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Abstract—Statistical modeling methods are becoming indispens-
able in today’s large-scale image analysis. In this paper, we explore
a computationally efficient parameter estimation algorithm
for two-dimensional (2-D) and three-dimensional (3-D) hidden
Markov models (HMMs) and show applications to satellite image
segmentation. The proposed parameter estimation algorithm is
compared with the first proposed algorithm for 2-D HMMs based
on variable state Viterbi. We also propose a 3-D HMM for volume
image modeling and apply it to volume image segmentation using a
large number of synthetic images with ground truth. Experiments
have demonstrated the computational efficiency of the proposed
parameter estimation technique for 2-D HMMs and a potential of
3-D HMM as a stochastic modeling tool for volume images.

Index Terms—Hidden Markov models (HMMs), maximum like-
lihood estimation, parameter estimation, three-dimensional (3-D)
HMM, Viterbi training, volume image processing.

I. INTRODUCTION

OVER THE last decade, we have see an explosion of digital
image usages in a number of application domains. Each

day, large quantities of multidimensional images are being
acquired digitally. Scanners in satellites produce enormous
amounts of data for surveillance and reconnaissance purposes.
Multispectral and hyper-spectral images contain additional
information in the form of a third spectral dimension. Modern
telescopes are capable of producing high-resolution pictures of
distant stars and galaxies. Magnetic resonance imaging (MRI)
and computed tomography (CT) scanners in hospitals produce
high-resolution three-dimensional (3-D) images of the human
brain or the human body so that physicians and radiologists can
look inside their patients noninvasively. At airports, 3-D CT
scanners are being installed to monitor luggages checked in by
travelers in order to detect dangerous substances. The amount

Manuscript received January 4, 2005, revised August 25, 2005. The Website
http://riemann.ist.psu.edu provides more information related to this work.
This work was supported in part by the U.S. National Science Foundation
under Grants IIS-0219272, IIS-0347148, and ANI-0202007; in part by
The Pennsylvania State University; in part by the PNC Foundation; and
in part by SUN Microsystems under Grants EDUD-7824-010456-US and
EDUD-7824-030469-US. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Thierry Blu.

D. Joshi is with the Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA 16802 USA (e-mail:
djoshi@cse.psu.edu).

J. Li is with the Department of Statistics and the Department of Computer
Science and Engineering, The Pennsylvania State University, University Park,
PA 16802 USA (e-mail: jiali@stat.psu.edu).

J. Z. Wang is with the College of Information Sciences and Technology and
the Department of Computer Science and Engineering, The Pennsylvania State
University, University Park, PA 16802 USA (e-mail: jwang@ist.psu.edu).

Digital Object Identifier 10.1109/TIP.2006.877039

of digital image information being generated is so enormous
that it has become inevitable for computers to help analyze,
segment, and classify these images. Because multidimensional
images are typically stored in image databases, it is now pos-
sible for computers to extract patterns or semantic connections
based on a large collection of annotated or classified images.
Such automatically extracted patterns can also be used by
computers to classify new images.

In the recent past, researchers in the image analysis commu-
nity have successfully used statistical modeling techniques to
segment, classify, and annotate images. Particularly, variations
of hidden Markov models (HMMs) have been developed and
successfully used for image and video applications. The key
issue in using such complex models is estimation of parameters
which is usually a computationally expensive task. In practice,
often a trade off is accepted between accuracy of estimation and
running time of the estimation algorithm.

In this paper, we introduce a new model for studying collec-
tions of volume images (3-D HMM). We also present a compu-
tationally efficient parameter estimation algorithm for two-di-
mensional (2-D) and 3-D HMMs. As discussed in Section IV-D,
the estimation algorithm can be efficiently scaled from its ver-
sion for 2-D HMMs to be used for 3-D HMMs. The proposed al-
gorithm is polynomial-time in number of states and linear-time
in the number of pixels of an image, for both 2-D HMM and 3-D
HMMs. When applied to 2-D HMM-based supervised learning,
the running time of the algorithm is found to be much less
compared to the estimation algorithm for 2-D HMMs which
was proposed in [24]. The techniques have been implemented
and tested with a large number of images. Promising results
have been obtained. The algorithms can potentially be applied
to other analysis tasks involving high-dimensional data.

A. Extending Conventional HMMs

Over the years, HMMs have been explored as efficient statis-
tical modeling techniques in speech recognition and image and
video understanding [1], [17], [23], [36].

HMMs are a special case of graphical models in statistics
[13]. Observed signals are modeled through a first order Markov
process as follows. Suppose the observed signal is a sequence

, where could be multivariate. An HMM
assumes that each observation in the sequence exists in one of
a set of hidden states at each position . Let the corresponding
hidden state sequence be , .
It is usually assumed that the state sequence follows a first
order Markov chain. That is,
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. Furthermore, the time homogeneity of the Markov
chain is normally assumed, i.e., the transition probabilities,

, are invariant over . Given the
state , the observation is conditionally independent of the
states and observations at the other positions. The conditional
distribution of given is usually modeled parametrically
with parameters varying with the conditioned state. The most
widely used distribution for multivariate data is the multivariate
Gaussian distribution which is parameterized by a mean vector
and a covariance matrix.

To effectively account for the 2-D statistical dependence, 1-D
HMMs have been extended to pseudo 2-D HMMs and pseudo
3-D HMMs for face recognition [11], [18]. Another line of re-
search is to extend the underlying Markov chain assumed for se-
quential data in a 1-D HMM to a Markov mesh for spatial data
[24] (for 2-D images, the observations reside on a 2-D grid.).

There is a surge of research to analyze volume images. Con-
ventional 2-D image modeling paradigms may not be effective In
the past, 3-D Markov random fields (MRFs) have been applied
to medical image segmentation [27]. Given the great potential
demonstrated by the HMM paradigm in various applications, it
seems most natural to extend 2-D HMM to 3-D HMM for volume
image analysis. In this paper, we construct a 3-D HMM that
captures the 3-D statistical dependence in volume images.

