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Building the component tree in quasi-linear time
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Abstract— The level sets of a map are the sets of points with
level above a given threshold. The connected components of the
level sets, thanks to the inclusion relation, can be organized in
a tree structure, that is called the component tree. This tree,
under several variations, has been used in numerous applications.
Various algorithms have been proposed in the literature for
computing the component tree. The fastest ones (considering the
worst-case complexity) have been proved to run in O(nln(n)).
In this paper, we propose a simple to implement quasi-linear
algorithm for computing the component tree on symmetric
graphs, based on Tarjan’s union-find procedure. We also propose
an algorithm that computes the n most significant lobes of a map.

Index Terms— Component tree, connected operators, mathe-
matical morphology, classification, disjoint sets, union-find, image
and signal processing, filtering

I. INTRODUCTION

The level sets of a map are the sets of points with level
above a given threshold. The connected components of the
level sets, thanks to the inclusion relation, can be organized
in a tree structure, that is called the component tree. The
component tree captures some essential features of the map.
It has been used (under several variations) in numerous
applications among which we can cite: image filtering and
segmentation [12], [11], [7], [14], video segmentation [21],
image registration [16], [18], image compression [21] and
data visualization [5]. This tree is also fundamental for the
efficient computation of the topological watershed introduced
by M. Couprie and G. Bertrand [7], [8], [3].

While having been (re)discovered by several authors for
image processing applications, the component tree concept
was first introduced in statistics [26], [13] for classification and
clustering. For image processing, the use of this tree in order to
represent the “meaningful” information contained in a numer-
ical function can be found in particular, in a paper by Hanusse
and Guillataud [12], [11]; the authors claim that this tree can
play a central role in image segmentation, and suggest a way
to compute it, based on an immersion simulation. Several
authors, such as Vachier [25], Breen and Jones [4], Salembier
et al. [21] have used some variations of this structure in order
to implement efficiently some morphological operators (e.g.
connected operators [22], granulometries, extinction functions,
dynamics [2]).

Let us describe informally an “emergence” process that will
later help us designing an algorithm for building the compo-
nent tree. Using topographical references, we see the map as
the surface of a relief, with the level of a point corresponding

to its altitude. Imagine that the surface is completely covered
by water, and that the level of water slowly decreases. Islands
(regional maxima) appear. These islands form the leafs of the
component tree. As the level of water decreases, islands grow,
building the branches of the tree. Sometimes, at a given level,
several islands merge into one connected piece. Such pieces
are the forks of the tree. We stop when all the water has
disappeared. The emerged area forms a unique component:
the root of the tree.

Various algorithms have been proposed in the literature
for computing the component tree [4], [21], [15], the latter
reference also contains a discussion about time complexity
of the different algorithms. The fastest ones (considering the
worst-case complexity) have been proved to run in O(nIn(n)),
where n denotes the number of pixels of the image. In this
paper', we propose a quasi-linear algorithm for computing
the component tree of functions defined on general symmetric
graphs, based on Tarjan’s union-find [24] procedure. More
precisely, our algorithm runs in O(N x «(N)) where N
denotes the size of the graph (number of vertices + number
of edges) and « is a very slow-growing “diagonal inverse” of
the Ackermann’s function (we have a(10%%) ~ 4). We would
like to emphasize that this algorithm is simple to implement.

The paper is organised as follows: we first recall the defini-
tions of some basic graph notions and define the component
tree in this framework. We explain the disjoint set problem,
together with the solution proposed by Tarjan. Using a disjoint
set fomulation, we present our component tree algorithm,
and we describe its execution on an example. We then show
that the proposed algorithm is quasi-linear with respect to
the size of the graph, and compare it to one of the most
cited component tree algorithm. We illustrate the use of
the component tree for automatic detection of some image
features, based on a unique parameter which is the number of
features that we expect to find in the image.

II. VERTEX-WEIGHTED GRAPH AND COMPONENT TREE
A. Basic notions for graphs

Let V be a finite set of vertices (or points), and let P(V)
denote the set of all subsets of V. Throughout this paper,
E denotes a binary relation on V' (that is, a subset of the
cartesian product V' x V') which is anti-reflexive ((z,z) ¢ E)
and symmetric ((z,y) € E < (y,x) € E). We say that the

I'A preliminary and reduced version of this paper appeared in conference
proceedings as [19]. This work has been partially supported by the CNRS.



pair (V, E) is a graph, and the elements of E are called edges.
We denote by I' the map from V to P(V) such that, for all
x €V, (z) ={y € V|(z,y) € E}. For any point z, the set
['(z) is called the neighborhood of x. If y € T'(x) then we
say that y is a neighbor of x and that z and y are adjacent.

Let X C V. Let 9,2, € X. A path from xg to x, in X
is a sequence ™ = (xg,1,...,%,) of points of X such that
xit1 € D(x;), withi=0...n—1. Let z,y € X, we say that
x and y are linked for X if there exists a path from x to y
in X. We say that X is connected if any  and y in X are
linked for X. We say that Y C V is a connected component
of X if Y C X, Y is connected, and Y is maximal for these
two properties (i.e., Y = Z whenever Y C Z C X and Z is
connected).

In the following, we assume that the graph (V| F) is con-
nected, that is, V' is made of exactly one connected component.

B. Basic notions for vertex-weighted graphs

We denote by F(V, D), or simply by F, the set composed
of all maps from V to D, where D can be any finite set
equipped with a total order (e.g., a finite subset of the set of
rational numbers or of the set of integers). For a map F' € F,
the triplet (V, E, F) is called a (vertex-)weighted graph. For
a point p € V, F(p) is called the weight or level of p.

Let F € F, we define F, = {& € V|F(z) > k} with
k € D; Fj is called a (cross-)section of F. A connected
component of a section Fj, is called a (level k) component
of F. A level k component of F' that does not contain a level
(k4 1) component of F is called a (regional) maximum of F.
We define Ky, = min {F(z)|lx € V} and kp,x = max
{F(z)|z € V}, which represent respectively, the minimum
and the maximum level in the map F.

Although the notions we are dealing with in this paper are
defined for general graphs, we are going to illustrate our work
with the case of 2D images that we model by weighted graphs.
Let Z denote the set of integers. We choose for V' a subset of
Z2. A point x € V is defined by its two coordinates (z1,x2).
We choose for E the 4-connected adjacency relation defined
by E={(z,y) e VXV |z1 —y1| + |x2 — y2| = 1}.

Fig. 1.a shows a weighted graph (V, E, F') and four cross-
sections of F', between the level k.;, = 1 and the level k. =
4. The set Fy is made of two connected components which
are regional maxima of F.

C. Component Tree

From the example of Fig. 1.a, we can see that the connected
components of the different cross-sections may be organized,
thanks to the inclusion relation, to form a tree structure (see
also [2]).

Let F' € F. For any component ¢ of F, we set h(c) =
max{k|c is a level k component of F'}. Note that h(c) =
min{F(z)|z € c}. We define C(F') as the set composed of all
the pairs [k, c|, where c is a component of F' and k = h(c). We
call altitude of [k, c| the number k. Remark that [k1, c] € C(F)
and [k, ] € C(F) implies k1 = ko, in other words, any two
distinct elements of C(F’) correspond to distinct sets of points.
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Fig. 1. (a) A vertex-weighted graph (V, E, F') and its cross-sections at
levels 1, 2, 3, 4. (b) The component tree of F'. (c) The associated component
mapping. The component at level 1 is called o1, the two components at level
2 are called g and a3 (according to the usual scanning order), and so on.

Let F' € F, let [k1, c1], [k2, co] be distinct elements of C(F).
We say that [kq,c1] is the parent of [ka,ca] if ¢ C ¢1 and if
there is no other [ks3,cs] in C(F') such that ¢; C ¢35 C co.
In this case we also say that [ka,co| is a child of [k, c1]-
With this relation “parent”, C(F') forms a directed tree that
we call the component tree of F', and that we will also denote
by C(F) by abuse of terminology. Any element of C(F) is
called a node. An element of C(F) which has no child (a
maximum of F') is called a leaf, the node which has no parent
(i.e., [kmin, V]) is called the root.

We define the component mapping M as the map which
associates to each point p € V' the node [k, c] of C(F) such
that p € cand F(p) = k. The component mapping is necessary
for using the component tree in applications.

Fig. 1.b shows the component tree of the weighted graph
depicted in Fig. 1.a, and Fig. 1.c shows the associated com-
ponent mapping. The component at level 1 is called «;, the
two components at level 2 are called s and a3 (according to
the usual scanning order), and so on.
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III. COMPONENT TREE QUASI-LINEAR ALGORITHM
A. Disjoint Sets

The disjoint set problem consists in maintaining a collection
Q of disjoint subsets of a set V' under the operation of union.
Each set X in Q is represented by a unique element of X,
called the canonical element. In the following, x and y denote
two distinct elements of V. The collection is managed by three
operations:

o MakeSet(z): add the set {z} to the collection Q, pro-
vided that the element z does not already belongs to a
set in Q.

o Find(x): return the canonical element of the set in O
which contains x.

e Link(z,y): let X and Y be the two sets in Q whose
canonical elements are x and y respectively (z and y
must be different). Both sets are removed from O, their
union Z = X UY is added to Q and a canonical element
for Z is selected and returned.

Tarjan [24] proposed a very simple and very efficient
algorithm called union-find to achieve any intermixed se-
quence of such operations with a quasi-linear complexity.
More precisely, if m denotes the number of operations and
n denotes the number of elements, the worst-case complexity
is O(m x a(m,n)) where a(m,n) is a function which grows
very slowly, for all practical purposes a(m,n) is never greater
than four?.

The implementation of this algorithm is given below in
procedure MakeSet and functions Link and Find. Each set
of the collection is represented by a rooted tree, where the
canonical element of the set is the root of the tree. To each
element z is associated a parent Par(z) (which is an element)
and a rank Rnk(z) (which is an integer). The mappings ’Par’
and Rnk’ are represented by global arrays in memory. One of
the two key heuristics to reduce the complexity is a technique
called path compression, that is aimed at reducing, in the long
run, the cost of Find. It consists, after finding the root r of the
tree which contains z, in considering each element y of the
parent path from z to r (including x), and setting the parent
of y to be r. The other key technique, called union by rank,
consists in always choosing the root with the greatest rank to
be the representative of the union while performing the Link
operation. If the two canonical elements = and y have the same
rank, then one of the elements, say y, is chosen arbitrarily to
be the canonical element of the union: y becomes the parent of
x; and the rank of y is incremented by one. The rank Rnk(x) is
a measure of the depth of the tree rooted in x, and is exactly
the depth of this tree if the path compression technique is
not used jointly with the union by rank technique. Union by
rank avoids creating degenerate trees, and helps keeping the
depth of the trees as small as possible. For a more detailed
explanation and complexity analysis, see Tarjan’s paper [24].

Procedure MakeSet (element x)
Par(z) := z; Runk(z) := 0;

2The precise definition of «, a “diagonal inverse” of the Ackermann’s
function, involves notions which are not in the scope of this paper, it can
be found in [24].

Function element Find (element x)
if (Par(xz) # z) then Par(x) := Find(Par(x));
return Par(z);

Function element Link (element x, element y)
if (Rnk(x) > Rnk(y)) then exchange(z,y);
if (Rnk(xz) == Rnk(y)) then Rnk(y) := Rnk(y) + 1;
Par(z) == y;
return y;

B. Illustration of union-find: labelling the connected compo-
nents

We can illustrate the use of the union-find algorithm on the
classical problem of finding the connected components of a
subset X of a graph (V| FE). Algorithm 1 (ConnectedCom-
ponents) is given below. For a set X, this algorithm returns
a map M that gives for each point p, the canonical element
M (p) of the connected component of X which contains p.

Algorithm 1: ConnectedComponents
Data: (V, E) - graph
Data: Aset X CV
Result: M - map from X to V
1 foreach p € X do MakeSet(p);
2 foreach p € X do
3 compp := Find(p);
4 foreach ¢ € T'(p) N X do
5 compq := Find(q);
6
7

if (compp # compq) then
| compp := Link(compq, compp);

8 foreach p € X do M(p) := Find(p);

During the first pass (loop 1), for each point p of the set X,

the set {p} is added to the collection Q of disjoint subsets.
Then, loop 2 processes all points of X in an arbitrary order.
For each point p, we first find the canonical element of the set
it belongs to (line 3). Then, for each neighbor ¢ of p such that
q € X (line 4), we find the canonical element of the set which
contains ¢ (line 5). If p and ¢ are not already in the same set,
that is if the two canonical elements differ (line 6), then the
corresponding sets are merged (line 7), and one of the two
canonical elements is chosen to be the canonical element of
the merged set. At the end, a simple pass on all the elements
of X (loop 8) builds the map M.
Note that, if the vertices can be processed in some very specific
order (as the scanline order), the ConnectedComponents algo-
rithm becomes linear [10], [9]. Unfortunately, such a specific
strategy is not applicable for the component tree algorithm,
where the scanning order depends on the altitudes of the
vertices.

C. Component tree algorithm: high-level description

We are now ready to introduce our quasi-linear algorithm for
building the component tree C(F') from a weighted graph G =
(V, B, F).



The algorithm simulates the emergence process described
in the introduction, and maintains several data structures. The
main one is a forest, which initially consists of a set of mutu-
ally disconnected nodes, each node being associated (initially)
to a single vertex of the graph G. During the emergence
process, which is realized by scanning all the vertices of G
by decreasing order of altitude, the vertices which belong to
a same component and have the same altitude are grouped
together thanks to a disjoint set collection called Qpoge. The
canonical element of such a set is called a canonical node.
Notice that the disjoint set collection Q. has essentially the
same function as the disjoint set collection used by algorithm
ConnectedComponents (sec. I1I-B).

Simultaneously, the canonical nodes are progressively
linked together to form partial trees, each partial tree rep-
resents intuitively an emerged island. At the end of the
execution, a unique tree groups all the canonical nodes, each
one of these nodes represents a component of G, and the whole
tree constitutes the component tree of G. To reach a quasi-
linear time complexity, we have to maintain another collection
Ouree Of disjoint sets, and an auxiliary map called lowestNode.
Given an arbitrary node P, the collection Q. allows to find,
in quasi-constant time, a node 7" which “represents” the partial
tree which contains P. Due to the particular management of
Oyree, this node T' cannot be guaranteed to be precisely the root
of the partial tree, this is why we also need to maintain the
map lowestNode which associates, to each canonical element
of Qyee, the root of the corresponding partial tree.

D. Component tree algorithm: detailed view

Algorithm 2 (BuildComponentTree) is given below. It uses
two auxiliary functions MakeNode and MergeNodes. To
represent a node of C(F'), we use a structure called node
containing the level of the node, and the list of nodes which are
children of the current node. For building the component tree,
we do not need the reverse link, that is we do not need to know
the parent of a given node, but let us note that such information
is useful for applications, and can easily be obtained in a
linear-time post-processing step. In what follows, we are going
to show how to compute some attributes associated to each
node of the component tree; we thus need that the structure
node contains some fields that store those attributes, namely
level, area and highest. We defer both the precise
definition of the attributes and the explaination on how they
are computed until section VI, in order to concentrate on the
component tree itself.

Function node MakeNode (int level)
Allocate a new node n with an empty list of children;
n— level := level; n— area := 1; n— highest := level;
return n;

After a preprocessing (line 1, achievable in linear time for
short integers [6]) which sorts the points by decreasing order of
level and which prepares the two union-find implementations
(line 2), we process the points, starting with the highest ones.
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Function int MergeNodes (int nodel, int node2)
tmpNode := Linkpege(nodel,node2);
if (tmpNode == node2) then
Add the list of children of nodes[nodel]
to the list of children of nodes[node2];
tmpNode?2 := nodel;

else
Add the list of children of nodes[node2]

to the list of children of nodes[nodel];
| tmpNode2 := node2;
nodes[tmpNode]—area :=
nodes[tmpNode]—area + nodes[tmpNode2]—area;
nodes[tmpNode]—highest :=
max(nodes|tmpNode]—highest,
nodes[tmpNode2]—highest);
return tmpNode;

Let us suppose that we have processed a number of levels.
We have built all nodes of the component tree that are above
the current level, and we are building the nodes with exactly
the current level. For a given point p of the current level
(line 3), we know (through the collection Q) the partial tree
the node p belongs to (line 4). In each partial tree, there is only
one node with the current level, that we can obtain through
the auxiliary map lowestNode. We then find the associated
canonical node (line 5).

We then look at each neighbor ¢ of p with a level greater
or equal to the current one (loop 6). Note that, as the graph
is symmetric, the “linking operations” between two points are
done when one of the two points is processed as a neighbor
of the other. Thus, we can use the order of scanning of the
points, and we only need to examine the “already processed”
neighbors of p. Such a neighbor ¢ satisfies F'(q) > F(p).

Exactly as we have done for the point p, we search for the
canonical node corresponding to the point ¢ (lines 7-8). If the
canonical node of p and the canonical node of ¢ differ, that is
if the two points are not already in the same node, we have
two possible cases:

o cither the two canonical nodes have the same level;

this means that these two nodes are in fact part of
the same component, and we have to merge the two
nodes (line 9 and function MergeNodes). The merging
of nodes of same level is done through the collection
Ohnode Of disjoint sets. The merging relies on the fact
that the Linkpqg, function always chooses one of the two
canonical elements of the sets that are to be merged as
the canonical element of the merged set. This fact is used
in the sequel of the function.
Once the merging has been done, one of the nodes is
chosen to be the canonical element of the disjoint set.
Observe that the other node is not needed anymore.
Indeed, we only have to know to which disjoint set this
last node belongs to, and the answer to this question is
given by the Findyege function.

« or the canonical node of ¢ is strictly above the current
level, and thus this node becomes a child of the current
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Algorithm 2: BuildComponentTree

Data: (V, E, F') - vertex-weighted graph with N points.
Result: nodes - array [0... N — 1] of nodes.

Result: Root - Root of the component tree

Result: M - map from V to [0...
Local: lowestNode - map from [0...N —1] to [0...

N — 1] (component mapping).
N —1].

1 Sort the points in decreasing order of level for F7;
2 foreach p € V do {MakeSetyee(p); MakeSetyode(p); nodes[p]:= MakeNode(F(p)); lowestNode[p] := p;};
3 foreach p €V in decreasing order of level for F do
4 curTree := Findee(p);
5 curNode := Find,oqgc(lowest N ode[curTree]);
6 foreach already processed neighbor q of p with F(q) > F(p) do
7 adjTree := Findyee(q);
8 adjNode := Findpoq.(lowest N ode[adjTree]);
if (curNode # adjNode) then

if (nodes[curNode]—level == nodes[adjNode ]—level) then
9 ‘ curNode := MergeNodes(adjNode, curNode);

else

// We have nodes[curNode] —level < nodes[adjNode]—level

10 nodes[curNode]—addChild(nodes[adjNode]);
1 nodes[curNode]—area := nodes[curNode]—area + nodes[adjNode]—area;
12 nodes[curNode]—highest := max(nodes[curNode]—highest, nodes[adjNode]—highest);
13 curTree := Linkge(adjTree, curTree);
14 lowest N ode[curTree] := curNode;

15 Root := lowestN ode[Findee (Findpege(0))] ;
16 foreach p € V do M(p) := Findyoe(p);

node (line 10).
In both cases, we have to link the two partial trees, this is done
using the collection Qyee (line 13). We also have to keep track
of the node of lowest level for the union of the two partial
trees, that we store in the array lowest Node (line 14).

At the end of the algorithm, we have to do a post-processing
to return the desired result. The root of the component tree can
easily be found (line 15) using the array lowestNode and the
two disjoint set structures Qe and Qpoge. The component
mapping M can be obtained using the disjoint set Qode
(loop 16).

IV. ILLUSTRATION OF THE ALGORITHM

Let us illustrate the work of the algorithm on an example.
Consider the weighted graph of Fig. 2.a. The points are la-
belled according to their usual lexicographical order (Fig. 2.b).

At the beginning of the sixth step, we have already con-
structed parts of the component tree (Fig. 3.b). We show in
Fig. 3.a the maps Parye, Paryoge, and lowestNode. For the
maps Pary.. and Parg.., the canonical elements appear in
white. It should be noted that the lowestNode mapping is
only used for the canonical elements of Pary..: this explains
why the values of lowestNode for other elements (in grey)
are not updated.

We are going to process nodes at level 50. The first node
at level 50 is node 3. Node O is a neighbor of node 3. The
canonical node corresponding to 0 is node 1, the level of which

‘110‘ %0 ‘100 0 1 )

BEE (5475

BEE 6773

9 10 | 11

12070 80 12|13 | 14
(@) (b)

Fig. 2. (a) Original vertex-weighted graph. (b) Points are labelled according
to the usual lexicographic order, but they will be processed by decreasing
level (that is: 12,0,2,1, 14,13, 3,4,5,8,9,10,11,6, 7).

1 1 1 0 1 2 0 1 2
3 4 5 31415 3 4 5
6 | 7 6 | 7 6 | 7 8
9 |10 9 |10 | 11 9 |10 | 11
13 | 13 | 13 12 |13 | 14 12 | 13 | 14
Paree Par,oqe lowestNode
(a)

@ @) @

(b)

Fig. 3. Beginning of step 6. (a) State of the maps Paryee, Paryyqe and
lowest N ode. (b) Partial trees constructed.



1 (3] 3 0 1 2 0 1 2
3 13| 3 3 3 3 3 4 5
6 |71 3 6 7 3 6 7 8
9 19| 11 9 9 | 11 9 | 10 | 11
1319 13 12 | 13 | 14 12 | 13 | 14

Paric. Par,ode lowestNode

(a)

) (@o) @am) (o
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Fig. 4. Beginning of step 11. (a) State of the maps Pariree, Paryyqe and
lowest Node. (b) Partial trees constructed.

1 (3] 3 0 1 2 0 1 2
9 |3] 3 9 3 3 3 4 5
6 |71 3 6 7 3 6 7 8
9191 3 9 9 3 9 |10 | 11
1319 13 12 | 13 | 14 12 | 13 | 14

Pari.. Par,ode lowestNode

(b)

Fig. 5. End of step 11. (a) State of the maps Pargee, Par,yqe and
lowestNode. (b) Partial trees constructed.

is 90. Thus node 3 becomes the parent of node 1. Then, node 3
is linked for Qyode succesively with nodes 4, 5 and 8. Then
node 9 is examined, and is linked for Q.q. With node 10,
the node 9 being chosen as the canonical one. Node 9 is
a neighbour of node 12, the canonical element of which is
node 13 (level 70). Thus, node 13 becomes a child of node 9.
We are then at the beginning of step 11, and this is illustrated
on Fig. 4.

Node 11 is a neighbor of both nodes 8 and 10. The canonical
node of node 8 is node 3 at level 50. Thus, node 11 and node 3
are linked for Qp.ge, and node 3 is chosen as the canonical
one. The canonical node of node 10 is node 9 at level 50.
Thus, nodes 9 and 3 are merged, that is, the corresponding
partial trees are merged into a single tree. Node 9 is chosen
as the canonical element of the level 50 component, and the
children of node 3 are transfered to node 9. We are in the
situation depicted in Fig. 5.

We then process node 6 at level 40, which becomes the
parent of node 9 at level 50. Node 9 and node 6 are linked
for Quee, and node 9 is chosen as the canonical element
for the partial tree. The lowest node in this partial tree is
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1 {3]3 0 1 2 0 1 2
91913 9 3 3 3 4 5
91919 6 7 3 6 7 8
91919 9 9 3 7 110 | 11
131919 12 | 13 | 14 12 | 13 | 14
Par.. Par,ode lowestNode

Fig. 6. End of step 14. (a) State of the map Pariree, Par,qe and lowest N ode.
(b) Component tree.

node 6 at level 40. We use the map lowestNode to store
that information, by setting lowestNode[9] := 6. Then we
process node 7 at level 20, which becomes the parent of
node 6. Node 9 is chosen as the canonical element for the
partial tree, and thus we have to store the lowest node by
setting lowestNode[9] := 7. There is no node lower than 20,
and thus, the component tree is built. The final situation is
depicted in Fig. 6.

The collection Q.. of disjoint sets is not useful anymore:
indeed, each node of the graph has been examined, and they
are all linked for Qyee, the canonical element being the node 9.
The root of the component tree is the node 7. Each of the
canonical elements of the collection Qo4 corresponds to a
component of F': observe in particular the level 50, whose
canonical node is node 9. The collection Q,,¢e can be used to
compute the component mapping M.

V. COMPLEXITY ANALYSIS

Let n denote the number of points in V, and let m denote
the number of edges of the graph (V, E).

The sorting of the points (line 1) can be done in O(n)
if the weigths are small integers (counting sort [6]), and in
O(nlog(log(n))) if each weight can be stored in a machine
memory word (long integers or floating point numbers [1]).

Loop 2 is the preparation for the union-find algorithm. It is
obviously O(n).

In the function MergeNodes, the merging of the lists of
children can be done in constant time, because we can merge
two lists by setting the first member of one list to be the one
that follows the last member of the other list. This requires the
two lists to be disjoint, which is the case (we are dealing with
disjoint sets), and an adequate representation for lists (chained
structure with pointers on both first and last element).

The amortized complexity of line 6 is equal to the number m
of edges of the graph (V, E'). The amortized complexity of all
calls to the union-find procedures is quasi-linear (in the sense
explained in section III-A) with respect to m. The building of
the component mapping M is obviously linear.
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Fig. 7. An example of an artificially generated image of size N*N, where
values of pixel (z1,x2) with 1 + z2 odd are uniformly distributed between
0 and N * N, and where the other half of the pixels are 0. Using a series of
such images, one can verify that the component tree algorithm of Salembier
et al. is quadratic.

Thus the complexity of the algorithm 2 (BuildComponent-
Tree) is quasi-linear if the sorting step is linear.

Note that the memory for the lowestNode array is not
necessary: we can easily modify the code so that we store
the content of lowest N ode as negative values in Par,, for the
canonical element of Q... In this case, for an element z € V,
Finde.(x) still returns the canonical element ¢ for Qyee, but
lowestNode(c) = —Paryee(c). The modifications that have to
be made to MakeSet, to Find, and to Build ComponentTree
are straightforward and do not change the complexity of the
algorithm.

For comparison purpose, one can prove that the most cited
component tree algorithm, the Salembier et al. algorithm [21]
is quadratic. More precisely, although there is no complexity
analysis in [21], one can verify that the Salembier er al.
algorithm has a worst-case time complexity in O(n x h+m)
where h is the number of levels of the image. The worst
case can be attained using a series of artificially generated
images such that half of the pixels are maxima of the images
(an example of an image of the series is provided in Fig. 7).
However, this worst case is rare in practice. We observe that,
when the level of a point is a short integer (between 0 and
255), the Salembier er al. algorithm is generally twice as fast
as our algorithm. This can be explained by the fact that, for
each point of the image, we have to access the two union-find
data structures, while this is not the case for the Salembier et
al. algorithm.

VI. ATTRIBUTES

A major use of the component tree is for image filtering:
for example, we may want to remove from an image the
“lobes” that are not “important enough” or “negligible”. Such
an operation is easy to do by simply removing the “negligible”
components of the component tree. To make such an idea
practicable, it is necessary to quantify the relative importance
of each node of the component tree. We can do that by
computing some attributes for each node.

Among the numerous attributes that can be computed, three
are natural: the height, the area, and the volume (Fig. 8).

Let [k, c] € C(F). We define

height([k,c]) =
area([k,c]) =

max{F(xz) — k + 1|z € ¢}
card(c)

Height Area Volume

Fig. 8. Tllustration of the height, the area and the volume of a component.

volume([k,c]) =

> (F(z) - k+1)
xEC

The area is easy to compute while building the component
tree. Each time two components merge (i.e. in the function
MergeNodes) or each time a component is declared the parent
of another one (i.e. line 11 of algorithm 2 BuildComponent-
Tree), we keep as the new area the sum of the areas of the
two components.

For computing the highest level in the component, we do
as we did for the area, replacing the sum by the maximum
(see line 12 of algorithmm 2 BuildComponentTree and the
function MergeNodes). From this highest level, the height of
a component n can easily be computed by setting height(n) =
(n—highest) — (n—level)+1.

To compute the volume, we first need the area. We then
apply the recursive function ComputeVolume on the root of
the tree. The complexity of this function is linear with respect
to the number of nodes.

Function int ComputeVolume (inf n)

vol := nodes[n]—area;
foreach c child of nodes[n] do
vol := vol + ComputeVolume(c) +
L c—area * (c—level - nodes[n]—level);
nodes[n]—volume := vol ;
return vol,;

VII. EXAMPLE OF APPLICATION AND CONCLUSION

We have mentioned a simple use of the component tree for
filtration (removing nodes of the tree whose attribute is below
a given threshold). A more advanced use consists in finding
the most significant lobes of a given weighted graph F'. More
precisely, we want to find the N most significant components
with respect to either the height, area or volume criterion.
By using the tree, this task reduces to the search of the NV
nodes that have the largest attribute values and are not bound
with each other (even transitively) by the inclusion relation.
Algorithm 3 (Keep_N_Lobes) performs this task. Its time
complexity is in O(sort(n) + m), where m is the number of
vertices in the graph, n is the number of component tree nodes
and sort(n) is the complexity of the sorting algorithm. At the
end of the algorithm, the remaining leaves (more precisely, the
pixels which are associated to these leaves) mark the desired
significant lobes. For this algorithm, each node must include
fields to store its parent and its number of children (but the
list of children of a given node is not necessary).

Fig. 9 illustrates this algorithm. Fig. 9.a is an image of cell,
in which we want to extract the ten bright lobes. Fig. 9.b shows



Algorithm 3: Keep_N_Lobes

Data: A vertex-weighted graph (V| E, F'), its component
tree 1" with attribute value for each node, and the
associated component mapping M

Data: The number N of wanted lobes.

Result: The filtered map F'

1 Sort the nodes of T' by increasing order of
attribute value;

2 @ := (; L := number of leaves in T,
3 forall n do nodes[n]—mark := 0;
4 while L > N do
5 Choose a (leaf) node ¢ in T with smallest
attribute value;
6 p := nodes[c]—parent ;
7 nodes[p]—nbChildren := nodes[p]—nbChildren-1;
8 if (nodes[p]—nbChildren > 0) then L := L-1;
9 nodes[c]—mark := 1 ; Q := Q U {c};

10 while dc € @ do
| Q= Q\ {c}: RemoveLobe(c);
12 foreach =z € V do F(z) := nodes[M[x]]—level,

—
—

Function int RemoveLobe (int n)
if (nodes[n]—mark == 1) then
| nodes[n] := nodes[RemoveLobe(nodes[n]—parent)];
return n;

that the image 9.a contains numerous maxima. Fig. 9.c is the
filtered image obtained by using algorithm 3 with the volume
attribute and with parameter value 10, and Fig. 9.d shows the
maxima of this filtered image. Note that a similar result could
be obtained with this image by performing attribute based
operations using several volume threshold values, following
e.g. a dichotomic method, until the desired number of maxima
is reached. This latter approach is not only less efficient
than the proposed algorithm, but it may also fail to find the
precise number of maxima required by the user, in the case of
components having precisely the same attribute value. In such
cases, the proposed algorithm always makes a choice in order
to fulfill the user’s requirement.

The component tree allows the efficient implementation of
complex image and signal filtering, based for example on
the use of criteria such as area, volume or depth, or even
the use of non-increasing criteria [21]. Although some of
these filters may be computed using specific and sometimes

(b) () (@)

Fig. 9. (a) Original image. (b) Maxima of image (a), in white. (c) Filtered
image. (d) Maxima of image (c), which correspond to the ten most significant
lobes of the image (a).
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faster algorithm (in particular area filtering [17]), using the
component tree is in general the simplest and the most efficient
way to compute these filters. Moreover, once the component
tree of a function is computed, any of these filters, with any
parameter value, can be computed at a very low cost. The
component tree is also a key element of an efficient algorithm
for the topological watershed [8]. New classes of filters,
such as second-order connected operators [23] have been
recently introduced to generalize connected operators [22].
Those operators can also be efficiently implemented using
the component tree [20]. In this paper, we have proposed a
simple-to-implement quasi-linear algorithm for computing the
component tree. We hope that such an algorithm will facilitate
the extensive practical use of such operators.
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Abstract

The notion of watershed, used in morphological segmentation, has only a digital definition. In this paper, we propose
to extend this definition to the continuous plane. Using this continuous definition, we present the watershed differences
with classical edge detectors. We then exhibit a metric in the plane for which the watershed is a skeleton by influence
zones and show the lower semicontinuous behaviour of the associated skeleton. This theoretical approach suggests an
algorithm for solving the eikonal equation: || Vf]| =g. Finally, we end with some new watershed algorithms, which
present the advantage of allowing the use of markers and/or anchor points, thus opening the way towards grey-tone
skeletons.

Zusammenfassung .

Der Begriff Wasserscheide, der in der morphologischen Segmentation verwendet wird, hat nur eine diskrete Definition.
In diesem Artikel schlagen wir vor, diese Definition auf die kontinuierlich Ebene auszudehnen. Indem wir die
kontinuierliche Definition verwenden, stellen wird die Unterschiede zwischen Wasserscheide und klassischen Kanten-
detektoren vor. Wir zeigen dann eine Metrik in der Ebene, fiir die die Wasserscheide ein Skelett von Einfluizonen ist und
zeigen das untergeordnete halbkontinuierliche Verhalten von damit verbunden Skeletten. Dieser theoretische Ansatz
schligt einen Algorithmus fiir die Losung der Eikonal-Gleichung || Vf|| =g vor. SchlieBlich gelangen wir zu einem neuen
Wasserscheiden-Algorithmus, der den Vorteil hat, die Benutzung von Markierungen und/oder Ankerpunkten zu
erlauben und daher den Weg zu Graustufenskeletten 6ffnet.

Resumé

La notion de ligne de partage des eaux, utilisée en segmentation morphologique dispose uniquement d’une définition
digitale. Dans cet article, nous proposons d’étendre la définition de la ligne de partage des eaux au plan continu. En
utilisant cette définition continue, nous comparons la ligne de partage des eaux avec les extracteurs de contours
classiques, et montrons leurs différences. Nous introduisons ensuite une métrique pour laquelie la ligne de partage des
eaux est un squelette par zones d’influence, ce qui nous permet de montrer son comportement semi-continu. Cette
approche théorique nous suggére un nouvel algorithme pour résoudre 'équation eikonal: trouver f telle que | Vf|| =g.

* Corresponding author. Tel: (33-1) 693309 17; Fax: (33-1) 69 3308 65; E-mail: najman@thomson-lcr.fr.
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Nous terminons enfin sur de nouveaux algorithmes de ligne de partage des eaux, présentant I'avantage de pouvoir inclure
des marqueurs et des points d’ancrages, ouvrant ainsi la voie aux squelettes 4 teintes de gris.

Key words: Mathematical morphology; Watershed; Image distance; Eikonal equation; Edge detection

1. Introduction

One of the most intuitive notions of morphologi-
cal segmentation is the notion of watershed
[2,3,13,22,28]. The algorithms proposed in the
literature have only a formal link with the various
definitions of the watershed. Intuitively, the idea is
that thé watershed is a skeleton by influence zones
‘with respect to a special distance, but all the pre-
vious theoretical definitions are in the general case
a kind of skeleton, i.e. the previous watersheds do
have barbs.

In this paper, we propose a proof of the conver-
gence of the algorithm of Beucher and Lantuéjoul
[3]. This proof allows us to give a meaning to
a continuous definition of the watershed, and to
show the very link between the watershed and the
skeleton. Using this continuous definition, we are
able to compare the watershed with the classical
second-order differential operators used to detect
edges. This theoretical work leads us to new
algorithms, one to solve the eikonal equation, and
the other to compute a watershed, with the advant-
age of allowing the use of markers and anchor
points.

2. The watershed: from discrete to continuum
2.1. Classical digital algorithm

We follow here the presentation of L. Vincent
[28].

In mathematical morphology, it is usual to con-
sider that an image is a topographical surface. It is
done by considering the grey level (the image inten-
sity) as an altitude. Places of high variation in the
intensity are then a good set in which one can
search for contour lines. It is then rather straight-
forward to estimate the variation from the gradient
of the image. For the purpose of segmentation, we

are then looking for the crest lines of the gradient
image. A way for doing this operation is to apply
the watershed algorithm to the gradient image.

The idea of the watershed is to attribute an
influence zone to each of the regional minima of an
image (connected plateau from which it is imposs-
ible to reach a point of lower grey level by an
always descending path). We then define the water-
shed as the boundaries of these influence zones.

