more accu-
rate and precise manner. Images which can be well represented
by the large-scale cartoon model are the best candidates for suc-
cessful denoising. Images with much finer texture and details
will not benefit that much from the operation; while reducing
most of the noise, this type of processing will inevitably degrade
important image features. The first problem is to distinguish be-
tween good and bad candidates for denoising. The task be-
comes even more complex if this is done adaptively. Many nat-
ural images exhibit a mosaic of piecewise smooth and texture
patches. This type of image structure calls for position (spa-
tial)-varying filtering operation.

The performance of the scalar denoising process is illus-
trated in Fig. 1, using a typical cartoon-type and a textured
image. The SNRs of these three processed images are summa-
rized in Fig. 2, and plotted as a function of the residual variance
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Fig. 1. Scalar� denoising of textured and texture-free images. Top row: Piece-
wise constant image. Middle row: Textured image of grass. Bottom row: Patches
of the two types of images combined in one. Left column: Original images.
Middle column: Noisy images. Right column: Result of scalar � processing (3)
at convergence (P = � ).

Fig. 2. SNR of scalar� denoising of images shown in Fig. 5. SNR is plotted as
a function of the residual variance, normalized by the noise variance: P =� .
Dashed line piecewise constant image, dash-dot line texture image, solid line
combined image.

(normalized variance of the residue). Obviously, as these ex-
amples illustrate, cartoon-type images are denoised much better
than textured images (both in terms of SNR and visually). An-
other important observation is that the maximal SNR of car-
toon and noncartoon images is reached at different levels of de-
noising. Whereas cartoon-type images reach their peak SNR at
high denoising levels ( ), noncartoon images degrade
faster and require less denoising . For deeper anal-
ysis and some bounds on the resulting SNR of process de-
noising, see [13] and [14].

Here, we present a relatively simple method that can approx-
imate the desired level of denoising in a region. In our above
formulation (14), the problem reduces to finding .

We use the cartoon pyramid model for this purpose. Our first
aim is to differentiate between the cartoon part of the image
and the noise and texture parts . Our splitting param-
eter (or scale ) is selected by imposing (10) and
solving (5) using (4) and (6). We assign

(21)

where is the local variance of the residue .
In the case where (basic cartoon model without

textures or fine scale details), this scheme is similar to the scalar
process. In this case, should be close to 1. The local variance

of the residue is almost constant and, hence,
. We get a high-quality denoising process where

. In the case of most natural images, however,
textures will also be filtered and included in the residue part. As
the noise is uncorrelated with the signal, we can approximate
the total variance of the residue as , the
sum of local variances of the noncartoon part and the noise,
respectively. Thus, textured regions are characterized by high
local variance of the residue. In order to preserve the detailed
structure of such regions, the level of filtering there should be
reduced over these regions.

Let us recall the classical Wiener filter (optimal linear filter in
the mean squared-error sense). Its formulation in the frequency
domain is

(22)

where and are the power spectrum of the signal
and noise, respectively. The basic concept amounts to a reduc-
tion in the extent of filtering at frequencies where the
signal power exceeds that of the noise.

In our case, we have a similar principle, whereby reduction
in the extent of filtering (i.e., ) is called for in regions
where signal power exceeds that of the noise. The signal is in
this case that portion of the image accounting for the texture
and fine details that may be filtered out by the process. For-
mally, substituting for in (21), the relation

, we get

(23)

B. Algorithm

1) Separate the noise and relevant textures by minimizing
subject to (10) and setting .

2) Compute the local variance of by (12) and then compute
the local constraints by (21).

3) Solve (14) by iteratively evolving (17) and update
and according to (19) and (20).