In 3-D modeling, a volume image is represented by feature
vectors on a 3-D grid. An image may be divided into cubes
which could be overlapping. In such a case, every cube corre-
sponds to one position in the grid. In our experiments, the size of
the cube is 1 and each voxel represents a distinct grid point. The
observation at each position comprises features extracted
from the respective cube. It is assumed that each position exists
in an underlying state and the observation is condi-
tionally independent of the other positions when is known.
The Markovian property that governs the transition of states in
2-D HMM is extended to one in 3-D. In particular, the transi-
tion probability takes into account the neighboring state along
the extra dimension.

For the same number of states, the dependence in the addi-
tional dimension leads to a significant increase in the number
of transition probabilities to be estimated. To robustly estimate
these parameters, a model regularization approach is explored.
Another challenge faced in the extension is the computational
complexity of the estimation algorithm. The Viterbi training [24]
approach is used here. The key computational issue is to search
for the combination of states with the maximum a posteriori
(MAP) probability conditioned on all the observations under a
set of given parameters. A computationally efficient algorithm
is developed to achieve a locally optimal solution by iteratively
seeking the best states in a subset with the other states fixed.
Our algorithm appears to extend to the case of Markov mesh
random fields on higher dimensional finite rectangular lattices.

B. Related Work in Modeling

One of the key challenges of mathematical and statistical
modeling has been to understand and model the neuro-physi-
ological processes that form the basis of human visual cogni-
tion. Empowering a machine with such capabilities would have
plausible applications in many areas such as robotics, medical
diagnostics, and automated surveillance.

There is a rich resource of prior related work on statistical
image modeling in computer vision, image processing, and ma-
chine learning. Space limitations do not allow us to present a
broad survey. Instead we try to emphasize some of the work that
is most related to what we propose. The references below are to
be taken as examples of related work, not as the complete list of
work in the cited areas.

Theories and methodologies related to MRFs [6], [10], [12],
[20] have played important roles in the construction of many sta-
tistical image models which have widely been used for several
applications in computer vision [26]. For a thorough introduc-
tion to MRFs and their applications, see Kindermann and Snell
[20] and Chellappa and Jain [6]. An MRF extends Markovian
dependence from 1-D to a general graph [10], [12].

AsubstantialamountofworkhasbeendoneonapplyingMRFs
to image segmentation and texture analysis [5], [7], [9], [12],
[15], [29], [31]–[33], [35], [38]–[40]. Estimation and approx-
imation techniques for MRF-based procedures have also been
widely studied [3], [14], [16], [19], [34]. An interesting work on
stationary MRFs has been presented in [4]. Particularly, MRFs on
a finite rectangular lattice have been rigorously characterized.

Many applications use MRFs to model the pixel representa-
tion of images, which sometimes may not be the best way to
model the dependencies occurring in real images. In some real
applications (such as satellite image classification), certain di-
rectional patterns are seen to be more pronounced than others. In
such cases, HMMs, which do not impose isotropy, are expected
to capture dependencies, in a more precise fashion.

Inspired by HMMs, researchers have recently used MRFs to
model the classes or states of image pixels rather than their di-
rect values [2], [8], [22]. Pixel values are considered condition-
ally independent given their classes or states. We discuss here a
number of such models. It is worthy to note that although these
models constitute an important part of existing statistical image
models, they represent, by no means, the complete set. Multi-
scale representations of MRFs have also been studied [2], [28].
Another multiresolution model based on HMMs is the model
proposed for wavelet coefficients by Crouse et al. [8], where
wavelet coefficients across resolutions are assumed to be gen-
erated by one-dimensional HMMs with resolution playing the
role of time, in the Markov chain.

C. Outline of the Paper

The remainder of the paper is organized as follows. Section II
introduces the 2-D HMMs. Section III describes the construction
of the 3-D HMM. In Section IV, the parameter estimation method
and the computationally efficient algorithm are introduced.
Sections V and VI discuss the experiments and their results. We
present our conclusions and suggest future research directions in
Section VII. The Appendix includes a proof of an equation used
in the development of the computationally efficient algorithm.

II. TWO-DIMENSIONAL HIDDEN MARKOV MODELS

Two-dimensional HMMs and their multiresolution extension
[23] have been studied, in the past and successfully applied to
supervised image classification, compression [21] and annota-
tion [25]. In this section, we briefly introduce the assumptions
of a 2-D HMM with respect to 2-D image modeling.
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Conventionally, 2-D images are divided into square blocks
and block-based features are extracted. Each block represents a
point in a 2-D grid and the features extracted from block at
are represented by . In the limiting case when block size be-
comes 1, each pixel represents a point in the 2-D grid. The ob-
servation is usually a vector containing features computed
from the pixel values in the block at . A lexicographic or-
dering of points is defined as follows: if

or , .
Under the assumptions of the model, the underlying states

are governed by a first order Markov mesh:
, where , and

. That is, among the conditioned states, only states of
the neighbor above and the neighbor to the left of the current
position affect the transition probability. For points at bound-
aries, which miss one of the two needed neighbors, dependence
upon only the states of the existing neighbor is assumed. Besides
this, given the state of a point , the feature vector
is assumed to follow a multivariate Gaussian distribution with a
covariance matrix and a mean vector determined by its state.

For the 2-D HMM, we need to estimate the transition prob-
abilities , , , , the mean vectors , and
the covariance matrices for each state .

III. THREE-DIMENSIONAL HIDDEN MARKOV MODELS

In this section, we present the 3-D HMM in its general form.
Before stating the statistical assumptions, we describe the fol-
lowing terminologies which will be used throughout the paper.