Numerous techniques have been proposed to
compute the watershed. The major ones are re-
viewed in [28,30]. The classical idea for building
the watershed is simple to describe in one dimen-
sion (Fig. 1). We begin by piercing the regional
minima of the surface. Then, we slowly immerse the
image into a lake. The water progressively floods
the basins corresponding to the various minima
(Fig. 1(a)). To prevent the merging of two different
waters originating from two different minima, we
erect a barrage (Fig. 1(b)). Once the surface is total-
ly immersed, the set of the barrages thus built is the
watershed of the image. In one dimension, the loca-
tion of the watershed is straightforward. In two
dimensions (which is the case of the classical im-
ages) this characterization is not so easy (Fig. 2).
One can say in an informal way that the watershed
is the crest lines of the image.

We give here the classical algorithm allowing the
computation of the watershed. The most power-
ful implantation described in the literature
[4,21,29,30] uses FIFO breadth-first scanning
techniques for the actual flooding.

Following the ideas we mentioned above, the
algorithm consists of flooding the water in the
various basins, and to keep as the watershed the set
of contact points between two different basins. In
the case where this contact is on a plateau, we keep
the (geodesic) middle of this plateau. The watershed
thus defined is of thickness one on the grid.

To compute the geodesic middle on the contact
plateaus, we use the geodesic distance.

|
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(a) At time t, the barrage is not yet
constructed.

Barrage

\

(b) At time t+h, we construct a bar-
rage to separate water from BVqy
and from BV 3.

Fig. 1. Building of the watershed: one-dimensional approach.

Definition 2.1. Let A be a set, a and b two points of
A. We call geodesic distance in A d 4(a, b) the lower
bound of the lengths of the paths y in 4 linking
a and b.

In the digital case, the distance d, is deduced
from one of the grids [20]. Let B = \UB; = 4, where
B; are the connected components of B.

Definition 2.2. The geodesic influence zone iz (B;)
of a connected component B; of B in 4 is the set of
the points of A for which the geodesic distance to B;
is smaller than the geodesic distance to other con-
nected components of B.

izg(B;) = {p € A, ¥j e[1,kI\{i},
d4(p, B)) < d4(p, Bj)}- (1)

The points of A which do not belong to any influ-
ence zone make up the skeleton by influence zones
of Bin A, noted SKIZ,(B):

SKIZ,(B)= A\1Z/(B), 2)
where IZ(B) = Uicp1,19iz4(Bi)-

The watershed algorithm on digital images by
recurrence on grey level is the following definition

[13]:

Definition 2.3. The set of the catchment basins of
the numerical image I is the set X, obtained after
the following recurrence:

Xhmin = nmin(l)’ (33)
Vh e[hminahmax - 1],
Xpe1 = Ming U IZy,,, 1(X4), (3b)

where

~ hin €7Z (respectively h,,,) is the lowest (respec-
tively the greatest) grey level of image I.

— T,(I) is the threshold of the image I at height h:
T(I) = {p|1(p) < h}

— Min, is the set of the regional minima of I at the
height h.
The watershed of the image I is the complement
of this set.

Note that this algorithm works only for step
functions.

2.2. Continuous generalization

From now on, image f is supposed to be regular
enough (%?) to allow the use of differential oper-
ators. We use classical tools of differential geometry
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Barrage

\

O

\\§
\,

Catchment basins

Minima

Fig. 2. Building the watershed in 2D.

[24]. The gradient Vf is the plane vector of the
first-order derivatives of f, and the Hessian H,
is the real symmetric matrix of the second-order
derivatives.

The definitions of watershed are based on the
notion of path of greatest slope. Intuitively, a path
of greatest slope is a path parallel to the gradient of
f. If we begin on a point a where Vf(a) # 0, we can
easily follow the gradient line backward (ie. the
grey levels are decreasing along the line) until we
reach a point b where Vf(b)=0. But b is not
neceassarily a regional minima of fand thus there
is an ambiguity to continue the path after b. We
propose to formalize this notion by using the
notion of maximal line of the gradient. A path of
greatest slope will then be a union of maximal line
of the gradient.

Definition 2.4. A path y:]—o0, +oo[ > R* is
called a maximal line of the gradient if

Vs e]—oo, +0of, j(s) = + Vf(y(s)) #0 and

lim j(s) = lim j(s) = 0. (4)

We shall say that a maximal line of the gradient is
descending if

Vs €] —o0; +oo[, 3(5) = — VAH(s)). s)

The maximal lines of the gradient are defined on
J—o0, +oo[ for one cannot reach a point with
a zero speed. This is due to the parametrization (the
speed at which we run on the path) we have chosen.
The magnitude of this speed is equal to the gradient
modulus. We could have chosen another parametr-
ization of the path, but we use it as it expresses the
fact that we cannot clearly extend a maximal line of
the gradient. Note that the union of all maximal
lines of the gradient of a continuous function covers
the whole domain of the function (as an example,
see Fig. 4).

We recall that a is a critical point if Vf(a) =0. We
need to link the maximal lines of the gradient if we
want them to end in a regional minima. We are
going to define a partial ordering relation which
will allow us to do so.

Definition 2.5. Let a and b be two critical points of
f We shall say that b is above a if there exists
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a maximal descending line of the gradient linking
b to a. We can extend this notion by saying that b is
above a if there exists a set (a;) of critical points such
that ao =b and a, =a, satisfying a; is above a;+;.
We then obtain the partial ordering relation
‘above’.

This ordering relation allows to distinguish three
kinds of critical points:

~ regional minima,

— points above an unique minima,

— points above several minima.

The last ones should clearly belong to the definition
of the watershed of a continuous function.

Definition 2.6. We denote 2(f) the subset of the
critical points a of f which are above several re-
gional minima of f.

Fig. 3 shows some examples of points of 2(f).

We have the following convergence theorem
which will be used in the following as our definition
of the continuous watershed.

Theorem 2.7. [17] Let f be a €* function, with
a compact connected domain. Suppose that f has only
isolated critical points, and that, on the critical
points, the Hessian has two non-zero eigenvalues. We
construct a sequence f, of step functions which
converges pointwise towards f. More precisely, we

Fig. 3. Some examples of points of 2(f).
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Fig. 4. Gradient field of sin(x)sin(y) (M: maxima — m: minima
~ s: saddle point).

put f,(a) =E(2"f(a))/2", where E(x) is the integer
part of x. Then, the watershed of f, seen as the limit
of the watershed of f,, is the set of the maximal lines
of the gradient linking two points of P(f).

Note that the limit function f does not have
plateaus. In fact, we will show in the next section
that the choice of a line of watershed on a plateau is
arbitrary.

So the watershed lines are parallel to the gradi-
ent, which, as far as we know, has not been pointed
out by other authors. Note that we can use The-
orem 2.7 as a definition of the watershed of a con-
tinuous function. One should be very careful with
the hypothesis we put on f. If Hessian H, has one
zero eigenvalue, the watershed can have a barb (a
branch with an endpoint), which is never the case
with the algorithm. As an example, one can look at
a monkey saddle (Fig. 5). Two branches of the
monkey saddle belongs to the contour of a basin.
The other one directs itself towards a local max-
imum of the image which belongs to the interior of
a basin. Moreover, the watershed of a continuous
function can be thick. As an example, we can look
for what Beucher [2] calls a buttonhole (see Fig. 6).
Choosing a particular line in the buttonhole is
anyway fully arbitrary. Note that, on the button-
hole, Vf(a) =0 yields H,(a) = 0. Nevertheless, we
can always assume that the images satisfy the



104 L. Najman, M. Schmitt | Signal Processing 38 (1994) 99-112

Fig. 6. Gradient field of a buttonhole.

hypothesis of Theorem 2.7: if f does not satisfy it,
then an arbitrary small perturbation of f makes f
an adequate function (obviously the perturba-
tion must not vanish on the critical points).
Such functions are called Morse functions [16],
and are (uniformly) dense in the set of smooth
functions.

The fact that at each point of a %2 function there
exist at least two lines of greatest slope descending
towards two minima is true only on points of 2 (f)
(see Fig. 4).

Theorem 2.7 suggests that we can add some lines
to the watershed by adding points to 2(f). If we
carefully choose these new points, the result ex-
hibits end points and is a way to introduce the
notion of grey-tone skeleton. In the last part of this
paper we give an algorithm which allows to do such
an operation.

To define the watershed as a subset of the maxi-
mal lines of the gradient is a local notion, to which
boundary conditions add a global aspect. More
precisely, we have the following proposition.

Proposition 2.8. [17] Let a be a point of the domain
of f such that Vf(a) # 0. Let ¥, be a neighbourhood
of a which does not contain any critical point. Let
y be a path containing a and parallel to the gradient

of f on ¥,. Then there exists a function fo, equal to
fon ¥, such as y is in the watershed of fo.

In other words, there is no local characterization
of the watershed. This is due to the ¥ regularity of
f. Tf fis less regular, there exists in some case a local
characterization. The best example is the watershed
of f(a) =d(a, X) where X is a binary image. In.this
case the watershed of f is equal to the skeleton by
influence zones of X. As shown by Matheron [23],
it is locally characterized by the set of the points of
non-differentiability of f; the watershed is included
in this set of points but not always equal to.

2.3. The problem of the plateaus

Real images often possess plateaus. When they
belong to the interior of a catchment basin, there is
no problem. From a theoretical point of view, it is
easy to slope the plateaus towards crest lines with-
out modifying the watershed.

On the contrary, if we want a thin watershed, we
have to make a choice on the plateaus. The immer-
sion algorithm 2.3 chooses a line by computing the
‘geodesic middle’ of the plateaus. The principle is to
compute the geodesic distance to the descending
side of each plateau (Fig. 7(b)). There exists an-
other possibility: it is possible to compute the
geodesic distance to the ascending side of each
plateau (Fig. 7(c)). These two possibilities give dif-
ferent results, and the choice of one rather than the
other is arbitrary and depends on the application.
We give here some examples illustrating the choice
of the distance.

Let us take the image of a ring, corresponding to
the contours of an object. The watershed of this
image reduces the ring to the middle line, thus
creating two equal parts, which seems reasonable.
Nevertheless, there are some situations where we
want the segmentation to pass through another
place.

Let us consider Figs. 8(a) and (d). They are the
ring image on which we have added some new
contour points through which we want the water-
shed to pass. In the first case (Fig. 8(a)), these
points are near the exterior side, and in the second
case (Fig. (8d)), these points are near the interior
side. The watershed immersion algorithm floods
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(a) Original image

ing side

(b) Distance to the descend-

(c) Distance to the ascending
side

Fig. 7. Distances to the sides of a ring with two elevated points near the interior side.

the image of the distance to the descending side
(Figs. 8(c) and (f)) which do not seem a judicious
choice.

If we transform the image by computing the
distance to the ascending side (the distance to the
added points), the watershed result is then con-
formed to the intuition in Fig. 8(b). There exists no
reasonable criterion which allows a choice between
Figs. 8(¢) and (f); there are not enough points to
place the contour correctly.

These examples are a good illustration that the
implicit choice of the distance to the descending
side is fully arbitrary, for it can be judicious to
choose the distance to the ascending side. The dis-
tance to the descending side is nevertheless the right
choice in the case where we want the watershed to
pass exactly at the middle of the plateaus.

Let us notice that the use of the distance to the
descending side is unstable: it can add some new
local minima, thus modifying the topology of the
watershed. As an example, there exists a tendency
to close arcs of circle (Fig. 9). On the other side, the
distance to the descending side creates new local
maxima, but this does not disturb the watershed.

3. Comparison with the edge detectors
Let f be a smooth function. Two second-order

differential operators are commonly used to detect
edges. The first one is the Laplacian [14]

Af = (0%f/6x?) + (0%/0y?) and the second one is the
non-linear Canny’s detector [5] which looks for the
maximum of the gradient in the direction of the
gradient. The Canny’s detector, or more exactly
the extrema of the gradient in the direction of
the gradient, finds the zero crossings of
0(f) = (H/V;,Vf?. On the other hand, mathemat-
ical morphology uses the watershed of the norm of

- the gradient of fin order to extract edges. The links

between the two differential operators are well
known [25] and we focus our attention on the link
between Canny’s detector and the watershed of the
gradient.

In [11] the authors exhibit a characterization of
lines extracted by Canny’s detector. Their results
are useful to point out the differences between the
watershed of the gradient and the second-order
differential operators. There are two archetypes of
structure on which Q vanishes: the step edge and
the pitched roof. These two objects are represented
n Fig. 10, before the gaussian convolution which
make them smooth.

The idea behind edge detection is that an edge is
a path where the change in the intensity fis max-
imum in the direction normal to this path. As the
intensity is computed by the modulus of the gradi-
ent, we can write

d
@ IVfla +tn)|| = CH;Vf,n) =0, (6)

where n is the normal to the path at point a. This
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the descending side

(f) Watershed on distance to
the descending side

Fig. 8. Plateaus’ problem: the choice of a well-placed contour.

equation gives an implicit differential equation for
the edge path: j = H,V/. As we have seen before, the
union of all the paths which are solutions to this
differential equation covers the whole domain of f,
and we have to make a choice to find the edges. The
watershed chooses the paths by imposing bound-
ary conditions. On the other hand, Canny solves
the problem by estimating the normal n from the
gradient direction, i.e. by setting n =Vf (which is
true on a step edge).

We made a comparison of the action of these
operators on the image

I(X, ,V) = 51X{x >0}(X,Y) + 52X{y >0}(x7 y)a (7)

where y, is the characteristical function of the set
A: y4a)=1 if aeA and yu(a)=0 if not. I is

regularised by a gaussian kernel G and we obtain
f=G*I=6P(x)+6,7(y), @®)

where ¥(x) =ﬁ fwe_sz ds.

Fig. 11 shows the comparison of the segmenta-
tion algorithms. We see that Canny’s detector finds
the multiple point only if 6, =6, (Fig. 11(f)).

Fig. 12 shows the results: the second-order oper-
ators cannot find the multiple point, while the
watershed of the gradient modulus can. This is due
to the geometric behaviour of Canny’s detector and
zeros of the Laplacian. Both are the intersection of
a function z =g(x,y) with {z =0}. So, they have
very few multiple points. On the other hand, the
watershed has multiple points which are necessarily
in 2(|Vf1D-
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{a) Example of a non closed arc
of circle

(b) The distance to the ascend-
ing side creates a new catch-
ment basin

Fig. 9. Example of creation of a new catchment basin through the distance to the ascending side.
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Fig. 10. Structural archetype detected by Canny’s operator.

Several technics [7,8] have been recently de-
veloped to detect the multiple points. They are based
on second-order differential measures and scale-
space approach. In fact, we propose a simpler
method: if we are interested in finding multiple
points, the classical differential crest extractor (local
maxima of the modulus of the gradient in the direc-
tion of the gradient) has to be replaced by a water-
shed procedure on the image of gradient modulus.

4. Metrical approach of the watershed

The aim of this section is to exhibit the strong
link between the skeleton, one of the notions of the

binary mathematical morphology, and the water-
shed, notion of the grey-level mathematical
morphology.

Definition 4.1. The image distance on a €' function
f with a connected domain Dom(f), is defined by
V(a,b) e Dom(f)?,

dy(a,b) = inf : ©)

J IVA(as(s))Il ds

Note that the shortest d;-path between a and b is
a path of greatest slope if it exists.

We restrain the choice of f to the €? functions
which have only isolated critical points. d, is then
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Fig. 11. Comparison of the segmentation algorithms.

a distance. For technical reasons, but without that on the critical points, the Hessian has two
loss of generality, we suppose that the minimum non-zero eigenvalues. We then have the following
of fare on the same level. Moreover, we suppose result:
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(a) Outlines found by
watershed

(b) Solution of Q(f) =0

Fig. 12. Outlines found by the algorithms.

Theorem 4.2. [17] The set of points which are at
equal dg-distance of two distinct minima of f'is the set
of the maximal lines of the gradient linking two points
of P(f), and thus coincides with the watershed of f.

A similar result has been stated in [18, 19], but
with a much more complex metric used as a defini-
tion for the continuous watershed, and this com-
plex metric is very far from the usual euclidean
distance. Note that the watershed defined by Lan-
tuéjoul and Beucher [3], the one defined by Mai-
sonneuve [13], the one defined by Preteux and
Merlet, and the d,-skeleton by influence zones do
have barbs if f does not verify the hypothesis we
put on it.

The advantage of our metric is to allow the
statement of new results we present hereafter.
Moreover, note that if we put |[Vf]| =1a.e.,d,(orf)
is the usual euclidean distance function to a set, and
the d;-skeleton by influence zones is the usual one.

With the results of the previous theorem, we can
expect that the watershed has properties similar to
those of the skeleton. We state one of those proper-
ties.

We denote by # the set of minima of fand by
Dom(f’) the domain of f.

Definition 4.3. We define the skeletal structure of
[ as the set of centres of the maximal open d,-balls
contained in Dom(f)\.#.

Obviously, the watershed is contained in the
skeletal structure.

Theorem 4.4. [17] The mapping f — F(f), where
F(f) is the skeletal structure of f, is lower semicon-
tinuous, if we use the €% convergence on the set of
functions and the induced hit or miss topology [15]
on the set of watersheds.

This result shows why the watershed is very
sensitive to noise, and justifies in a way the various
smoothing [9] and marking [28] techniques.

5. The eikonal equation

As a side effect, the algorithm of the watershed
can be adapted to solve an equation widely used in
shape from shading, the eikonal equation [10]:

finding f such as | VS| =g. (10)

The idea is that, on each catchment basin of f, we
have f(a) =d,(a, b) + f(b), where b is the minima of
the catchment basin. As determining d,(a,b) only
depends on g (see Eq. (9)), we can generalize this
result: let {b;} be a set of points with their asso-
ciated values f(b;). A continuous solution to the
eikonal equation is given by

f@ =i1}f{iygf j 9(Vap (8)) ds +f(b.-)}- (11)

Yab,

One can show [12] that function f given by
Eq. (11) is the unique viscosity solution satisfying
|Vfll =g on an open domain 2, which is a viscosity
supersolution on 6.

The algorithm proposed by Vincent [28] can be
adapted to compute this solution. In fact, Vincent’s
algorithm splits up in a first stage of sorting the
pixels by increasing grey level, and a second stage of
flooding propagation threshold by threshold. In
our case, we cannot make the first stage, but we can
do the sorting during the flooding. This is easy to
do if we use an heapsort algorithm [1]. We then
obtain a kind of algorithm similar to the one de-
veloped by Verwer and Verbeek [27,26].

Note that this technique can also be used to
compute the watershed by flooding from selected
sources, an efficient tool to prevent the overseg-
mentation problem.
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6. Towards grey-tone skeleton

Theorem 2.7 suggests the possibility of adding
some points to #(f), and thus some lines to the
watershed. This lines will then figure the contours
inside the basins. We give a new algorithm to com-
pute the watershed which allows to do this.

This algorithm is based on Vincent’s one for
building skeleton with anchor points [28]. The idea
is to do an homotopic thinning of each grey level of
the image. We then compute the skeleton by influ-
ence zones of the level h —1 in the level h by
homotopic thinning. This algorithm gives us
a watershed.

This implementation has two advantages. The
first one is that it is easy to add anchor points; it is
enough to prevent the suppression of some points.
The second one is that instead of flooding from the
minima of the image, we can flood from any marker
we want.

Fig. 13 shows an example of application of this
new algorithm.

The main problem is the choice of the anchor
points. A first idea is to use the segmentation pro-
vided by a classical edge detector, as Canny’s one.
We then have the multiple points which cannot be
found by those algorithms, and we keep the edge
lines interior to the basins.

Another idea of anchor points is to generalize the
notion of binary skeleton. An interesting class of

(a) Original image and (b) Watershed on the
result of the new wa- image

tershed algorithm

with the central points

as anchor point

Fig. 13. An example of application of the new watershed algo-
rithm.

anchor points is the set of the centres of osculating
circles to the descending sides of plateaus. On a

. binary image, these points are in the skeleton of the

form. If we transform our image by computing
the distance to the descending side of the plateaus,
the set of the points of the following (hexagonal)
configuration:

(where < marks a pixel the value of which is lower
than the value of the central pixel, and ? means that
this value is unimportant) contains these centres,
and is thus a good choice for the anchor points. In
particular, if we use this procedure on the distance
function of a binary image, we obtain the usual
skeleton of thickness one.

Fig. 14 shows various possibilities of segmenta-
tion on a face sideview image (Fig. 14(b)). The first
one (Fig. 14(a)) is the classical Canny—Deriche
edge detector [6]. The second one (Fig. 14(b)) is
obtained by the classical watershed algorithm ap-
plied on the gradient image. The result is very
noisy, but contains all the useful information. The
third one. (Fig. 14(d)) is obtained by the classical
watershed algorithm applied on a geodesical recon-
struction of gradient image of size 10, which is an
useful technique to suppress a lot of unimportant
local minima [9]. The fourth and last one
(Fig. 14(e)) is obtained by the new watershed algo-
rithm applied on a geodesical reconstruction of
gradient image of size 10, using the Canny-
Deriche’ edges as anchor points.

7. Conclusion

This paper is mainly devoted to the convergence
and the adaptation to the continuum of an algo-
rithm defined for step functions. This gives us
a mathematical tool which links the watershed to
the notion of line of greatest slope (maximal line of
the gradient), and to the notion of skeleton by
influence zones. The associated skeleton is then
lower semicontinuous.

The watershed is compared with the classical
edge detectors, and we showed that the watershed
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Fig. 14. Comparison of various possibilities of segmentation.

can extract multiple points, an operation that second
order differential operators are unable to perform.

On the algorithmic side, the watershed charac-
terization gives an original interpretation of the
eikonal equation, and opens the path towards grey-
tone skeletons. The powerful watershed-by-flood-
ing algorithm offers efficient adaptations to these
various notions.
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Abstract

In this paper, we investigate the links between the flooding paradigm and the topological watershed.
Guided by the analysis of a classical flooding algorithm, we present several notions that lead us to a
better understanding of the watershed: minima extension, mosaic, pass value and separation. We first
make a detailed examination of the effectiveness of the divide set produced by watershed algorithms.
We introduce the mosaic to retrieve the altitude of points along the divide set. A desirable property is
that, when two minima are separated by a crest in the original image, they are still separated by a crest
of the same altitude in the mosaic. Our main result states that this is the case if and only if the mosaic
is obtained through a topological thinning. We investigate the possibility for a flooding to produce
a topological watershed, and conclude that this is not feasible. This leads us to reverse the flooding
paradigm, and to propose a notioneshiergenceAn emergence process is a transformation based on
atopological criterion, in which points are processed in decreasing altitude order while preserving the
number of connected components of lower cross-sections. Our main result states that any emergence
watershed is a topological watershed, and more remarkably, that any topological watershed of a given
image can be obtained as an emergence watershed of the image.
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1. Introduction

The watershed has been extensively studied during the 19th century by MEXijeihd
Jordar[{15] among others. One hundred years later, the watershed transform was introduced
by Beucher and Lantuéjo{d] for image segmentation, and is now used as a fundamental
step in many powerful segmentation proced(26s5]. Image segmentation usually requires
several processing steps. For example, a typical morphological segmentation procedure
includes a filtering step, a gradient, a marker extraction or a reduction of the number of
minima, a watershed step and some post-processing. Most of these steps are often very
dependent on the application, only the watershed step is application independent. In this
paper, we focus exclusively on watersheds and we study some mathematical properties of
several discrete watershed operators.

A popular presentation of the watershed in the morphological comm{B2ty4,12]
is based on a flooding paradigm. Let us consider the greyscale image as a topographical
relief: the grey level of a pixel becomes the elevation of a point, the basins and valleys of
the relief correspond to the dark areas, whereas the mountains and crest lines correspond
to the light areas. Let us suppose the surface being immersed in a lake, with holes pierced
in local minima. Water fills up basins starting at these local minima, and, at points where
waters coming from different basins would meet, dams are built. As a result, the surface is
partitioned into regions or basins separated by dams, called watershed divides.

Efficient watershed algorithms based on immersion simulation were proposed by Vin-
cent, Soille[36] and Meyel[18] in the early 90s. Those algorithms build a partition of the
space by associating an influence zone to each minimum of the image, and by producing
(in their “dividing” variant) a divide set which separates those influence zones; that is to
say, they “extend” the minima. The building of the influence zones is based on a flooding
paradigm which consists in processing points of the image in increasing grey level order.
We can find a presentation of most of the existing morphological watershed algorithms in
a paper by Roerdink and Meijstg27]. Nevertheless, to our best knowledge, no attempt
has been made to propose comparison criteria. Let us note that a mathematical approach
for regular continuous functions has been proposed by Najman and S[28y@4], intro-
ducing in particular the equivalence for regular functions between the flooding approach
and a distance-based approach to the watershed. Algorithms for computing distance-based
watersheds have been proposefl®]. Such distance-based or cost-balddés] watersheds
will not be studied in this paper.

An original approach to the watershed transform, called the topological watershed, has
been proposed ifT]. The ideais to define a “topological thinning” that transforms the image
while preserving some topological properties, namely the number of connected components
of each lower cross-section. LEtbe a greyscale image aridcbe a grey level, the lower
cross-sectiorF; is the set composed of all the points having an altitude strictly lower than
A. A pointxis said to be W-destructible fér (where W stands for Watershed) if its altitude
can be lowered by one without changing the number of connected componéftsith
k = F(x). AmapG is called a W-thinning oF if it may be obtained fronf by iteratively
selecting a W-destructible point and lowering it by one. A topological watershEdoh
W-thinning of F which contains no W-destructible point (sEigy. 1a,c). A major feature
of this transform is to produce a greyscale image. A divide set of the original image can
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(a) ‘

Fig. 1. (@) Original image; (b) regional minima of (a) (in white), (c) a topological watershed of (a), (d) a divide
set of (a), obtained by taking the complement of the regional minima of (c).

easily be computed on the transformed image, by taking the complement of the minima
of the transformed image (sé€ég. 1d). Recently, Bertranfll] proposed a framework in
which fundamental properties of the topological watershed have been derived. Quasi-linear
algorithms for computing the topological watershed transform have been obtained and
proved using this framewoid0].

In this framework, a notion of contrast plays an important role. We will say informally
that a transformation “preserves the contrast” if the transformation preserves the altitude of
the minima of the image and if, when two minima are separated by a crest in the original
image, they are still separated by a crest of the same altitude in the transform. The formal
definition relies on the altitude of the lowest pass which separates two minima, named pass
value. One of the main results obtainedihstates that any topological thinning preserves
the contrast (in this sense), and that any transformation that preserves the contrast is a
topological thinning.

One of the goals of this paper is to examine the links between the flooding paradigm
and the topological watershed. In the first part of this paper, guided by the analysis of a
classical flooding algorithm, we present some notions that lead us to a better understanding
of the watershed: minima extension, mosaic, pass values and separation ($2&]nlgo
mosaic image is obtained from an imageand a divide seD of F by valuating the points
of D with the corresponding values of these points FoWe prove in particular that a
mosaic “preserves the contragtand only ifthe mosaic is obtained through a topological
thinning. We investigate the possibility for a flooding to produce atopological watershed, and
we propose a monotone flooding transformation that preserves the number of connected
components of each lower cross-section. We show that this monotone flooding does not
always produce a topological watershed.

This leads us to the paradigm of emergence: reversing the flooding paradigm, we start
with the highest level first. We call emergence watershed a transformation that lowers
points in decreasing altitude order while preserving the number of connected components
of lower cross-sections. Our main result states that an emergence watershed is a topological
watershed, and more remarkably, that any topological watershed of a given image can be
obtained as an emergence watershed of the image.

2. Basic notions and notations

Many fundamental notions related to watersheds in discrete spaces can be expressed in
the framework of graphs.
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Let E be a finite set of vertices (or points), and #8t£) denote the set of all subsets of
E. Throughout this papef, denotes a binary relation d& which is reflexive (x, x) € I)
and symmetric(x, y) € I' & (y, x) € I'). We say that the paitE, I') is agraph We also
denote byl the map fronE to #(E) such that, foralk € E, I'(x) ={y € E|(x,y) € I'}.
For any pointx, the setl"(x) is called theneighborhood of xIf y € I'(x) then we say that
x andy areadjacent

Let X € E We denote byX the complement oX in E. Letxg, x,, € X. A path fromxg
to x, in X is a sequence = (xop, x1, .. ., x) Of points of X such thatx; 1 € I'(x;), with
i=0...n—1. Letx, y € X, we say thak andy arelinked for Xif there exists a path from
x toyin X. We say thaX is connectedf any x andy in X are linked forX. We say that
Y C E isaconnected component ofiiX¥ C X, Yis connected, andis maximal for these
two properties (i.e.Y = Z wheneverY C Z C X andZ is connected). In the following,
we assume that the gragh, I') is connected, that i§ is made of exactly one connected
component.

We denote by (E) the set composed of all maps frdhio Z. AmapF € % (E) is also
called anmage and ifx € E, F(x) is called thealtitude of x(for F). Let F € . (E). We
write F, = {x € E|F(x) >k} with k € Z; Fy is called arupper(cross) section ofF, and
Fy is called alower (cross-) section of FA non-empty connected component of a lower
sectionFy is called a level K lower-component oF. A level k lower-component oF that
does not contain a levét — 1) lower-component ofF is called a fegional) minimum of

A subsetX of E is flat for F if any two pointsx, y of X are such thaF (x) = F(y). If X
is flat for F, we denote by (X) the altitude of any point oX for F.

3. The flooding paradigm

The flooding paradigm corresponds to the intuitive idea of immersion described in the
second paragraph of the introduction. In mathematical morphology, it was first proposed by
Digabel and LantuéjoytL1] and used for image segmentation by Beucher and Lantuéjoul
[4]. Among the numerous morphological algorithms that were developed following this idea,
Meyer’s algorithm{18] (calledflooding algorithmin the sequel) is probably the simplest to
describe and understand. We are going to use it as a guide that will help us to introduce the
questions we are studying in this paper.

3.1. The flooding algorithm

Starting from an imagé’ € % (E) and the seM composed of all points belonging
to the minima off, the flooding algorithm expands as much as possible thk! sethile
preserving the connected component#/loit can be described as follows:

1. Attribute to each minimum a label, two distinct minima having distinct labels; mark each
point belonging to a minimum with the label of the corresponding minimum. Initialize
two setsQ andV to the empty set.

2. Insert every non-marked neighbor of every marked point in th@set
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3. Extract from the se a pointx which has the minimal altitude, that is, a poisuch
thatF(x) =min{F(y)|y € Q}. Insertxin V. If all marked points in"(x) have the same
label, then

— Markx with this label; and
InsertinQeveryy € I'(x) suchthaty ¢ Q U V;

4. Repeat step 3 until the g8tis empty.

The divide set is the complement of the set of marked points.

3.2. lllustration of the algorithm

In all the examples of the paper, we assume that the gfApl’) corresponds to the
4-adjacency relation on a subgetc 7, ie., forallx = (x1,x2) € E, I'(x) = {(x1, x2),
(x1+1,x2), (x1 — L, x2), (x1,x2+ D), (x1, x2 — D} NE.

Let us illustrate the behaviour of the algorithm on the exampk@f2a which presents
an image with three minima at altitudes 0, 1 and 2.

e The minima at altitudes 2, 1, 0 are marked with the labels A, B, C respectively2thig.
All the non-marked neighbors of the marked points are put into th® set

e The first point which is extracted from the $@is the pointx at altitude 10, which has
points marked B and C among its neighbors (Rig). This point cannot be marked.

e The next point to process is one of the points at altitude 20, for instafi€g. 2b). The
only marked points in the neighborhood of such a point are marked with the label A,
and thusy is marked with the label A (Fig2c), and the points at altitude 10 which are
neighbors ofy are put into the sed.

e The next points to process are points at altitude 10. A few steps latter, all points at altitude
10 butx are processed, and marked with the label A (Bd).

e Then the other points at altitude 20 are processed. They are marked with the label A (Fig.
2e).

e The next points to process are those at altitude 30, and we finally obtain the set of labeled
points shown irFig. Z. The divide set is circled in the figure.

Remark 1. We observe that the algorithm is not “monotone”, in the following sense: if a
pointy of altitude F'(y) = k is extracted from the s€), it is sometimes possible to find in

the neighborhood of a pointz not already labeled such th&t(z) < k. This pointz will

be the next point processed by the algorithm. Thus this algorithm does not always process
points according to increasing altitude.

Remark 2. A second observation is related to the contrast of the original image: in the
original image, to go from e.g., the minimum at altitude 0 to the minimum at altitude 2, one
has to climb to at least an altitude of 20: indeed, there exists a contour at altitude 20 that we
have to overcome. We observe that this contour is not present in the divide set produced by
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Fig. 2. (a) Original image, (b—f) several steps of the flooding algorithm. One can see that this algorithm is not
“monotone”: some points at altitude 10 are processed after one of the points at altitude 20. One can also note that
the contour at altitude 20 in the original image (@) is not present in the result (f).

the algorithm. Let us emphasize that similar configurations can be found for other adjacency
relations, and in particular for the 6- and the 8-adjacency relation. Configurations similar
to the examples presented in this paper are found in real-world images.

The following section introduces the formal framework that leads to a better understand-
ing of the previous observations.

4. Minima extensions, mosaics, and pass values

A result of the previous algorithm is to associate an influence zone to each minimum of
the image. We formalize this through the definition of a minima extension.

Definition 1. Let F € % (E). A minima extension of i5 a subseX of E such that:

e each connected component¢tontains one and only one minimumfefand
e each minimum of is included in a connected componendof
The complementary of a minima extensiorfois called adivide sef(of F).
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Fig. 3. (@) An image, (b) a minima extension of (a), and (c) the associated mosaic.

Itis easy to prove the following result: 1€t € & (E), and letX be the set composed of
all the points labeled by the flooding algorithm appliedForihe setX is indeed a minima
extension ofF. We call any such seX produced by the flooding algorithm feooding
extension(of F). Note that, in general, there may exists several flooding extensions of a
given mapF.

Intuitively, for application to image analysis, the divide set represents the location of
points which best separate the dark objects (regional minima), in terms of grey level differ-
ence (contrast). In order to evaluate the effectiveness of this separation, we have to consider
the values of points along the divide set. This motivates the following definition.

Definition 2. Let F € Z#(E) and letX be a minima extension df. The mosaicof F
associated witX is the mapFy € 7 (E) such that

e foranyx ¢ X, Fx(x) = F(x); and
e foranyx € X, Fx(x)=min{F(y)|y € C,}, whereC, denotes the connected component
of X that contain.

The term ‘mosaic’ for this kind of construction, was coined by Beu¢BEr

Fig. 3 shows a simple example of a minima extension and its associated mosaic. The
flooding extension oFig. 3a is the minima extensiadb, and the associated mosaic-ig.
3c.

Fig. 4is another illustration of the definitions of minima extension and mosaic, using the
flooding algorithm on the image &fig. 2a.

Let F be a map and lefxy be the mosaic oF associated with a minima extensigh
of F. It is natural to try to associate any minimum Bf to a connected component Xf
and conversely, and to compare the altitude of each minimufab the altitude of the
corresponding minimum d¥. We will see with forthcoming properties and examples, that
both problems are in fact closely linked.

The following definition extends to maps the minima extension previously defined for
sets.
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Fig. 5. (@) An imagd~, and (b) the flooding extension Bf and (c) the associated mosaic.

Definition 3. LetF andGin % (E) such thaiG < F. We say that is aminima extension

(of F) if:

(i) the set composed by the union of all the minimaXois a minima extension df.
(i) forany X € .4 (F) andY € .Z(G) such thatX C Y, we haveF (X) = G(Y).

The image oFig. 3 (resp4b) is an example of a minima extension of the imagEigf
3a (resp2a).

On the other handig. 5a shows an image andFig. 5c shows the mosai€Ey associated
with the flooding extensioX (Fig. 5b) of the imagda-. One can notice that the connected
component oX which corresponds to the minimum of altitude 15 Fohas an altitude of
10 for Fx, and is not a minimum of’x. Thus, this mosai@y is not a minima extension
of F. In other wordsFig. 5shows that mosaics produced by the flooding algorithm are not
always minima extensions of the original map.

We can now turn back to a more precise analysis of Remark 2. To this aim, we present the
pass value and the separation. Intuitively, the pass value between two points corresponds to
the lowest altitude to which one has to climb to go from one of these points to the other.
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Fig. 6. lllustration of paths and pass values on the infagéFig. 2a. (a) A pathr1 from the pointx to the pointy
such thatF'(n1) = 30. (b) A pathro from the pointx to the pointy such thatF () = 20. It is not possible to find
a path fromx to y with a lower maximal altitude, hendg(x, y) = 20. (c) A pathrg from the pointx to the point
zsuch thatF(n3) = 10, and we can easily check thatx, z) = 10.

Definition 4. Let F € #(E). Letn = (xo, ..., x,) be a path in the graptE, I'), we set
F(m)=maX{F(x)|i =0,...,n}.

Let x, y be two points oE, thepass value for F between x andsydefined ag (x, y) =
min{F (n)|x € II(x, y)}, wherell(x, y) is the set of all paths fromtoy.

Let X, Y be two subsets OE, the pass value foF betweenX andY is defined by
F(X,Y)=min{F(x, y)|foranyx € X and anyy € Y}.