C. Denoising With Prior Information

In cases where more information regarding the structure of
the original signal is available, the performance of denoising
process incorporating a spatially varying fidelity constraint can



2286 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 8, AUGUST 2006

Fig. 3. Processing of a noisy mosaic of textures (fabric and metal) and smooth
areas. From top: Original mosaic made of patches of fabric and metal textures,
(left) juxtaposed with two constant patches. Noisy version I of the original
with (right) SNR = 2:4 dB, � = 40. Result of processing with (left) scalar
�� SNR = 6:4 dB, result with adaptive (right) �� SNR = 7:6 dB. Bottom
row: (left) Residue I ; (middle) S(x; y) calculated according to the residue;
(right) �(x; y) at the convergence of the process.

be substantially ameliorated. The specifics are application-de-
pendent and heuristic in nature. We, therefore, mention here
only a few related ideas. To preserve specific features in the de-
noising process, such as long thin line or known types of tex-
tures, one can preprocess with the corresponding feature de-
tector (Hough transform, texture detector). The value of
depends, then, locally on the feature detector response. Cases
of spatially varying noise also fit the model. For example, in
low-quality JPEG images, the boundaries between 8 8 pixel
blocks are often more noisy and the fidelity to the original data
on these block boundaries should, therefore, be decreased ( in-
creased). See [17] for a different solution by an adaptive window
approach.

IV. EXAMPLES

The effects of adaptive- versus scalar-fidelity denoising are
illustrated using a synthetic mosaic comprised of two textured
patches juxtaposed with two smooth patches (Fig. 3). The scalar
fidelity term requires that a global variance, equal to the noise
variance, be filtered. As the process is smoothing both texture
and noise, more variance is filtered in the textured regions than
in the originally smooth ones. This results in over smoothing
of textured regions, whereas smooth regions are not sufficiently
denoised (Fig. 3, left side second row from top). The adaptive
fidelity term process (second row right) applies different levels
of denoising in different regions. This improves the result both
visually (texture is better preserved, smooth regions are better
denoised) and in terms of signal-to-noise ratio. In the third row
of Fig. 3, we show how the required spatially varying vari-
ance (middle) depends on the value of the residue,
(left). The value of the adaptive fidelity term, (right), is
shown for the converged process (lighter regions indicate higher

Fig. 4. Example of processing results obtained with a natural image. From top:
(Left) Original “Barbara image.” (Right) Noisy version of the original image,
I , with SNR = 8:7 dB, � = 20. (Left) Result of processing with scalar �
(SNR = 12:6 dB). (Right) Result of processing with adaptive � (SNR =
14:2 dB). (Left) Residue I . (Right) S(x; y) calculated according to residue
(middle) �(x; y) at convergence of process.

Fig. 5. Enlargement of Barbara’s right knee (full images are in Fig. 3).
Top: Result of scalar process. Bottom: Result of adaptive process.

value). Naturally, the values of are inversely related to
the residual variance measure .

Processing a noisy version of the Barbara image (Fig. 4), it
is demonstrated how the adaptive method performs well on
natural images. Our simple local variance criterion seems to be
sufficient to differentiate textured from smooth regions, even in
relatively complex images. Accordingly, appropriate local re-
quirements on the variance to be filtered are applied. In Fig. 5,
Barbara’s right knee is enlarged to highlight similar phenomena
to those obtained in the case of the synthetic example, where
textures are preserved and the denoising of smooth regions is
stronger.

Fig. 6 shows the Teddy Bear from the Toys image. A com-
parison is performed also to the model of [25] and
to [3] which implements Meyer’s model [19] (with
a small residual). The scalar fidelity terms are chosen such
that the variance of the residual is (here ). Our algo-
rithm diminishes the denoising in the textural parts of the bear.
The model is quite competitive, but still degrades the
shirt textures. Similar effects can be seen in Fig. 7, where the
process is compared with the regularized version of P-M [26]
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Fig. 6. Part of the Toys image. Top: (left) original; (right) noisy (� = 10). Each
row depicts (left) the denoised image I and (right) the residual I � I of the
following models: TV � L (scalar), our proposed adaptive TV � L , scalar
TV � H [25], and scalar TV � G [19], [3], from second row to bottom,
respectively.

proposed by Catte et al. [8]. Relatively small regularization is
used for the gradient computation of the diffusion coefficient
(variance of Gaussian is 0.1). This causes some isolated points
to remain. Stronger regularization in our experiments resulted
in extensive over smoothing of the textures. One may observe
that the textural snow background is better preserved by our pro-
posed method, while the smooth coat parts are well denoised.