• 3-D point: A point where , and are coordi-
nates along the , and axes respectively. Typically,
an observation is associated with a 3-D point. For a 3-D
image, every voxel may correspond to a point. In certain
applications, a 3-D image may be divided into rectangular
solids and features are extracted for each solid. In such
cases, voxels in a rectangular solid are treated collectively
as one point.

• 3-D grid: A 3-D array of finite and equally spaced 3-D
points (along , and axes) in space represented as

. Here is a finite positive integer. For brevity, we
will assume a cubic 3-D grid. A graphical illustration for
the 3-D grid is in Fig. 1.

• frame: We call a collection of points on a plane parallel
to that of and axes a frame. A frame is indexed by
its coordinate: .

A lexicographic order is defined among 3-D points as follows:
if or , or ,

, . The observed feature vector of 3-D point
will be denoted by and its state by . The number of
states is preselected.

The model attempts to capture statistical dependence among
3-D points. The assumptions of 3-D HMM are as follows.

1) where
is the set of

states and feature vectors of all points preceding
in the lexicographic order. In addition, is the
state of the point at the same and coordinates in the

Fig. 1. Three-dimensional grid. Given the states of all the points that precede
point (i; j; k), only the states of the three neighboring points affect the
distribution of the state at (i; j; k). These are denoted as N , N , and N in
the figure.

previous frame, and are the
states of the neighboring points in the same frame and
one position ahead along and respectively. Given
any point , the three neighboring points that affect
it among all those that precede it are denoted as , ,
and in Fig. 1. For boundary points, dependence upon
only the state of the existing neighbors is assumed. For
example, if for a boundary point, the neighbor denoted as

is missing, then dependence upon neighbors and
is assumed.

2) Given the state of a point , the feature vector
follows a multivariate Gaussian distribution param-

etrized by a covariance matrix and a mean vector deter-
mined by the state. For a state , denote
the corresponding covariance matrix and mean vector by

and . Recall that the probability density function of
a -dimensional Gaussian distribution is

3) If the state of point is known, its observed vector
is conditionally independent of the rest of the points

in the 3-D grid.
For the 3-D HMM, the transition probabilities , , ,

, , the mean vectors , and the covariance ma-
trices for each state need to be estimated.
Subject to the constraint for any ,

, and , the transition probabilities comprise free
parameters. By the assumptions of our 3-D HMM model, given
a previous frame, the states in the current frame follow a 2-D
HMM.

IV. PARAMETER ESTIMATION

In this section, we present an algorithm designed to estimate
parameters of two and 3-D HMMs. We present an efficient way
to extend the Viterbi algorithm to 3-D. Our approach may not
be unique or best but is computationally efficient as discussed
later. For clarity, we present our version of the algorithm for 3-D
HMMs. The version of the estimation algorithm for 2-D HMMs
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Fig. 2. Schematic of the Viterbi algorithm. Assume that the dashed path is the shortest path from t = 1 to t = 6.

follows naturally from its 3-D HMM counterpart, since a 2-D
image can be thought of as a special case of a 3-D image with
only one frame.

A. Viterbi Training

The Viterbi training approach [37] used to estimate 1-D
HMM is adopted here. In particular, we iterate the search for
the optimal combination of states and the update of parameters.
From optimization perspective, the Viterbi training algorithm
provides a local maximization of the so-called classification
likelihood [30], i.e., the likelihood of the observed feature
vectors under a given set of parameters as well as a given
set of underlying states. The unknown states are regarded as
parameters and are part of the estimation.

Consider the problem of predicting the optimal state sequence
for a 1-D HMM. In many cases, as in our

case, the classification likelihood, to be maximized, is separable
and can be expressed in the form

Suppose, in the optimal state sequence , the state of the
th position is , it is easy to see that maximization of

is equivalent to maximization of two separate
functions

and

The expressions and represent terms in ,
for and respectively, when the state at position is

. Also note that

The problem of finding the optimal state sequence can be seen
as a shortest path problem as shown in Fig. 2. Here, a weight

is placed on a link from state at to state at

. The starting nodes have a weight for state . Suppose,
the path denoted by a dashed line is the optimal one, then it is
easy to see that the dashed sub-path, ending at , is optimal
among the sub-paths ending at in state 2. Similarly, the
dashed sub-path between to is shortest among the
sub-paths starting at in state 2. Viterbi algorithm exploits
such an optimal sub-structure in an optimization problem. The
sequential steps of the Viterbi algorithm are as follows.

1) At , record , where
represents the number of states.

2) For , , set

.
3) Finally, paths are formed each ending at a different

state at . Pick which maximizes and trace
the path backward from the last state .

Note that this procedure requires com-
parisons and memory records. Hence, the compu-
tational and storage complexities are and ,
respectively.

Denote the collection of parameters of 3-D HMM collectively
as . Mark the iteration step by a superscript. Suppose the initial
parameter is . In Viterbi training, to update from

, the following two steps are applied.

1) Under parameter , the combination of states with the
MAP probability conditioned on the observed vectors is
identified, as shown in the equation at the bottom of the
page. Details of this procedure are explained later.

2) The parameters are then computed by assuming states
are the true underlying states. If the true states were

known, the maximum likelihood estimation of the param-
eters would be easy to obtain. The mean vector and
the covariance matrix would simply be estimated by
the sample mean and sample covariance matrix of all the
observed vectors whose states , shown
in (1)–(4) at the bottom of the next page. The transi-
tion probabilities are computed by the empirical
frequencies as shown in (3). where is the indicator
function that equals 1 when the argument is true and 0
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otherwise. The set
.

Various methods can be used to initialize the Viterbi training
algorithm. In our experiment, -means clustering is used to
generate an initial set of . The initialization of -means
is random. The iteration then starts with step 2) above. The final
result could be affected by the initial states. In -means clus-
tering of points, directional dependencies, in the 3-D lattice are
ignored. In such a scenario, the generative model is a Gaussian
mixture model, a special case of a HMM.