A notion equivalent to the pass value up to an inversioh (that is, replacing- by — F),
has been introduced by Rosenf¢&8—-30] under the name adegree of connectivitior
studying connectivity in the framework of fuzzy sdtg. Gillustrates the pass value on the
imageF of Fig. 2a.

Informally, a transformation “preserves the separation” if, when two points are separated
by a crest in the original map, they are still separated by a crest of the same “height” in the
transform.

Definition 5 (Bertrand[1] ). LetF € # (E),letx, y € E.We say thatandyareseparated
(forF)if F(x,y)>max{F(x), F(y)}.

We say thak andy arelinked(for F) if F(x, y) = maXxF(x), F(y)}.

We say thak andy arek-separated for F) if they are separated férand ifk = F (x, y).

Let G € #(E), with G < F. We say that is aseparation of Ff, for all x andy in E,
whenevelx andy arek-separated foF, x andy arek-separated foG.

We say tha(G is astrong separation of ks G is both a separation & and a minima
extension of-.

Remark 3. We can now restate Remark 2 using the notions we have introduced in this
section.Fig. 5 shows that a mosaic produced by the flooding algorithm is not always a
minima extension of the original mapig. 4 shows that a mosaic produced by the flooding
algorithm, even in the case where it is a minima extension, is not necessarily a separation
of the original map.
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5. Topological watershed

Adifferentapproach to the watershed was presented by Couprie and Bé¥irartte idea
is to transform the image into an images while preserving some topological properties of
F, namely the number of connected components of the lower cross-sectiens wiinima
extension of can then be obtained easily fra®) by extracting the minima d&.

5.1. Definitions

We begin by defining a “simple” point (in a graph), in a sense which is adapted to the
watershed, then we extend this notion to weighted graphs through the use of lower sections

[7].

Definition 6. Let X C E. The pointx € X is W-simple(for X) if x is adjacent to one and
only one connected componentXf

In other wordsx is W-simple (forX) if the number of connected componentsXof) {x}
equals the number of connected components.of

We can now define the notions of W-destructible point, W-thinning, and topological
watershed:

Definition 7. Let F € #(E), x € E, andk = F(x).

The pointx is W-destructiblg for F) if x is W-simple for Fy.

We say thatG € % (E) is aW-thinning of Ff G = F or if G may be derived fronk by
iteratively lowering W-destructible points by one.

We say thalG € & (E) is atopological watershed of F G is a W-thinning ofF and if
there is no W-destructible point f@.

The differences between topological watershed and the notiblrmbtopic greyscale
skeletorare discussed in Appendix A.

As a consequence of the definition, a topological wateréhefla mapF is a map which
has the same number of minimaksFurthermore, the number of connected components
of any lower cross-section is preserved during this transformation.

By the very definition of a W-destructible point, it may easily be proved tha, ig a
W-thinning of F, then the union of all minima d& is a minima extension df (this result
is also a consequence of Theorem 10). This allows us to propose the following definition.

Definition 8. Let F € % (E) and letG be a W-thinning of. Themosaic of F associated
with Gis the mosaic oF associated with the union of all minima Gt

Notice that in general, there exist different topological watersheds for a giverFmap
Fig. 7a presents one of the possible topological watersheéfsgoa, andFig. 7o shows
the associated mosaic. One can note that Bah7a and b are separationsfef. 2a.

An extensive algorithmic study of the topological watershed is madé&Oh which
proposes in particular a quasi-linear algorithm.
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Fig. 7. Example of topological watershed. (a) a topological watersh&gyoba (b) the associated mosaic.

5.2. Topological watershed and separation

Recently, Bertrandll] showed that a mathematical key underlying the topological wa-
tershed is theeparation The following theorem asserts that it is sufficient to consider the
minima of F for testing ifG is a separation df.

Theorem 9 (Bertrand[1]). Let F and G be two elements &f(E) such thatG < F. The
map G is a separation of F ifand onlyfbr all distinct minima XY of F F (X, Y)=G(X, Y).

The following theorem states the equivalence between the notions of W-thinning and
strong separation. The “if” part implies in particular that a topological watershed of an
imageF preserves the pass values between the mininfa &urthermore, the “only if”
part of the theorem mainly states that if one needs a transformation which is guaranteed to
preserve the pass values between the minima of the original map, then this transformation
is necessarily a W-thinning.

Theorem 10(Bertrand [1]). Let F and G be two elements &f (E). The map G is a
W-thinning of F if and only if G is a strong separation aof F

Let F € #(E)andp € E. We denote by~ (p, F) the set of (strictly) lower neighbors
ofp, thatis,I"~ (p, F)={q € I'(p)|F(q) < F(p)}. Inthe sequel, we will need the following
characterization of W-destructible points:

Property 11 (Couprieetal[10]). LetF € & (E)andp € E.The pointpisW-destructible
for Fifand only if ' (p, F) # ¢ and for all x and y inI'~ (p, F) with x # y, we have

F(x,y) <F(p).
5.3. Mosaic and separation

We can now prove that the mosaic associated with any W-thinning of amimplso a
W-thinning of F (and thus, it is a separation Bj. Furthermore, we prove that an arbitrary
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mosaicFy of a mapF is a separation of if and only if Fy is a W-thinning ofF. These
strong results can be obtained thanks to the three following properties.

Property 12. Let F € % (E), let X be a minima extension of &nd let Fx be the mosaic
of F associated with X. Themny minimum M ofFy is a connected component of X
furthermoreFy (M) = F (m) where m denotes the unique minimum of F suchithat M.

A proof of Proposition 12 can be found in Appendix B. The following property follows
straightforwardly.

Property 13. Let F € # (E), let X be a minima extension of &nd let Fx be the mosaic
of F associated with X. If any connected component of X is a minimufn,ahenFy is a
minima extension of .F

Property 14. Let F € Z (E), let X be a minima extension of &nd let Fx be the mosaic
of F associated with X. IFy is a separation of Fthen Fx is a minima extension of.F

Proof. As Xis a minima extension d¥, by Proposition 12, we know that any minimum of
Fy is a connected component Xf We have to prove that any connected componeix of
is a minimum ofFy.

Let M be a connected componentgfand letmbe the minimum of that is included in
M. Suppose thatl is not a minimum ofFy. Letk = Fx (M) + 1, and leiC be the connected
component of Fx), that containdg. Let N be a minimum ofFx that is included irC. By
Proposition 12N < X. Letn the minimum ofF that is included irN. We see easily that
nandmare such thaf’y (n, m) = Fx(m). But Fx is a separation df, and by Theorem 9,
Fx(n,m)= F(n,m). Asnandmare minima of, we haveF (n, m) > max{F (n), F (m)},

a contradiction. Thus, any connected componet isfa minimum ofFy.

By Proposition 13Fx is thus a minima extension & [

Property 15. Let F € # (E), let G be a W-thinning of Fand let H be the mosaic of F
associated with G. Then H is a separation of F

Proof. LetM andM’ be two distinct minima oF and letk = F (M, M’). There exists a path
7 from a point ofM to a point ofM’ such thatF' () = k. SinceG < F, we haveG (n) <k,
but, by Theorem 9, we must have(n) >k (otherwise we would hav& (M, M) < k).
HenceG () = k. SinceG < H, we haveH (n) > k. But sinceH < F, H (n) <k. It follows
that H (n) = k and we may affirm that/ (M, M") <k. Now suppose thald (M, M') <k. It
means that there exists a patlirom a point ofM to a point ofM’ such that (n') < k. Since
G < H, we would haveG(n') < k which contradictsG(M, M') = k. SOH(M, M') =k,
and, from Theorem 9, we deduce tivhis a separation df. [

Property 16. Let F € Z (E), let G be a W-thinning of Fand H be the mosaic of F
associated with G. Then H is necessarily a W-thinning.of F
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Proof. By Proposition 15H is a separation df. By Proposition 14 is a minima extension
of F. In consequencH is a strong separation &fwhich, by Theorem 10, implies thékis
a W-thinning ofF. [

The following theorem is a straightforward consequence of Theorem 10 and Proposition
14.

Theorem 17. Let F € Z# (E), let X be a minima extension of &nd let Fx be the mosaic
of F associated with X. TheFy is a separation of F if and only iy is a W-thinning of F

6. Emergence watershed

In this section, we first design a monotone algorithm based on both the flooding paradigm
and W-destructible points. We show that such an algorithm does not always produce a
topological watershed, more precisely, there may exist points of the divide set that are still
W-destructible. This will lead us, in the second part of the section, to reverse the flooding
paradigm and to propose the notion of emergence.

To produce a W-thinning, we sequentially lower the altitude of W-destructible points by
one. A particular case of this process is obtained if, when a point has been lowered, we
immediately check whether the same point is W-destructible or not, and continue until the
point is no more W-destructible.

Let F € # (E), and letx be a W-destructible point fdf.

e We callW-lowering of xhe action of lowering the altitude afby one.
e We callW*-lowering of xthe action of successively W-lowering the altitudexafntil it
is no more W-destructible for the result.

Let us denote by o(FE) the set of all map$’ € % (E) such that mifiF (x)|x € E} =0.
In the sequel, for the sake of simplicity and without loss of generality, we will often restrict
ourselves to maps belonging.#q(E).

6.1. A monotone W-flooding

Letusdesign a“monotone” flooding-like algorithm based on the lowering of W-destructible
points by increasing order of altitude. By Theorem 10, such an algorithm will always pro-
duce separation.

Let F € & (E). We say that

e Gis aW-thinning of F for level kf G = F or if we can obtairs from F by iteratively
W*-lowering some W-destructible poingssuch thatF (p) = k.

e Gis anultimate W-thinning of F for level kf G is a W+-thinning of F for levelk and if
G contains no W-destructible poiptsuch thatF (p) = k.

The following algorithm builds a W-thinning that is calledreonotona/-flooding of E
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Fig. 8. Example of monotone W-flooding. (a) a monotone W-floodingigf 2a (b) the associated mosaic.

Definition 18. Let F € Zo(E), and letm = max{F(x)|x € E}. LetG© = F, and for
anyk =0...m — 1, let G®*D be an ultimate W-thinning of G for level k + 1. The
sequence@@, ..., G™) is called amonotonan-flooding sequence for,”ANdG"™ is
called amonotona/N-floodingof F.

Let F € Zo(E). Itis obvious that any monotone W-flooding s a W-thinning off.
Nevertheless, amonotone W-flooding process does not necessarily produces a topological
watershed. A monotone W-flooding of the image 2a is depictddgn8a. It may be seen
that, while the monotone W-flooding 8a is a W-thinning of 2a, several points in 8a are
W-destructible.
Let us note that a monotone algorithm based on flooding has been proposed by Vincent
and Soillg31,34—-36] The application of the dividing variant of this algorithm on an image
F € % (E) produces a minima extensioqof F, but the mosaid’y of F associated witiX
is not always a W-thinning df (see[21]). An illustration is provided irFig. 11

6.2. Emergence watershed

We have seen that the flooding paradigm does not lead to a satisfying result, even when
we proceed by lowering exclusively W-destructible points. Surprisingly, we will see that
reversing the level scanning order leads to an algorithm which possesses good properties.
We introduce in this section the emergence watershed, which is based on a process where
points are considered in decreasing altitude order, and prove one of the main results of
the paper: for any map, any emergence watershedfofs a topological watershed &f
(and thus a separation 8f, and more remarkably, any topological watershed i an
emergence watershed Bf Let us note that a process similar to the emergence has been
proposed irj8] in the framework of orders, but no property of this emergence process had
been studied in this latter work.

Let F € & (E). We say that

e Gis aW-thinning(of F) for levelkif G = F or if we can obtairG from F by iteratively
W-lowering some W-destructible poinpssuch thatF (p) =
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Fig. 9. An imageF, and an emergence sequencefotG®, G®, @, D GO,

e Gis aultimate W-thinningof F) for level kif G is W-thinning for levelk of F and if G
contains no W-destructible poiptsuch thatF'(p) = k.

Definition 19. Let F € Zo(E), and letm = maxX{ F (x)|x € E}.

LetG™ = F and, and forang =1...m, letG*~ be an ultimate W-thinning of:*)
for level k.

The sequenceG ™ ... G©) is called @mergence sequence farahdG© is called an
emergence watershed of F

Fig. 9illustrates the emergence process.

Before stating and proving our results, we introduce some notations, definitions and
intermediate properties.

LetF € Z (E). If x € E, we denote by\x the element of7 (E) such that F\x)(y) =
F(y) foranyy # x and(F\x)(x) = F(x) — 1.

The following two lemmas arise immediately from Property 11 and from the definition
of a W-destructible point.

We recall thatl ™ (p, F) ={q € I'(p)|F(q) < F(p)}.

Lemma 20. A point p is not W-destructible for F if and only if eithér (p, F) = ¢ or
there exist x and y i (p, F) with x # y such thatF(x, y) = F(p).

Proof. It follows from Property 11 and from the fact that the patk (x, p, y) is such that
F(n)=F(p). O

Lemma 21. Let F € # (E), let p be a point such thaf' (p) =k, and let q be a point such
that F(g) < k. If p is W-destructible for Fthen p is W-destructible faF\q.

Proof. Since the lower cross-sectidn, is equal to the lower cross-sectiof\q);, the
property follows from the very definition of a W-destructible point.]

The following notion of stable point is essential for the understanding of the emergence
properties.

Definition 22. Let F € & (E) andp € E.We say thap is astable poin{ for F) if pis not
W-destructible for any W-thinning d¥.
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We say that is atopological watershedof F) above level kf G is a W-thinning ofF
and if anyp such thaiG (p) > k is a stable point foG.

Notice that, since any map € % (E) is by definition a W-thinning oF itself, any point
which is a stable point foF is not W-destructible foF.

6.3. Emergence and topological watershed

We shall prove that all the points “emerging” from the emergence process (that is, points
above the current altitude) are stable points. The proof relies on the following property.

Property 23. Let F € # (E). Let p € E be a point which is not W-destructible for F and
letg € E be a point W-destructible for F. If p is W-destructible #oxq, thenF (¢) = F (p).

Proof. Suppose that there exisandy € I~ (p, F) such thatF (x, y) = F(p) =k. Sinceq
is W-destructible fofF, we know thay; # p. Furthermore, sincé&'\q is a W-thinning off,
we know from Theorem 10 thatandy are k-separated fdr\ g, thuspis not W-destructible
for F\g¢, a contradiction.

Thus by Lemma 20, we deduce tHat (p, F) = @. Sincep has no lower neighbor fdr
and has a lower neighbor faét\g, this lower neighbor isjandF(¢) = F(p). O

We can now prove that in an emergence sequence, all the points above the current altitude
are stable points.

Property 24. Let F € Zo(E). Let (G™ ...G©@) be an emergence sequence for F. Let
k € [0...m]. ThenG® is a topological watershed of F above level k

Proof. Obviously, G® is a W-thinning of F. Thus, in order to prove the property,
it is sufficient to show that (1) any poirt such thatG® (p) >k is a stable point
for G,

The property (1) is true fat = m since there is no point € E such thaiG ™ (p) > m.
Suppose that the property is true foria# k. We seth = G% (p), we haveh > k.

e Suppose thak > k + 1. By the recurrence hypothesjsjs a stable point foG**b,
thusp is obviously a stable point fag ®) which is a W-thinning ofG **+1
e Suppose now that=k + 1. Suppose thatis not stable foG®, i.e.,pis W-destructible
for a W-thinningG of G®). By construction of the emergence, the pgiris not W-
destructible forlG®,
Let us writeG = G®\xo\ ... \x, where for alli € [0...n], x; is W-destructible for
G®\xp\ ... \x;_1. Without loss of generality, we can assume that for@fy\ xo\ . .. \x;,
i <n, no point of levelh has been lowered (otherwise, we choose the first one among such
points instead op). We can also assume this not W-destructible fo6 ®\xo\ ... \x,_1
(otherwise we choosesuch that it is the case).
By recurrence hypothesis and by construction, no point of level greater or eduiato
been lowered by this sequence. Thus all the paigts. . , x, are such that® (x;) < h. On
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the other hand, by Property 23, we may affirm @\ xo\ ... \x,—1)(x,) =G® (p)=h,
henceG™® (x,) = h, a contradiction. [

We shall now prove that any topological watershed of a map can be obtained by an
emergence sequence.

Property 25. LetF € % o(FE) and G atopological watershed of F. Then G is an emergence
watershed of F

Proof. LetuswriteG=F\x1\x2\ ... \x,, meaning tha® is obtained front by iteratively
We-lowering the points, .. ., x,. For the sake of brevity, we will denote this sequence of
W-lowerings by(x1, x2, ... x;).

Leti € [1...(n — 1)]. Suppose that, at step we have(F\x1\...\x;—1)(x;) <
(F\xa\ ... \x;) (xi+1)-

Let us show that in this case, we can “exchange” the lowerings of peirdadx; 1,
while still proceeding by W-lowerings.

Letus writeF’ = F\x1\ ... \x;_1, the hypothesis becomés(x;) < (F'\x;)(x;11). No-
tice that we have necessariy, 1 # x;, and thusF’(x;) < F'(x;11).

We need to prove that (a); 1 is W-destructible fo’; and that (b)x; is W-destructible
for F/\x;11.

(a) Let us writek = F'(x;11). Since F'(x;) <k, we have(F'\x;); = F]. Sincex;;1 is
W-destructible for F'\x;), x; 1 is W-destructible forr’.

(b) Let us writeh = F'(x;). Sinceh < F'(x;4+1), we haveF; = (F'\x;11),. Sincex; is
W-destructible forF’, x; is W-destructible fol F'\x; 1 1).

Obviously, F"\x;\x;+1 = F'\x;+1\x;. Thus, the new sequenc¢ey, ..., x;_1, Xi+1, X;,
Xiy2, ..., Xx) Of lowerings is indeed composed of W-lowerings and also produces the
mapG.

By repeating such exchanges until stability, we see that we can obtain a seguence
(x1, ..., x,) of W-lowerings such that; = F\x7\ ... \x, and such that for all £i <n,
(F\xg\ - \x/_ () = (F\xg\ .. \x) (] ).

We write F™ = F. For anyk € [1...m], we defineF ®=D = F\x/\ ... \x/, such that’
is the last point in the sequen8dor which (F\x}\ ... \x/_;)(x}) >k. We haveF @ = G.

The sequencer™ ... F(@)is an emergence sequencefotndeed, suppose that there
exists a poinpW-destructible forr *—1 such thaf (p)=k. By construction and Lemma 21,
this point would be W-destructible faf©@. This is not possible sincé(© is a topological
watershed. [J

We can now state the main result of this section.

Theorem 26. Let F € Zo(E). AmapG € Zo(E) is a topological watershed of F if and
only if it is an emergence watershed of F

Proof. Suppose thatG™, ..., G©) with G@ = G is an emergence sequence far
Obviously, the mag© is a W-thinning ofF. Property 24 states that for dlle [0...m],
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Fig. 10. Animage (a), and two associated topological watersheds (b) and (c). Note that, contrary to the topological
watershed (b), the topological watershed (c) cannot be obtained through a reverse W-flooding process.

G® is a topological watershed above lekadf F. In particularG© has no W-destructible
point such thaG© (p) > 0. Any pointp such thatG @ (p) = 0 is in a minimum ofG©,
hencep is not W-destructible. Thu6 @ is a topological watershed &% The converse is
proved by Property 25. [

6.4. Emergence and reverse W-flooding

We may wonder if we can propose a variant of the emergence process where, instead of
lowering the value of points by one (W-lowerings), we lower the value of points until those
points are no more W-destructible {Wlbwerings). We are going to see that, although such
a process always produces a topological watershed, there exist topological watersheds that
cannot be obtained in this way.

The following algorithm, calledeverse W-floodings a direct inversion of the monotone
W-flooding.

Definition 27. Let F € Z#o(E), letm = max{F (x)|x € E}.

LetG™ = F and, foranyk =1...m, let G*~D be an ultimaté¥*-thinning of G® for
levelk.

The sequenced™, ..., G©) is called areverse W-flooding sequence fardhdG©@
is called areverse W-floodingf F.

A major feature of the reverse W-flooding is that, in opposition to the monotone W-
flooding, the result is guaranteed to be a topological watershed. The proof of the following
property is very similar to the one of Property 24, and will thus be omitted.

Property 28. Let F € % o(E), and let G be a reverse W-flooding of F. Then G is a topo-
logical watershed of F

Fig. 10shows an image and two associated topological watersheds. It can be easily seen
that the topological watersh@fc cannot be obtained through a reverse W-flooding process.
The point at altitude 20 is necessarily lowered to 0 by any reverse W-flooding.

7. Conclusion

The watershed transform is more and more used as a low-level operator in complex
segmentation chains. Among those segmentation procedures, we daieretehical seg-
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mentation6] andgeodesic saliency of watershed contoj@3,25] Such approaches need
to compare several divides, or are based on neighborhood relationship between extended
minima. It is thus important to be able to characterize some properties of the divides pro-
duced by watershed algorithms. This paper is a step in this direction. We introduced several
notions that helped us to understand the watershed: minima extension, mosaic, and we also
consider the pass values and separation.

The topic of this paper is to examine the links between the flooding paradigm and the
topological watershed. We prove in particular that a mosaic is a sepaifatiahonly ifit is
a W-thinning. Inspired by the analysis of the flooding algorithm, we present the monotone
W-flooding. A monotone W-flooding does not necessarily produce a topological watershed.
This leads us to propose the emergence paradigm. A major result of this paper is that any
emergence of a given image is a topological watershed of this image, and more remarkably,
that any topological watershed of a given image can be obtained as an emergence of the
image.

Future work will build up on those results to revisit the saliency of contours. We also aim
at exploring definitions and properties of “watersheds without dividesgj. (11).

Appendix A. Topological watershed versus homotopic greyscale skeleton

There exists in the literature an approach callemmotopic 1\greyscale skeleton
[13,2,9,26,33]that can be used for thinning a greyscale image. It can be easily proved

that the pass values between the minima of a homotopic greyscale skélef@an image
F € Z (E) are the same than the pass values between the minifa of

Fig. 12presents a 2D image (Fifj2a), and both a topological watershed (Figb) and
a homotopic greyscale skeleton (Figc) of this image.

Let us emphasize the essential difference between the topological watershed and the ho-
motopic greyscale skeleton. With the topological watershed, only the number of connected
components of the lower cross-sections of the map are preserved, while the homotopic
greyscale skeleton preserves both these components and the components of the upper cross-
sections. As a consequence, a homotopic greyscale skeleton may be computed by using a
purely local criterion for testing whether a point may be lowered or not, while computing a
topological watershed requires the reiteration of global algorithms for computing connected
components, or the use of a global data structure cathatbonent tre§7,22]. Notice that
a topological watershed only produces closed contours around the regions of interest (Fig.
12b). One can see iRig. 12X that this is not the case for a homotopic greyscale skeleton:
there is a “skeleton branch” at level 11 which does not separate different minima.

Appendix B. Proof of Property 12

Let F € #(E), letx, y be two points oE, recall that % andy are linked forE” means
thatF(x, y) =max{F (x), F(y)}. Let X, Y be two subsets di which are flat foi-, we say

thatx and Y are linked for Ff for any y € Y, x andy are linked forF; and we say thaX
andY are linked for Rf for any x € X, for anyy € Y, xandy are linked forF. In the same
way, we say thax and Y are separated for iFfor any y € Y, x andy are separated fdt.
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Fig. 11. Examples of the application of the flooding algorithm, the Vincent—Soille algorithm, the monotone
W-flooding and the topological watershed on several imageg = 1, 2 and 3). The mosaics produced by the
flooding algorithm and by Vincent—Soille’s algorithm are denotedty andV s?, respectively, the monotone
W-floodings are denoted by Wi and the topological watersheds are denoted B . One can observe that the
pass value between the minima (at altitude) 1 and the minima 2 is 20%ot0 for £ F1 and vV s1, and 20 for
MWL andT W1 the pass value between the minima (at altitude) 1 and any other minima is 255,60 for
EF?2,128 forVs2 and 255 forM W2 andT W2; the pass value between the minima (at altitude) 0 and any other
minima is 255 forF3, 128 for EF3 andV $2, and 255 forM W3 and T W3.
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©

Fig. 12. An image (a), a topological watershed (b) of the image (a) and a homotopic greyscale skeleton (c) of the
image (a).

Let us state two basic properties which are fundamental to understand subsequent proofs,
and can easily be verified.

Property 29. Let F € % (E), let m be a minimum of Fand letx € E. If x and m are
linked for F, then we have

F(x) = F(m) ifand only ifx € m, and
F(x)> F(m)ifand only ifx ¢ m
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Property 30. Let F € # (E). For anyx € E, there exists a minimum m of F such that x
and m are linked. Furthermoye (x) > F (m).

Property 31. Let F € & (E), let X be a minima extension of let Fx be the mosaic of F
associated with X. Let M be a connected component afiXlet m be the unique minimum
of F such thain € M.

If M is a minimum ofFx, then we havdé'y (M) = F(m).

Proof. SinceFx < F, we haveFx (M) < F(m). Suppose that'y (M) < F(m). By defini-
tion of Fy, there exists a point € M such thatF'(x) = Fx(M) < F(m), furthermorex
andm must be separated (Proposition 29). By Proposition 30, there exists a minithum
of F, m’" # m, such thak andm’ are linked forF and F (x) > F (m’). Let (M) denote the
set of points of\f which are adjacent tbl. SinceM is a minimum ofFy we know that for
anyy € o(M), Fx(y) > Fx(M) = F(x) and thus for any € 6(M), F(y) > F(x) since

y € X and thusFx(y) = F(y). The fact that andm’ are linked forF thus implies that
m’ is included inM as well agn, a contradiction with the definition of a minima extension.
O

Property 32. Let F € % (E), let X be a minima extension of et Fx be the mosaic of F
associated with Xlet x € E and let m be a minimum of F. If x is linked to m for F and if
Fx(x) = F(x), then x is linked to m foFy.

Proof. Sincemis a minimum forF andx is linked tom for F, by Proposition 29 we have
F(x) > F(m), thus for any poiny of mwe haveF (x, y) = F(x). Thus, there exists a path
= (xo, ..., xy) fromxtom, with xo = x andx, € m, such thatF(n) < F(x). For any
i=1...nwehaveFy(x;) < F(x;),thussince'y (x) = F(x) we haveFy (n) = Fx(x). 0O

Proof of Proposition 12. Let m be any minimum of, we denote byC,, the connected
component oX such thain C C,,. We are going to prove that either @), is a minimum
of Fx, and in this casé'x (C,,) = F(m), or (b) C,, is disjoint with any minimum ofF’x.
We will also prove that (c) no minimum afy is included inX. It may be seen that the
property follows from (a), (b), (c).

(a) Letd(C,,) denote the set of poinise C,, which are adjacent t6,,. If all the pointsx
of 0(C,,) are such thak'(x) > F(m), then for anyof 6(C,,) we haveFx (x) > F (m) (since
x € X, Fx(x)=F (x)). Furthermore, from the very definition 8% ,Vz € C,,, Fx(z) < F(m);
thusC,, is a minimum forFy. By Proposition 31, we deduce th&g (C,;,) = F (im).

(b) Suppose now that there exists a pairt 6(C,,) such thatF (x) < F(m). Then,xand
m are separated fd¥, otherwise ifF (x) = F(m) we would havex € m and thust € C,,,
and if F(x) < F(m), mwould not be a minimum of (Proposition 29).

Thus, there exists a minimum’ of F, m’ # m, such thai is linked tom’ for F and
F(x) > F(m’) (Proposition 30). Suppose thaix) = F(m'), sincex is linked for F with
the minimumm’ of F, it would imply thatx € m’ (Proposition 29), thug,, and C,,
are adjacent, a contradiction with the definition of the minima extensidrhus we have
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F(x) > F(m'). On the other hand, sinaee X we haveFy (x) = F (x), thus by Proposition
32,xis linked tom’ for Fx. Now two cases must be distinguished.

o If Fx(C,) = F(m), then we haveF'x(C,,) = F(m)>F(x) > F(m') > Fx(m’), thus
C,, is linked tom’ for Fy with Fx(C,,) > Fx(m’). Now suppose that,, has a non-
empty intersection with a minimumd of Fx. Thus bothC,, andM are flat forFx with
the same altitude and sind& is a minimum, we have’,, € M. The fact thatC,, is
linked tom’, with Fx(C,,) > Fx(m'), raises a contradiction with the fact thdtis a
minimum of Fy.

o If Fx(C,,) < F(m), thenthere exists a pointe C,, suchthatF(m) > F(y) = Fx(Cy,),
thusF(y) = Fx(y). SinceF(y) < F(m) andmis a minimum ofF, we know thaty does
not belong tan, and with the same arguments as above we seg ratmare separated
for F. Thus, there exists a minimum’ of F, m’ # m, such thay is linked tom’ for F
andF(y) > F(m’). As above, we can see that indeBdy) > F(m'), thaty is linked to
m' for Fx, thatFx(C,,) = F(y) > F(m') > Fx(m'), and finally thatC,, cannot have a
non-empty intersection with a minimum &f .

(c) LetM be any subset ok which is flat for Fx (thusM is also flat forF), and letk
denoteFx (M) (which is equal toF (M)). SinceX is a minima extension fof, we know
that M is not a minimum ofF, thus there exists a poigtof M adjacent toVl such that
F(y)<k.Hence,Fx(y) <k andM is not a minimum ofFy. [
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Abstract

The watershed transformation is an efficient tool for segmenting grayscale images.
An original approach to the watershed [1,9] consists in modifying the original image
by lowering some points while preserving some topological properties, namely, the
connectivity of each lower cross-section. Such a transformation (and its result) is
called a W-thinning, a topological watershed being an “ultimate” W-thinning. In
this paper, we study algorithms to compute topological watersheds. We propose
and prove a characterization of the points that can be lowered during a W-thinning,
which may be checked locally and efficiently implemented thanks to a data structure
called component tree. We introduce the notion of M-watershed of an image F,
which is a W-thinning of F' in which the minima cannot be extended anymore
without changing the connectivity of the lower cross-sections. The set of points in
an M-watershed of F' which do not belong to any regional minimum corresponds
to a binary watershed of F'. We propose quasi-linear algorithms for computing M-
watersheds and topological watersheds. These algorithms are proved to give correct
results with respect to the definitions, and their time complexity is analyzed.

Key words: discrete topology, mathematical morphology, watershed, component
tree, segmentation

Introduction

The watershed transformation was introduced as a tool for segmenting gray-
scale images by S. Beucher and C. Lantuéjoul [3] in the late 70’s, and is now
used as a fundamental step in many powerful segmentation procedures. A
popular presentation of the watershed is based on a flooding paradigm. Let us
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consider a grayscale image as a topographical relief: the gray level of a pixel
becomes the altitude of a point, the basins and valleys of the relief correspond
to the dark areas, whereas the mountains and crest lines correspond to the light
areas (Fig. lay, as). Let us imagine the surface of this relief being immersed in
still water, with holes pierced in local minima. Water fills up basins starting
at these local minima, and dams are built at points where waters coming from
different basins would meet. As a result, the surface is partitioned into regions
or basins which are separated by dams, called watershed lines.

Efficient watershed algorithms based on such immersion simulation were pro-
posed by L. Vincent, P. Soille [34] and F. Meyer [22,4] in the early 90’s. Many
different watershed paradigms and algorithms have been proposed until now,
see [27] for a review. In the continuous space, a definition and some properties
of the watersheds of “regular” functions have been studied by L. Najman and
M. Schmitt [26]. However, until recently, there was no general framework in-
cluding a precise definition, strong properties, and algorithms which may be
proved to indeed implement the definition.

A different approach to watersheds, originally proposed by G. Bertrand and
M. Couprie [9], is developed in [1,25]. In this approach, we consider a transfor-
mation called topological watershed, which modifies a map (e.g., a grayscale
image) while preserving some topological properties, namely, the connectiv-
ity! of each lower cross-section. The motivation for such a condition will
appear a little later, when we will discuss the properties of this transforma-
tion. Let F be a map and A be a number, the lower cross-section F[)\] is the

1 The notions of connectivity, path, connected components, etc. will be precisely
defined in section 1.

Fig. 1. a1, ag: original images; by (resp. ba): topological watershed of a; (resp. az);
c1 (resp. cg): W-crest of aj (resp. asz), in white.



set composed of all the points having an altitude strictly lower than A (Fig. 3).
A point z is said to be W-destructible for F' (where W stands for Watershed) if
its altitude can be lowered by one without changing the number of connected
components of F[k], with k = F(z). A map G is called a W-thinning of F'
if it may be obtained from F' by iteratively selecting a W-destructible point
and lowering it by one. A topological watershed of F' is a W-thinning of F
which contains no W-destructible point. This transformation has the effect of
spreading the regional minima of the map (see Fig. 1). Let F' be a map and
let G be a topological watershed of F', the set of points which do not belong
to any regional minimum of G is called a W-crest of F. The W-crest of F
corresponds to a binary watershed of F' (see Fig. 1cq, ).

In [1], G. Bertrand develops a framework in which fundamental properties of
topological watersheds are proved, and where the notion of separation plays
a central role. Consider a map F', we can say that two points p and ¢ are k-
separated if there exists a path between p and ¢, the maximal altitude of which
is k — 1 > max(F(p), F(q)), and if there is no path between p and ¢ with a
maximal altitude strictly less than k—1 (notice that this notion of k-separation
between two points is closely related to the notion of grayscale connectivity
introduced by Rosenfeld [28], see also [6]). For example, in Fig. 1a, the point p
and the point ¢ are 5-separated, but the point p and the point r are not
separated. We say that a map G, such that G < F, is a separation of F, if
whenever p and ¢ are k-separated for F', p and ¢ are k-separated for G. We
say that G is a strong separation of F' if GG is a separation of F' and if the
minima of G are “extensions” of the minima of F'. In Fig. 1, it can be checked
that by is a strong separation of a;.

One of the main theorems proved in [1] (the strong separation theorem) states
that G is a W-thinning of F' if and only if G is a strong separation of F.
The “if” part of the theorem corresponds to a notion of contrast preservation.
We will say informally that a transformation “preserves the contrast” if the
transformation preserves the altitude of the minima of the image and if, when
two minima are separated by a crest in the original image, they are still sepa-
rated by a crest of the same altitude in the transform. For example in Fig. 1,
if we take any two minima which are k-separated in a; (i = 1,2) for a given k,
we know that they are k-separated in b; since b; is a W-thinning of a;. This
constrast preservation property is not satisfied in general by the most popular
watershed algorithms (see [23,25]).

The “only if” part of the theorem mainly states that, if one needs a transfor-
mation which preserves the contrast in this sense, then this transformation is
necessarily a W-thinning. This remarkable result shows that the topological
watershed is a fundamental tool to obtain a contrast preserving watershed
transformation.

In this paper, we study algorithms to compute topological watersheds. A naive



algorithm could be the following: for all p in £ (n points), check the number
of connected components of the lower cross-section at the level of p which are
adjacent to p (cost for each point p: O(n) with a classical connected compo-
nent labelling algorithm), lower the value of p by one if this number is exactly
one. Repeat this whole process until no W-destructible point remains. Con-
sider an image which consists of a single row of n + 2 points, such that each
point has an altitude of g except for the two points at the beginning and at
the end of the row, which have an altitude of 0 (with any positive integers
n,g). The outer loop will be executed g times. The time complexity of this
naive algorithm is thus at least in O(n? x g).

We reduce the complexity by two means.

First, we propose and prove a new characterization of the W-destructible
points which may be checked locally and efficiently: the total time for check-
ing the W-destructibleness of all the vertices in a graph with n vertices and m
arcs is in O(n + m). We obtain this result thanks to a data structure called
component tree, which may be constructed in quasi-linear time [24], that is, in
O(N xa(N)) where N = n+m and «(N) is a function which grows extremely
slowly with N (we have «(10%°) ~ 4). This complexity can be reached thanks
to a reduction to the disjoint set problem [31].

Second, we propose different strategies to ensure that a point is lowered at
most once during the execution of the algorithm. One of these strategies relies
on the notions of M-point and M-watershed. A point p is an M-point if it is
adjacent to a regional minimum and if it can be lowered by W-thinning down
to the level of this minimum. An M-watershed is obtained by iteratively low-
ering M-points until stability. Recall that a W-crest of a map F' is composed
by the points which do not belong to any regional minimum of a topological
watershed of F'. We prove that the set of points which do not belong to any
regional minimum of an M-watershed of F'is always a W-crest of F', in other
words, we can compute a W-crest by only lowering M-points. We propose a
quasi-linear algorithm for computing an M-watershed — hence a W-crest —
of a map.

We also propose a quasi-linear algorithm for the topological watershed trans-
formation. These algorithms are proved to give correct results with respect to
the definitions, and their time complexity is analyzed.

In order to ease the reading of the paper, we defer the proofs to the annex.