In Table II, we show the comparison between scalar and
adaptive processes in terms of SNR. In the scalar process,
we show two cases. The “Standard Scalar” column refers to
the chosen according to the constrained problem (5). The
“Optimal Scalar" refers to choosing the parameter such that
the maximal SNR of the recovered image is reached (out of a
finite set of 30 optional values). Naturally, this result can be
achieved only in simulations when the original clean image
is at hand (see [14] for a way to approximate this parameter).
Nevertheless, our algorithm consistently achieves better SNR
then the optimal scalar. Note that with respect to the SNR
criterion modern multiscale wavelet-based techniques achieve
better performance (see, e.g., [27]). This is due to their ability
to denoise well also the textural parts. However, in general,
wavelet denoising produces less sharp results near edges and
may have some oscillations. This affects the denoising quality
but is less reflected by the SNR criterion. Convex gradient-based

Fig. 7. Comparison between regularized Perona–Malik (P–M) and our adap-
tive scheme. Top: (left) original image, (right) contaminated by additive white
Gaussian noise (� = 15). Bottom: Image denoised using (left) regularized P–M
and processing with adaptive �. Textures and small scale features are kept better
in our scheme.

TABLE II
DENOISING RESULTS OF A FEW CLASSICAL IMAGES. FROM LEFT,

SNR OF THE NOISY IMAGE (SNR ), SNRS OF SCALAR � DENOISING

[“OPTIMAL” AND “STANDARD” (SEE EXPLANATIONS FOR THIS

TABLE FOR DETAILS)], SNR OF OUR ADAPTIVE � DENOISING

(“OURS—ADAPTIVE”). ALL EXPERIMENTS WERE DONE ON IMAGES

DEGRADED BY ADDITIVE WHITE GAUSSIAN NOISE (� = 10)

variational denoising methods admit the maximum principle
and do not produce oscillatory solutions. Our algorithm retains
these desired qualities.

Implementation Details

We used explicit Euler schemes to implement the iterative
processes. The averaging window was selected to be
a Gaussian of standard deviation . The potential in all
images was ( ). As we used gray level
images with values in the range the results are similar to
TV denoising. We observed that the calculation of the constant

gives very little improvement. Therefore, we set . In
the experiment on natural images (results shown in Table I), we
set a constant residue variance ( in (10)).
Texture patches were taken from the VisTex archive [34]. All
images were processed automatically with the same parameters
(no tuning of parameters was performed for each image).

V. CONCLUSION

The widely used variational denoising algorithms with global
variance constraints perform well on simple cartoon-type
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images, where most of the information is represented by
the simple structural approximation of the image. However,
in order to preserve texture and small scale details, more
subtle constraints are called for. We developed an adaptive
variational scheme that controls the level of denoising by
local variance constraints.

A pyramidal model of structure and texture was presented in
which the structural component at any scale could be built in a
telescopic manner by texture bands of subsequent higher scales.
Some insight on the decomposition was given also with relation
to Meyer’s norm [19].

Following this image model, we use the scalar process to
separate the noise and the relevant textures of the image which
could be degraded in the denoising process. Regions of the
residual part with higher local variance than that of the noise are
treated as textured regions where denoising should be inhibited
(in a soft manner). This is accomplished by introducing a new
variational formulation with local variance constraints. A priori
knowledge on the details to be preserved can further enhance
this method.

We have shown that the proposed scheme can filter noise
better than the scalar constraint process over a variety of syn-
thetic and natural images. Visually, the processed images look
more natural and less “cartoon like.” With respect to SNR, our
algorithm consistently achieves higher SNR than the optimal
that could be achieved with a single scalar value of . This
study assumed a simple regularizing model based on the gra-
dient magnitude and fidelity. The ability to effectively reduce
noise from textural parts is, therefore, limited. Further improve-
ment may be gained by combining PDE-based and wavelet-
based methods in a spatially varying manner, for structures and
textures, respectively.

Local variance constraints can be used in almost any vari-
ational denoising schemes including ones with more sophisti-
cated fidelity terms that are better adequate for oscillatory pat-
terns [2], [3], [19], [25], [33].
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