Due to the large number of parameters even with a moderate
, we regularize the transition probabilities by a partial 3-D

dependence. In particular, if the dependence along the axis is
ignored, the model is reduced to a 2-D HMM and the transition
probabilities are , where and .
The maximum likelihood estimation for updated at iter-
ation is given in (4).

The 3-D transition probabilities are regularized toward the
2-D ones by a linear combination shown in (5). The value

controls the extent of 3-D dependence. corresponds
to a pure 3-D model and , a 2-D model. It is shown in the
experiments that an intermediate value of is often preferable.
For notation simplicity, we denote the transition probabilities in
general by even though (5) is used to compute them

(5)

B. Searching for Optimal States

The computational complexity of 1-D Viterbi algorithm has
been discussed in Section IV-A. The key computational issue
in Viterbi training is to find the states ,
with MAP probability, under a given set of parameters. For
1-D HMM, the MAP sequence of states can be solved for by
the Viterbi algorithm. For 3-D HMM, there are possible
combinations of states for the entire 3-D grid. When applied

directly to the frame process, the Viterbi algorithm enables us
to avoid exhaustive search along the axis. However, it is still
necessary to consider all the possible combinations of states in
every frame. In this method, the computational complexity of
searching for the optimal set of states is at least .

To address the computational difficulty, we propose a locally
optimal algorithm to search for the set of states with the MAP
probability. Define the set of points with a fixed and co-
ordinate in a 3-D grid as a row, shown in Fig. 1. Denote a row
by . Let

. Denote a sequence of states
in row by , . For
brevity, denote the sequence of observed vectors in row by

, . We also introduce a
lexicographic order for the rows: if or

, . We process the rows in the lexicographic order.
The procedure to iteratively update the states in each row is as
follows, which is also illustrated by Fig. 3. Let the states in a
row obtained at iteration be .

1) Initialize all the states , , in the
3-D grid.

2) Let .
3) Let , .
4) Search for with the MAP probability given the ob-

served vectors in the entire 3-D grid and the states in
all the other rows: , and ,

. Note that the conditioned states of
points in the other rows should always be their most up-
dated values. Set .

5) Let .
6) If , go back to step 4). Otherwise

a) set , ;
b) if , go back to step 4). Otherwise

i) let ;
ii) if stopping criteria is achieved, stop. Otherwise, go

to step 3).

(1)

(2)

(3)

(4)
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Fig. 3. Process of updating the sequence of states in each row recursively. States and observed vectors in the shaded rows are included in the condition for solving
for the sequence of states in a current row that has the MAP probability. After initialization, the scan through all the rows can be repeated in several passes.

In our experiments, we stop the iterations when the number
of points whose states are changed by the present iteration, is
below a preselected threshold.

The objective function is guaranteed to decrease with each
iteration. It is a possibility that cycles could develop after cer-
tain iterations. However, in such a case, the objective function
remains constant while states keep changing. In all our exper-
iments, we noticed that states as well as the objective function
converged after a finite number of iterations. The preselected
threshold was very small which guaranteed that the algorithm
had achieved near convergence. The convergence could be to
an optima different from the global optima. The initial states of
the 3-D grid are obtained by a greedy algorithm. In particular,
we scan the rows in the lexicographic order. For each row, the
sequence of states with the MAP probability conditioned on the
states in all the preceding rows and the observed vectors in the
current row is selected. The algorithm is greedy because states in
each row are determined without looking forward on succeeding
rows. The difference between the search for states in each row
in initialization and the search in step 4) above lies in the con-
ditioned information. In initialization, only “past” information
(in the lexicographic order) is conditioned on. During the ad-
justment of each row, information about all the other rows is
conditioned on. This difference is illustrated in Fig. 3. We now
outline steps in initialization.

1) Let , .
2) Search for with the MAP probability given the states

in preceding rows: , , and the ob-
served vectors in the current row and the preceding rows:

, , .

3) Let .
4) If , go back to step 2). Otherwise

a) set , ;
b) if , go back to step 2). Otherwise, stop.

C. Local Optimization of States in a Row

Next, we present the Viterbi algorithm applied to search for
the sequence of states with the MAP probability given all
the observed vectors and the states in all the other rows, i.e.,

Note that the conditioned states (assumed given) are denoted
by in order to distinguish from the states to be op-
timized. This state sequence is needed in the row by row
adjustment of states after initialization in the proposed locally
optimal algorithm. During initialization of states, as mentioned
before, is defined as the MAP sequence conditioned only
on states in the preceding rows. We describe the Viterbi algo-
rithm in the context of row by row adjustment. Its usage in the
initialization case is similar. We, thus, omit detailed discussion.

For brevity, we assume the th row is not at the boundary.
Modification for boundary rows is straightforward. It is proven
in the appendix that is given by the (6) and (7), shown at the
bottom of the next page. The first term in the summand is the
log likelihood of the observed vector given the state .
The probabilities in the log function in the other three terms
are transition probabilities of entering a state at point ,

, and respectively. Only states in the four
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neighboring rows of , specifically, , , ,
and , are relevant to the search of . For a point at the
beginning of a row, it has no preceding point along the axis.
Correspondingly, in the above conditional probabilities, the con-
ditioned state of the preceding neighbor along the axis is
dropped. For brevity, we use a unified expression here.

The optimal state sequence can be solved by the fol-
lowing recursion in the Viterbi algorithm.

1) Let for .
2) For , compute the following.

a) , where

b) Let be the number from
that maximizes the above function:

. In case more
than one candidates exist for , which maximize
the function, we choose one of them randomly, in the
present implementation.

3) Let .
4) For , let .