1 Topological notions for graphs

Let E be a finite set, we denote by P(FE) the set of all subsets of E. Throughout
this paper, I will denote a binary relation on E (thus, I' C E x E), which is
reflexive (for all p in F, (p,p) € I') and symmetric (for all p,qin F, (¢,p) € T
whenever (p,q) € I'). We say that the pair (£, ") is a graph, each element of F
is called a vertex or a point. We will also denote by I' the map from £ into
P(E) such that, for any p in E, I'(p) = {q € E;(p,q) € I'}. For any point p,



the set ['(p) is called the neighborhood of p. If ¢ € I'(p) then we say that p
and ¢ are adjacent or that q is a neighbor of p. If X C F and ¢ is adjacent
to p for some p € X, we say that q is adjacent to X.

For applications to digital image processing, assume that E is a finite subset
of Z™ (n = 2,3), where Z denotes the set of integers. A subset X of E repre-
sents the “object”, its complementary X = F\ X represents the “background”,
and I" corresponds to an adjacency relation between points of E. In Z2, I" may
be one of the usual adjacency relations, for example the 4-adjacency or the
8-adjacency in the square grid. Let us recall briefly the usual notions of path
and connected component in graphs.

Let (E,T") be a graph, let X C E, and let po,pr € X. A path from py to py
in X is an ordered family (po, ..., px) of points of X such that p;1; € ['(p;),
withi=0...k— 1.

Let p,q € X, we say that p and q are linked for X if there exists a path from p
to ¢ in X. We say that X is connected if any p and ¢ in X are linked for X.
We say that a subset Y of F is a connected component of X it Y C X, Y is
connected, and Y is maximal for these two properties, i.e., if Y C Z C X and
if Z is connected, then Z = Y. In the sequel of the article, we will assume
that F is connected.

We are interested in transformations that preserve the number of connected
components of the background. For that purpose, we introduce the notion of
W-simple point in a graph. Intuitively, a point of X is W-simple if it may be
removed from X while preserving the number of connected components of X.

Definition 1 Let X C E, letp € X.

We say that p is a border point (for X) if p is adjacent to X.

We say that p is an inner point (for X) if p is not a border point for X.

We say that p is separating (for X) if p is adjacent to at least two connected
components of X.

We say that p is W-simple (for X) if p is adjacent to exactly one connected
component of X.

Notice that a point which is not W-simple, is either an inner point or a sep-
arating point. In Fig. 2, the points of the set X are represented by “1”s, and
the 4-adjacency is assumed, as for all subsequent examples. The points which
are W-simple are circled. It may be easily seen that one cannot locally de-
cide whether a point is W-simple or not. Consider the points x and y in the
third row: their neighborhoods are alike, yet x is W-simple (it is adjacent to
exactly one connected component of X), and y is not, since it is adjacent to
two different connected components of X.



Xy

1
1
1
1

1

L1 1 1
11 1 1
1 @ 1 1
1 @ 1 1
1 @ 1 1
L1 1 1
L1 1 1

oo oXininN

1 1

1

Fig. 2. A set X (the 1’s) and its complement X (the 0’s). The W-simple points are
circled.

2 Topological notions for weighted graphs and stacks

Now, we extend these notions to a weighted graph (F,T', F), where F is a
function from E to Z. A weighted graph is a model for a digital grayscale
image; for any point p € E, the value F(p) represents the gray level of p. Let
Emin and k.., be two elements of Z such that k., < kn.. We set K = {k €
Likmin < k < kpay}, and KT = KU {k,..}.- We denote by F the set composed
of all functions from E to K. Let F' € F, let k € K. We denote by F[k] the
set {p € E; F(p) > k}; F[k] is called a level set of F. Notice that Flk,.| = F
and F[k,..] = 0.

Any function in F can be represented by its different level sets. For a given
function, these level sets constitute a “stack”: in fact, the datum of a function
is equivalent to the datum of a stack. We give here a minimal set of definitions
borrowed from [1] for stacks, which is is sufficient for our purpose; the inter-
ested reader should refer to [1] for a more complete presentation. Considering
the equivalence between a function and its corresponding stack, we will use
the same symbol for both of them.

Definition 2 Let F = {F[k]; k € K} be a family of subsets of E.

We say that F is an upstack on E if Fk,...] = E, Flk,.] =0, and F[j] C Fi]
whenever i < j.

We say that F is a downstack on E if Flk,.] =0, Flk,.] = E, and F[i] C
F[j] wheneveri < j.

We denote by St (resp. S~ ) the set of all upstacks (resp. downstacks) on E.
Any element of ST US™ is called a stack on E.

Let F be a stack on E, we define the stack F = {F[k] = F[k]; k € K} which
is called the complement of F'. Let F' be a stack on E, any element F[k| of F
is called a section of F' (at level k), or the k-section of F'.

Let F € 8t and let G € S~. We define the functions induced by F and G,
also denoted by F', G, such that for any p € E:

F(p) = max{k € K;p € Flk]} ; G(p) = min{k € K;p € G[k]}.

Important remark: Let ' € F. Clearly, the level sets of F' form an upstack
(also denoted by F'), and the function induced by the upstack F' is precisely
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the function F. The complement F' of the upstack F' is a downstack. For any
k € Kt, we have F[k] = Flk| = {p € E;F(p) <k} ={p€ E;F(p) <k};
and for any p € E, we have

Definition 3 Let F' € F, let k € K*. A connected component of a non-empty
k-section of F is called a component of F' (at level k), or a k-component of F'.
A component m of F is said to be a minimum of F (and also a minimum
of F) if there is no other component of F which is included in m.

Let p € E, the component of p in F', denoted by C(p, F) or simply by C(p)
when no confusion may occur, is defined as the component of F|k| which con-
tains p, with k = F(p).

We denote by I'~(p, F') the set of lower neighbors of the point p for the func-
tion F', that is, I~ (p, F) = {q € T'(p); F(q) < F(p)}. Notice that I'~(p, F) =

I'“(p, F). When no confusion may occur, we write I'(p) instead of I'~(p, F').

Fig. 3 shows a grayscale image F' and three sections of F. Since we use the
4-adjacency, F[2] is made of two components (in white), whereas F/[3] is made
of one component. The set F'[1] is made of two components which are minima
of F. We have: C(z, F) = E ; C(r, F') is the component of F[1] which contains

six points; and C(y, F) = C(z, F): it is the unique component of F[3].

Definition 4 Let F' € F, letp € E, let k = F(p).

We say that p is a border point (for F') if p is an border point for F[k].

We say that p is an inner point (for F') if p is an inner point for F[k].

We say that p is separating (for F') if p is separating for F[k].

The point p is W-destructible (for F) if p is W-simple for F[k]|. Let v € K,
the point p is W-destructible with lowest value v (for F') if for any h such
that v < h < F(p), p is W-simple for F[h], and if p is not W-simple for F[v].

In other words, the point p is W-destructible for F' if and only if p is a border
point for F' (i.e., I~ (p) # 0) and all the points in I'"(p) belong to the same
connected component of F[k], with k = F(p).

In Fig. 3, the points z, 7, s are inner points, y is a W-destructible point (with
lowest value 1), and z is a separating point.



Let F € F,let p € E, let v € K such that v < F(p), we denote by [F'\ p | v]
the element of F such that [F'\ p | v](p) = v and [F\p | v](¢) = F(q)
for all ¢ € E'\ {p}. Informally, it means that the only difference between the
function F' and the function [F'\ p | v], is that the point p has been lowered
down to the value v. We also write [F'\ p] = [F'\ p | v] when v = F(p) — 1.
If we consider F' = [F'\ p | v], it may be easily seen that for all A in K*,
the number of connected components of F”[h] equals the number of connected
components of F[h]. That is to say, the value of a W-destructible point may
be lowered by one or down to its lowest value without changing the number
of connected components of any section of F.

Definition 5 Let F' € F. We say that G € F is a W-thinning of ' if

i) G =F, orif

ii) there exists a function H which is a W-thinning of F and there exists a
W-destructible point p for H such that G = [H \ p].

We say that G is a (topological) watershed of F if G is a W-thinning of F
and if there is no W-destructible point for G.

Let F € F,let p € E, let v € K. It may be easily seen that, if p is W-
destructible with lowest value v, then [F'\ p | v] is a W-thinning of F' and p
is not W-destructible for [F'\ p | v] ; and that the converse is also true.

In other words, one can obtain a W-thinning of a function F' by iteratively
selecting a W-destructible point and lowering it by one. If this process is
repeated until stability, one obtains a topological watershed of F'. Notice that
the choice of the W-destructible point is not necessarily unique at each step,
thus, in general, there may exist several topological watersheds for the same
function.

In Fig. 4, we present an image 4a and a topological watershed 4b of 4a. Note
that in 4b, the minima of 4a have been spread and are now separated from each
other by a “thin line”; nevertheless, their number and values have been pre-
served. Fig. 4c shows a W-thinning of 4a which is not a topological watershed
of 4a (there are still some W-destructible points).

Let us emphasize the essential difference between this notion of watershed and
the notion of homotopic grayscale skeleton, pioneered by V. Goetcherian [11]
and extensively studied in [2,10] for the case of 2D digital images. With the
topological watershed, only the connected components of the lower cross-
sections of the function are preserved, while the homotopic grayscale skele-
ton preserves both these components and the components of the upper cross-
sections. As a consequence, an homotopic grayscale skeleton may be computed
by using a purely local criterion for testing whether a point may be lowered
or not, while computing a topological watershed requires the use of a global
data structure (see Sec. 5).
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Fig. 4. a: original image; b: a topological watershed of a; c: a W-thinning of a which
is also an M-watershed of a (see section 6); d: an homotopic grayscale skeleton of a.
In a, we have circled six points which have different types (see Section 3). From
left to right: S-point (12), S-point (11), M-point (4), P-point (6), M-point (0),
P-point (7).

Fig. 4d shows an homotopic grayscale skeleton of 4a. Notice the difference
with 4b in the center of the image, a “skeleton branch” at level 11 which
does not separate different minima, and also the two peaks (level 15) which
have been preserved. In applications where the goal is to find closed contours
around the regions of interest, the notion of watershed is a better choice.

Let us quote some definitions and a property of [1] which will be used in the
sequel of this article.

Definition 6 Let F € F, let p and q be two points of E, and let k € KT.
We say that p and q are k-linked (in F) if p and q are linked for Fk].



We say that p dominates q (in F) if ¢ belongs to the component of p in F.
We say that p and q are linked (in F)) if p dominates q in F or q dominates p
in .

We define the connection value between p and ¢ (for F)) by:

F(p,q) = min{k; p and q are k-linked in F}.

We say that p and ¢ are separated (in F) if p and q are not linked in F.

We say that p and q are k-separated (in F) if p and q are separated in F and if
the connection value for F between p and q is precisely k, i.e., if F(p,q) = k.

The equivalence between this definition of k-separated points and another
definition based on paths, stated informally in the introduction, can be easily
shown (see [1]). Fig. 3 gives some illustrations: the points = and r are linked
(z dominates ), and the points r and s are 2-separated, as it can easily be
checked using the following property.

Property 1 ([1]) Let F € F. Two points p and q are k-separated in F, if
and only if:

i) p and q belong to the same component of F[k], and

i) p and q belong to distinct components of Flk — 1].

The next property allows us to characterize a W-destructible point p by con-
sidering only the connection values between the lower neighbors of p. It will
be used to establish our main characterization theorem (th. 9).

Property 2 Let F € F, letp € E. The point p is W-destructible for F' if and
only if T=(p) # 0 and, for all ¢ and r in T'~(p) with q # r, we have F(q,r) <
F(p).

3 Classification of points and transitions

As pointed out in the introduction, the time complexity of a naive topological
watershed algorithm is O(n? x g), where n denotes the number of points and
g = Kpax—Fnin- In order to design a quasi-linear W-thinning algorithm, we need
to consider what may happen when we lower the value of a point. The examples
of Fig. 4a may help the reader to understand the following definitions.

Let us consider a point p € E which is not W-destructible for F' € F. Several
cases may be distinguished. From Def. 4, such a point is either an inner point
or a separating point for F'. Furthermore, if p is an inner point, then either p
belongs to a minimum of F' or not.

On the other hand, if p is W-destructible for F', then p is not W-destructible
for [F'\ p | v] where v is the lowest value of p. Again, we can distinguish the
same possibilities for the status of p with respect to [F'\ p | v]. The following
definition formalizes these observations (S stands for separating, I for Inner,
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M for minimum and P for plateau).

Definition 7 Let F' € F, let p € E, p not W-destructible for F.

We say that p is an S-point (for F) if p is separating for F.

We say that p is an I-point (for F') if p is an inner point for F'.

We say that p is an M-point (for F') if p belongs to a minimum of F.

We say that p is a P-point (for F') if p is an inner point for F which does not
belong to a minimum of F.

Let g be a point which is W-destructible for F', and let v be its lowest value.
We say that q is an S-point (for F) (resp. an I-point, an M-point, a P-point)
if q is an S-point for [F'\ q | v] (resp. an I-point, an M-point, a P-point).
If p is a T-point, with T € {S, M, P, S, M, ]5}, we say that T s the type
of p.

Notice that all M-points and all P-points are I-points, and that all M-points
and all P-points are I-points. Notice also that any point in E has a unique
type, i.e., it is either an S-point, an M-point, a P-point, an S-point, an M-
point, or a P-point. In Fig. 4a, we have circled six points which are represen-
tative of each type.

The two following properties characterize respectively I-points and S-points.
They are fundamental to understand and to prove the characterization of
destructible points proposed in section 5.

Property 3 Let F € F, letpe E, let v e K.

The point p is an I-point for F with lowest value v if and only if:
i) T~ (p) #0; and

i) any two points q,r in I'~(p) are linked in F'; and

iii) v = min{F(q);q € I~ (p)}.

Property 4 Let FF € F, letpe E, let v e K.

The point p is an S-point for F with lowest value v if and only if:

i) T (p) #0; and

i) Vg, € T=(p), if ¢ and r are k-separated in F then k < v+ 1; and
i) there exist two points q,r in I'~(p) which are (v + 1)-separated in F .

The type of a point p depends on the connected components of the sections
of F which are adjacent to p, and we know that lowering a W-destructible
point preserves the connectivity of all these sections. It may thus be seen that,
during a W-thinning process, the type of a point p can only be changed by
the modification of either the point p itself or a neighbor of p (this will be
proved with the following theorem). By a systematic examination of all the
possibilities, we deduce that only certain transitions are possible for the type
of a point p during a W-thinning process (all of them are illustrated in Fig. 5).

Theorem 5 Let F' € F, let p € E. During a W-thinning process, the possible
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transitions for the type of the point p are exactly those depicted in the graph
of Fig. b5a, where the solid lines correspond to transitions due to the lowering
of the point p itself, and the dashed lines correspond to transitions due to the
lowering of a neighbor of p.

O IO NNNNERRE
AP N

8§ 9 10 11 12 13

Fig. 5. a: The eleven transition types that may occur in a W-thinning process.
b: Illustration of each possible transition type. Point (3,2) (value 6) down to 5:
[S — 8] for itself. Point (6,5) (value 8) down to 0: [M — M] for itself. Point (6,3)
(value 9) down to 8: [P — P] for itself. Point (2,4) (value 9) down to 0: [S — S] for
(3,4). Point (10,3) (value 7) down to 2: [M — S] for (11,3). Point (6, 1) (value 8)
down to 0: [M — S] for (7,1). Point (5,3) (value 8) down to 1: [P — M] for (6,3).
Point (10,5) (value 7) down to 2: [P — S] for (11,5). Point (6,5) (value 8) down
to 0: [P — S] for (7,5). Point (8,3) (value 8) down to 7: [P — P] for (7,3). Point
(8,3) (value 8) down to 2: [P — M] for (7,3).

As a corollary of this theorem, we immediately deduce that a point p which
is an S-point (resp. an M-point) for F', is also an S-point (resp. an M-point)
for any W-thinning of F'

4 Component tree

Let us present the data structure called component tree, that will allow us
to characterize W-destructible points, as well as the other types of points,
locally and efficiently (section 5). We shall see in this section that there is a
strong relation between the component tree and the notion of k-separation;
this relation will be used to prove the point type characterization (theorem 9).

Let F € F,let C(F) denote the set of all couples [k, ] where ¢ is a k-component
of F, for all values of k between k.., and k... We call altitude of [k, c] the
number k. By abuse of terminology, we will also call component an element

of C(F).

We see easily that these components can be organized in a tree structure, that
we call component tree. This structure has been introduced in the domain of
data analysis [35,14], and appears to be a fundamental tool to represent some
“meaningful” information contained in a numerical function [13,12]. Several
authors, such as Vachier [33], Breen and Jones [7,16], Salembier et al. [30],
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Meijster and Wilkinson [21] have used this structure in order to implement
efficiently some morphological operators (e.g., connected operators, granu-
lometries, extinction functions). The component tree has also be used as a
basis for image matching algorithms [18,19]. Algorithms to compute the com-
ponent tree for the case of digital images can be found in [7,30,20]; the last
reference also contains a discussion about time complexity of the different al-
gorithms. Until recently, the fastest algorithm to compute the component tree
was proved to run in O(n x In(n)) complexity, where n is the number of image
points. L. Najman and M. Couprie have proposed a quasi-linear algorithm [24].
For the sake of completeness, we present this algorithm in Annex 2. Let us
now give a formal definition of the component tree and related notions.

Definition 8 Let F € F, let [k, c], [k1,c1], [ko, ca] be elements of C(F).

We say that [k, c1] is the parent of [ke, co] if k1 = ko + 1 and c3 C ¢, in this
case we also say that [ka,co] is a child of [k, ¢q].

With this relation “parent”, C(F) forms a directed tree that we call the compo-
nent tree of F', and that we will also denote by C(F) by abuse of terminology.
An element of C(F') which has no child is called aleaf, and an element of C(F)
which has at least two childs is called a fork.

Fig. 6b shows the component tree associated to the function depicted in Fig. 6a.

Definition 9 We say that [ky,c1] is an ancestor of [ko, o] if ko < ki and
ca C 1. In this case, we also say that [k, c1] is over |ko, o], and that ke, cs)
is under [ky, ¢;].

We say that the component [k, c| is a common ancestor of [ky, ¢1], [k2, o] if [k, c]
is an ancestor of both [k, c1] and [ks, cs).

We say that the component [k,c] is the least common ancestor of [ki,cq],
[ka, ca], and we write [k,c] = LCA([k1,c1], [ke,ca]), if [k, c] is a common an-
cestor of [ki, 1], [k, 2], and if there is no other common ancestor of k1, 1],
[ka, co] under [k, c].

We say that the component [k, c| is the proper least common ancestor of [ky, ¢4]
and [kq, co] if [k, c] is the least common ancestor of [ki, c1], [k, ca], and if [k, c]
is different from [ki,c1] and from [kq, cs).

For example, in Fig. 6, the fork [3, g] is the proper least common ancestor of
the leafs [1,a] and [2,¢], and the components [1,b] and [2, d] have no proper
least common ancestor.

Definition 10 We say that the components [k1,c1], [ko, o] are separated if
they have a proper least common ancestor, otherwise we say that they are

linked.
Let M be a set {[ky,c1], [ka, ol - -, [kn, cnl} of elements of C(F). We say that
the component [k, c| is the highest fork for M if the two following conditions
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are satisfied:

i) for any pair [k;, ¢, [k, c;] of distinct elements of M, if [ki,cil, [k;, c;] are
separated then the altitude of LCA([k;, ], [k;, ¢ ]) is less or equal to k; and
i) there exists a pair [k;, c;], [kj, c;] of separated elements of M such that [k, c|
is the proper least common ancestor of [k;, ¢i], [k;, ¢;].

For example, in Fig. 6, the set {[1,a], [3, ¢], [4,¢]} has no highest fork, and the
component [3, g| is the highest fork of the set {[1,al,[3, 9], [2, €], [4,1]}.

We make the following observations:

a) Any two components always have a unique least common ancestor. In par-
ticular, if [k1, 1] is over [k, co), then LCA([k1, ¢1], [k2, c2]) = [k1,¢1]. On the
other hand, two components which are linked have no proper least common
ancestor.

b) Two components are separated if and only if they are disjoint; and two
components [ki, 1], [ka, co] are linked if and only if either ¢; C ¢3 or ¢o C ¢4
(see Annex 1, lemma 6.1).

¢) A set of components may have no highest fork, and if the highest fork exists,
it is indeed a fork, i.e., an element with at least two childs (otherwise it could
not be a proper least common ancestor).

d) If a set of components has a highest fork, then this highest fork is unique.

The following property makes a strong link between the component tree and
the notion of separation, and justifies the common vocabulary used for both
notions. It follows straightforwardly from Prop. 1 and from b) above.

Property 6 Let F € F, let p,q € E, let k = F(p),l = F(q), let h € K.

i) The points p,q are h-separated in F if and only if [k, C(p)] and [I,C(q)] are
separated and their proper least common ancestor in C(F) is a component of
altitude h.

ii) The points p,q are linked in F if and only if the components [k, C(p)] and
[l,C(q)] are linked.

The following property and theorem are from [1]. They show, in particular,
that the component tree structure is preserved by any W-thinning.

Let X,Y be non-empty subsets of E such that X C Y. We say that Y is
an extension of X if each connected component of Y contains exactly one
connected component of X. We also say that Y is an extension of X if X
and Y are both empty.

We denote by C(X) the set composed of all connected components of X. If Y is
an extension of X, the extension map relative to (X,Y) is the bijection o from
C(X) to C(Y') such that, for any C € C(X), o(C) is the connected component
of Y which contains C'.

Let F, G be two stacks. We say that G is an extension of F if, for any k € KT,
Gk] is an extension of F'[k], and we denote by oy, the extension map relative
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to (F[k], G[K]).

Property 7 ([1]) Let F be a stack, let G be an extension of F'. Let k,h € KT.
If X € C(F[k]) and Y € C(F[h]) then Y C X if and only if op(Y) C o(X).

Theorem 8 ([1]) Let F' and G be two elements of F such that G < F.
The function G is a W-thinning of F' if and only if G is an extension of F.

5 Characterization of W-destructible points

We saw in section 1 that checking whether a point is W-simple cannot be
done locally (i.e., based on the mere knowledge of the status of the point
and its neighbors), thus checking whether a point is W-destructible or not
cannot be done locally if the only available information is the graph (E,T")
and the function F. As discussed in the introduction, with a naive approach
a connected component search (at least in O(n), with n = |E|) is necessary
for each tested point, thus the complexity of a naive topological watershed
algorithm has a term in n?; furthermore, a point may be lowered several times
until it is no more W-destructible. The following theorem and algorithms
make it possible to perform this test on all the vertices of a weighted graph
in linear time, and also to check directly how low the W-destructible point
may be lowered until it is no more W-destructible (its lowest value), thanks
to the component tree which may be built in quasi-linear time. In addition,
the proposed algorithm provides the type of the considered point.

Recall that a W-destructible point is necessarily an I-point or an S-point
(section 3). We can now introduce the characterization theorem, which trans-
lates straightforwardly, thanks to Prop. 6, the properties 3 and 4 in terms of
relations between elements of the component tree.

Theorem 9 Let F € F, letp € E.

We denote by V (p) the set {[F(q),C(q)],q € T™(p)}. Then:

i) The point p is an I-point for F if and only if V(p) # 0 and V(p) has no
highest fork in C(F); in this case the lowest value of p is w — 1, where w
denotes the altitude of the lowest element of V (p).

i) The point p is an S-point for F if and only if V(p) # 0 and V(p) has a
highest fork in C(F), the altitude of which is v < F(p); in this case the lowest
value of p is v — 1.

Let F' € F, we define the component mapping W which associates, to each
point p, a pointer ¥(p) to the element [F'(p), C(p)] of the component tree C(F).

In Fig. 6, we illustrate the characterization of W-destructible points using
theorem 9. The function F' (grayscale image) is depicted in (a), and four
sections of F' are shown in the bottom row. Each component of these sections
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is identified by a letter. The component tree C(F) is shown in (b), and the
component mapping ¥ in (c¢). From top to bottom, let us consider the four
circled points py, po, p3, ps. Thanks to the component mapping ¥, we can build
the sets V(p1) = {[1,a]} (no highest fork), V(p2) = {[1,al,[2,¢],[3,9]} (no
highest fork), V(ps) = {[1,8],[2,¢],[3, 9]} (highest fork = [3,g]), and V(p4) =
{[1,8],[2,€]} (highest fork = [3, g]). From theorem 9 we conclude that:

e p; and p, are I-points (thus they are W-destructible) and may be lowered
down to 0 (they are M -points),

e p3 is an S-point (thus ps is W-destructible) with lowest value 2,
e p, is not W-destructible (p4 is an S-point).

9:[4.i] @ 3(3l3]lol2]2]2]2
3 0lo / \ 111@79222
2@ /:[j’g]\ &ﬁ’h] 11977 7@2 2
3 3 3 K 31l 4:12.d] 572 612 191697 |9|5]9]2
; am Y Y e
2 l:[l,a] 2:[1,b] 1 1 1 1 7 212122

a b c

g
a
i
F] F[3] F4]

Fig. 6. Illustration of theorem 9. a: original image F; b: component tree C(F); c:
component mapping ¥; bottom row: sections F[1], F[2], F[3], F[4] (in white, with
their components labelled by letters).

The problem of finding the lowest common ancestor of two nodes in a di-
rected tree has been well studied, and efficient algorithms exist: D. Harel and
R.E. Tarjan [15] showed that it is possible to build in linear time a represen-
tation of a tree, which allows to find the lowest common ancestor of any two
nodes in constant time. An algorithm allowing a practical implementation is
provided in [5]. We denote by BLCA (for Binary LCA) the procedure which
implements this algorithm, and which takes as arguments a tree (represented
in a convenient manner) and two nodes.

We remark that using theorem 9 to check whether a point is W-destructible,
involves the computation of the highest fork of the elements of the set V(p),
and this may require a number of calls to BLCA which is quadratic with
respect to the cardinality of V'(p): every pair of elements of V(p) has to be
considered. In fact, we can have a linear complexity with the following algo-
rithm and property.

Let C be a component tree, let V be a set of components of C, we denote by
min(V) an element of V' which has the minimal altitude. For this algorithm

16



and the following ones, we assume that C is represented in a convenient manner

for BLCA.

Function HighestFork (Input C a component tree, V a set of components of C)

01. [k1,c1] < min(V) ; let [k2,ca]. .. [km,cm] be the other elements of V'
02. km — ki;cm<— c1

03. For i From 2 To n Do

04. [k,c] — BLCA(C, [ki, cil, [km, cm))

05. If [k, c] # [ki,c;]) Then ky, — ki cm — ¢

06. If k,, = ki Then Return [co, ()] Else Return [k, ¢p]

Property 10 Let C be a component tree, and let V' be a non-empty set of
components of C.

i) The algorithm HighestFork returns the highest fork of the set V', or the
indicator [0o, 0] if there is no highest fork.

ii) This algorithm makes n — 1 calls of the BLCA operator, where n is the
number of elements in V.

Based on theorem 9, we propose the following algorithm for testing the type
of a point. In addition, if the point is W-destructible then this algorithm also
returns the lowest component to which the point can be added, otherwise the
value [0, ()] is returned. Notice that, if this component has the finite altitude ,
then the lowest value for the point p is k — 1.

Function TestType (Input F, p, C(F), ¥)

01. V « set of elements of C(F') pointed by ¥(g) for all ¢ in I'"(p)
02. If V =0 Then .

03. If [F(p)+1,C(p)] is a leaf of C(F') Then
04. Return (M, [co,0))

05. Else

06. Return (P, [oo, 0])

07. Else .

08. [km, cm] < HighestFork(C(F),V)

09. If [km,cm| =[00,0] Then

10. If min(V) is a leaf of C(F') Then
11. Return (M, min(V))

12. Else _

13. Return (P, min(V))

14. Else

15. If k,, < F(p) Then

16. Return (S, [k, cm))

17. Else

18. Return (S, [0, 0])

If we only want to test a particular type, then the previous procedure may be
simplified. We give below specialized functions for detecting W-destructible
and M-points respectively, which will be used in the next sections.

Function W-Destructible (Input F, p, C(F), ¥)
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01. V « set of elements of C(F') pointed by ¥(q) for all ¢ in I'"(p)
[

02. If V =( Then Return [oo, ()]

03. [km, cm] <« HighestFork(C(F),V)

04. If [km,cm] = [00, 0] Then Return min(V)

05. If k., < F(p) Then Return [k, cy,] Else Return [co, ()]

Function M-destructible (Input F', p, C(F), ¥)

01. V « set of elements of C(F') pointed by ¥(q) for all ¢ in I'"(p)
02. If V =0 Then Return [cc, (]

03. If min(V) is not a leaf of C(F) Then Return [oo, ]

04. [km, cm] — HighestFork(C(F),V)

05. If [km,cm] = [00,0] Then Return min(V') Else Return [co, ()]

From the previous properties and observations, we deduce straightforwardly:

Property 11 Algorithms Test Type, W-Destructible and M-destructible
give correct results with regard to the definition of the different types of points
(Defs. 4 and 7), and are linear in time complexity with respect to the number
of neighbors of p.

Notice that, if T" is a regular grid with a small connectivity degree (such as the
graphs of the 4-adjacency or the 8-adjacency on Z?), then we can regard this
complexity as constant. Notice also that even a naive implementation of the
LCA operator leads to acceptable performance in practice, since the depth of
the tree is usually quite limited. Furthermore, we can remark that the compo-
nents of the tree which have exactly one child are not useful to characterize the
type of a point, since they cannot be lowest common ancestors. It is thus pos-
sible to remove all these components from the tree, and update the component
mapping accordingly, before using it for point type characterization.

6 M-Thinning and binary watershed algorithm

The outline of a topological watershed algorithm is the following;:

Repeat Until Stability
Select a W-destructible point p, using a certain criterion
Lower the value of p

It can be seen that, even if a W-destructible point is lowered down to its lowest
value, it may again become W-destructible in further steps of the W-thinning
process, due to the lowering of some of its neighbors. For example, the point
at level 6 circled in white in Fig. 4a is W-destructible with lowest value 3. If
we lower this point down to 3, we will have to lower it again, after the lowering
of its neighbor at level 3 down to 0.

In order to ensure a linear complexity, we must avoid multiple selections of
the same point during the execution of the algorithm. The properties of this

18



section and the following one provide selection criteria which guarantee that a
point lowered once will never be W-destructible again during the W-thinning
process.

The first criterion concerns points which may be lowered by W-thinning down
to the value of a neighbor which belongs to a minimum. Such a point is an
M-point, and such an action is called an M-lowering. The aim of theorem 12
is to show that, if M-points are sequentially selected and M-lowered, and if we
continue this process until stability, giving a result G, then no W-thinning of G
will contain any M-point. Since, obviously, a point which has been M-lowered
will never be considered again in a W-thinning algorithm, we will obtain a
M-thinning algorithm which considers each point at most once, and produces
a result in which the minima cannot be extended by further W-thinning.

Definition 11 Let F,G € F, we say that G is an M-thinning of F' if G = F
or if G can be obtained from F by sequentially M-lowering some M -points.
We say that G is an M-watershed of F' if G is a M-thinning of F' and has no
M -point.

Theorem 12 Let F' € F, let G be an M-watershed of F. Any W-thinning
of G has exactly the same minima as G.

A corollary of this theorem is that the set of points which do not belong
to any minimum of an M-watershed of F' is always a W-crest of F'. Thus,

we can compute a W-crest by only lowering M-points. In Fig. 4c, we see an
M-watershed of 4a.

In the following algorithm, we introduce a priority function p which is used
to select the next M-point. The priority function p associates to each point p
a positive integer u(p), called the priority of p. This function is used for the
management of a priority queue, a data structure which allows to perform
efficiently, on a set of points, an arbitrary sequence of the two following oper-
ations (L denotes a priority queue and p a point):

AddPriorityQueue(L, p, u(p)): store the point p with the priority p(p) into
the queue L;

ExtractPriorityQueue(L): remove and return a point which has the mini-
mal priority value among those stored in L (if several points fulfill this condi-
tion, an arbitrary choice is made).

The choice and the interest of the priority function will be discussed after-
wards, but notice that whatever the chosen priority function (for example a
constant function), the result will always be an M-watershed of the input.

Procedure M-watershed (Input F,C(F), ¥ , u; Output F)

01. L — EmptyPriorityQueue
02. For All pe E Do .
03. If M-destructible(F, p, C(F), ¥) # 0o, )] Then
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04. AddPriorityQueue(L, p, 1(p)) ; mark p

05. While L # EmptyPriorityQueue Do

06. p <« ExtractPriorityQueue(L) ; unmark p

07. [i,c] < M-destructible(F, p, C(F), ¥)

08. If [¢,c] # |00, 0] Then

09. F(p) < i—1; ¥(p) < pointer to [i, |

10. For All ¢ € I'(p), g # p, ¢ not marked Do

11. If M-destructible(F, ¢, C(F), ¥) # [00,0] Then
12. AddPriorityQueue(L, q, 1(q)) ; mark ¢

The following property is a direct consequence of property 7, theorem 8, the-
orem 9, property 11 and of the fact that, obviously, each point is selected at
most once by this algorithm.

Property 13 Whatever the chosen priority function, the output of Procedure
M-watershed is an M-watershed of the input.

The time complexity of Procedure M-watershed is in O(n+m)+ k, where k
15 the overall complexity for the management of the priority queue.

This watershed algorithm is the first one which is proved to guarantee a correct
placement of the divide set with respect to contrast preservation (see [23,25]
for a comparison with some classical watershed algorithms). More precisely,
from the previous property and the strong separation theorem of [1] (see Intro-
duction), we immediately deduce that the result of Procedure M-watershed
is always a strong separation of the input.

We introduced the priority function and the priority queue in order to take
into account some geometrical criteria. For example, with a constant priority
function, plateaux or even domes located between basins may be thinned in
different ways, depending on the arbitrary choices that are allowed by the calls
to ExtractPriorityQueue with this particular priority function (line 06). In
order to “guide” the watershed set towards the highest locations of the domes
and the “center” of the plateaux, we choose a lexicographic priority function p
described below.

Let F € F, let d be a distance on F, let p € E. We denote by D(p) be the
minimal distance between p and any point ¢ strictly lower than p, that is,
D(p) = min{d(p, q); F(q) < F(p)}.

It is easy to build a function u such that, for any p,q in E:

- if F(p) < F(q) then u(p) > p(q);
- if F(p) = F(q) and D(p) < D(q) then p(p) > u(q).

The efficient management of priority queues is the subject of many articles.
Recently, a priority queue algorithm has been proposed by M. Thorup [32],
which allows an operation of insertion, extraction of the minimal element or
deletion to be performed in O(loglogm), where m is the number of elements
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stored in the structure. This cost can be regarded as constant for practical
applications. Furthermore, in most current situations of image analysis, where
the number of possible values for the priority function is limited and the
number of neighbors of a point is a small constant, specific linear algorithms
can be used. An example of such a linear strategy is given in the next section,
with algorithm TopologicalWatershed.

7 Watershed algorithm

After iteratively lowering M-points until stability, we have to process the other
W-destructible points in order to get a watershed. Let F' € F, let us call an
MS-watershed of F a function obtained from F by iteratively lowering M-
points and S-points until stability. We could think that all P-points will be
eventually changed to M-points and then M-lowered in such a process, as it
is the case for images like Fig. 4a. But the examples of Fig. 7 show that it is
not always the case, in other words, an MS-watershed of F' is not always a
topological watershed of F'. Furthermore, there may exist thick regions made
of P-points in an MS-watershed, and although M-points and S-points may be
lowered directly down to their lowest possible value, we have no such guarantee
for the P-points (see theorem 5).

0 4
0

31| 35|35

Fig. 7. Examples of W-destructible points in an MS-watershed which are neither
M -points nor S-points: the point at 6 in the image on the left, the points at 31 and
32 in the image on the right.

Thus, we must propose a criterion for the selection of the remaining W-
destructible points, in order to avoid multiple selections of the same point.
The idea is to give the greatest priority to a W-destructible point which may
be lowered down to the lowest possible value. We prove that an algorithm
which uses this strategy never selects the same point twice. A priority queue
could be used, as in the previous section, to select W-destructible points in
the appropriate order. Here, we propose a specific linear watershed algorithm
which may be used when the grayscale range is small.

Procedure TopologicalWatershed (Input F, C(F), ¥ ; Output F)

01. For k From k., To k,..— 1 Do Lk — 0

02. For All pc E Do N

03. [i,c] < W-Destructible(F, p, C(F), V)

04. If i # co Then

05. Liy — Li_wU{p}; K(p) — i—1; H(p) < pointer to [i, ]|
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06. For k=%, To k,..—1Do

07. While dp e L; Do

08. Ly = Ly \ {p}

09. If K(p) =k Then

10. F(p) < k;¥(p) «— H(p)

11. For All ¢ €T(p), k < F(q) Do -

12. [i, c] < W-Destructible(F, ¢, C(F), ¥)
13. If i = 00 Then K(q) <« o

14. Else If K(q) #i— 1 Then

16. H(q) < pointer to [i, c|

We have the following guarantees:

Property 14 In algorithm TopologicalWatershed,

i) at the end of the execution, F is a topological watershed of the input function;
it) let n and m denote respectively the number of vertices and the number of
arcs in the graph (E,T). If k0o — kpin < n, then the time complexity of the
algorithm is in O(n 4+ m).