D. Computational Complexity

If the number of states of the model is , computa-
tion and memory is required to find and store state com-
binations which maximize the likelihood term involving the cur-
rent point and its previous one. In order to search for the MAP
sequence of states in the entire row of points, the computa-
tion required is of the order of . For a 2-D grid containing

points (or rather rows), one iteration of the algorithm
through the grid will take time. A 3-D grid con-
taining points has a total of rows. Therefore, the
complexity of one iteration of the proposed algorithm through
the 3-D grid is . Thus, we see that the computational
complexity of the proposed algorithm is polynomial in number
of states and linear in problem size for both 2-D HMM and 3-D
HMM. The problem size, here, represents the number of pixels
in an image (for 2-D HMM, the problem size is and for 3-D
HMM, the problem size is ).

It was shown in [24] that the likelihood function for a 2-D
image represented as a grid could be expressed as a
product of separable functions of state sequences in diagonals. If

represents all the tuples in the grid, then the likelihood
function can be factorized as follows:

(8)

In the previous expression, denotes the state sequence on
diagonal . A path-constrained variable state Viterbi approach
was proposed, which restricted the search for state sequences at
each diagonal to the sequences with largest posterior proba-
bilities. Each term in (8), can be represented as a
product of likelihood terms corresponding to individual points
in diagonal , owing to their conditional independence. If there
are points on diagonal , the unconstrained Viterbi approach
would normally involve searching all state sequences for
the sequences which yield highest probabilities. However,
because of the conditional independence of points in diagonal
, this search can be restricted to searching sequences com-

posed of states, which give highest probabilities at each point.
For elaboration, suppose diagonal contains points (num-
bered ) and the log likelihood of point being in state

is denoted as . The selection of nodes is equivalent to
finding state sequences, , with the largest

. As a consequence of conditional independence of
points on the diagonal the following equality holds:

(9)

Searching for is an operation (where
is the number of states of the model) and so finding the max-

imum sequence is an operation. This approach can be
easily extended to finding sequences with largest posterior
probabilities. For more details, readers are referred to [24].

Under the path-constrained variable state Viterbi approach,
an image is broken down into square subimages of size
and each subimage is modeled as a separate 2-D HMM. Thus,
for a 2-D image represented as a grid, separate 2-D

(6)

(7)
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Fig. 4. (a)–(c) Three aerial images and their manual classification. Left: Original 8-bpp images, Right: Hand-labeled classified images. White represents man-made
and gray represents natural.

HMMs are estimated. The value of the subimage size is gen-
erally selected as 8. Path constrained variable-state Viterbi algo-
rithm, for each subimage, can be performed in
time and so the computational complexity for the entire image
is roughly . It would be an interesting future work
to extend this approach to be used for 3-D HMMs and compare
with the proposed algorithm. For the remainder of the paper, we
will refer to the estimation algorithm based on path-constrained
variable state Viterbi as Algorithm and the estimation algo-
rithm proposed in this paper as Algorithm .

V. EXPERIMENTS ON 2-D IMAGES

Our experiments with 2-D images were focused on com-
paring the proposed estimation algorithm to the algorithm
based on variable state Viterbi . The goal of the experiments
was classification of aerial images into man-made and natural
regions. The experimental setup was similar to the setup in [24].
Although classification results, for algorithm , are available
in [24], we performed all the experiments again in order to
correctly compare the learning and classification times of the
two estimation programs, when run on similar processors.

The six images used are 512 512 grayscale images with 8
bits per-pixel (bpp). The images are the aerial images of the San
Francisco Bay area provided by TRW [24]. The availability of
hand-labeled classification for the six images proved helpful in
evaluating the performances. The manually classified images
were used as the truth set for our experiments. The six im-
ages and their respective hand-labeled classification are shown
in Figs. 4 and 5.

The features extracted from images were the intra-block fea-
tures used for experiments in [24]. No inter-block features were
used in the experiments performed. For clarity, we elaborate

the feature extraction process. The images were divided into
4 4 blocks, and the discrete cosine transform (DCT) coeffi-
cients or averages over them were calculated and used as fea-
tures. If the DCT coefficients for a 4 4 block are denoted by

, the definitions of the six features
used are

An initial -means clustering was performed
. However, the number of states for each

class (man-made class and natural class) were variable. For
example, if represents the total number of states of the
model, then states were assigned to the first class
while were assigned to the second class. The
optimization in Viterbi was performed by constraining the
feasible states to lie in the classes given by the training data.
In case of multiple states per class, one of the designated states
was randomly assigned to points, during initialization. The
parameters , and were varied during the experiments. A
six-fold cross validation was used to compare the classification
performances of the algorithms. At each iteration, one image
was used as test data and the other five were used as training
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Fig. 5. (d)–(f) Three aerial images and their manual classification. Left: Original 8-bpp images, Right: Hand-labeled classified images. White represents man-made
and gray represents natural.

TABLE I
PARAMETERS USED FOR ALGORITHM B FOR EACH ITERATION IN 2-D IMAGE

CLASSIFICATION EXPERIMENT. N AND N REPRESENT THE NUMBER OF

STATES FOR THE NATURAL AND MAN MADE CLASSES, RESPECTIVELY

data. The five training images were tiled from top to bottom, to
form one composite training image.

A regularization of 2-D transition probabilities toward 1-D
probabilities was performed, during estimation, in a fashion
similar to (5). The parameters to be used for each iteration
(number of states to model each class and the value of )
were, in turn, estimated using a fivefold cross validation within
each training data set. In our case, each training set consisted
of five images and at each iteration, four of them were used
for learning the model and one image was used as testing the
model. The number of states per class was varied between 4
and 10, and was varied between 0.0 and 1.0. At each step, the
parameter combination yielding the best average performance
over five iterations, was selected, for testing. The parameter
combination used at each iteration is shown in Table I.

In our algorithm, the training phase involved estimating the
optimal state configuration and the transition probabilities. At
the testing phase, the learnt transition probabilities, means and
covariances were used to find the optimal state configuration
and, hence, the misclassification error. In this paper, we report
the average performance over all six iterations. If the man-made

class is assumed to be the target class, or the positive class, we
define the following.

1) Sensitivity is the true positive ratio is the probability of
detecting positive given that the truth is positive.

2) Specificity is the true negative ratio is the probability of
detecting negative given that the truth is negative.

3) Predictive positive value (PVP) is the probability of being
truly positive given a positive detection of the classifier.

4) Misclassification error is the probability of not de-
tecting the correct class (positive or negative).

Fig. 6 compares the classification performances of algorithms
and for one particular image from the dataset. The original

and hand labeled images are also shown and the classification
error rates are indicated in the figure. The classification perfor-
mances for the aerial images shown in Figs. 4 and 5 is reported
in Table II. The values reported are the sensitivity, specificity,
PVP and error rate averaged over all six iterations. All the ex-
periments were performed on 2.6 GHz Xeon processors run-
ning Linux. The CPU times required by Algorithms and for
learning and classification, respectively, are shown in Table III.

We notice from Tables II and III that as is increased for Al-
gorithm , the error rate decreases but the model learning and
classification times go up. The average error rates using
algorithms and are found to be comparable. However, the
running times for learning as well as classification using Algo-
rithm are much less compared to Algorithm . These results
support the fact that the proposed algorithm has a lower
computational complexity compared to algorithm .

VI. EXPERIMENTS ON 3-D IMAGES

The 3-D HMM has been applied to volume image segmen-
tation in this paper. Experiments were performed using a large



1880 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 7, JULY 2006

Fig. 6. Compare the performances of Algorithm A and B. (a), (b) Original
8-bpp image and the hand-labeled classified image. (c) Algorithm A with
classification error rate 15.8%. (d) Algorithm B with classification error rate
15.3%.

TABLE II
PERFORMANCE OF ALGORITHMS A AND B FOR 2-D IMAGE CLASSIFICATION.

THE AVERAGE PERFORMANCE OVER SIX ITERATIONS IS SHOWN IN THE TABLE

TABLE III
RUNNING TIMES OF ALGORITHMS A AND B FOR 2-D IMAGE CLASSIFICATION

pool of synthetic volume images. Each image contained a stan-
dard mathematical 3-D shape centered about the image. The
mathematical shapes used will be discussed later. The method of
image generation was as follows. Points in the interior of the 3-D
shape were assigned black color while the rest were white. Each
color voxel, black and white , was perturbed
by an additive Gaussian noise and the voxel values
were truncated to lie in the interval . This per-
turbed value formed the unidimensional feature for each voxel.

For the purpose of displaying images, voxel values in the in-
terval were scaled to . The 3-D shape pa-
rameters and the variance of noise were varied to form a large
pool of images.

The term class denotes the classes into which an image is
to be classified whereas states denotes the states of the 3-D
HMM model. The number of classes is fixed by the classifica-
tion problem definition whereas the number of states of the 3-D
HMM model can be varied with experiments. When the number
of classes is known a priori, unsupervised segmentation using
3-D HMM involves the following steps.

1) An initial clustering using -means algorithm is per-
formed and each point is assigned a state depending upon
its initial cluster. In case of more than one states per
cluster, one of them is assigned randomly. The number of
states, fixed for each cluster is arbitrary and is a parameter
for the segmentation program. The number of clusters
corresponds to the number of classes, which is 2.

2) Initial parameters are estimated using ML criteria as-
suming the initial states as true states.

3) 3-D HMM-based unsupervised learning is performed it-
eratively. In other words, MAP states are assigned to
points, as discussed before, and parameters re estimated
iteratively.

4) Final classes are given to points based on the states they
have been assigned by the algorithm.

A. Geometric Equations of 3-D Shapes

The mathematical equations for the topological shapes used
for the experiments were adopted from Mathworld1 and are
given as follows.

1) Torus: A torus which is azimuthally symmetric about the
axis is represented by the following equation:

Here, is the radius from the center of the hole to the
center of the torus tube while is the radius of the tube.
A torus is depicted in Fig. 7(a).

2) Ellipsoid: An ellipsoid is a quadratic surface which is
represented by the following equation:

Here, , and represent the lengths of the semi-axes.
An ellipsoid is depicted in Fig. 7(b).

3) Hyperboloid: A hyperboloid is a quadratic surface which
is represented by the following equation:

Here, , , and represent the lengths of the semi-axes.
A hyperboloid is depicted in Fig. 7(c).

B. Algorithm for Shape Generation

We used the following simple algorithm to vary the parame-
ters , , and in order to generate images used for segmentation

1http://mathworld.wolfram.com
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Fig. 7. Some 3-D shapes are illustrated in the figure. The pictures are adopted from Mathworld Website. The figures represent (a) Torus, (b) Ellipsoid, and
(c) Hyperboloid.

Fig. 8. Segmentation of a torus with 3-D HMM. The figure shows three frames, one in each of the X-Y , Y -Z and X-Z planes. (a)–(c) Original image.
(d)–(f) Segmented image. The parameters are a = 15, c = 35, and � = 0:6. The error rate is 1.2%.

Fig. 9. Segmentation of a torus with 3-D HMM. The figure shows three frames, one in each of the X-Y , Y -Z and X-Z planes. (a)–(c) Original image.
(d)–(f) Segmented image. The parameters are a = 5, c = 25, and � = 0:5. The error rate is 12.8%.

study. For clarity, we restate that geometrically, the parameters
, , and represent the length of the semi-axes for ellipsoids

and hyperboloids, while and represent the length of radii, for
torii. In the following pseudo-code, subscripts low, up, and step
represent the lower, upper limits, and the step size used to vary
the respective parameter.