As discussed in the previous section, this algorithm provides topological guar-
antees but does not care about geometrical criteria. If we want to take such
criteria into account, we can use first the procedure M-watershed with the
priority function described at the end of section 6, and then the procedure
Topological Watershed.

8 Conclusion

We presented quasi-linear algorithms for computing W-crests and topological
watersheds, which are proved to give correct results with respect to the defini-
tions, and to indeed achieve the claimed complexity. From the purely topolog-
ical point of view, we consider as equivalent the different possible watersheds
of the same function; but other constraints must be taken into account when
dealing with certain applications. We provided in section 6 a criterion which
is often considered as a good choice in many practical situations. Filtering
methods based on the component tree, like connected operators, can be easily
integrated to the presented algorithms. It is also possible to design a vari-
ant taking a set of markers as secondary input, following a classical approach
based on geodesic reconstruction. Forthcoming publications will develop these
points.
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Annex 1: Proofs

Proof of Prop. 2: Let k = F(p). Suppose that p is W-destructible for F
thus p is adjacent to exactly one component of F[k] and '~ (p) # (). Take any
two points ¢,r in I'~(p), since they belong to the same component of F[k],
we deduce that F(q,7) < k. Conversely, suppose that I'"(p) # @ and for
all ¢ and r in I'~(p), we have F(q,r) < k. Since I'"(p) # () there is at least
one component of F[k] adjacent to p, and the other condition implies that
all the points in I'~(p) belong to the same component of F[k], thus p is W-
destructible. [J

Proof of Prop 3: Suppose that the conditions i), ii) and iii) are verified. We
see (Prop. 2) that p is destructible. Let FM) = [F\ p], if F()(p) > v we see
that the conditions i), i) and iii) are still verified for ()| and thus p is still
destructible. We can repeat this process until the step n such that F'(p)—n = v,
and we easily deduce from iii) that p is an inner point for F™ = [F'\ p | v].
The proof of the converse property is straightforward. [J

Proof of Prop 4: The proof is essentially the same as the proof of Prop. 3. [J

Lemma 5.1 Let FF € F, let p € E, let k = F(p) and let v € Kjv < k. The
function [F'\ p | v] is a W-thinning of F if and only if, for any h such that
v<h<k,pis W-simple for F[h].

Proof: immediate from the definitions. [

Lemma 5.2 Let F' € F, let p € E be an S-point for F, let q be a point and
let w be an integer such that [F\ q | w] is a W-thinning of F, let F' denote
[F'\ ¢ | w]. Then, p is an S-point for F'.

Proof: Since p is not W-destructible, we have ¢ 7 p. We know that p is adjacent
to (at least) two distinct components ¢; and ¢ of F[k], with k = F(p). Suppose
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that p is adjacent to only one component of F’[k] (obviously, p is adjacent to
at least one component of F’[k]). This implies that F(q) > k, that w < k
and that ¢ is adjacent to both ¢; and cs, a contradiction with lemma 5.1 since
[F'\ ¢ | w] is a W-thinning of F. OJ

Lemma 5.3 Let F' € F, let p € E be an S-point with lowest value v for F,
let q be a point and let w be an integer such that [F\ q | w] is a W-thinning
of F, let F' denote [F'\ q | w]. Then, p is either an S-point for F' with lowest
value v, or an S-point for F' with lowest value w > v, or an S-point for F'.
In the two last cases, the point q is necessarily adjacent to p.

Proof: Let k = F(p). We know that p is adjacent to exactly one component
of F[h], for all h such that v < h < k, and that p is adjacent to (at least) two
distinct components ¢y, ¢y of F[v].

o If ¢ = p, we see that p remains an S-point with lowest value v for [F'\ p | h]
with h > v, and that p becomes an S-point for [F'\ p | v].

e If ¢ is not adjacent to p, we see that p is still adjacent to exactly one com-
ponent of F’[h] for all h such that v < h < k. Suppose that ¢ is not adjacent
to p and that p is adjacent to exactly one component of F’[v] (obviously p
is adjacent to at least one component of F’[v]). It means that ¢ is adjacent
to both ¢; and c¢q, that F'(¢) > v and that F'(q) < v, a contradiction with
lemma 5.1 since F” is a W-thinning of F.

e Suppose now that ¢ is adjacent to p and that ¢ # p. If p is W-simple for
all F'[h] with v < h < k, then p is still an S-point for F” with lowest value v
(same as above). Otherwise, p may be either an S-point for F with lowest
value w, with v < w < k, or an S-point for F”’ (see examples in Fig. 5). O

Lemma 5.4 Let F' € F, let p € E be an f—pomt for F which is adjacent to a
minimum m of F'. Then p is an M -point with lowest value F(m).

Proof: let v = F/(m), let ¢ be a point of m adjacent to p. Let r be any point
in I'"(p) which is not in m (if there is no such point, the proof is done). By
Prop. 3 we know that r and ¢ are linked in F, thus, since m is a minimum, the
component of r in F' must contain m, and F(r) > F(m). Again by Prop. 3,
we deduce that F'(m) is the lowest value of p, which implies that p is an
M-point. [J

Proof of Theorem 5: Let & = F(p), let T} denote the type of the point p
for F', let ¢ be a W-destructible point for F', let v be an integer such that
[F'\ q | v] is a W-thinning of F', let F’ denote [F'\ ¢ | v] and let Ty denote
the type of the point p for F’.

1) Case T} = M. Since p is not W-destructible, we have ¢ # p. If ¢ is not
adjacent to p then obviously T, = T7. Suppose now that ¢ is adjacent to p,
and that F'(q) = v < k. If F(q) = k, then, since p is an M-point for F,
we know that ¢ is also an M-point for F', and thus g is not W-destructible

26



for F', a contradiction. If F'(¢) > k, then consider [F'\ ¢ | k| and apply the
same argument as above. In conclusion, we have either ¢ not adjacent to p or
F'(q) > k, thus T5 = T3.

2) Case T} = P. Since p is not W-destructible, we have ¢ # p. If ¢ is not
adjacent to p then obviously T, = T7. Suppose now that ¢ is adjacent to p.
If F'(q) = v > k then Ty = T}, otherwise we see that p is W-destructible for F’
with lowest value v, and that p has no strictly lower neighbor for [F’\ p | v],
thus p is either an M-point or a P-point, as shown in Fig. 5).

3) Case T} = S. See lemma 5.2.

4) Case Ty = S. See lemma 5.3.

5) Case Ty = P. Let w be the lowest value of p.

If g=pand F'(q) > w then T, = T3.

If ¢ = p and F'(¢) = w then, since p is an inner point for F’ and not an M-
point for F', we know that p is adjacent to exactly one component of F’[w + 1]
which is not a minimum, thus 75 = P.

We know that p is adjacent to exactly one component of F[h], for all h such
that v < h < k, and that p is not adjacent to any component of F[w].

If ¢ is not adjacent to p we see that the same remains true for F’, thus Ty = T7.
Suppose now that ¢ is adjacent to p and ¢ # p. We see that p must be adjacent
to at least one component of F’[k], thus T, is not an inner type (see examples
of the three possibilities other than 7} in Fig. 5).

6) Case T} = M. The arguments are the same as for case 5, except that T
can be M instead of P, and cannot be P (see Lemma 5.4, and observe that p
remains adjacent to a minimum).

Lemma 6.1 Let F € F, let ki, ky € K*, and let ¢i,cy be two components
of Flki], F[ks] respectively. Then ci and cy are either disjoint or tied by an
inclusion relation.

Proof: If k; = ko then we have either ¢; Nca = 0 or ¢; = ¢p (property of con-
nected components). Otherwise, suppose without loss of generality that & >
ko. Let ¢} be the component of F'[k;] which contains cy. We have either ¢;Nc), =
0 or ¢; =, (same as above). If ¢; N ¢y, = () then we have ¢; Ney = ), otherwise
we have ¢p C ¢;. O

Proof of Prop. 10: If k,, = k; at line 06, then clearly [k1, ¢;] is under all the
other elements of V' and there is no highest fork (any two elements of V' are
linked). Otherwise, one gets easily convinced that:

- the component [k,,, ¢,,] found at line 06 is indeed the LCA of a given pair of
separated components in V', and

- no other pair of separated components in V' can have a higher LCA. [J

Lemma 12.1 Let F, F' € F, let p,q € E and v,w € K such that:

i) [F'\ pl v] is not a W-thinning of F', and
i) F' =[F\ q | w| is a W-thinning of F', and
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iii) [F' \ p | v] is a W-thinning of F'.
Then p and q are neighbors, F(q) > F(p), and w < v.

Proof: by lemma 5.2, we deduce that p cannot be an S-point for I, because
it could not become a W-destructible point in this case. Suppose now that p
is an S-point for F with lowest value h > v, then by lemma 5.3 the point p
is either an S-point or an S-point for F” with a lowest value greater than h,
a contradiction with iii) since h > v. Thus, p is either an I-point with lowest
value h > v or a P-point (in this case, we set h = F(p)). For any k£ < h, no
component of F[k] is adjacent to p. Since [F’\ p | v] is a W-thinning of F’
we know that, for any k£ such that v < k < h, there is exactly one component
of F'[k] adjacent to p (see lemma 5.1). We deduce that for any such k, this
component must contain ¢ which must be a neighbor of p, and that w < v. [J

Lemma 12.2 Let F' € F, let p € E such that:

i) p is not an M-point for F, and

ii) there exists a point q and a value w such that [F'\ q | w| is a W-thinning
of F, and p is an M-point for [F'\ ¢ | w].

Then, q is an M-point for F.

Proof: immediate from lemma 12.1. [J

Proof of Theorem 12: Let G’ be a W-thinning of G and suppose that G’
has a minimum which is strictly larger than the corresponding minimum of G.
Consider the sequence of point lowerings which leads from G to G’, and let G =
FO Fl ... F™ = G’ be the successive results of these operations. Let F* be
the first element in the sequence in which a point p is M-lowered. Thus F* =
[FE=1\ p | v] is the result of M-lowering the point p, in other words p is an
M-point for F¥1. Consider now the last F* in the sequence F° ... F*2 such
that p is not an M-point for F’. If no such element exists, then we have a
contradiction since there is no M-point for F© = G. Otherwise, since p is an
M-point for F*! and not for F, from lemma 12.2 we deduce that the point ¢
which has been lowered between F* and F**! has indeed been M-lowered. This
contradicts our definition of F*. [J

Proof of Prop 14:

a) From property 7 and theorem 8, it follows that the initial component tree
of F' remains a component tree for all the modified versions of F' in this al-
gorithm. We also see that the component mapping ¥ is updated in order to
keep correct pointers from the vertices of the graph to the corresponding tree
elements.

b) We see easily that (K(p) = k and p in Ly) < p is W-destructible for F
with lowest value k.

c¢) Let us prove that in lines 07-16, there is no W-destructible point for F'
with a lowest value k" < k. It is true when k& = k,_,,. From lemma 12.1, we
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know that a point cannot receive a lowest value v unless one of its neighbors
is lowered down to a value v/ < v. All the lowerings are done at line 10, by
the statement F'(p) «— k. Thus, the property remains true as k increases.

d) From a) and b), we deduce that at each step of the execution, F is a W-
thinning of the input function.

e) From c), we deduce that at the end of the execution, F" has no W-destructible
point.

i) Follows from d) and e).

ii) For any given value of k, a point which is lowered at line 10 will not be
lowered again in any step k' > k. Thus, each point is lowered at most once.
Also, the total number of executions of lines 12-16 will not exceed m. Glob-
ally, the sum of the costs of all calls to the function W-Destructible is in
O(n + m). The calls to list management functions are in constant time. The
total number of elements stored in the lists L,; cannot exceed n + m. O

Annex 2: Quasi-linear algorithm for the component tree

Let us first describe briefly the disjoint set problem, which consists in main-
taining a collection S of disjoint subsets of a set E under the operation of
union. Each set X in S is represented by a unique element of X, called the
canonical element. Three operations allow the management of the collection
(in the following x and y denote two distinct elements of F):

MakeSet(x): add the set {z} to the collection S, provided that the element x
does not already belongs to a set in S. The canonical element of {z} is z.
Find(z): return the canonical element of the set in S which contains .
Link(z,y): let X and Y be the two sets in S whose canonical elements are x
and y respectively. Both sets are removed from S, their union Z = X UY is
added to S and a canonical element for Z is selected and returned.

R.E. Tarjan [31] has proposed a very simple and very efficient algorithm to
achieve any intermixed sequence of such operations with a quasi-linear com-
plexity. More precisely, if m denotes the number of operations and n denotes
the number of elements, the worst-case complexity is in O(m x a(m,n)) where
a(m, n) is a function which grows very slowly, for all practical purposes a(m, n)
is never greater than four. The implementation of this algorithm is given below.
The maps 'par’ (stands for 'parent’) and 'rank’, which constitute a representa-
tion of the disjoint sets in the form of directed trees, are represented by global
arrays in memory. For more detailed explanations and complexity analysis,
see [31].
Procedure MakeSet (element x)

par(z) < x ; rank(z) < 0
Function Find (element z)

If par(z) # x Then par(z) «— Find(par(z))
Return par(z)
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Function Link (element z,y)
If rank(z) > rank(y) Then exchange(z,y)
If (rank(z) = rank(y)) Then rank(y) < rank(y) + 1
par(z) < y
Return y

Now let us give our algorithm to build the component tree. A more detailed
explanation, together with a proof of the complexity, can be found in [24].

Procedure BuildComponentTree

Input : (E,T') - graph; N = number of points in E

Input : F - map from E to Z

Output : N,, - number of nodes (of the component tree) (< N)
Output : nodes - array [0... N — 1] of node

Output : ¥ - map from E to [0... N — 1] (component mapping)
Local : subtreeRoot - map from [0...N —1] to [0... N — 1]

01. Sort the points in increasing order of value for F'; N, < N

02. For All p € E Do nodes|p| < MakeNode(p); subtreeRoot[p] < p;
MakeSet1(p); MakeSet2(p) < p

03. For All p of F in increasing order of value for F' Do

04. curCanonicalElt «— Find1(p)

05. curNode « Find2(subtreeRoot[curCanonicalElt])

06. For each (already processed) neighbor ¢ of p with F'(¢) < F(p) Do
07. adjCanonicalElt «— Find1(q)

08. adjNode «— Find2(subtreeRoot[adjCanonicalElt])

09. If curNode # adjNode Then

10. If nodes|curNode]—height = nodes[adjNode]—height Then
11. tmpNode « Link2(adjNode,curNode)

12. If tmpNode =curNode Then

13. Add the list of childs of nodes[adjNode]

14. to the list of childs of nodes[curNode]

15. Else

16. Add the list of childs of nodes|curNode]

17. to the list of childs of nodes[adjNode]

18. delete nodes[adjNode]; nodes[adjNode] < nodes[curNode]
19. curNode < tmpNode; N, — N, — 1

20. Else

21. nodes[curNode| —addChild(nodes[adjNode])

22. curCanonicalElt « Link1(adjCanonicalElt, curCanonicalElt)
23. subtreeRoot[curCanonicalElt] <+ curNode

24. For All p € E Do VY (p) < Find2(p)
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5 Fusion graphs : merging properties and water-
shed

J. Cousty, G. Bertrand, M. Couprie and L. Najman. Fusion graphs : merging
properties and watershed.
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Abstract

Region merging methods consist of improving an initial segmentation by merging
some pairs of neighboring regions. In this paper, we consider a segmentation as
a set of connected regions, separated by a frontier. If the frontier set cannot be
reduced without merging some regions then we call it a watershed. In a general
graph framework, merging two regions is not straightforward. We define four classes
of graphs for which we prove, thanks to the notion of watershed, that some of the
difficulties for defining merging procedures are avoided. Our main result is that one
of these classes is the class of graphs in which any watershed is thin. None of the
usual adjacency relations on Z? and Z3 allows a satisfying definition of merging.
We introduce the perfect fusion grid on Z", a regular graph in which merging two
neighboring regions can always be performed by removing from the frontier set all
the points adjacent to both regions.

Key words: Graph theory, region merging, watershed, fusion graphs, adjacency
relations, connectedness, image segmentation, image processing

This article is dedicated to the memory of Azriel Rosenfeld.

Introduction

Azriel Rosenfeld, by his seminal work, has formalized and explored a number
of mathematical notions which are now considered as the most fundamental
ones for image analysis. In particular, he pioneered the study of connectivity in
both binary and grayscale digital pictures [13,14], through the use of adjacency
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relations (7.e., graphs) defined on Z? and Z3. In the important and difficult
task of segmenting an image, connectivity often plays an essential role: in many
cases, a segmentation can be viewed as a set of connected regions, separated
by a background which constitutes the frontiers between regions. A popular
approach to image segmentation, called region merging [15,12], consists of
progressively merging pairs of regions until a certain criterion is satisfied. The
criterion which is used to identify the next pair of regions which will merge,
as well as the stopping criterion are specific to each particular method.

Fig. 1. (a): Original image (cross-section of a brain, after applying a gradient oper-
ator). (b): Watershed of (a) with the 4-adjacency (in black). (¢): Interior points for
the previous image (in black). (d): A zoom on a part of (b). The points z and w are
interior points. (e): Watershed of (a) with the 8-adjacency (in black). There are no
interior points.

Given a grayscale image, how is it possible to obtain an initial set of regions for
a region merging process? The watershed transform [4,10] is a powerful tool for
solving this problem. Let us consider a 2D grayscale image as a topograph-
ical relief, where the dark pixels correspond to basins and valleys, whereas
bright pixels correspond to hills and crests. Suppose that we are interested in
segmenting “dark” regions. Intuitively, the watersheds of the image are con-
stituted by the crests which separate the basins corresponding to regional



minima (see Fig. la,b). Due to noise and texture, real-world images often
have a huge number of regional minima, hence the “mosaic” aspect of Fig. 1b.
In [5,3,6,11], the authors developped a framework based on graph theory, in
which some important properties of grayscale watersheds are proved, and ef-
ficient algorithms to compute them are proposed. In the case of a graph (e.g.,
an adjacency graph defined on a subset of Z?), a watershed may be thought
of as a “separating set” of vertices which cannot be reduced without merging
some connected components of its complementary set.

A first question arises when dealing with watersheds on a graph. Given a
subset E of Z? and the graph (E,T;) which corresponds to the usual 4-
adjacency relation, we observe that a watershed may contain some “interior
points”, i.e., points which are not adjacent to any point outside the watershed
(see Fig. 1c,d). We can say that a watershed on I'y is not necessarily thin. On
the other hand, such interior points do not seem to appear in any watershed
on I'y, which corresponds to the 8-adjacency. Are the watersheds on 'y always
thin? We will prove that it is indeed true. More interestingly, we provide in
this paper a framework to study the property of thinness of watersheds in any
kind of graph, and we identify the class of graphs in which any watershed is
necessarily thin. This result is one of the main theorems of the article (Th. 33).

Let us now turn back to the region merging problem. What happens if we
want to merge a couple of neighboring regions A and B, and if each pixel
adjacent to these two regions is also adjacent to a third one, which is not
wanted in the merging? Fig. 1d illustrates such a situation, where z is adja-
cent to regions A, B,C and y to A, B, D. This problem has been identified in
particular by T. Pavlidis (see [12], section 5.6: “When three regions meet”),
and has been dealt with in some practical ways, but until now a systematic
study of properties related to merging in graphs has not been done. A major
contribution of this article is the definition and the study of four classes of
graphs, with respect to the possibility of “getting stuck” in a merging process
(Sec. 3, Sec. 4). In particular, we say that a graph is a fusion graph if any
region A in this graph can always be merged with another region B, without
problems with other regions. The most striking outcome of this study is that
the class of fusion graphs is precisely the class of graphs in which any water-
shed is thin (Th. 33). We also provide some local characterizations for two
of these four classes of graphs, and prove that the two other ones cannot be
locally characterized (Sec. 5).

Using this framework, we analyze the status of the graphs which are the most
widely used for image analysis, namely the graphs corresponding to the 4- and
the 8-adjacency in Z? and to the 6- and the 26-adjacency in Z* (Sec. 6). In one
of the classes of graphs introduced in Sec. 4, that we call the class of perfect
fusion graphs, any pair of neighboring regions A, B can always be merged,
without problems with other regions, by removing all the pixels which are



adjacent to both A and B. We show that none of these classical graphs is a
perfect fusion graph. Last, but not least, in Sec. 7 we introduce a graph on Z"
(for any n) that we call the perfect fusion grid, which is indeed a perfect fusion
graph, and which is “between” the direct adjacency graph (which generalizes
the 4-adjacency to Z") and the indirect adjacency graph (which generalizes
the 8-adjacency). Furthermore, in [7], we prove that this n-dimensional grid
is the unique grid (up to a translation) that possesses those two properties.

1 Basic notions

Let E be a set, we write X C F if X is a subset of F/, we write X C F if X
is a proper subset of F, i.e., if X is a subset of £ and X # E. We denote by
X the complementary set of X in E, i.e., X = F'\ X.

Let E be a finite set, we denote by |E| the number of elements of E. We denote
by 2% the set composed of all the subsets of E.

We define a graph as a pair (F,I') where F is a finite set and I" is a binary
relation on E (i.e., ' C E x FE), which is reflexive (for all z in E, (x,z) € I)
and symmetric (for all z, y in F, (y, z) € I' whenever (z,y) € I'). Each element
of F is called a vertex or a point. We will also denote by I' the map from F
to 2% such that, for all x € E, I'(x) = {y € E | (v,y) € T}. If y € ['(2),
we say that y is adjacent to x. We define also the map I'* such that for all
r € E, T"(x) =I'(z)\ {z}. Let X C E, we define I'(X) = U,exI'(x), and
(X)) =T(X)\ X. If y € T'(X), we say that y is adjacent to X. If X, Y C E
and T'(X) NY # 0, we say that Y is adjacent to X (or that X is adjacent
to Y, since I' is symmetric). Let G = (F,T") be a graph and let X C E, we
define the subgraph of G induced by X as the graph Gx = (X, I'N[X x X]).
In this case, we also say that Gx is a subgraph of G. Let G = (E,T') and
G' = (E',1") be two graphs, we say that G and G’ are isomorphic if there
exists a bijection f from E to E’ such that, for all z,y € E, y belongs to I'(z)
if and only if f(y) belongs to I''(f(x)).

Let (E,T') be a graph, let X C F, a path in X is a sequence m = (zg, ..., ;)
such that z; € X, i € [0,], and z; € ['(x;_1), @ € [1,...,]. We also say that
m is a path from xq to x; in X. Let x, y € X. We say that x and y are linked
for X if there exists a path from = to y in X. We say that X is connected it
any x and y in X are linked for X.

Let Y C X. We say that Y is a connected component of X, or simply a
component of X, if Y is connected and if Y is maximal for this property, i.e.,
if Z =Y whenever Y C Z C X and Z connected.

We denote by C(X) the set of all the connected components of X. Let S C F,



we denote by C(X|S) the subset of C(X) composed of the components of X
which are adjacent to S.

Notice that the empty set is connected, and that if X is non-empty, then the
empty set is not a connected component of X. Notice also that, if YV is a
connected component of a set X, then Y is not adjacent to X \ Y.

Let us consider a subset X of F, and two non-empty subsets A, B of X such
that AU B = X. We can easily see that, if X is connected, then A and B
must be adjacent to each other. On the other hand, if X is not connected,
then we have two points x and y in X which are not linked for X. Considering
the set A of all the points z in X such that z and z are linked for X and
considering the set B = X \ A, we see that X can be partitioned into two
non-empty subsets which are not adjacent to each other. These observations
lead to the following property which characterizes connected sets (without the
need of considering paths).

Property 1. Let (E,T') be a graph, let X C E. The set X is connected if and
only if, for any two distinct non-empty subsets A, B of X such that AUB = X,
the subset A is adjacent to B.

From Prop. 1 we can immediately deduce the following corollary.

Corollary 2. Let (E,T") be a graph, let X be a non-empty subset of E. If E
is connected and if X # E, then T*(X) # (.

In this paper, we study in particular some thinness properties of watersheds
in graphs. The notions of thinness and interior are closely related.

Definition 3. Let (E,T") be a graph. Let X C E, the interior of X is the set
int(X)={x € X |'(x) C X}. We say that the set X is thin if int(X) = 0.

Property 4. Let (E,T') be a graph, let X C E such that int(X) # 0, let A be a
non-empty subset of int(X). We have: C(X \ A) = C(X)UC(A). Furthermore,
if A is connected, then A is a connected component of X \ A; more precisely
we have C(X \ A) = C(X) U {A}.

The proof of Prop. 4 is elementary and thus omitted. To conclude this sec-
tion, we recall the definition of line graphs. This class of graphs allows to
make a strong link between the framework developped in this paper and the
approaches of watershed and region merging based on edges rather than ver-
tices.

Definition 5. Let (E,T') be a graph. The line graph of (E,T") is the graph
(E',T") such that E' =T and (u,v) belongs to I" whenever u € I', v € T', and
u,v share a vertex of E.



We say that a graph (E’,T") is a line graph if there exists a graph (E,T’) such
that (E',T") is isomorphic to the line graph of (E,T).

@J%

Fig. 2. A graph (a) and its line graph (b).

In Fig. 2, we show a graph and its line graph. All graphs are not line graphs,
in other words, there exist some graphs which are not the line graphs of any
graph. The following theorem allows to characterize line graphs.

Theorem 6 ([1]). A graph G is a line graph if and only if none of the graphs
of Fig. 3 is a subgraph of G.

(a) (b) (c) () (e)
(f) () (h) (1)

Fig. 3. Graphs for a characterization of line graphs (Th. 6).

As an illustration, we can check that the line graph depicted in Fig. 2b does
not contain any graph of Fig. 3 as a subgraph. For example, the subgraph
induced by the set {d,e, f,g} of the graph shown in Fig. 2b is not the same
as the graph of Fig. 3a since it contains one more edge.

2 Watersheds

Informally, in a graph, a watershed may be thought of as a “separating set”
of vertices which cannot be reduced without merging some components of
its complementary set (see Fig. 4d). We first give formal definitions of these
concepts (see [3,5]) and related ones, then we derive some properties which
will be used in the sequel.



Important remark. From now, when speaking about a graph (E,T"), we will
assume for simplicity that E is non-empty and connected.

Notice that, nevertheless, the subsequent definitions and properties may be
easily extended to non-connected graphs.

Definition 7. Let (E,T") be a graph. Let X C E, and let p € X.

We say that p is a border point (for X) if p is adjacent to X.

We say that p is an inner point (for X) if p is not a border point for X, i.e.,
if p € int(X).

We say that p is W-simple (for X) if p is adjacent to exactly one connected
component of X.

We say that p is separating (for X)) if p is adjacent to at least two connected
components of X.

We say that p is a multiple point (for X) if p is adjacent to at least three
connected components of X.

In this definition and the following ones, the prefix “W-" stands for watershed.
In Fig. 4a, x is both a border point and a W-simple point for the set X
constituted by the black vertices, and y is an inner point. In Fig. 5b, z is a
border point and a separating point, and w is a border point, a separating
point and a multiple point.

Definition 8. Let (E,T') be a graph. Let X C E, and let S C X.
We say that S is W-simple (for X) if there exists A € C(X) such that AU S
is connected and C(X|S) = {A}.

Obviously, a point p is W-simple if and only if the set {p} is W-simple. Notice
that, in the above definition, S is not necessarily connected. The following
property may be proved easily.

Property 9. Let (E,T') be a graph. Let X C E, and let S C X.
The set S is W-simple (for X ) if and only if there exists A € C(X) such that
C(XuUS)=[C(X)\{A}Ju{AuUS}.

We are now ready to define the notion of watershed which is central to this
section.

Definition 10. Let G = (E,T') be a graph. Let X C E, let Y C X.

We say that Y is a W-thinning of X, written X V'Y, if

i)Y =X orif

i1) there exists a set Z C X which is a W-thinning of X and a point p € Z
which is W-simple for Z, such that Y = Z \ {p}.

A set Y C X is a watershed (in G) if Y U Z implies Z =Y .

A subset Y of X is a watershed of X if Y is a W-thinning of X and if Y is
a watershed.

A watershed Y is non-trivial if Y # () and Y # E.



It can be seen that we can obtain a W-thinning of X by iteratively removing
W-simple points from X, and that Y is a watershed of X if Y is a W-thinning
of X which contains no W-simple point. Fig. 4 shows a set X and some
Wh-thinnings of X, the last one being a watershed of X. Notice that different
watersheds may exist for a same set X. It can be also seen that a watershed X
is non-trivial if and only if |C(X)| > 2.
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Fig. 4. Illustration of W-thinning and watershed. (a): A graph (E,T") and a subset X
(black points) of E. The point z is a border point which is W-simple, and y is an
inner point. (b): The set Y = X \ {z} (black points) is a W-thinning of X. (¢): The
set Z (black points) is a W-thinning of both X and Y. The sets Y and Z are not
watersheds: some W-simple points exist in both sets. (d): A watershed of X (black
points), which is also a watershed of Y and of Z. The set of gray points will be used
to illustrate the notion of annexation (Def. 16).

The following definition and theorem are borrowed from [3] and will play an
important role in some subsequent proofs.

Definition 11. Let (E,T") be a graph. Let X, Y be subsets of E. We say
that Y is an extension of X iof X C Y and if each connected component of Y
contains exactly one connected component of X.

Theorem 12 ([3]). Let X and Y be subsets of E. The subset Y is a W-
thinning of X if and only if Y is an extension of X.

We can see that if a subset S of X is W-simple for X, then X \ S is an
extension of X. From this observation and Th. 12, we immediatly deduce the
following property.

Corollary 13. Let X C E and S C X. If the subset S is W-simple for X,
then X \ S is a W-thinning of X.

A watershed is a set which contains no W-simple point, but some of the
examples given below show that such a set is not always thin (in the sense of
Def. 3). Fig. 4d and Fig. 5b are two examples of watersheds which are thin:
in both cases, the set of black points has no W-simple point and no inner
point. Fig. 5c,d show two examples of non-thin watersheds. Let us study what
happens if we remove from a non-thin watershed X, a connected component
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Fig. 5. Illustration of thin and non-thin watersheds. (a): A graph (E,T') and a
subset X (black points) of E. (b): A subset Y (black points) of £ which is a thin
watershed; it is a watershed of the set X shown in (a). The border points z and w are
both separating for Y, only w is a multiple point. (¢, d, e): The subset X represented
by black and gray points is a watershed which is not thin: int(X) is depicted by the
gray points.

of int(X).

Property 14. Let (E,T') be a graph, let X C E be a watershed. Let A be a
connected component of int(X). Then, X \ A is a watershed.

Proof: The cases where |C(X)| < 2 or int(X) = ) are trivial: if |C(X)| = 0
then £ = X = int(X) = A and X \ A = 0; if |C(X)| = 1 then it may be
seen that X must be empty since F is connected, thus X \ A = (; and if
int(X) = () then A =0, thus X \ A = X. Suppose from now that |C(X)| > 2
and int(X) # (0. From Prop. 4, A € C(X \ A). Let = be a point of X \ A, we
have to prove that = cannot be W-simple for X \ A. If x ¢ I'*(A), we can easily
see that the point 2 cannot be W-simple for X \ A, otherwise it would also be
W-simple for X. Suppose now that = € I'*(A). The point = cannot belong to
int(X) otherwise A would not be a connected component of int(X). Thus x
must be adjacent to a component B of C(X), which is also a component of
C(X \ A) (Prop. 4): hence, z is adjacent to both A and B, with A # B, and
is not W-simple for X \ A. O

The following corrolary follows straightforwardly.

Corollary 15. Let (E,T') be a graph, let X C E. The set X \ int(X) is a
watershed.

Let (E,T') be a graph. Let X C E, let A € C(X). Let us consider the family
W, of all the sets which are W-simple for X and adjacent to A. It may be
easily seen that the family W, is closed by union, i.e., that S U T belongs
to W4 whenever S € W4 and T' € W,4. From this observation, we deduce that
there exists a unique element of W, which is maximal for the inclusion, and
this element is the union of all the elements of the family.

Definition 16. Let (E,T') be a graph. Let X C E, let A € C(X). We define
the annexation of A in X, denoted by ann(A, X), as the union of all the sets



which are W-simple for X and adjacent to A. When no confusion may occur,
we write ann(A) = ann(A, X).

In Fig. 4c, let A be the (white) component of Z which “surrounds” the (black)
set Z. The set ann(A, Z) is depicted in light gray in Fig. 4d.

We have seen that, for any S which is W-simple for X and adjacent to A,
the set X U S is an extension of X. In particular, the set X Uann(A) is an
extension of X.

The following properties illustrate the notion of annexation, which will serve
us to prove some of the main results of this paper.

Property 17. Let (E,T) be a graph, let X C E such that |C(X)| > 2. For any
A € C(X), there exists B € [C(X)\{A}] such that T*(AUann(A))NT*(B) # 0.

The proof can be found in the annex. We leave the proof of the following
property to the interested reader.

Property 18. Let (E.T) be a graph, let X C E, let A € C(X). The set AU
ann(A, X) is equal to the connected component of int(X UA) which contains A.

3 Merging

(a) (b) (¢)

Fig. 6. Illustration of merging. (a): A graph (E,I') and a subset X of E (black
points). (b): The black points represent X \ S with S = {z,y,z}. (¢): The black
points represent X \ S” with S’ = {w}.

Consider the graph (E,T") depicted in Fig. 6a, where a subset X of F (black
vertices) separates its complementary set X into four connected components.
If we replace the set X by, for instance, the set X \ .S where S = {z,y, 2z}, we
obtain a set which separates its complementary set into three components, see
Fig. 6b: we can also say that we “merged two components of X through S”.
This operation may be seen as an “elementary merging” in the sense that only
two components of X were merged. On the opposite, replacing the set X by
the set X \ " where S" = {w}, see Fig. 6¢, would merge three components
of X. We also see that the component of X which is below w (in light gray)
cannot be merged by an “elementary merging” since any attempt to merge it
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must involve the point w, and thus also the three components of X adjacent
to this point. In this section, we introduce definitions and basic properties
related to such merging operations in graphs.

Definition 19. Let (E,T") be a graph and X C E. Letp € X, let S C X.
We say that p is F-simple (for X)) if p is adjacent to exactly two connected
components of X.

We say that S is F-simple (for X)) if S is adjacent to exactly two components
A, B € C(X) such that AUBU S is connected.

In this definition, the prefix “F-” stands for fusion. Observe that the point p
is F-simple if and only if the set {p} is F-simple. For example, in Fig. 6a, the
point z is F-simple while x,y,w are not. Also, the sets {z}, {z,y}, {z, 2},
{y, 2}, {z,y, 2} are F-simple, but the sets {z}, {y} and {w} are not.

Notice also that the set S is not necessarily connected. Furthermore, any
connected component 7" of S must be adjacent to either A or B, or both, and
cannot be adjacent to any other element of C(X'). Thus we have the following

property.

Property 20. Let (E,T") be a graph, let X C E, let S C X such that S is
F-simple for X, and let T C S. If T € C(S), then T is either W-simple or
F-simple for X.

Definition 21. Let (E,T') be a graph and X C E. Let A and B € C(X), with
A # B. We say that A and B can be merged (for X) if there ezists S C X
such that S is F-simple for X and adjacent to both A and B. In this case, we
also say that A and B can be merged through S (for X).

We say that A can be merged (for X) if there exists B € C(X) such that A
and B can be merged for X.

For example, in Fig. 6a, the component of X in light gray cannot be merged,
but each of the three white components can be merged for X.

Property 22. Let (E,T) be a graph, let X C E, let A,B € C(X), A # B,
and let S C X. The components A and B can be merged through S if and only
if AUBUS is a connected component of X \ S. More precisely, A and B can
be merged through S if and only if C(X \ S) = [C(X)\ {A, B}JU{AUBUS}.

Property 23. Let (E,T) be a graph, let X C E, let A, B € C(X) with A # B.
The components A and B can be merged for X if and only if there exists S C X
such that S is connected and adjacent to only A and B.

The proof of Prop. 22 can be found in the annex, and the proof of Prop. 23 is
elementary. The following property will be useful for establishing one of the
main results of this article, namely Th. 33.
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Property 24. Let (E,T) be a graph, let X C E, and let A € C(X). The three
following statements are equivalent:

i) A can be merged for X ;

it) [AU ann(A, X)] can be merged for [X \ ann(A, X)|;

iii) there exists an extension Y of X and there exists a vertex x € I'*(A’) which
is F-simple, where A’ is the connected component of Y which contains A.