1) ; ; .
2) Generate 3-D image containing Shape centered

about the image containing Gaussian noise , as ex-
plained before.

3) If ; then and goto step 2); else goto
step 4).

4) If ; then and goto step 2); else goto
step 5).

5) If ; then and goto step 2); else
stop.

For the parametric studies performed here, the sizes of the
images was fixed at 100 100 100 and the limits, and the step
sizes chosen were as follows:

• , , ; , ,
; , , .

A total of 70 images can be generated with these parameter set-
tings (10 for class torii, 30 each for classes ellipsoids and hy-
perboloids) for a given noise parameter . The parameter was

varied from 0.2 to 0.7 to generate images having a wide range
of Gaussian noise.

C. Parametric Studies, Results and Discussion

The main advantage of evaluation of 3-D HMM under the
chosen experimental setup is the availability of ground truth
for every image. Moreover, performance over a large pool of
images instills greater confidence in the suitability of the pro-
posed algorithm for 3-D image segmentation. However, it must
be mentioned that some of the resulting shapes are more diffi-
cult to segment than the others if certain extreme parameter set-
ting is used (for example if the semi-major axes or the radii are
too small). Figs. 8–13 illustrate segmentation of a few 3-D im-
ages containing torii, ellipsoids, and hyperboloids respectively.
In each case, three frames of the original and segmented im-
ages are shown. The parameters used are indicated in the figure
captions.

Three separate parametric studies were performed with the
pool of 70 images in order to determine the sensitivity of the 3-D
HMM algorithm to the various parameters. These are explained
as follows.

1) The model parameter was varied between 0 and 1 in
steps of 0.2 and segmentation performance noted for each

. The number of states were fixed at 3 for each class.
Results for and are shown here. For



1882 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 7, JULY 2006

Fig. 10. Segmentation of an ellipsoid with 3-D HMM. The figure shows three frames, one in each of the X-Y , Y -Z and X-Z planes. (a)–(c) Original image.
(d)–(f) Segmented image. The parameters are a = 35, b = 40, c = 30, and � = 0:6. The error rate is 6.5%.

Fig. 11. Segmentation of an ellipsoid with 3-D HMM. The figure shows three frames, one in each of the X-Y , Y -Z and X-Z planes. (a)–(c) Original image.
(d)–(f) Segmented image. The parameters are a = 35, b = 25, c = 30, and � = 0:6. The error rate is 3.3%.

Fig. 12. Segmentation of a hyperboloid with 3-D HMM. The figure shows three frames, one in each of the X-Y , Y -Z and X-Z planes. (a)–(c) Original image.
(d)–(f) Segmented image. The parameters are a = 25, b = 35, c = 30, and � = 0:6. The error rate is 3.1%.

Fig. 13. Segmentation of a hyperboloid with 3-D HMM. The figure shows three frames, one in each of the X-Y , Y -Z and X-Z planes. (a)–(c) Original image.
(d)–(f) Segmented image. The parameters are a = 35, b = 25, c = 30, and � = 0:6. The error rate is 1.7%.

clarity, we have shown two tables (one each for
and ) for torii, ellipsoids, and hyperboloids. Re-
sults for torii are shown in Tables IV and V; results for
ellipsoids are shown in Tables VI and VII; while results
for hyperboloids are shown in Tables VIII and IX. Due to
lack of space, we have shown results for six images for
each class and the respective shape parameters are also
indicated. The best performance, which usually occurs at
an intermediate value of , is indicated in bold. The pa-
rameter represents the extent of 3-D dependence in the
model. A trade off between model complexity (complete
3-D model, ) and ease of estimation (2-D model,

), is preferred in most cases, and the results support
this hypothesis.

2) The Gaussian noise parameter was varied between 0.2
and 0.7 in steps of 0.1. The number of states were fixed
at 3 for each class and was fixed at 0.6. Segmentation

was performed for all 70 images for each . The best and
median segmentation performances for different values
of are shown in Table X. As is evident from the results,
3-D HMM performs reasonably well segmentation even
for large values of .

3) The number of states for each class were varied from 3 to
9 in steps of 3. was fixed at 0.6. The best and median
performances for noise parameter are shown in
Table XI. Results show that models with less number of
states per class perform better than models with higher
number of states per class.

We discovered that the best value of varied largely with the
shape to be segmented. Based on the experiments performed,
an intermediate value of , in the interval usually per-
formed better than extreme values. In the future, we would like
to look into how we can theoretically characterize the perfor-
mance of 3-D HMM model, with the smoothing parameter .
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TABLE IV
SEGMENTATION PERFORMANCES OF A FEW IMAGES OF CLASS TORII WITH

SHOWN PARAMETERS (SIZE 100� 100� 100 AND � = 0:5)
AS THE PARAMETER � IS VARIED BETWEEN 0 AND 1.

THE BEST PERFORMANCE IS INDICATED IN BOLD

TABLE V
PERFORMANCES OF A FEW IMAGES OF CLASS TORII WITH SHOWN

PARAMETERS (SIZE 100� 100� 100 AND � = 0:6) AS THE PARAMETER � IS

VARIED BETWEEN 0 AND 1. THE BEST PERFORMANCE IS INDICATED IN BOLD

TABLE VI
SEGMENTATION PERFORMANCES OF A FEW IMAGES OF CLASS ELLIPSOIDS

WITH SHOWN PARAMETERS (SIZE 100� 100� 100 AND � = 0:5)
AS THE PARAMETER � IS VARIED BETWEEN 0 AND 1.