Proof:

e [i = i4i] From i), we know that there exists B € C(X) and S C X such that
S is F-simple for X and adjacent to both A and B. Let A’ = AUann(A, X),
and let Y = X \ ann(A, X). From Def. 16 and the observation which follows
this definition, Y is an extension of X and C(Y) = [C(X) \ {A}] U {A'}. Let
S'=8SNA, thus S’ CY. We have: AUS"UB=AUSUBUA". We know
that A’ is connected, that A U S U B is connected and that A C A’ thus
AU SUBUA is connected, hence so is A’ U S" U B. This implies that S’ is
adjacent to both A’ and B. Since the only components of X adjacent to S
are A and B and since S’ C S, we deduce that the only components of Y
adjacent to S’ are precisely A’ and B, thus S’ is F-simple for Y, hence ii).

o [ii = 4ii| Let A’ = AUann(A, X), let Y = X \ann(A, X). We have seen that
Y is an extension of X and that A’ is the element of C(Y) which contains A.
From ii), we know that there exists B € C(Y) and S C Y such that S is
F-simple for Y and adjacent to both A" and B. There must exist some points
in S which are adjacent to A’, let x be any such point. The point x cannot
be W-simple for Y, otherwise the set ann(A, X) U {z} would be W-simple
for X and adjacent to A, a contradiction with the definition of ann(A, X).
Furthermore, since S is F-simple it cannot contain any multiple point, thus x
is F-simple for Y.

e [iii = i] Suppose that x is a point of I'*(A’) which is F-simple. Then, x
is adjacent to A’ and to B’, with B’ € C(Y), B’ # A’, and A'U B’ U {z} is
connected. Let B be the component of C(X) such that B C B’. Let us consider
S =[A"\ AJU[B’\ B]U{z}. It can be easily seen that S C X and that S
is adjacent to both A and B. Since Y is an extension of X we know that A’
(resp. B’) cannot be adjacent to any other connected component of X than A
(resp. B). Also, z cannot be adjacent to any other connected component of X
than A and B, otherwise it could not be F-simple for Y. Furthermore, we have
AUBUS = A UB' U{x}, thus AU BUS is connected. Thus, since S is
adjacent to solely A and B, S is F-simple for X, and A can be merged for X.
O

From Def. 10 and Th. 12, any extension of a watershed X is equal to X. Thus,
the following corollary is an immediate consequence of Prop. 24.

Corollary 25. Let (E,T") be a graph, let X C E be a watershed and let
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A € C(X). The subset A can be merged for X if and only if there exists a
vertex x € I'*(A) which is F-simple for X.

4 Fusion graphs

Region merging [12,15] is a popular approach to image segmentation. Starting
with an initial partition of the image pixels into connected regions, which can
in some cases be separated by some boundary pixels, the basic idea consists of
progressively merging pairs of regions until a certain criterion is satisfied. The
criterion which is used to identify the next pair of regions which will merge, as
well as the stopping criterion are specific to each particular method. Certain
methods do not use graph vertices in order to separate regions, nevertheless
even these methods fall in the scope of this study through the use of line
graphs [9].

The preceding section and the present one constitute a theoretical basis for the
study of such methods. The problems encountered by certain region merging
methods (see [12], section 5.6: “When three regions meet”) can be avoided by
using exclusively the notion of merging introduced in the previous section.
In the sequel, we investigate several classes of graphs with respect to the
possibility of “getting stuck” in a merging process. The most striking result
of this section is a theorem which states the equivalence between one of these
classes and the class of graphs in which any watershed is thin.

We begin with the definition of four classes of graphs.

Definition 26. We say that a graph (E,T') is a weak fusion graph if for any
X C E such that |C(X)| > 2, there exist A, B € C(X) which can be merged.

Definition 27. We say that a graph (E,T") is a fusion graph if for any X C E
such that |C(X)| > 2, each A € C(X) can be merged for X.

Let X C E,and let A, B € C(X). We set I'*(A, B) = T'*(A) N T*(B). We say
that A and B are neighbors if A # B and T*(A, B) # ().

Definition 28. We say that the graph (E,T") is a strong fusion graph if, for
any X C E, any A and B € C(X) which are neighbors can be merged.

Definition 29. We say that the graph (E,T) is a perfect fusion graph if, for
any X C E, any A and B € C(X) which are neighbors can be merged through
['"(A, B).

Basic examples and counter-examples of weak fusion, fusion, strong fusion and
perfect fusion graphs are given in Fig. 7.
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These classes are linked by inclusion relations. The following property clarifies
these links, and also position our four classes of graphs with respect to general
graphs and line graphs. We denote by G (resp. Gr, Gp, Gs, Gr, and Gy) the
set of all graphs (resp. line graphs, perfect fusion graphs, strong fusion graphs,
fusion graphs, and weak fusion graphs).

Property 30. Any line graph is a perfect fusion graph,

any perfect fusion graph is a strong fusion graph,

any strong fusion graph is a fusion graph,

any fusion graph is a weak fusion graph.

More precisely, we have the following strict inclusion relations:
grCGpCGsCGrCOw CG.

Proof: We prove in the annex (Lem. 58) that any strong fusion graph is a
fusion graph. The other inclusions may be proved easily; let us prove that
these inclusions are strict. It may be checked from the definitions that the
graphs (g), (w), (f) and (s) in Fig. 7 are indeed counter-examples for the
corresponding class equalities. It may also be checked that the graph (p) is a
perfect fusion graph, while it is not a line graph, a consequence of Th. 6. [J

@) () (f) (s) (p)

Fig. 7. Examples and counter-examples for different classes of graphs. (g): A graph
which is not a weak fusion graph, (w): a weak fusion graph which is not a fusion
graph, (f): a fusion graph which is not a strong fusion graph, (s): a strong fusion
graph which is not a perfect fusion graph, and (p): a perfect fusion graph which
is not a line graph. In the graphs (g, w, f, s), the black vertices constitute a set X
which serves to prove that the graph does not belong to the pre-cited class.

The following property is a consequence of Def. 27, Cor. 25 and Prop. 24.

Property 31. The graph G = (E,T') is a fusion graph if and only if, for any
non-trivial watershed Y in G and for any A € C(Y), there exists x € T*(A)
which is F-simple.

Proof: Let (E,T") be a fusion graph, let Y be a non-trivial watershed (thus
IC(Y)| >2),and let A € C(Y). Since (E,T) is a fusion graph, we know that A
can be merged for Y, thus by Cor. 25, there exists = € I'*(A) which is F-simple.

Suppose now that for any non-trivial watershed Y C F and for any A’ € C(Y),
there exists # € ['*(A’) which is F-simple. Let X C E such that |C(X)] > 2,
let A € C(X).Let Y be a watershed of X, and let A’ € C(Y') such that A C A'.
By hypothesis, there exists x € I'*(A’) which is F-simple for A’. Furthermore,
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by Th. 12 we know that Y is an extension of X, thus by Prop. 24, A can be
merged for X. [J

From Prop. 31, we deduce Prop. 32 which will be used in the proof of Th. 41.

Property 32. Let G = (E,T') be a graph. If G is not a fusion graph, then
there erist X C FE and x € X such that x is a multiple point for X.

Proof: If GG is not a fusion graph, then by Prop. 31, there exists Y C E such
that |C(Y)| > 2, there exists a watershed X of Y, there exists A € C(X) such
that any x € I*(A) is not F-simple. For any such z, since € I'*(A), = is not
an inner point; and since X is a watershed, x is not W-simple; thus x must
be a multiple point. Furthermore, since |C(Y)| > 2 and thus |C(X)| > 2, we
have A # FE, and since E is connected, from Cor. 2 there must exist a point x
in '"(A). O

Notice that the converse of Prop. 32 is false, as shown by the case of Fig. 7f
which is a fusion graph, in which a given subset (black dots) has one multiple
point.

Now, we present the main theorem of this section, which establishes that
the class of graphs for which any watershed is thin is precisely the class of
fusion graphs. As an immediate consequence of this theorem and Prop. 30, we
see that all watersheds in fusion graphs, strong fusion graphs, perfect fusion
graphs and line graphs are thin.

Theorem 33. A graph G is a fusion graph if and only if any non-trivial
watershed in G s thin.

Proof: Let (E,I") be a fusion graph, let Y C E be a non-trivial watershed.
Suppose that int(Y") # 0, and let A € C(int(Y)). Let Y' =Y\ A. By Prop. 14,
Y’ is a watershed. Since (F,T') is a fusion graph, from Prop. 31 we deduce that
there exists a vertex x € I'"(A) which is F-simple for Y| i.e., x is adjacent to
exactly two connected components of Y”. Since C(Y”) = C(Y)U{A} (Prop. 4),
this means that z is only adjacent to one connected component of Y, i.e., x
is W-simple for Y, a contradiction with the fact that Y is a watershed. Thus,

Y is thin.

Suppose now that (£, I) is not a fusion graph, by Prop. 31 there exists a non-
trivial watershed Y C F, and there exists A € C(Y) such that any z € I'*(A)
cannot be F-simple. Furthermore, since Y is a watershed we know that any x
in I'*(A) cannot be W-simple for Y, thus any point = in I'*(A4) is a multiple
point. Consider now the set Y’/ = Y U A, and let y be a point of Y. Only three
cases are possible: 1) if y € A, then we can see that y is an inner point for Y’,
thus y is not W-simple for Y’; 2) if y € I'*(A), then as seen before, y is a
multiple point for Y, thus y is adjacent to at least two connected components
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of Y’ consequently y is not W-simple for Y’; 3) if y ¢ T'(A), then y is not W-
simple for Y, otherwise Y could not be a watershed. Thus, Y’ is a watershed.
Furthermore, A C int(Y”) and A # (), thus Y” is not thin. OJ

Let us look at some examples to illustrate this property. The graphs of Fig. 5¢
and Fig. 5d are not fusion graphs, in fact they are not even weak fusion graphs;
we see that they may indeed contain a non-thin watershed. On the other hand,
Fig. 5e is an example of a weak fusion graph which is not a fusion graph (see
also Fig. 7Tw) with a watershed which is not thin.

We conclude this section with a nice property of perfect fusion graphs, which
can be useful to design hierarchical segmentation methods based on water-
sheds. Consider the example of Fig. 8a, where a watershed X (black points)
in the graph G separates X into two components. Consider now the set Y
(gray points) which is a watershed in the subgraph of G induced by one of
these components. We can see that the union of the watersheds, X UY, is
not a watershed, since the point x is W-simple for X U Y. Property Prop. 34
shows that this problem cannot occur in any perfect fusion graph.

Fig. 8. Illustrations for Prop. 34. (a): The graph is not a perfect fusion graph (see
Sec. 6, Prop. 45), and the union of the watersheds is not a watershed. (b): The graph
is a perfect fusion graph (see Sec. 7, Prop. 54), the property holds.

Property 34. Let G = (E,T') be a graph. If G is a perfect fusion graph, then
for any watershed X C E in G and for any watershed Y C A in G4, where
A € C(X) and G4 is the subgraph of G induced by A, the set X UY s a
watershed in G.

The proof may be found in the annex. It uses Th. 33 and a local characteri-
zation of perfect fusion graphs which will be established in the next section.
Fig. 8b illustrates the property with a perfect fusion graph (the set X is de-
picted in black and the set Y in gray).

5 Local characterizations

The definitions of weak fusion, fusion, strong fusion and perfect fusion graphs
are based on conditions that must be verified for all the subsets of the vertex
set. This means, if we want to check whether a graph is, for instance, a perfect
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fusion graph, then using the straightforward method based on the definition
will cost an exponential time with respect to the number of vertices.

On the other hand, we know that certain classes of graphs have local char-
acterizations. For example, line graphs may be recognized thanks to Th. 6,
a condition which can be checked independently in a limited neighborhood
of each vertex. Do such characterizations exist for the four classes of fusion
graphs? We prove in this section that weak fusion graphs and fusion graphs
cannot be characterized locally, and we give local conditions for characterizing
strong fusion and perfect fusion graphs.

Let (E,T') be a graph, let z € E and k € N, we denote by I'*(z) the k" order
neighborhood of z, that is, I'*(x) = I'(I'*(z)), with T°(2) = {x}.

Property 35. There is no local characterization of weak fusion graphs. More
precisely, let k be an arbitrary positive integer. There is mo property P on
graphs such that an arbitrary graph G = (E,T") is a weak fusion graph if and
only if, for all x € E, P|G(x,k)] is true, G(x,k) being the subgraph of G
induced by T*(z).

Proof: It can be seen that the graphs of Fig. 9a are weak fusion graphs, while

those of Fig. 9b are not. In addition, for any integer k, the same “k-local
configurations” may be found in both families, for a sufficiently large graph.

HEESEEES

Fig. 9. Graphs for the proof of Prop. 35. In each graph of (b), the black vertices
denote a set X such that the condition for a weak fusion graph is not true.

Property 36. There is no local characterization of fusion graphs. More pre-
cisely, let k be an arbitrary positive integer. There is no property P on graphs
such that an arbitrary graph G = (E,T") is a fusion graph if and only if, for all
x € E, P|G(x, k)] is true, G(z, k) being the subgraph of G induced by T*(z).

Proof: It can be seen that the graphs of Fig. 10a are fusion graphs, while
those of Fig. 10b are not. In addition, for any integer k, the same “k-local

configurations” may be found in both families, for a sufficiently large graph.
O

We are now going to prove that strong fusion graphs can be characterized
locally. A few preliminary properties will help us to organize the proof. The
following one states that in a strong fusion graph, if two neighboring compo-
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(a)
Fig. 10. Graphs for the proof of Prop. 36. In each graph of (b), the black vertices
denote a set X such that the condition for a fusion graph is not true.

nents A and B can be merged, then they can be merged through a set S which
is “close” to A and B, furthermore (next property), this set S can be reduced
to one or two points.

Property 37. Let G = (E,I') be a graph. The graph G is a strong fusion
graph if and only if for any X C E, for any A and B € C(X) such that A, B
are neighbors, there exists S C [['"(A) U T'*(B)] such that A and B can be
merged through S.

Proof: Suppose that G is a strong fusion graph. Let X C E, let A and B €
C(X) such that A, B are neighbors. Let X’ = X \ int(X). Thus, each point
of X’ is adjacent to (at least) one component of C(X”). Obviously, A, B are
also components of C(X’), and I'*(A) N I'*(B) # 0. Since (E,T) is a strong
fusion graph, there exists a subset S of X’ such that A, B can be merged
through S, that is, S is F-simple for X’ and adjacent to A and B. Since
int(X’) = ) and S C X', we have int(S) = ). Thus, it can be easily seen
that S C I'*(A) UT*(B). Since X’ C X and C(X) C C(X’) (a consequence
of Prop. 4), it follows straightforwardly that S is also F-simple for X. This
proves the forward implication, the converse is immediate. [

Property 38. The graph G = (E,T") is a strong fusion graph if and only if,
for any X C E, for any A and B € C(X) such that A, B are neighbors, there
exists a € I'*(A) and b € I'*(B) such that A and B can be merged through

{a,b}.

Proof: Suppose that G is a strong fusion graph, let X C F, let Aand B € C(X)
such that A, B are neighbors. By Prop. 37, there exists S C [I*(A) U T*(B)]
such that A and B can be merged through S. Without loss of generality
(by Prop. 23), we may assume that S is connected. If S contains a point
z € I'"(A) NI'™*(B), then the forward implication is proved with a = b = x.
Otherwise, S may be partitioned into two disjoint sets A" = S NI*(A) and
B'= SNTI*(B). Since S is connected, by Prop. 1 the sets A" and B’ must be
adjacent, thus there exists a € A" and b € B’ which are adjacent, and since S
is F-simple it can be easily seen that {a, b} is also F-simple. This proves the
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forward implication, the converse is immediate. []

Notice that in the two previous properties, the merging set S (or {a,b}) must
belong to the union of I'*(A) and I'*(B), not to the intersection; more infor-
mally it means that A and B cannot necessarily be merged through a subset
of their common boundary. To show that it is not necessary that .S be included
in I'*(A) N I"*(B) for having a strong fusion graph, it suffices to consider the
graph G depicted in Fig. 11. It may be checked that G is indeed a strong fusion
graph. Consider the set X of black vertices, A = {z} and B = {y} (which
are neighbors) can only be merged through S = {a,b} which is included in
[*(A) UT*(B) but not in I'*(A) N T*(B).

X

y
Fig. 11. Hlustration of Prop. 37 and Prop. 38.

More generally, if two components A, B of X can only be merged through a
two-element set S = {a, b}, it can be seen that necessarily both a and b are W-
simple. This means in particular that a configuration like Fig. 11 cannot occur
if X is a watershed. From this remark, we can derive a simpler characterization
of strong fusion graphs, in which we consider only the subsets X of E which
are watersheds.

Property 39. The graph (E,T') is a strong fusion graph if and only if, for
any X C E which is a watershed, for any A and B € C(X) such that A, B
are neighbors, there exists © € [I*(A) N I'*(B)] which is F-simple for X.

We are now ready to prove the local characterization theorem for strong fusion
graphs.

Let = and y be two points, we say that = and y are 2-adjacent if y ¢ I'(x) and
[*(z) NT*(y) # 0.

Theorem 40. Let G = (E,T') be a graph. The graph G is a strong fusion
graph if and only if, for any two points x,y € E which are 2-adjacent, there
erists a € I'(x) and b € I'*(y) such thatb € I'(a) and I'({a,b}) C [['(z)UT'(y)].

Proof: Suppose that G is a strong fusion graph. Let x,y € E which are 2-
adjacent, and consider the set X = I'*(z) UT™(y). We observe that the sets
A = {z} and B = {y} are two elements of C(X). By Prop. 38, there exists
a € I"(z) and b € T(y), b € I'(a), such that A and B can be merged
through {a,b} for X. Thus a and b must be mutually adjacent, and {a,b}
cannot be adjacent to a component of X which is neither {z} nor {y}, hence
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I'({a,b}) € [I'(z) UT(y)]. Thus the forward implication is proved, and the
converse is straightforward. [

We give below seven necessary and sufficient conditions for perfect fusion
graphs. Remind that in perfect fusion graphs, any two components A, B of
C(X) which are neighbors can be merged through I'*(A)NT*(B). Thus, perfect
fusion graphs constitute an ideal framework for region merging methods. In

the sequel, we will use the symbol G* to denote the graph of Fig. 3a.

Theorem 41. Let (E,T") be a graph.

The eight following statements are equivalent:

i) (E,T) is a perfect fusion graph;

it) for any x € E, any X C I'(x) contains at most two connected components;
i11) for any non-trivial watershed Y in E, each point x in'Y is F-simple;

iv) for any connected subset A of E, the subgraph of (E,T') induced by A is a
fusion graph;

v) for any subset X of E, there is no multiple point for X ;

vi) the graph G* is not a subgraph of G;

vii) any vertices x, y, z which are mutually non-adjacent are such that T'(z) N
I(y)NT(z) =0;

viii) for any x,y € E which are 2-adjacent, for any z € I'*(x) N[ (y), we have
P(2) C [D(x) UT(y)).

Proof: We will show that [not ii] = [not iii] = [not iv] = [not v] = [not vif
= [not vii] = [not viii] = [not i] = [not i/, hence the equivalence of the
eight statements.

e [not it = not iii] Suppose that there exists © € F and there exists X C I'(x)
which contains three distinct connected components A, B,C. Let Y = E'\ (AU
BUC), and let Z be a watershed of Y. Necessarily, z € X and thus z € Y.
Furthermore, since x is adjacent to three distinct components of Y, we know
that € Z and that x is also adjacent to three distinct components of Z, and
thus is not F-simple for Z.

e [not iii = not iv| Suppose that there exist a non-trivial watershed Y and
a point x € Y which is not F-simple for Y. Since Y is a watershed, we know
that = is not either a W-simple point. If x is an inner point, by Th. 33 we
deduce that (E,T") cannot be a fusion graph, and thus condition v does not
hold for A = E. Otherwise, x is a multiple point for Y. Then, consider the
set A= [['(x)\Y]U{x}. Let (A,T'4) be the subgraph of (F,I") induced by
A, and let X = {z}. The set A is connected, and since = is a multiple point
for Y, A\ X must contain at least three connected components for (A,T4),
furthermore these components cannot be merged for X since z is the only
point separating them. Thus (A,I'4) is not a fusion graph.

e [not i = not v| Suppose that there exists a connected subset A of E such
that the restriction (A,I") of (E,T") to A is not a fusion graph. By Prop. 32,
there exists X C A and = € X such that z is a multiple point for X in (A, I").
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Obviously, z is also a multiple point for [E'\ A]U X in (E,T).

e [not v = not vi] Suppose that there exists a subset X of F and a point
x € X which is a multiple point, ¢.e., = is adjacent to three distinct connected
components A, B,C of X. Let w € T'(x)N A,y € [(z)N B, and z € T'(x) N C.
Since A, B,C are distinct connected components of X, w, vy, z are mutually
non-adjacent, thus the subgraph induced by {z,y, z, w} is G*.

e [not vi = not vii] Suppose that the subgraph of G induced by some points
{z,y,z,w} is G*, the central point being . We have z € I'(w) N I'(y) N I'(2),
and w, y, z are mutually non-adjacent.

e [not vii = not viii] Let w,y, z be three mutually non-adjacent points of E
such that T'(w) NT(y) NT(z) # 0, and let 2 € T'(w) NT'(y) NT'(z). We have y
and z which are 2-adjacent, z € I'*(y) N ['*(z), but I'(x) contains w which is
not in I'(y) UT'(2) by hypothesis.

e [not viii = not i] Let y,z € E be two points which are 2-adjacent, and
let x € I'"(y) N T"*(2) such that there exists w € I'(x), w ¢ I'(y) UT'(2). Let
X = E\{y, z,w}. Let A ={y}, B={z}, and C = {w}. From our hypothesis,
we know that A, B and C belong to C(X). Let S = I'*(A, B) = I'*(A)NI'*(B),
clearly z € S. Since x is also adjacent to C'; A and B (which are neighbors)
cannot be merged through S, and the graph is not a perfect fusion graph.

e [not i = not | We will prove in fact that i = i. Suppose that 4 holds,
and let X C E, let A,B € C(X) such that I'*(A, B) # . For any x in
['*(A, B), from the hypothesis (ii) we deduce that x is only adjacent to A
and B. Furthermore AU B UT*(A, B) is obviously connected, thus I'*(A4, B)
is F-simple for X, and A and B can be merged through I'*(A, B). O

Notice that condition viiz bears a resemblance with the local characterization
of strong fusion graphs (Th. 40).

Remind that any line graph is a perfect fusion graph (Prop. 30). We can see
that, thanks to Th. 41 (condition wvi), perfect fusion graphs can be charac-
terized in a way similar to Th. 6 which characterizes line graphs, but with a
much simpler condition.

A consequence of Th. 41 is that all the graphs of Fig. 3 except graph G* are
perfect fusion graphs, since none of these graphs contains G* as a subgraph.
The reader can also check anyone of the previous eight conditions on these
graphs, as an illustration of Th. 41.

Corollary 42. Let G = (E,T) be a graph, let X be any connected subset of E.
If G is a perfect fusion graph, then the subgraph of G induced by X is also a
perfect fusion graph.
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6 Usual grids

The aim of this section and the following one is to answer the question: which
are the grids that may be used in order to perform safe merging operations on
digital images? In this section, we consider the different grids commonly used
in 2-dimensional and 3-dimensional image processing. Our major result is that
none of these grids is a perfect fusion graph and several are not even fusion
graphs. One of the consequences is that the most natural merging operation,
which consists in merging two regions through their common boundary, is not
a safe operation in these grids.

We start with some basic definitions which allow to structure the pixels of an
image. In this section and the following one, we will assume that n is a strictly
positive integer.

Definition 43. Let E be a set and let E™ be the Cartesian product of n copies
of E. An element x of E™ may be seen as a map from {1,...,n} to E, for each
i €{1,...,n}, z; is the i-th coordinate of x.

Let Z be the set of integers. We consider the families of sets Hy, H| such that
H} ={{a} |a€Z}, H ={{a,a+1} | a € Z}. A subset S of Z" which is the
Cartesian product of exactly m < n elements of Hi and (n —m) elements of
H; is called a m-cube.

In order to recover a graph structure for digital images, adjacency relations are
defined on Z". The following definition allows to retrieve the most frequently
used adjacency relations.

Definition 44. Let m < n, we say that x and y in Z" are m-adjacent if
there exists a m-cube that contains both x and y. We define I', as the binary
relation on Z" such that for any pair x, y in E, (z,y) € I', if and only if x
and y are m-adjacent.

In order to deal with graphs that can be arbitrary large we define a grid as
a pair (E,I') where F is an infinite set and I' is a binary relation on E. Let
X C E we define the restriction of (E,I') to X as the pair (X,['x) where
I'x =T'N(X x X). If X is a finite set (X,I'x) is a graph. In the sequel, to
simplify the notations, we will write I' as a shortcut for I'x.
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(a) (b)

Fig. 12. (a): Counter-examples for the weak fusion property of (F,T%); The black
points represent a set X; (b): counter-example for the fusion property of (F,T?)
when {w, h} = {3,4}.

6.1 2-dimensional usual grids

Let w, h be two integers strictly greater than 1, called respectively width and
height, we set E = {z € Z? | 0 < 7y < w and 0 < x5 < h}. In this section we
study the connected graph (F,T%) (resp. (E,T'3)) which is the restriction of
(Z2,12) (resp. (Z*,T2)) to E.

Notice that in the literature, the graph (E,T%) (resp. (E,T'3)) corresponds to
the 4 (resp. 8)-adjacency.

Property 45. Letw > 2 and h > 2. If {w, h} # {3,4}, (E,T?) is not a weak
fusion graph. If {w,h} = {3,4} then (E,T%) is a weak fusion graph but not a
fusion graph.

Proof: If {w,h} # {3,4}, let us consider the following set:

(1): if both w and h are odd, X = {(4,7) | i + 7 is odd };

(2): if only wis odd, X = {(i,7) | i+ jisodd } \ {(0,h —1),(w —1,h —1)};
(3):if only hisodd, X ={(4,5) | i +jisodd } \ {(w—1,0),(w—1,h—1)};
(4) if both w and h are even, X = {(i,j) | i+jis odd }\{(0,~h—1), (w—1,0)}.
Fig. 12a shows the set X for image domains of size 3 x 3, 4 x 4 and 5 x 4.

It may be easily checked that any connected component of X cannot be merged
for X.

Let {w,h} = {3,4}. Then (E,T%) is a weak fusion graph (exhaustive check).
The graph of Fig. 12b shows a set X such that there exists connected compo-
nents of X which cannot be merged, hence (F,T'?) is not a fusion graph.CJ

Let X C E, we say that x € X matches () if the neighborhood of = cor-
responds to the configuration C depicted in Fig. 13a or to one of its 7/2
rotations. In Fig. 13, points labelled B are in X, points labelled W are in X,
at least one of the points labelled U is in X and the point I is either in X or
in X.
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(a) (b)

Fig. 13. (a): Local configurations which are used for proving Lem. 47; configurations
C and Cy are the local configurations of multiple points in (E,T'3); (b): counter-ex-
ample for the strong fusion property of (E,T'3).

We say that x matches C} if the neighborhood of = corresponds to the config-
uration Cy depicted in Fig. 13a or to one of its 7/2 rotations.

Lemma 46. Let X C E be a watershed on (E,T'%). Then any x in X which
is multiple matches either C; or Cs.

Proof: Exhaustive check. [J

Lemma 47. Let X C E be a non-trivial watershed on (E,T3). Then any
A € C(X) can be merged.

Proof: Suppose that A cannot be merged, then any z € X NT'3(A) is multiple.
As (E,T3) is connected and C(X) > 2, such z exists. Thus z matches C; or Cs.
Suppose that x matches C. If the two points labelled W in '} belong to the
same connected component of X then the point at the west of = is W-simple,
a contradiction with the fact that X is a watershed. Thus necessarily these
two points belong to distinct components of X, and the point at the west of
x is F-simple. If A contains one of the these two points, labelled W in Cf,
then A is adjacent to an F-simple point and thus can be merged. Otherwise
A contains one of the points labelled U. In this case the same arguments can
be used to prove that A can be merged, thus = does not match Cf.

Suppose that = matches Cy. For the same reasons, A is the connected com-
ponent that contains the point at the east of z. As A cannot be merged,
necessarily the point which is at the north of x is multiple. Then the only pos-
sible configuration is C5, which is depicted in Fig. 13a. In configuration Cj, it
can be verified that the point at the north-east of x is necessarily F-simple.
Thus A can be merged, a contradiction. [

Property 48. Let h > 2 and w > 2, the graph (E,T'3) is a fusion graph but
18 not a strong fusion graph.

Proof: The fact that (£, T3) is a fusion graph is a direct corollary of Lem. 47
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Fig. 14. Counter-examples for the weak fusion property of (E,T'$). The black points
represent a set X.

and Th. 33. Let us consider the set X, composed by the black points in
Fig. 13b. It can be seen that this type of “global cross configurations” can
be extended whatever the size of E (with h > 2 and w > 2). In these “cross
configurations”, the connected components which are diagonally neighbor to
each other cannot be merged. Thus the graph (F,T'%) is not a fusion graph. [J

6.2 3-dimensional usual grids

Let w, h and d be three integers strictly greater than 1, called respectively
width, height and depth, we set E = {z € Z* | 0 < 71 < w,0 < x5 < h and
0 < 23 < d}. In the sequel we will consider that w > 1,h > 1 and d > 1. In
this section we study the graphs (E,T%) (resp. (E,T'3)) which is the restriction
of (Z3,T3) (resp. (Z3,T3)) to E.

Notice that in the literature, the graph (E,T%) (resp. (E,T3)) corresponds to
the 6 (resp. 26)-adjacency.

Property 49. The graph (E,13) is not a weak fusion graph.

Proof: Let us consider the set X such that X = {x € F'| the number of odd
coordinates of x is equal to 0 or 2 }. This set corresponds to a 3-dimensional
chessboard. Samples of such a set are shown in Fig. 14. It may be easily
seen that any element of X is a connected component that cannot be merged
without involving at least two other connected components. Hence the graph
is not a weak fusion graph. [

Property 50. Ifw > 5, h >5,d > 5, the graph (E,T3) is not a fusion graph.

Proof: Let us consider the set X of white points depicted in Fig. 15. Whatever
the size of £ and supposing that all points of E outside the figure are in X, it
may be seen that the central point x is such that {z} is a connected component
of X. Any point 3-adjacent to x (the set of gray points) is adjacent to at least
three distinct connected components of X. Thus any attempt to merge {z}
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Fig. 15. Counter-example for the fusion property of (E,T3). Black and gray points
represent a set X.

will involve three connected components of X, hence {x} cannot be merged,
(E,T%) is not a fusion graph. [J

7 Perfect fusion grid

We introduce a grid for structuring n-dimensional digital images and prove
that it is a perfect fusion graph, whatever the dimension n. It does thus con-
stitute a structure on which regions can be safely merged.

Let us give an intuitive idea of this grid. Fig. 16a shows a watershed of Fig. 1la
obtained on this grid. It can be easily seen that the problems pointed out in
the introduction do not exist in this case. The watershed does not contain
any inner point. Any pair of neighboring regions can be merged by simply
removing from the watershed the points which are adjacent to both regions
(see Fig. 16b,c). Furthermore, the resulting set is still a watershed.

It may be seen that this grid is “between” the usual grids. In |7] we prove that
this grid is the unique such graph.
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Fig. 16. (a): A watershed of Fig. 1 obtained on the perfect fusion grid; (b): a crop
of (a) where the region A, B, C' and D coresponds to the region shown in Fig. 1d;
in gray, the coresponding perfect fusion grid is superimposed; (¢): same as (d) after
having merged B and C to form a new region, called F.

Let C™ be the set of all n-cubes of Z", we define the map B from C™ to Z",
such that for any ¢ € C", B(c); = min{z; | z € ¢}, where B(c); is the i-th
coordinate of B(c). It may be seen that ¢ is equal to the Cartesian product:
{B(c)1,B(c)1 + 1} x ... x {B(¢)n, B(c),, + 1}. Thus clearly B is a bijection.
We set B = {0,1}. Weset 0 =1 and 1 = 0. A binary word of length n is an
element of B". If w is in B", we define the complement of u as the binary word
@ such that for any i € {1,...,n}, (0); = ().

Before defining perfect fusion grids, we first recall the definition of cliques, and
a property due to Berge which uses maximal cliques to characterize some line
graphs. This property will be used in the proof of Prop. 54.

Let E be a set, let I' be a binary relation on £ and let X C FE. We say that
X is a clique (for (E,T")) if X x X CT. In other words, X is a clique if any
two vertices of X are adjacent. We say that X is a mazimal clique if, for any
clique X', X C X' implies X' = X.

Property 51 (Prop. 7 in [2], chapter 17). Let G = (E,T") be a graph. If for
any x € E, x is in at most two distinct maximal cliques, then G is a line
graph.

Definition 52. Let f be the map from C™ to B" such that for any c € C",
f(c); is equal to B(c); mod 2, that is the remainder in the integer division of
Let u be an element of B", we set Cy = {c € C" | f(c) = u} and C} 5 =
cruck.

We define the binary relation % © Z"XZ" as the set of pairs (z,y) € Z"x 7"
such that there exists ¢ € Cyj . that contains both x and y.

We define P™, the family of perfect fusion grids over Z", as the set P" =
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Fig. 17. Illustration of the two perfect fusions grids over Z? (restricted to subsets of
Z2). (a): The map f; (b): (2,12, ); (c): (22,12, ,).
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Fig. 18. A 3-dimensional perfect fusion grid. Black points constitute a set which is
a watershed.

{(Z"Th5) |ueB"}.

u/u

Fig. 17 illustrates the above definitions for the two-dimensional case. Fig. 18
shows a watershed on a 3-dimensional perfect fusion grid. To clarify the figure,
we use the following convention: any two points belonging to a same cube
marked by a gray stripe are adjacent to each other.

In the sequel, to simplify the notations, we will write ¢; as a shortcut for B(c);.

Lemma 53. Let u € B" and let x € Z".
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i) There exists a unique c in C such that x € c.

i1) The point  is in exactly two mazximal cliques of (Z", Z/ﬂ).

Proof: It may be easily seen that any element ¢ of C™ which contains x is such
that for any i € {1,...,n}, ¢; = ; — 1 or ¢; = x;, hence ).

We deduce from ) that there are exactly two distinct elements ¢ and ¢’ of
Cyz such that ¢ € Oy, ¢ € C and such that = is in both ¢ and ¢. Thus
any element adjacent to x is either in ¢ or in ¢’. From the very definition of
I /7, any pair of elements of ¢ (resp. ) is in I'} ;.. Thus ¢ and ¢’ are cliques of
(2,17, ), which both contain z. Since any pair (y,y') withy € e\, y' € '\ ¢
is not in I} 7, we conclude that x is in exactly two maximal cliques. [J
Property 54. Letu € B" and let X be a finite subset of Z" such that (X, Fz/ﬂ)
is connected. Then (X, T /E) 18 a perfect fusion graph. Furthermore it is a line
graph.

Proof: From Lem. 53, any x in X is in at most two maximal cliques. Thus, as
a consequence of Prop. 51, (X" I'" /ﬂ) is a line graph and from Prop. 30 it is
a perfect fusion graph. [J

The following property shows that the perfect fusion grid is “between” the
usual adjacency relations on Z".

Property 55. Let u € B". We have: I'7 C I 7 C I'}.

Proof: From Lem. 53, we know that for any x € Z" there exist exactly two
maximal cliques ¢ € C and ¢’ € CZ that contain x. Necessarily there exists k
such that B(c) = v — k with k € B" and B(¢') = x — k. A point 2’ is in T'(x)
if there exists a unique j € {1,...,n} such that 2 = z; + 1 or 2 = ; — 1
and for any i € [{1,...,n} \ {j}], i = x;. Suppose that 2 = z; — 1. The case
where z; = z; + 1 is symmetric to this one and the following arguments hold
for both cases. For any i € [{1,...,n} \ {j}], either k; =0 or k; = 1. If k; =0,
then 2 = x; = ¢, = ¢, + 1. If k; = 1, then 2, = z; = ¢, = ¢; + 1. On the
other hand, if k; = 1 then 2/ = z; — 1 = ¢;, hence 2’ € ¢. Otherwise, if k; =0
then 2 = r; — 1 = ¢}, hence 2’ € ¢. Whatever the case, (z,7') € I /&, hence
It € I}z The proof of the second inclusion follows straightforwardly from
the definition of I'} 7.[]

Property 56. The family P" contains 2"~ ' distinct perfect fusion grids.

Proof: From the very definition of perfect fusion grids, we have Iz = I'7,,.
Furthermore, if {u,u} # {v,v} then I'} o # I'} 7 . Since the cardinality of B"

is equal to 2", the cardinality of P" is equal to 2"/2 = 2"~1. [J

Let X C Z" and let t € B". We define X +¢t = {z +1¢ | x € X}, we say
that X +t is a binary translation of X. Let m be a positive integer such that
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(a) (b) (c) (d)

Fig. 19. Nllustrations of the relation between line graphs of 1-connected graph and
perfect-fusion grids. (a): a restriction of the 2-dimensional perfect fusion grid; (b):
a graph (black points and edges) whose line graph is (a); the gray points indicate
corresponding vertices of the line graph (a) of (b); (¢): black points and edges depict
a local configuration of the 3-dimensional 1-connected grid; the gray points indicate
corresponding vertices of the line graph of (¢) in which any gray point is adjacent
to x; (d): a local configuration of the perfect fusion grid, any black point is adjacent
to y.

m < n. Remark that if X is an m-cube then X + ¢ is also an m-cube.
The following property states that any two n-dimensional perfect fusion grids
are equivalent up to a binary translation.

Property 57. Let u and v in B". Let t € B" such that for any i € {1,...,n},
if u; = ©; then t; = 1, otherwise t; = 0. Then for any (z,y) € Z"™ x Z",
(z,y) € Iy 5 if and only if (x +t,y +1) € I} 7.

u/u

Proof: It can easily be seen that for any ¢ € C", f(c¢) = u (resp. f(c) =) if
and only if f(c+t) = v (resp. (f(c +t) = v)). The result follows from this
observation and from the definition of the perfect fusion grids.[J

Let u in B®. Let X be a finite subset of Z*. It can be seen that (E,T7 ;) is the
line graph of a graph (E’,T%), with £/ C Z?. For example, Fig. 19a shows a
2-dimensional perfect fusion grid, its associated graph (E’,T%) is depicted in
Fig. 19b.

Remark that a similar statement is not true in dimension 3. Local config-
urations of (Z3 T'?) and of its line graph are depicted in Fig. 19¢c. A local
configuration of (Z*,T"; ;) is depicted in Fig. 19d. It can be checked that the
point z in Fig. 19c has exactly 10 neighbors whereas the point y in Fig. 19d

has 14 neighbors. Thus those two configurations cannot be isomorphic.
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Conclusion

This article sets up a theoretical framework for the study of merging proper-
ties in graphs. Using this framework, we obtained a necessary and sufficient
condition for the thinness of watersheds, we defined four classes of graphs in
relation to these merging properties and gave local characterizations of these
classes whenever possible. We also analyzed the status of the graphs which
are the most widely used for image analysis, and proposed a family of graphs
on Z" which constitute an ideal support for region merging.

A forthcoming article [8] extends this study to the case of weighted graphs,
which constitute a model for grayscale images. In this study, the notion of
degree of connectedness for grayscale images, introduced by A. Rosenfeld [14]
will play an important role. The notion of topological watershed [3,5] extends
the notion of watershed to weighted graphs, and possess interesting properties
which are not guaranteed by most popular watershed algorithms [11]. The
major outcomes of [8] are:

i) a proof that any topological watershed on any perfect fusion graph is thin;
ii) a new, simple and linear-time algorithm to compute topological watersheds
on perfect fusion graphs.
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Annex

Proof of Prop. 17: Since [C(X)| > 2 we have A U ann(A) # FE, and since
E is connected, from Cor. 2 there must exist a point = in I'*(A U ann(A)).
Furthermore,  must be adjacent to at least one component B of X distinct
from A, otherwise ann(A)U{z} would be W-simple for X, a contradiction with
the definition of ann(A); and z cannot belong to B, otherwise ann(A) would
not be W-simple for X, also a contradiction with the definition of ann(A). O

Proof of Prop. 22:

Suppose that AUBUS € C(X \ S). Let C € C(X|S), then AUBUSUC is
connected and AUBUS C AUBUSUC C X \ S. Since X # (), as a connected
component of X the set C' cannot be empty, and since AUBUS € C(X \ S),
we must have either C = A or C' = B.

Suppose now that S is F-simple for X and adjacent to A and B. Thus, AUBUS
is connected, it remains to prove that it is maximal. Let Z C FE such that
AUBUS C Z C X\ S, and Z connected. Let Y = Z\ [AU BU S]. Since
Z CX\S,wehave Y C X. Since A (resp. B) belongs to C(X), Y cannot be
adjacent to A (resp. to B), and since C(X|S) = {4, B}, Y cannot be adjacent
to S. Since Z is connected, by Prop. 1 we deduce that Y must be empty, thus
Z =AUBUS, and AUBUS is a component of X \ S. The other components
of X \ S are clearly the components of X which differ from A and B. [J

32



Lemma 58. Any strong fusion graph is a fusion graph.

Proof: Let G = (E,T) be a strong fusion graph, let X C FE such that |C(X)| >
2, and let A € C(X). By Prop. 17, there exists B € C(X), B # A, such that
AUann(A) and B are neighbors. Since G is a strong fusion graph, there exists
S C [X \ ann(A)] such that A U ann(A) and B can be merged through S
for X \ ann(A). Consider S” = S U ann(A), it can easily be seen that S’ is
adjacent to exactly two components of X, namely A and B, thus A can be
merged for X. [

Lemma 59. Let (E,T) be a graph. Let X C E, let A € C(X), and let Y C A.
Then, we have C(X UY) = [C(X)\ {A}UC(A\Y).

The proof is elementary. This lemma is useful in the following proof.

Proof of Prop. 34: We have to prove that any x in X UY cannot be W-
simple. If Y = () then X UY = X which is a watershed. Suppose from now
that Y # ().

Let z € Y. Since Y € Aand Y # () and Y is a watershed, there exists
B,C € C(A\Y) which are adjacent to x and by Lem. 59, B and C' also
belong to C(X UY), thus z is not W-simple for X UY".

Let x € X. Since X is a watershed for E and G is a perfect fusion graph, by
Th. 33, X is thin and thus x is adjacent to exactly two elements B, C of C(X).
If B+# A and C # A then from Lem. 59 we deduce that x is also F-simple for
X UY, suppose now that B = A (the case C' = A is identical). If I (x)NY =0
then x is adjacent to C' and to a component of A\ Y it is thus not W-simple
for X UY'. Suppose now that there exists y € IT™*(z)NY". Since Y is a watershed
for A there exists two points a, b in I'*(y) which belong to distinct components
of A\'Y (thus, a and b are not adjacent). Furthermore, y € I'(x) NI'(a) NIT'(b)
and since G is a perfect fusion graph and by the converse of Th. 41(wviii), x
must be adjacent to either a or b. Hence, x is not W-simple. [J
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Geodesic Saliency of Watershed Contours
and Hierarchical Segmentation

Laurent Najman and Michel Schmitt

Abstract—The watershed is one of the latest segmentation tools developed in mathematical morphology. In order to prevent its
oversegmentation, the notion of dynamics of a minimum, based on geodesic reconstruction, has been proposed. In this paper, we
extend the notion of dynamics to the contour arcs. This notion acts as a measure of the saliency of the contour. Contrary to the
dynamics of minima, our concept reflects the extension and shape of the corresponding object in the image. This representation is
also much more natural, because it is expressed in terms of partitions of the plane, i.e., segmentations. A hierarchical segmentation
process is then derived, which gives a compact description of the image, containing all the segmentations one can obtain by the
notion of dynamics, by means of a simple thresholding. Finally, efficient algorithms for computing the geodesic reconstruction as

well as the dynamics of contours are presented.

Index Terms—Morphological segmentation, watershed, dynamics, hierarchical segmentation, geodesic reconstruction.

1 INTRODUCTION

S EGMENTATION and contour extraction are key points of
image analysis. There are numerous algorithms for do-
ing these operations, which have the drawback of produc-
ing an oversegmentation. Several techniques have been
developed to diminish this oversegmentation, the most
common one being hysteresis thresholding by Canny [5].
Combined with the noise reduction induced by the Gaus-
sian convolution, it has largely contributed to the success of
Canny’s extractor.

Mathematical morphology uses the watershed algo-
rithm, introduced for the purpose of segmentation by Lan-
tuéjoul and Beucher [3], and mathematically defined in [14],
[16]. See [12] for a definition from a more algorithmical
point of view. As the other techniques, the watershed pro-
duces an oversegmentation and until now, a procedure
similar to “hysteresis thresholding” has not existed. The
aim of this paper is to introduce such a procedure.

Watershed is often used in conjunction with geodesic re-
construction, a powerful tool developed by mathematical
morphology, which simplifies gradient images and pre-
vents oversegmentation. In this paper, we present a new
algorithm which aims at computing in one step all the seg-
mentations by watersheds that one can obtain by the use of
geodesic reconstruction, or, equivalently, by the concept of
dynamics [9]. The main advantage of our algorithm is that
it directly gives a hierarchical segmentation in which all
the contour arcs are evaluated by a measure of saliency
(and not the catchment basins, as originally proposed by
Grimaud), allowing one to choose the desired level of dy-
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namics after the segmentation process. This measure of the
saliency of the contour arcs will also be called “dynamics,”
because it is based on the same morphological tool, namely
the geodesic reconstruction. The result can then be used in
a similar way to the hysteresis thresholding, but in the
context of region based segmentation.

This paper presents the state of the art around ideas of
morphological segmentation, while mainly focusing on the
geodesic reconstruction, and placing these ideas in a new
unifying perspective which leads to the novel concept of
dynamics of contours. It is organized as follows: First, we
review the basic definition of the watershed. We then pres-
ent the usual ways to reduce oversegmentation, which all
rely on the geodesic reconstruction. Then we introduce the
principle of hierarchical segmentation. Under this frame-
work, we present a new concept of dynamics of contours,
which allows a valuation of watershed contours relying on
the gradient information and on the geodesic reconstruc-
tion. Then we discuss the interest of our concept, both from
a mathematical and a practical point of view, illustrated by
an application to shape recognition. Finally, we propose an
algorithm to compute this hierarchical segmentation effi-
ciently, together with a novel algorithm to compute the
geodesic reconstruction.

2 THE WATERSHED: A TOOL FOR SEGMENTATION

This section presents the standard definition of the water-
shed and can be skipped by the reader familiar with
mathematical morphology (see for instance [21]).

In mathematical morphology, it is usual to consider that
an image is a topographical surface. This is done by consid-
ering the gray level (the image intensity) as an altitude.
Places of sharp changes in the intensity thus make a good
set in which one can search for contour lines. It is then
rather straightforward to estimate the variation from the
gradient of the image. For the purpose of segmentation, we
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then look for the crest lines of the gradient image. A way
to characterize these lines is to apply the watershed algo-
rithm to the modulus of the gradient image.

The idea of the watershed [6], [3] is to attribute an influ-
ence zone to each of the regional minima of an image
(connected plateau from which it is impossible to reach a
point of lower gray level by an always descending path).
We then define the watershed as the boundaries of these
influence zones.

Numerous techniques have been proposed to compute
the watershed. The major ones are reviewed in [23], [25].
The classical idea for building the watershed is illustrated
in one dimension (Fig. 1). Using a geographical analogy, we
begin by piercing the regional minima of the surface, then
slowly immerse the image into a lake. The water progres-
sively floods the basins corresponding to the various min-
ima (Fig. 1a). To prevent the merging of two different wa-
ters originating from two different minima, we erect a dam
between both lines (Fig. 1b). Once the surface is totally im-
mersed, the set of the dams thus built is the watershed of
the image. In one dimension, the location of the watershed
is straightforward: it corresponds to the regional maxima of
the function. In two dimensions (which is the case for gray-
scale images), this characterization is not so easy. The place
where two basins meet for the first time is a saddle point in
the image. One can say in an informal way that the water-
shed is the set of crest lines of the image, emanating from
the saddle points.

We present here the classical algorithm for comfuting
the watershed, in the case of a function defined in R" or on
a digital grid, with discrete range (step functions). The most
powerful implementation described in the literature ([25],
[24], [22], [4]) uses FIFO breadth-first scanning techniques
for the actual flooding.

Following the ideas mentioned above, the algorithm
consists in flooding the various basins, and in keeping as
the watershed the set of contact points between two differ-
ent basins. In the case where this contact is on a plateau, we
keep the (geodesic) middle line of this plateau. The water-
shed thus defined is of thickness one on the grid.

DEFINITION 2.1 Let A be a set, a and b two points of A. We call
geodesic distance d,(a, b) in A the lower bound of the
length of the paths y in A linking a and b.

Let B be a set included in A. The geodesic distance d 4(b, B)
from a point b to the set B is defined as usual by d4(b, B) :=
mineg 40, 0.

In the digital case, the distance d4 is deduced from the
one on the grid [20].

Let B = UB; c A, where B; are the connected components

of B. :

DEFINITION 2.2. The geodesic influence zone iz,(B;) of a con-
nected component B; of B in A is the set of the points of A
for which the geodesic distance to B; is smaller than the
geodesic distance to other connected components of B.

izy(B)=lae A Vje [1,kI\), daa, B) <ds(a, B)). (1)

The points of A which do not belong to any influence zone
make up the skeleton by influence zone of B in A, denoted
by SKIZ ,(B):
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(a} At time t, the dam is not yet constructed.

Barrage

(b) Attime t+ h, we construct a dame to separate water from CBZI and
from CBy

Fig. 1. Building of the watershed: one-dimensional approach.

SKIZ 4(B) = A\IZ4(B) )
where IZA(B) = UiG [1,k]iZA(Bi)'

The watershed algorithm on digital images by recur-
rence on the gray levels is [6]:

DEFINITION 2.3. Let f: R — N be a bounded step function. We
note

1D My = min fand h,,,, = maxf,
2) [f]h the upper threshold of f at level h : [)‘]h =lae |

fla) < hl,
3) Reg Mimn,(f) the set of the regional minima of f at height h.

The set of catchment basins of f is the set X,  obtained
after the following recurrence:
1) Xhm,-,, - fhmm

i) X,,, = Reg_Min,(f) U 12 o (%), Y € s By = 1)

min’

The watershed of f is the complementary of X,,,, (Fig. 2).
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B Gray-level 3
BB Gray-level 2
mm Gray-level 1

X1

Reg_Mint Reg_Min2

X2
Watershed X3

Fig. 2. lllustration of the recurrence immersion process.

3 SUPPRESS THE OVERSEGMENTATION‘

The watershed produces an oversegmentation of the images,
but always contains contours which appear to be correct. The
main problem is to make a choice between all those “right”
contours. As in the case of Canny’s extractor, the saliency of a
contour can be evaluated by the value of the modulus of the
gradient. But the step of hysteresis thresholding is not
adapted to the watershed for three reasons:

1) Watershed produces a segmentation: Contours are
obtained as complementary to the set of regions, and
are consequently closed. Hysteresis thresholding is to
be applied on edges and usually produces nonclosed
contours. In other words, we start with a segmenta-
tion and get edges which do not necessarily build a
segmentation.

2) Hysteresis thresholding on watershed segmentation
produces barbs, which are small edges from adjacent
regions (see Fig. 3). Only complicated algorithms
could reliably eliminate these barbs.

3) The most important reason is probably that hysteresis
thresholding is not a morphological process: It relies on
the (local) neighborhood of the pixel, and not on the
structure of the image. Hysteresis thresholding is well
adapted to a local edge detector like Canny’s one, but not
to watershed segmentation, as it is the result of a process
which is global to the image (one cannot construct the
watershed segmentation only from local information).

Original image Watershed Hysteresis thresholding

Fig. 3. A hysteresis thresholding on the watershed, valuated by the
modulus of the gradient, yields non closed contours and small barbs.
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In mathematical morphology, we choose the contours by
smoothing the modulus of the image gradient || Vf || with
respect to various criteria. Indeed, we do not work directly
on the watershed, but come back to the original information
contained in the gradient image. For example, we can sup-
press some minima while preserving the position of the
watershed (this is done by using some markers), or we can
choose the contour by giving them a value which relies on
the values of the gradient and on the watershed (this is
what we call hierarchical segmentation).

All these morphological methods rely on an arbitrary
flooding process, and the theory of morphological simplifi-
cation of images can be deduced from a powerful tool: the
geodesic reconstruction.

3.1 Geodesic Reconstruction

The geodesic reconstruction was originally developed by
Beucher [2]. Let M and N be two closed sets of the plane.
We denote by d,, the geodesic distance in M, i.e., the lower
bound of the lengths of the paths in M linking a to b in M.
DEFINITION 3.1. We call geodesic dilation of infinite size of N

in M, or geodesic reconstruction of N in M, the (arc) dy-
connected components of M which contain at least one
point of N. These components correspond to the points at

finite dy-distance of N. We denote this transformation by
D;’;I(N ). The set N is called the marker set.

On the lattice, the notation Dy, (N) is formally justified
by the formula

Dy(N)=[(N®B) N M|" 3)

where @ denotes the morphological dilation and B the unit
ball of the lattice.

With such a definition, the geodesic reconstruction is a
binary transform. The simplest way to extend a binary
transform to a gray-tone transform is to describe a function
f with the help of its lower threshold [fla:={a | fla) > A}

Consider two functions f < g, the geodesic reconstruc-
tion of f in g is defined through its lower thresholds:

D7 (1), = ;. (1) @

As in the binary case, we call D;’( f) (gray-scale) recon-

struction of f under g by dilation. The function f is often
called the marker function or markers. We focus our at-
tention on the dual of the geodesic dilation of infinite size,
the geodesic erosion of infinite size, or (gray-scale) recon-
struction of f over ¢ by erosion. The geodesic erosion be-
haves in a complementary way, that is to say we have to

write the functions using their upper threshold [f]’1 = {x,
f(x) < A}. We then have the following formula:

[EOf = 2 07) ®

Here, the marker function is g. Using this formula, we have
derived a new algorithm for the geodesic erosion, which
proceeds by flooding. It is described in the last section de-
voted to algorithms. This formula is fundamental for the
understanding of the watershed. Eroding f over g is done
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by flooding progressively the catchment basins of ¢ while
the meeting with f is not achieved (for more details, see
Section 6.1.3). Thus we understand why the smoothing by
geodesic erosion is so helpful for the segmentation by wa-
tershed: by calculating a geodesic reconstruction, we are
implicitly constructing a watershed.

Before explaining how to use geodesic reconstruction,
we need to state a theorem which has never been explicitly
written, but which was implicitly used by all the authors.

THEOREM 3.2. Let f and g be two functions from R to R, f> g.
Each regional minimum of the geodesic erosion EJ (f) con-
tains at least one regional minimum of f.

That is to say, if f 2 g, the geodesic erosion E/(f) can

only suppress or merge regional minima of f. As the main
problem in watershed segmentation is to suppress spurious
minima, we understand why geodesic erosion can be so
helpful.

3.2 The Technique of Markers:

A Geodesic Reconstruction by Erosion

of the Marker Function Over the Gradient
The oversegmentation produced by the coarse application
of the watershed is due to the fact that each regional mini-
mum gives rise to a catchment basin. However, all the
catchment basins do not have the same importance. There
are important ones, but some of them are induced by the
noise, others are minor structures in the image.

The first type of information one can extract is of a geo-
metrical nature. Suppose we know a connected set of points
belonging to an object (or a connected set for each object if
there is more than one object to segment), and a set of
points belonging to the background. We call these con-
nected components markers. If we could modify the image
on which to compute the watershed by imposing these sets
as regional minima, we then obtain a watershed which has
a loop around each object, as each catchment basin repre-
sents either the background or one unique object.

This is how to impose some regional minima M on an
image f. We construct the image:

ifx e M (©)

This image has the regional minima we want. To keep
the information of the original image and to put the water-
shed on the plateau at height « of g, we geodesically erode

g on function f A g, i.e., we compute E)TA ((8). Here, we de-

note f A g(@) := min(fla), g(a)). This image has the same
minima as g, for the geodesic erosion does not add any new
minima (Theorem 3.2). Furthermore, all the pixels which
are sufficiently high and not in an unselected regional
minimum are the same. We can then apply the watershed
algorithm on this new image. Fig. 4 illustrates this method
and Fig. 5 shows the results on the image of a cook-stove.
Note that we can choose any contrast images: here we have
replaced the usual gradient modulus by a top-hat transfor-

mation f - fp, where fz = (fO B) ® B.
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Geodesic recgristruction by erosio;

N

-\ le—  min(t.g)

Fig. 4. lllustration of the way to impose regional minima of g-on the
image f.

Original image Markers (background + object)

Top-hat with imposed minima Watershed

Fig. 5. Constrained watershed: markers are imposed as regional min-
ima of the top-hat transformation.

We did not explain how to choose the markers. It is, in
general, the most complex part. The technique of con-
strained watershed allows us to look for the contour of the
objects with less exactitude and guarantees the number of
contours found: one around each marked object. All the
difficulty lies in determining the markers, ie., to a rough
localization of the objects.

In brief:

Segmentation by constrained watershed

1)- Find the markers, i.e., one connected component for
each object and one connected component for the
background. '

2) Compute the image on which the watershed will be
constructed (usually a contrast image like the modu-
lus of the gradient).

3) Impose the minima by gray-scale geodesic recon-
struction.

4) Compute the watershed.

3.3 The Technique of Minima Dynamics: Geodesic
Reconstruction by Erosion of f, over f

The dynamics of a regional minimum is a contrast criterion.

Recall that a regional minimum is a connected set from

which it is impossible to reach a point with a lower height

without climbing. The minimal height of this climbing is

the valuation of the contrast of the regional minimum.
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DEFINITION 3.3. Let M be a regional minimum of the function f.
The dynamics [9], [10] of M is the number

mm{gggﬁ{f(y(s)) - flrO)}lr [0, 1] -
B, (1) < f(7(0)),7(0) « M}

where y is a path linking two points.

One can notice that the dynamics is not defined for the
global minimum of the image. In practice, however, the
image f has a compact domain of definition, and we can
always suppose the global minimum is on the boundary of
this image, which allows the valuation of the global mini-
mum inside the domain of definition of f.

The concept of dynamics is illustrated in Fig. 6. It can be
used to find relevant markers: the minima with a great dy-
namics. Let us notice that in practice we do not impose
these minima by geodesic reconstruction of a marked func-
tion. On the contrary, we suppress the regional minima of f
with a dynamics lower than a given contrast value f. The
standard algorithm to do this operation is to compute the

geodesic reconstruction by erosion E;’( f,) of f; over f where

fia) = f(a) + t (Fig. 7).

Watershed

Dynamics of 1

Fig. 6. lllustration of the concept of dynamics.

Dynamics of 10

Dynamics of 30

Fig. 7. Watershed constrained by a contrast criterion: the dynamics.
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Let us notice that the size and location of the minima
with a given dynamics is of little direct use: their catchment
basins do not reflect the final segmentation with this level
of dynamics (see, later, Fig. 10c). In what follows, we shall
explain how to use all the information contained in the map
of basins valuated by their dynamics.

The following section is the heart of the paper, in which
we create a saliency map from the watershed segmentation.

4 HIERARCHICAL SEGMENTATION

Until now, our aim has been to prevent the oversegmenta-
tion by choosing markers and, using homotopy modifica-
tion, to produce as many catchment basins as there are ob-
jects in the image. In this section, we present the notion of
hierarchical segmentation, originally developed by
Beucher [2], which, rather than preventing the overseg-
mentation, computes the importance of the contours with
respect to given criteria.

Let us first mathematically define what we mean by a
hierarchy.

DEFRINITION 4.1. Let B, be a sequence of partitions of the plane.
The family (B, ); is called a hierarchy if h; = h; implies
B, 2P, , ie., any region of partition P, is a disjoint un-

: J i

ion of regions of partition ), .
1

Every hierarchy can be assigned a saliency map, by
valuating each point of the plane by the highest value h
such that it appears in the boundaries of partition 7. If we
interpret these partitions as segmentations, we have a nice
way of assigning importance to the contours. The problem
is to obtain such a family of segmentations.

4.1 Beucher’s Hierarchical Segmentation:
The Waterfall Algorithm

In segmentation with the help of markers, the final result
strongly depends on the first stage of marker determina-
tion. But we point out that marker determination is not an
easy process. Images are often noisy, and the objects we
want to detect are often complex and varied in shape, size
or intensity. Now, when we look at the result of a water-
shed segmentation, we notice that a lot of apparently ho-
mogeneous regions are shattered into small pieces. A natu-
ral idea is then to try to merge these regions. Mathematical
morphology suggests a solution to make this fusion, hierar-
chical segmentation which was introduced in this context
by Beucher [2] and Beucher and Meyer [4].

This fusion is done by automatically selecting some
markers, using a procedure called the waterfall algorithm
which relies on geodesic reconstruction by erosion. Let us
build a new function g by setting g(x) = f(x) if x belongs to
the watershed and g(x) = +eo if not. This function g is obvi-
ously greater than f. Let us now reconstruct f over g. It is
easy to see that the minima of the resulting image (Fig. 8)
are significant markers of the original image.

Some remarks should be made here. First of all, even if
this procedure allows the construction of a hierarchy by
repeating itself until convergence, it does not allow a
valuation of the contours thus obtained: The convergence is
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significant minima

Fig. 8. Reconstruction from watershed lines and detection of the sig-
nificant markers.

usually very fast, and only a few levels of hierarchy are
present in the result (typically half a dozen). Second, even if
we value the hierarchy in this way, the final valuation re-
sult does not rely on some gradient information: it is only a
way of giving a partial order relation on the various min-
ima. A example of such a valuation is given in Fig. 10b.

4.2 Hierarchical Segmentation Using Dynamics

The dynamics of minima notion presented above allows the
creation of another hierarchical concept which, by relying
on the minima dynamics concept, gives birth to the new
concept of dynamics of contour. Let us consider an image f.
If we suppose that two different minima and two different
saddle ;points are not on the same gray level (which does
not pose any problem in practice), the geodesic reconstruc-
tion does not move the contour obtained by watershed. It
can only suppress some confours. It is then sufficient to
valuate each arc of the watershed with the maximal value

of £ for which the arc belongs to the watershed of E{'(f,). It

is easy to see that this depends only on the lowest saddle
point on the arcs which separate the two basins. Let 2 be the
(saddle) point of lower altitude on these arcs, we define

Bas(a) :=1{b | 3y, y(0) =4, y(1) =b, (y(s)) < fla) Vs € 10,11} (7)

The set Bas(a) is a topological open set, and can be divided
in several open connected components B; (Bas(a) = U;B)).
We set .

dyn(a) := min max{f(a) - f(a)} ®

a;eB;

We then valuate arcs which separate two basins by the

number dyn(a), which we call dynamics of contour. The
saliency map dyn which associates at each point 4 its con-
tour dynamics is then given by the formula

(@) = [ e @ ©)

whelre Xwsp(@) is the value at point a of characteristic func-
tion" of the watershed of f.

This valuation is much more natural than the valuation
obtained by the waterfall algorithm, for it relies on the gra-
dient information.

In the last part of this paper, we give an algorithm which
directly cdmputes the watershed with this valuation.

1. Which is equal to 1 if 2 belongs to the watershed and to 0 if 4 does not
belong to the watershed.
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It is worth noting that contrary to the noise sensitivity of
the dynamics of a basin, the dynamics of a contour is much
more stable (yet the contour itself is sensitive to noise). This
is illustrated in Fig. 9.

Contour dynamics Contour dynamics

Basins dynamics
Basins dynamics

Fig. 9. Between right and left figure, basins CB; and CB, have ex-
changed their dynamics. But the dynamics of the contour which sepa-
rates these basins remains unchanged.

Fig. 10 shows the difference between a simple computa-
tion of dynamics (Fig. 10c) and an application of the contour
valuation algorithm. The basins of high dynamics do not
reflect the extension and shape of the region which could be
obtained by keeping only the regional minima of high dy-
namics. So, the dynamics of basins represent only an inter-
mediate result. Contrary to this, let us notice that the result of
our algorithm (Fig. 10d.) gives all the contour information we
can extract from the gradient image, that is to say, a threshold
of the result image at a given level will give the segmentation
which will be obtained by a geodesic reconstruction of the
same level. The only way to obtain other contours is to add
exterior information, either by the use of markers, either by
using other contour extractors (like Canny’s one) which we
combine to the watershed by use of a watershed algorithm
with anchor points [16], [15], [14].

(a) Original image

(¢) Map of the basins valuated
by their dynamics
(white = low, black = high)

(d) Computation of the
dynamics of contours

Fig. 10. Difference between an application of the waterfall algorithm, a
computation of dynamics of basins and a computation of the dynamics
of contours.
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5 APPLICATION TO SHAPE RECOGNITION

In this section, we discuss the interest of our new segmen-
tation process. This-section is based first on mathematical
criteria used in contour detection, then on the robustness of
the arc saliency with respect to noise and finally on its use-
fulness in image segmentation, especially for the problem
of guessing “what are the #n most important objects in an
image.”

5.1 Mathematical Arguments

Let f : R°® - R be a smooth function, and set
fla) = E(;Tnff((u‘;ﬁ, where E(x) stands for the integer part of x.
It has been shown [14], [16] that under adequate hypothe-
sis, the limit of watershed of the f, is a subset of the maxi-
mal integral lines of the gradient of f (lines of steepest slope
on f) linking some particular critical points of f (where Vf(a)
= 0), typically a subset of saddle points and of maxima of f.
We can apply this result to show why the watershed is a
good edge detector. -

Let g be the modulus of the gradient of an image f : g(@) :=
[VA@)]. One can say that an edge is a path where the change
in the intensity of f is maximum in the direction normal to
this path. As the intensity is computed by the modulus of
the gradient, we can write

d
B?g(a +tn)= <Hf(a)Vf, n> =0

where 1 is the normal to the path at point 4, and where H;(2)
is the Hessian (the matrix of the second derivatives) of f at
a. This equation gives an implicitly differential equation for
the edge path y:

(10)

¥ = H,Vf. 1)

This equation is not sufficient to characterize edges, be-
cause on any point in the plane where Vf # 0, there exists a
path ysatisfying (11). The union of all the paths which are
solutions to this differential equation covers the whole do-
main of f. It has been proved [16], [14] that the watershed
chooses the paths by imposing boundary conditions.

The boundary conditions imposed by the watershed are
such that it is possible to join the end points of the path
7 = H/Vf to two different minima by two different always

descending paths. So the watershed produces closed con-
tours, and finds exactly multiple points (intersection of
contours) which are of great importance in image analysis.

On the other hand, classical edge detectors like Canny’s2
[5] solve the problem by estimating the normal # from the
gradient direction, i.e., by setting n = Vf (which is true on a
step edge, but not true on more complicated shapes and
especially at locations where many contours meet).

Finally, note that the watershed does not need the com-
plete gradient of f (Vf), but only its modulus (| Vf ). This
feature is very important near contour junctions, where the
direction of the gradient computed with Canny’s method is
unreliable, yielding very few triple points in its contour
images. Some complex modifications have to be made in

2. Canny’s detector, or more exactly the extrema of the gradient in the di-
rection of the gradient, finds the zero crossings of Q(f) = (Hf V£, V).
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order to detect the corner points correctly [7], [8]. On the
contrary, the watershed, using only the modulus of the
gradient, (which is reliable) gives triple points, accurately
positioned. This feature has been successfully applied for
corner detection in [17].

5.2 Noise Robustness

One kind of performance evaluation for a segmentation
algorithm is its small dependence to noise. Fig. 11 shows a
synthetic image with its watershed computed directly on it.
Due to the noise free image, all the watershed lines have the
same saliency and the four square shaped catchment basins
are very large. When adding a small negative Poisson noise,

we observe the birth of many small catchment basins cre-
ated by one pixel large regional minima corresponding to
negative noise. The noise has been chosen negative, because
at each modified point, it creates a small regional minimum
and, consequently, a new catchment basin. However, the
new added watershed lines have a very low saliency,
whereas the most contrasted watershed lines are very little
displaced. The small displacements we observe correspond
to noise pixels falling exactly on the watershed line. Also,
the junction point at the center of the image, where the four
major contours meet, is always preserved. Increasing the
noise values does not add new basins, but the-saliency of
their contours increases. Note however that the most salient

(b)

(e) )

Fig. 11. Robustness of the dynamics of contours with respect to noise.
(a) original noise .free image, (b) its watershed, (c) to (f) increasing
negative Poisson noise.
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contours, namely the desired contours, are still very little
affected. Finally, when the noise completely overwhelms
the signal (noise values similar to the signal values), the
most salient contours no longer really exist. In this case,
optimal linear smoothing techniques should be applied
prior to watershed extraction.

5.3 Real Image Segmentation

Let us now illustrate the concept of hierarchy on real im-
ages. Fig. 12 shows some indoor scene, where some of the
structures are very contrasted, whereas others are much
less so. These structures can be recognized on the saliency
map. The very low salient contours correspond to noise.
Note however that some structures like the upper part of
the desk exhibit a lower saliency than expected. This is due
to the criterion implemented by the watershed: the saliency
is governed by the altitude of the saddle point with respect
to the two neighboring catchment basins. The altitude of
this saddle point corresponds to a minimum on the contour
line. So, as soon as some parts of the contour are léss con-
trasted, even for a few pixels (here at the left of the lamp),
the lower contrast value is propagated along the whole ob-
ject contour. In particular, objects which exhibit a low con-
trasted side are surrounded by a watershed line of low sali-
ency. This is due to the fact that the watershed always
closes the contours, yielding a region based segmentation.
Another example is presented in Fig. 13.

Fig. 12. Indoor scene and the saliency map obtained by the watershed
of the modulus of its gradient.

Fig. 13. Another example of the saliency map computed on an image
of a cook stove.

5.4 Finding n Objects

In this section, we give an example showing how to use the
dynamic hierarchical segmentation algorithm- for shape
recognition.

Fig. 14 is a snapshot of an airplane. For military systems,
one of the key problems is airplane identification and atti-
tude estimation. With this in mind, we may construct a
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(a) Original image

(b) Dynamics of the contours

l/

(c) Threshold at maximum of (d) The four regions of higher
the dynamics dynamics

Fig. 14. Some thresholds of the contour dynamics image.

three-dimensional model of the plane, which will be com-
pared to a database of three-dimensional models. More
simply, we may compare only the contour of the airplane to
a contour database, by extracting a small number of pa-
rameters which hopefully reflect the relevant features of the
shape [18], [19].

So, the first stage consists of finding the airplane con-
tours. Here the use of markers is very difficult: To obtain
the whole plane correctly, including the wings, the marker
should have the shape of the plane and, as a marker, it
should be included in the plane. In the same way, the use of
the highest dynamics will only extract one region in some
cases, and we will obtain only the airplane body (Fig. 14c).
We propose the use of the dynamic hierarchical segmenta-
tion to extract the right contours.

The image of the contour dynamics (Fig. 14b) clearly
shows that all the interesting contours are present in the wa-
tershed image. One has to introduce additional information
for extracting these right contours. For instance, if we choose
the object surface, the image of the contour dynamics will be
thresholded at a height corresponding to 7 catchment basins
of the expected surface. One can also consider applying crite-
ria for region growing [13], the initial step being a threshold
of the image of the contour dynamics.

However, finding the airplane contour directly is futile.
On the other hand, one can guarantee that, in a small num-
ber of hypotheses, we will find this right segmentation. This
is done by successively merging regions to construct the
airplane shape. The algorithm is a good procedure for giv-
ing these hypotheses (four regions, Fig. 14d) and one can
identify the airplane.

In the same way, in the context of interactive segmenta-
tion, the hierarchical saliency map can be computed at
once. Then, the adjustment of the unique threshold, done
manually, allows a human operator to explore the various
possible segmentations.
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6  ALGORITHMS

6.1 Algorithms for Geodesic Reconstruction

6.1.1 Sequential Reconstruction

There exists a sequential algorithm [11], [23], [24] for geodesic
reconstruction which works by propagating information
downward in a raster scanning and then upward in an anti-
raster scanning. These raster and antiraster scannings have to
be iterated until stability is reached (usually no more than ten
complete image scannings). It is then very fast.

6.1.2 Beucher-Meyer Algorithm

The principle [4] is simple. The regional minima of g > f are
given as input. Starting from these minima, g is eroded pro-
gressively, while staying above f. The implementation of this
algorithm is easy with an ordered queue [4] or with a heap-
sort algorithm [1] (these two algorithms create a queue which
stays ordered when a new element is introduced): The pixels
are examined by increasing gray level of g. Graphically
speaking, the function g acts as a film which contracts on a
parcel which is the function f. The algorithm is optlmal in the
sense that each point is processed only once.

6.1.3 New Algorithm

We now present a new algorithm for geodesic reconstruc-
tion which “dilates” f under g, and proceeds by flooding. It
is optimal in the same way as the Beucher-Meyer algorithm
presented above: Each point is processed only once. But
more important, it does not need the regional minima as an
input. The algorithm computes the regional minima during
the flooding, as in the classical watershed algorithm [25].

The basic idea is to use the flooding principle developed
by Vincent [23]. This principle is adapted to the geodesic
reconstruction of f under g, which corresponds to the geo-
desic erosion of g with respect to f.