THE BEST PERFORMANCE IS INDICATED IN BOLD

TABLE VII
SEGMENTATION PERFORMANCES OF A FEW IMAGES OF CLASS ELLIPSOIDS

WITH SHOWN PARAMETERS (SIZE 100� 100� 100 AND � = 0:6)
AS THE PARAMETER � IS VARIED BETWEEN 0 AND 1.

THE BEST PERFORMANCE IS INDICATED IN BOLD

The running times of 3-D HMM segmentation program for
image sizes where takes values 50, 100, 150, and
200 were found out to be 32, 280, 798, and 938 s respectively.
These numbers support the fact that the complexity of the algo-

TABLE VIII
SEGMENTATION PERFORMANCES OF A FEW IMAGES OF CLASS HYPERBOLOIDS

WITH SHOWN PARAMETERS (SIZE 100� 100� 100 AND � = 0:5)
AS THE PARAMETER � IS VARIED BETWEEN 0 AND 1.

THE BEST PERFORMANCE IS INDICATED IN BOLD

TABLE IX
SEGMENTATION PERFORMANCES OF A FEW IMAGES OF CLASS HYPERBOLOIDS

WITH SHOWN PARAMETERS (SIZE 100� 100� 100 AND � = 0:6)
AS THE PARAMETER � IS VARIED BETWEEN 0 AND 1.

THE BEST PERFORMANCE IS INDICATED IN BOLD

TABLE X
BEST AND MEDIAN SEGMENTATION PERFORMANCES OVER 70 IMAGES (SIZE

100� 100� 100) AS THE VARIANCE OF THE GAUSSIAN NOISE VARIES

TABLE XI
BEST AND MEDIAN SEGMENTATION PERFORMANCES OVER 70 IMAGES

(SIZE 100� 100� 100 AND � = 0:6) AS THE NUMBER

OF STATES FOR EACH CLASS ARE VARIED

TABLE XII
SEGMENTATION PERFORMANCE OF A 3-D IMAGE OF AN ELLIPSOID (SIZE

100� 100� 100, a = 40, b = 25, c = 30, � = 0:5) UNDER VARYING

DEGREES OF ROTATION. THE VALUE OF � USED IS 0.6

rithm is linear in the number of pixels in an image , when
other parameters are constant.

D. Studying Effect of Rotation

In order to study the effect of lexicographic ordering on unsu-
pervised segmentation performance, a 3-D image of an ellipsoid
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Fig. 14. Section of a 3-D image of an ellipsoid (size 100� 100� 100, a = 40, b = 25, c = 30, � = 0:5) under varying degrees of rotation. (a) 0 , (b) 10 ,
(c) 30 , (d) 60 , and (e) 90 .

( , , , ), was subjected to indepen-
dent rotations about the , , and axes. The angle of rotation
was varied from 0 to 90 , in steps of 10 .

The misclassification error rate for varying degrees of rotation
is shown in Table XII. Fig. 14 shows a section of the original as
well as segmented image under different angles of rotation. As
can be seen from the results, segmentation performance is quite
stable over a range of rotations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed 3-D HMMs and implemented a
computationally fast parameter estimation technique which can
be used for both 2-D HMMs and 3-D HMMs. Supervised clas-
sification of 2-D aerial images was performed using 2-D HMMs
with the proposed estimation algorithm and compared with the
estimation algorithm which had been proposed initially for 2-D
HMMs. The classification performances were found to be com-
parable while the running time of the proposed estimation al-
gorithm was much faster than the old algorithm. Next, we per-
formed unsupervised segmentation of a large number of syn-
thetically generated 3-D images using 3-D HMM. Parametric
studies varying model and noise parameters were performed and
results were reported. Results show that 3-D HMM can be used
as a powerful tool for modeling 3-D images. We identify the fol-
lowing issues for future work.

• It would be interesting to compare 3-D HMM-based seg-
mentation with segmentation based on 3-D MRF algo-
rithms.

• Multiresolution information has proved helpful in 2-D
image classification. 2-D multiresolution HMMs (2-D
MHMMs) have been successfully applied to 2-D image

modeling. In 2-D MHMMs, feature vectors are extracted
from an image at multiple resolutions and spatially ar-
ranged on a pyramid grid. Thus, a 2-D MHMM models
both intra and inter-resolution relationships between
extracted feature vectors. The proposed estimation al-
gorithm can be incorporated into 2-D multiresolution
HMMs for better computational efficiency. Extending
3-D HMMs to 3-D multiresolution HMMs is also of
considerable interest to us.

• A plausible application of 3-D HMM could be in
hyper-spectral image analysis and classification where
the third dimension is the spectral dimension. Our 3-D
HMM model can capture statistical dependence among
a pixel and its spatial or spectral neighbors and would,
thus, be of use. Another application of our model could
be in video modeling, where the third dimension is the
temporal dimension.

APPENDIX

We now prove (7), that is

(10)

is solved by (11), shown at the bottom of the page. Define
and

, which are the collections of indices for rows preceding
and those succeeding , respectively (see the equation

shown at the bottom of the next page).
The second equality is obtained by the chain rule of condi-

tional probability and the assumption that given the state of a
point, the observed vector is conditionally independent of any

(11)



JOSHI et al.: TWO- AND THREE-DIMENSIONAL HIDDEN MARKOV MODELS 1885

other point. By deleting terms that are irrelevant to , we have

(12)

Since given the states of all the preceding points, the probability
of a point being in a certain state only depends on the three
neighboring points that are one position ahead along each axis,
the first term in (12) can be reduced to

(13)

The second term in (12) can be expanded by the chain rule of
conditional probability and the 3-D Markovian assumption on
the states

(14)

where . Note that the last
term in (14) does not involve and, hence, can be dropped
when searching for . Combining (12)–(14), we have

The last equality comes from expanding the conditional proba-
bilities of states along the rows. For computational convenience,
we can search equivalently the maximum of the log of the ob-
jective function, which leads to (11).
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