In fact, we can reconstruct f by flooding the catchment
basins of f until they overflow, or until we meet g. When we
flood the catchment basins of f, two cases can appear.

e FEither the minimum of g on the basin is equal to the
height of flooding we have reached. In this case, we
stop flooding this basin (basin CB; in Fig. 15a).

¢ Either we have filled the basin until one of its saddle
points (contact point between two basins) is reached.
This case is divided into two branches:

i) either the other basin has already stopped being
flooded. We then stop flooding the considered basin
at the height of the flooding (basin CB, in Fig. 15b);

ii) either the other basin has not yet been stopped. We
merge the two basins.

The watershed by flooding algorithm is easy to adapt to
this procedure which is fundamental for the computation of
constrained watersheds and for the computation of regional
maxima under constraints [22]. The advantage of this algo-
rithm with respect to the one of Beucher-Meyer is that the
new algorithm computes the regional minima directly.

6.2 Algorithm of Contour Valuation

We now give an:algorithm which computes the contour
valuation. During a first stage, we use Grimaud’s algorithm
[9] to compute the watershed, the catchment basins and
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(a) Attime ¢, the catchment basin CBg stops to be flooded.

(b) Final stage of the reconstruction.

Fig. 156. Geodesic reconstruction of funder g.

their dynamics. We then compute, for each point of the
watershed, a valuation by doing a kind of “gradient de-
scent” on the dynamics value of the catchment basins. It is
difficult to compute the valuation of the point during the
watershed construction, because when a point of the water-
shed is created, we do not dispose of the complete list of its
neighbors, and in particular triple points can end with a
wrong value. In fact, only one point on each arc of the wa-
tershed is of interest: the saddle point.

Let us briefly recall Grimaud's dynamics algorithm
which is based on Vincent's watershed algorithm. It con-
sists in flooding from the minima, level by level, until water
from one minimum meets water from another minimum.
The meeting point between two basins is a saddle point,
and is the point where we can compute the dynamics of
one of the two basins: the basin with the lowest minimum
floods the other one, and the dynamics of the basin with the
highest minimum is equal to the gray-value of the saddle
point minus the gray-value of the minima.



1172

(a) Example of function
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(b) Flooding list

Fig. 16. Determination of the basin which valuates the contour at which the pixel P belongs.

In our algorithm, the arc of the watershed containing this
saddle point is valued by this dynamics. Let us notice that,
in Grimaud’s algorithm, an arbitrary choice has to be made
if the two meeting basins have minima with the same gray-
value, but this choice does not change the value of the arc. This
is why we think that the dynamics of an arc is a better no-
tion than the dynamics of a catchiment basin.

" We now show how we can value the watershed arc. The
best way to explain the algorithm is to look at an example
(Fig. 16). Suppose we have applied Grimaud's algorithm on
the function of Fig. 16a. We then have a list of watershed
pixels, and a list of catchment basins. During the flooding
process, we construct a list of catchment basins. Each
catchment basin keeps in memory:

e Its dynamics,
e A list of pointers on the catchment basins which have
flooded it. ‘

Let’s have a look at a pixel p of the watershed (Fig. 16a).
This pixel is the connection point between two (or more,
three at most on the hexagonal grid) catchment basins. In
our example, they are catchment basins 6 and 4.

But basin 6 has been flooded by basin 5, and basin 5 has
been flooded by basin 3, which itself has been flooded by
basin 2. The basin which has flooded all the other basins is
the one with the lowest minimum, that is to say basin 1. In
the other way, basin 6 has been flooded by basin 3. This
flooding list is represented in Fig. 16b.

The pixel p is in fact flooded when basins 3 and 5 meet
and the dynamics of the contour can be computed. Another
way to choose the dynamics of the pixel p is to notice that
pixel p belongs to the interior of basin 3. So we can say that
the dynamics of pixel p is the highest dynamics of the ba-
sins which precede basin 3 in the flooding list. So, all the
difficulty is to mark out basin 3. We propose a simple pro-
cedure for doing that operation. It consists of running
through the whole flooding list issued from the pixel p, and
in marking the basin by which we pass. The first basin
which has been passed over more than once contains the
pixel p in its interior, and is basin 3 in our example. So the
dynamics of the pixel p is the highest dynamics between
the dynamics of basins 5 and 6 (which precede basin 3 in
the flooding list), that is to say the dynamics of basin 5.

One could verify that the watershed arc which contains
pixel p disappears in a geodesic reconstruction of size equal
to the dynamics of basin 5.

7 CONCLUSION

Image segmentation is not a goal in itself. It should be done
by keeping in mind the real purpose of the image process-
ing. We have given an algorithm which is useful for inter-
active dynamics thresholding. The concept of dynamics of
contours allows the valuation of the contours produced by
the watershed. This resulting segmentation is identical to the
one obtained by watershedding the original gradient image
after a filtering by reconstruction with the same contrast
value. The advantage of the proposed algorithm is this : the
dynamic segmentation can be obtained for different con-
trast values by simply thresholding the valuated watershed
image. For instance it enables us to answer the question
“which are the # most contrasted objects?” by a simple
thresholding of the image (a problem which can be solved
in a more complicated way by examining the histogram of
dynamics of the image minima).

An example of image processing is identification. It is
almost impossible to obtain the right segmentation for
identification using only segmentation tools based on con-
trast. But we can guarantee that, in a small number of hy-
potheses, we will find this right segmentation, which can be
extracted by artificial intelligence tools (using for instance a
database). We expect our algorithm to be a good procedure
for giving these hypotheses.

8 NOTATIONS

a,b pomts in the R* plane

fg images, i.e., functions from R to R

Vf gradient of f, i.e., vector of first derivatives
Hy Hessian of f, i.e., matrix of second derivatives
[ inner product

frg pointwise minimum of f and g

fv /8 pointwise maximum of fand g

ﬂ the upper threshold of fat level i i, (1€ R* | fla) <k}

[T, the lower threshold of fatlevel 1, ie., {ae R" | f) > h}
f®B  dilation, ie, max{f(y) | y € B,}

fOB  erosion, ie., min{f(y) | y e B

Dy (f)  geodesic reconstruction of f into g by dilation f<g
E;(f)  geodesic reconstruction of f over g by erosion fzg

dyla, b) geodesic distance in M (Definition 2.1)
SKIZ 4(B) skeleton by influence zones of B according to the
geodesic distance in A (Definition 2.2)

influence zones of B according to the geodesic

distance in A (Definition 2.2)

Reg_Miny, (f) regional minima of f ie., connected plateau
from which it is impossible to reach a point of
lower gray level by an always descending path

1Z4(B)
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We adapt the Euler theorem for approximating solutions to differential equations
to the new mathematical framework of mutational equations, which aims to compute
derivatives of shape deformation in metric spaces. © 1995 Academic Press, Inc.

1. INTRODUCTION

Mutational equations [1, 2] are an extension of differential calculus for
maps from one metric space to another. Basic theorems of differential
equations (such as the Cauchy-Lipschitz and Peano equations) can be
adapted to this mathematical framework.

Mutational equations seem to be a relevant tool for describing the dynam-
ics of objects that are not naturally imbeded in a linear space, in particular
for describing dynamics of sets. This is important in many areas of applied
mathematics, such as optimal shape [12, 5], visual servoing [6, 4], and mathe-
matical morphology [8-11]. We refer to [2] for numerous motivations.
Accordingly, the issue of discretization and constructive approximation for
mutational equations, which is the aim of this paper, is of particular interest.
We adapt the Euler theorem, which allows us to approximate solutions by
a sequence of .points in metric space. We end this paper by giving an
example of an application for computing the evolution of tubes.

2. TRANSITIONS ON METRIC SPACES

Definitions given in this section and those that follow are quoted from [2].
Transitions adapt to metric spaces the concept of half-line x + hv starting
from x in the direction v by replacing it by “curved” half-lines 9(k, x).

* E-mail: najman@thomson-lcr.fr.
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MUTATIONAL EQUATIONS 815
Indeed, the “linear” structure of haif-lines in vector spaces is not really
needed to build a differential calculus. ,

DernrTionN 1 [2].  Let X be a metric space for a distance d. A map &:
[0, 1] X X > satisfying
i) 90,x)==x

e

Gi) folhi= sup LOCDII e,

he[0,1]xy d(x,y)

(@) lim 2OCRx), O, S, 3x) _
h-0+ h

is called a transition.

We denote by ®(X) the space of all transitions on X.
We define an equivalence relation ~, between transitions by

d(Fy(h, x), 9(h,x)) _ 0
. .

H~h if and only if lim
h—-0+

We say that (X, ©(X)) is a (complete) mutational space if X is a (com-
plete) metric space and ®(X) C ©(X) is a nontrivial subspace of transitions,
closed in €([0, 1] X X, X) supplied with the pointwise convergence.

One observes that the transitions J(h, -) are Lipschitz uniformly with
respect to i € [0, 1] and that for every x € X, the maps (-, x) are Lipschitz.

We shall supply a space ®(X) of transitions with the distances d.. of
uniform convergence and Lipschitz semidistance defined, respectively, by

do(8,7):= sup . d(d(h, z), 7(h, z))

hefo,1],z€

and

dy(9,7):= sup

hel0,1],z€X

d(8(h, z), 1(h, 2))
> .

3. MuTtAaTIONAL EQUATIONS IN METRIC SPACES

Let x(-) be an application from [0, 1] onto X, and ¥: [0, 1] X X — X.
We say that ¢ is a mutation of x(¢) at time ¢ if

i AP x@), 2+ B)

70+ h
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In this case, we note
HOEE A

Let us consider a mutational space (X, ©(X)) and a single-valued map
£: [0, o[ X X — O(X) from X to its space of transitions. We say that a
function x(-) from [0, T] to X is a solution to the mutational equation
£ 3 f(t, x) if for all ¢ > 0, f(z, x(¢)) is a mutation of x(¢) at time ¢, i.e., if

Vie[0,T], X(@)3f(x(), @
or, equivalently, if

vemo,  lim WO

h->0+

3.1. Examples of Mutational Equations

Let us point out, through two examples, that the uniqueness of the
mutation is not ensured, which justifies the notation.

® First, consider the constant tube in X = R?
K@) = B,

where B is the Euclidean unit ball.
It is clear that

0K (1), Ve

But we can also check that the Lipschitz map defined by
‘P(x7 y) = (_}'7 x)

satisfies

¢ € K(D).

¢ Let Fbeaset-valued map from a vector space onto itself. The reachable
map ¢ associated to the differential inclusion x'(f) € F(x(£)), x(0) = xo,
defined by 3(, xo) := {{x(s)} | x'(s) € F(x(s)), x(0) = x0, s € [0, ]} is a
good choice for being a mutation of x(-) at time ¢ = 0. Let us notice that
in order for it to be mutation, it is not necessary that & belong to @(X).
Let us apply this remark to mathematical morphology.

Let X be the set of compacts of R* (which is a metric space for the
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Hausdorff distance), K be an element of X, %:(t, K) := {{x(s)} | x'(s) € B,
x(0) € K, s € [0, £]}, where B is the unit Euclidean ball, and d(, K) :=
{x()} | x'(s) € Ng(x(s)) N B, x(0) € K, s € [0, ]}, where Nk(x) is the
subnormal cone’ of the set K at point x for the Euclidean norm.

In [7] it is shown that the morphological tube K(f) := K & tB = {k +
tb | k € K, b € B}, which corresponds to the dilation (the Minkowski sum)
of a compact K with respect to the Euclidean unit ball B, satisfies the two
mutational equations

vi=0, K@% )]
Vi=0, K3, ®3)

with K(0) = K. Equation (2) is natural, and Eq. (3) clearly establishes,
without any regularity assumptions on the compact set K, the intuitive idea
that the dilation transforms the initial set K in the direction of the normal
at any point of the set. Indeed, when the set K is a regular manifold, the
subnormal cone Nx(x) is reduced to the half-line spanned by the outward
normal n(x). But if 9 is a transition, this is not the case for &, since the
application J,(¢, +) is not Lipschitz.

Peano’s Theorem, which states the existence of a solution x(-) to Eq.
(1), can be adapted to the case of mutational equations.

3.2. Peano’s Theorem for Mutational Equations
We give here Peano’s theorem for mutational equations.

TuEOREM 2 [2]. Let (X, ©(X)) be a mutational space, and f: [0, [ X
X +> O(X) be a uniformly continuous map bounded in the sense that

- o d(f(t, x)(h, y), f(t, x)(h, 7)) _
Vi=0,Vx € X, ||f(t, x)a:= he[i’tlx];’)yﬂ 4. 2) =

! The external circatangent cone of K at x is
Cx(x) := {v | Crd(x, K)x)(v) =< O},
and the external subnormal cone of K at x is the negative polar cone of Cx(x), i.e.,

Ng(x) 1= Ck(x)” = {p | Yv € Cx(x), (p, v) = O}

See [3] for more details.




818 LAURENT NATMAN
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Fic. 1. Illustration of Euler’s method for mutational equations.

and that

Ye=0,Yx € X, Vy € X,|f(t, )| := sup d(fc, x)(hl’hy)’{c(lt’ x)(k. y)) =c.
h -

Assume that the closed bounded balls of X are compact.
Then, from any initial state x, € X starts one solution to the mutational

equation % 3 f(t, x).
4. BuLER METHOD FOR MUTATIONAL EQUATIONS
For the sake of simplicity, we consider a mutational equation with non-

explicit time dependence, but the following can be easily adapted to the
explicit time-dependent case. We thus consider the mutational equation

% (03 f&x®). 4)

A natural way for approximating solutions to differential mutations is
the difference scheme co-

xpe1 1= flg)(h, X)),

where h € 10, 1] is fixed.
We can interpolate the x;’s on the nodes jh by setting (Fig. 1)

x(t) := foo)(t = hj, xp), Ve € [jh, (j + DAL

We shall prove that the function x,(-) converges in some sense to a solution
to the mutational equation (4).
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THEOREM 3. We consider a mutational space (X, ®(X)) and a single-

valued map f: X — O(X). We posit the assumptions of Theorem 2.
For h € 10, 1], we set

Xji1 = f(x)(h, x;). (5)

Let x,(*) be a piecewise defined function which interpolates the x;’s on the
nodes jh and on a finite time interval [0, T]:

w0 = f)t — hjx),  VEE[jh, (j+ DAL= T. ©)

Then, starting from x, € X, the solution to the explicit difference scheme
(5) converges to a solution to the mutational equation

L AGEFEG)) ™

where h — 0, in the sense that a subsequence of function x, converges
uniformly to a solution x(+) to (7) with x(0) = xo, on [0, T].

We set
d.(7,% () := inf d.(7,0)
oEx(f)

We need the following lemma:

LeMMA 4. We posit the assumptions of Theorem 3. Then, for all € > 0,
there exists H > 0 such that for h < H, we have, for all t > 0 and all s > 0,

(i) de(fOen(0). Zn(t)) =&
(i)  d@u(t), xn(t + 5)) =cs.

®)
Proof. We first note that
) D f05), Ve E [jh, (j + DA

because we have, for £ > 0 and s small,

d(f(x)(s, xa(0)), xa(t + ) = A(f(x)(s, fO)( = R, %)), F(x;)( = Bj + 5,%7))

=g

by Definition 1(iv).
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Then we have

do(f(xa(1)) (1)) = du(f(xu(D), F(x7))
= sup  d(f(xu(9)(s 2), f) (s, 2)

se[0,1],z€X

and, by uniform continuity of f, for all ¢ > 0, there exists > 0 such that
Vit € [jh, (j + DAL du( F(xa(9). f(5)) =< &
as soon as d(x,(?), x;) = . But for all ¢ € [jh, (j + 1A[,

d(xh(t)a xj) = d(f(x})(t - hj’ xj)v fxf)(01 xf))
< c(t — Hj)

= ch,

which proves inequality (8(i)).
Now, for t € [jh, (j + k[ and ¢t + s € [kh, (k + 1)k, we have

d(xa(t + 5), x4(1)) = d(fOee)(t + s — Bk, xi), f(%)(0, i)
+ 2 d(f(xi)(h’ xi)a f(xi)(Oa xi))

+ d(f(xi)(h’xj)’f(x]’)(t = hj, xi))
<c(t+s—hk)+ D, ch+c(h—t+ hj)

J<i<k
sc@s+h(-k+(k—-j-1)+j+1))

=cs,

which proves inequality (8(ii)).

Proof of Theorem 3. We continue as in the proof of Theorem 2. For
the sake of completeness, we give here the end of the proof.

Since the closed bounded balls of X are compact, and since the solutions
remain in such closed bounded balls of X, we deduce that x,(f) remains in
a compact set of X.

Lemma 4, property (ii), implies that the sequence of continuous functions
x4(+) is equicontinuous. Therefore Ascoli’s theorem implies that a subse-
quence (again denoted by x,(-)) converges uniformly to x(-).

This limit is a solution since for any ¢ € [jh, (j + 1)A],
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e
=3

FiG. 2. Trajectory of the dilation by a segment whose orientation relies on time of a
compact included in R% The initial set K(0) is in grey.

do(f(x(2)), Zu(0) = du(fx(0)), f0)) + du(£(x), 2u(D))-

But, f(x;) 2 *,(¢), and fis uniformly continuous. Thus, for all ¢ > 0, there
exists i > 0 such that

do(fx(0), 24()) = &
as soon as d(x,(1), x;) = ch = 1.

Hence the theorem is proved.

5. AN EXAMPLE OF APPLICATION TO TUBES

The main example of application is the evolution of tubes, which are
compact-valued maps K: R ~ X = R". Let us look at a morphological
example, which is the dilation of a compact by a segment of variable angle.




822 LAURENT NAJMAN

We set f(, K(t))(h; K@) = K@) ®hO@) ={k + ho| k € K(2), 0 € B},
where O(¢) is a segment of angle . Theorem 3 amounts tg saying that we
can approximate the solution to

K 3 16 K@),
with K(0) = K, by the sequence
Kj:1 = K; © hO(hj).

Figure 2 shows an example of approximation of the solution to this
mutational equation.
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Abstract. The “Montagnes Russes™ algorithm for finding the global minima
of a lower semi-continuous function (thus involving state constraints) is a
descent algorithm applied to an auxiliary function whose local and global
minima are the global minima of the original function. Although this auxili-
ary function decreases along the trajectory of any of its minimizing sequences,
the original function jumps above local maxima, leaves local minima, play
“Montagnes Russes” (called “American Mountains” in Russian and “Big
Dipper” in American!), but, ultimately, converges to its infimum. This auxili-
ary function is approximated by an increasing sequence of functions defined
recursively at each point of the minimizing sequence.

Key words: Global optimization, viability theory, viability kernel, Lyapunov
function

Introduction
Let us consider the minimization problem

vy = ;lélg V{x)

where X := R” is a finite dimensional vector space and
V:X—-»Ru{+w}

is a nontrivial lower semicontinuous extended function assumed to be
bounded from below.

When V is differentiable, it is obviously a Lyapunov function for the con-
tinuous gradient method
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__Vx(9)
v (x@)l

so that ¥ (x(¢)) is not increasing. Since the equilibria of this differential equa-
tion are the critical points of the function ¥, the gradient algorithm, when it
converges, may stop at such a critical point, and in particular, at a local
minimum.

An obvious way to avoid this difficulty is to ask whether ¥ is an a-
exponential Lyapunov function (where 2 > 0) in the sense that it satisfies:

as long as V'(x(r)) #0, X(f)=

V>0, V(x(2) < (V(xo)—vo)e™ +vp (1)

In this case, the limit of the solution, if it exists, would reach the global mini-
mum of ¥ and provide a continuous algorithm to achieve a global minimum.
But, naturally, ¥ is not necessarily an exponential Lyapunov function for the
gradient equation, except in the rare case when property

() ¥x V) -ws VI

holds true.

A way to overcome the fact that V' is not necessarily a exponential
Lyapunov function for the gradient equation is to replace the latter by the
simple differential inclusion

vt>0, x()eB

where B denotes the unit ball of the finite dimensional vector space X, leaving
open the direction to be chosen by the algorithm, as in the methods of simu-
lated annealing. But instead of choosing the velocities at random and being
satisfied by convergence in probability, we shall ask whether ¥ can be an ex-
ponential Lyapunov function for the differential inclusion x’ € B.

This “viability approach” does not require any regularity properties of the
function ¥, since it is not longer involved in the definition of the dynamics of
the gradient, which is replaced by the simplest differential inclusion (x’ € B)
one can think of. In this approach, the function ¥ is involved only through its
epigraph, assumed to be closed, and by the properties of the contingent cone
at its points. Observing that the contingent cone to the epigraph of a function
at a point of its graph is the epigraph of the contingent epiderivative’, one

let ¥:X—>Ru{too} be a nontrivial extended function and x belong to its domain
Dom(¥) := {x| V(x) # +oo}. The contingent epiderivative D; V' (x)(u) of V at x in the direction
u is equal to

DY) = i,

V({x+hd) - V(x)
h
If we note £p(¥) := {(x,4) € X x R| ¥(x) < 1} the epigraph of V, we have the following property:
8p(D1V (x)) = Tapy(x, V(x))
where Tg,(r)(x, V(x)) is the contingent cone to &p(¥) at (x, V(x)).
See for instance Chapter 6 of Set-valued analysis, [3, Aubin & Frankowska] for a presentation
of epidifferentiable calculus.
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can characterize property (1) for lower semicontinuous extended functions:
Theorem 9.2.2 of Viability theory, [1, Aubin] states that property

¥x € Dom(V), 11‘21; DiV(x)(u) +a(V(x) —v) <0 2

is necessary and sufficient for the existence of one solution x(.) to x'(¢) e B
satisfying (1) starting from any given initial state xy € Dom(V).

Observe also that the Fermat rule states that at every local minimum x
of V, 0 <inf,cp Dy V(x)(u). Therefore, an exponential Lyapunov function
satisfying

Vx such that V(x) > vy, infl; DiV(x)(u) < —a(V(x)—w) <0
ue

does not have local minima when ¥ (x) > vy.

Remark: If the function v~ Dy V' (x)(v) is convex, then it is the support func-
tion of its subdifferential 0¥ (x) of V at x, which is the closed convex subset
defined by

0_V(x):={peX*|Vue X,{p,u) < D;V(x)(u)}

(see chapter 6 of Set-valued analysis, [3, Aubin & Frankowska], for instance.)
In this case, the above property (2) can be written in the form

1
Vx, V(x)—w< Ed(O, —-0_V(x))
thanks to the lopsided minimax theorem, because

inf,e D1V (x)(u) + a(V(x) — vp)

<inf sup <pud+a(V(x)— )
ueB pep_V(x) .

IA

sup inf {p,ub +a(V(x) — vo) .
ped_V(x) #<B

< sup (—{ipll,) +a(V(x) - vo)
ped_Vix)

| < —d(0,-0.V(x) +a(V(x) - w)

1 The continuous algorithm

Unfortunately, even when V is differentiable, we observe that condition (2)
amounts to saying that V is still an exponential Lyapunov function of the
gradient equation. However, if this is not the case, Theorem 9.3.1 of Viability
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theory, [1, Aubin] implies? the existence of the optimal exponential Lyapunov
function ¥, which is the smallest lower semicontinuous exponential Lyapunov
function V. larger than or equal to V.
This exponential Lyapunov function can take infinite values.
Consequently, for any initial state xo € Dom(V ), there exists at least one
solution to the differential inclusion x’ € B starting from X satisfying

V(x(t)) = VOC (x(t)) < (Voc (x()) - U())e_‘” + g

Although we know that V'(x(¢)) converges to vy when ¢ — +co, the function
t— V(x(#)) is not necessarily decreasing. Along such a solution, the function
V jumps above local maxima, leaves local' minima, plays “Montagnes Russes”
(called “American Mountains™ in Russian and “Big Dipper” in American!),
but, ultimately, converges to its infimum.

The domain of this optimal exponential Lyapunov function describes the
basin of attraction of the minima, which we define as follows: If & (x) denotes
the set of solutions to be differential inclusion x' € B starting from x, we set

. V{x(t)) — vo
b —  inf o) 70
Pra) = ol e

We thus define the a-basin of attraction of V as
Bas,(V) := {xe X]p‘},ya(x) < 400}

In other words, a state xo belongs to the a-basin of attraction if and only if
there exist a solution x(.) € &¥(xo) and a constant ¢ such that

Ve=0, V(x() <ce ™+

One can prove that the domain of V. is actually the basin of exponential
attraction of V.

An algorithm yielding solutions x(.) satisfying inequality (*) requires in
principle an a priori knowledge of the infimum to guarantee the convergence
to a global minimum.

% The epigraph &p(¥) of an exponential Lyapunov function ¥ is the viability domain for the
system of differential inclusions

{i) x'(f)eB

iy x'(f) = avp — aw(z)

This means that for any initial state (xg, wy) € &p(V'), there exists a solution to the above solution
viable in the epigraph of ¥, in the sense that

V=0, (x(5),w(s))e&p(V)

Indeed, to say that x(.) satisfies condition (1) means that ¥z >0, (x(r),w(s)) € &p(V) where
w(z) :=(V(xo) — vo)e™™ + vp is the solution to differential equation x'(f) = avy — aw(t) starting at
V(xs).

The epigraph of the optimal exponential Lyapunov function V. is the viability kernel (the
largest closed subset of the epigraph viable under this system) of the epigraph of V for the above
system of differential inclusions (see Chapter 9 of Viability theory, [1, Aubin]).
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Actually, we shall parametrize the problem by replacing vg by any 1€ R.
We denote by V. (-,4) the optimal exponential Lyapunov function larger
than V, satisfying: for any initial state xp € Dom(V (-, 1)), there exists at
least one solution to the differential inclusion x’ € B starting from xj satisfying

V(x(£)) < Va (x(2)) < (Ve (%0) — A)e™ + 4

If 2 < inf,cx V(x), then it is easy to prove that ¥V (x, 1) = +oo for every
x € Dom(¥V'), because in this case, every solution of the algorithm leaves the
epigraph of ¥ in finite time>.

If A > inf,cx ¥ (x), then we observe that V. (x, ) = V(x) for every x in
the level set {x| V(x) < A}. Indeed, the pair (x,e *(V(x) — A) + ) is a solu-
tion to (x’,w') € B x {a(w — A)} starting from (x, ¥'(x)) and which remains in
the epigraph of ¥V because e (V' (x) — A) + 4 decreases. Therefore, every x
in this level set belongs to the viability kernel of the epigraph, which is the
epigraph of V.

The optimal exponential Lyapunov function being only lower semicon-
tinuous, may take infinite values. But this phenomenon cannot happen when
V is Lipschitz, and more generally, Holder.

Proposition 1.1. Let ¥V : Dom(¥V) = R" — R be a Hélder* function of param-
eter B, and V. be the smallest exponential Lyapunov function associated. If V
achieves its minimum, then V. is finite.

Proof: Assume that inf,c x V{(x) = 0. We have to show that

. V(x(1)
n :: f
VxR, Veelx)i=  inf = sup—7

< 400

Consider xg, x1, x2 € R” such that ||x; — x2]| > f/a and V(x;) = 0. We set
11 = ”x1 —Xo”
12 = ng - X1 ”

We parameterize the path (xo, x1) U (x1,x2) in the following way

X1 — Xp

O0<s<h x(s):=x0+s 7
1

X2 — Xt
b

l]_<_SS12+ll—§ X(S)Z=X1+ (S——l;)

_ ﬁ(lz'%l[ —-S)—l
12+l|——§_<_s<+oo JC(S):=361‘|"XZIZXl (lz‘ﬁe . )

3 Indeed, for any initial state (xp, wp) € &p(V) outside the viability kernel £p(¥ ), all solutions
(x(£), (wg — A)e~" + 1) leaves the epigraph of V in finite time.
4 This means that

V(x) - V() < klx - x|’
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Tt is clear that limg_, o x{s) = x; and that x(.) € S(xo). In fact, x(.) is clearly
continuous and

O<s<ly X(s)= . I_x() eB
1
ﬁ rry X2 T X1
h<s<h+h-= X(s5)= cB
a A
L+1h —g <s<+oo x(s)= 22— M afBbth-9)-1 = p
Now,
— 18
Vs>bh+1h _é, V()f(s)) < kllx(s)_ x|
a e~ e—as
5(12-1—11 ~§)-1 B
B
<ke (- (P
]
< keasé_ea(lﬁ—ll—s)e_ﬂ
- a
B
< k(é> ea(lz-)-[])e—ﬂ
a
and finally

Ve (x) < max( sup V(xo Sl xo)e‘“,

0<s<i I

B
sup ¥V (xl +5 _’E:ﬂ) e k (ﬁ) oalh+h) e—ﬂ)
hss<h+h-£ ) /) a

which proves the result. []

2 The discrete algorithm

Let the exponential rate a be fixed and a discretization step 4 €]0,1/a] be
chosen.

Definition 2.3. We shall say that a lower semicontinuous function U > V is a
discrete descent function if from any xo € Dom(U), there exists a sequence
defined by the algorithm

xt=x & x! 1 = xlf‘ + hu" where u" ¢ B 3)
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satisfying
U(xh) < (1 — ah)? (U(xo) — v0) + 1o @)

The knowledge of such a discrete descent function U larger than or equal
to V provides a dlscrete “Montagnes Russes algorithm”, since any cluster
point of the sequence xp achieves a global minimum.

We shall provide a constructive formula providing both the smallest dis-
crete descent function larger than V and the algorithm converging to a global
minimum.

Let us set Vo” := ¥ and define recursively the sequence of functions ¥ by

Vi(x) = max(V,f'_,(x),l—_—IE (llll’elfl; V(x4 hu) — ahvo)) %)

Theorem 2.2. Let V be a nontrivial lower semicontinuous extended Jfunction as-
sumed to be bounded from below. Then there exists a function V. which is the
smallest lower semicontinuous discrete descent function larger than V, called the
optimal descent function of V.

It can be computed by the ““Viability Kernel Algorzthm’ which provides it as
a supremum of an increasing sequence of the functions VI

VE(x) == sup V() (6)
n=0
The set-valued map R" defined by
R*(x) := {ueB| V(x4 hu) = ing Vi‘c(x-i—hw)} 7
we

defines the “Montagnes Russes Algorithm”: From any xo € Dom(V%), a se-
quence defined by the Montagnes Russes algorithm

1’,'+1 -—x +hu"  where uheR”(x;’) (8)

satisfies
V(xy) < Vi (%)) < (1= ah)? (V¢ (x0) — v0) + v

Figure 1 shows some examples of computation of Lyapunov functions for
various original functions.

Proof: We consider the discrete set-valued dynamical system G": X x R ~
X x R defined by

G"(x,w) := (x + hB) x {w + ah(vg — w)}

and the closed subset A" := &p(V).
Any solution to the discrete set-valued dynamlcal system (x” P+ Wp +1) €

G"(x!',wh) starting at (xo, U(xo)) viable in &p(U) is obviously a *Solution to
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the algorithm (3) satisfying (4). Conversely, if U is a discrete descent function,
then its epigraph is a discrete viability domain of G": Indeed, if (x,w) €
Ep(U), then

(x + hu, w — ahw + ahvo)

= (x + hu, (1 — ah) V (x) + ahvo) + (0, (1 — ah)(w — V(x)))

€ &p(U) + {0} x Ry = &,(U)

Since the unit ball is compact, to say that the epigralzh of a lower semi-
continuous extended function U is a viability domain of G" amounts to saying

that

intl; U(x+ hu) < (1 —ah)U(x) + ahvo
ue

The solutions along which the function U decreases geometrically are given by

xt, ) = x} + hu" with uh e R"(xk) where

RMx) := {ueB| U(x + hu) =$2§; U(x+hw)}

If V is not a discrete descent function, then its epigraph contains its (dis-
crete) viability kernel, which is the largest closed (discrete) viable domain #
of G" contained in this epigraph. This viability kernel is actually the epigraph
of the function V” defined by

By o
Va(x): (x,})ngx

Indeed, since
Ep(VE) c Ao + {0} x Ry

it is therefore enough to show that A« + {0} x R, < #.. In fact, we prove
that if # = X x Ry is a closed viability domain of G*, then so is the subset

Mo = M+ {0} xR,
Let (x,w) belong to .#y. To see that G(x, w) N Mo # &, let us set

= inf A
Ua() (x,ll)e.ll

By assumption, there exists u € B such that (x + hu, (1 — ah) U.4(x)) + ahwp)
\ belongs to . so that

(> + hu, w — ahw + ahvo)

= (x + hu, (1 — ah) U4(x) + ahvo) + (0, (1 — ah)(w — U4(x))) e Mo
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It remains to prove formula (6), which is the “epigraphical version” of the
finite-difference approximation of the viability kernel introduced in 13, Saint-
Pierre] (see also section 4.5 of Viability theory, [1, Aubin]). Since V2 is a dis-
crete descent function larger than V, we see that we can associate with any x
an element u € B such that (x + hu, (1 — ah)V" + ahvy) belongs to the epi-
graph of V, so that

(i £ V(x+hu) - ahvo) <Vh(x)

ue

1—ah

and thus, such that V'{!(x) < V% (x). We thus check recursively that ¥/(x) <
V% (x), so that

sup Vi(x) < V! (x)
n>0
It remains to prove that ¥* := sup, ¥} is a discrete descent function. If

so, it will be larger than or equal to V%, and thus, equal.

By construction of the functions ¥}, we can associate with any x an ele-
ment u, € B such that

Va(x + huy) < (1 — ah) V¥(x) + ahvy
Since the unit ball B is compact, there exists a subsequence (again denoted

by) un converging to some # e B. The sequence of functions V! being
nondecreasing, we deduce that

lim inf ¥V (x + hu,) = sub V(x + ha) = V(x + hi))
n—c0 n
This implies that

inf Vi + hu) < (1 — ah) V() + ahog
ue

which proves the claim. []

The second question we may ask is the following: Is the limits of a sequence
of discrete optimal exponential Lyapunov functions VE an exponential Lyapu-
nov function larger than V?

It depends on what we understand as “limit”: the appropriate concept is
the one of lower epilimit defined in the following way:

Definition 2.3. The epigraph of the lower epilimit
limf, Vs

of a sequence of extended functions V, : X >R U {+w0} is the upper limit of
the epigraphs:

ép(lim},_, . V,) := Limsup,_, . &p(V;)

n—o0 " N
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One can check that
limf, ., Va(%o0) := Jim inf V,,(x)

and that if the sequence is increasing, that
limi%n_,go Vu(x0) = il;}()) Va(x0)

We refer to Chapter 7 of Set-valued analysis, [3, Aubin & Frankowska] for
further details on epigraphical convergence.

Meanwhile, we deduce from Theorem 4.5.2 of Viability theory, {1, Aubin]
that

Theorem 2.4. The lower epilimit of the sequence of optimal discrete descent
functions V(’,’c is an exponential Lyapunov function larger than V.

3 Implementation
Once the problem is discretized, we know that the algorithm

x£'+1 € x,’,' + hR”(xI',‘)
starting from a state xo such that V% (xp) < +oo converges to the global
minimum in the sense that

Vi < vEe) <(1- ah)P(VE (x0) — vo) + vo

As in the continuous case, this algorithm requires in principle an a priori
knowledge of the infimum to guarantee the convergence to a global minimum.
If vo < inf,ex V(x), then it is easy to prove that Vh(x) = +oo for every
x € Dom(V), and if vp > infye x V(x), then we observe that VE (x) = V(x) for
every x in the level set {x| V(x) < vo}.

In any case, if one does not know the infimum vy of the function ¥ in
advance, we can replace in the definition of the function VE at step x:”‘ the
exact infimum vy by the smallest value v, taken by the original function ¥ on
all the points which have been used up this time.

To implement this algorithm, we need also to compute V% at least at the
points xl’,’. But the computation of the optimal discrete descent function at a
point requires eventually the knowledge of every values of the original func-
tion V. This is natural because the knowledge of the global minimum requires
some global knowledge of the function V.

Hence, we shall approximate further the problem by replacing the optimal
discrete descent function V% by ¥V and applying the algorithm

h.n hn hy, hn
X1y € %"+ hRy (%)
where

Ri(x) == {ueBl Vi(x + hu) = inf V,f‘(x-l—hw)} 9)
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In this case, the knowledge of the function ¥} at a given point x requires
only the values of the original function ¥ on a neighborhood x + nhB of
radius nh around x.

For simplicty, we assume from now on that vy = 0.
We observe that we always have the estimates

1
Vix) < Vi (x) < T_—a,;Vnh(x)

and thus, that x minimizes V,! on the ball x+ hB if and only if V! (x) =

L Vh(x).
1-ah " n
If the function V[f’ is constant on the ball x + nAB, then we deduce that

Vo) = (g VEC9)

We deduce by induction that:

1 \ 1
p=s(l]‘}.l?,n m ulélpr V(x + hu) < Vn (x) < ‘(‘1—_—‘1};)—" V(JC)

We shall say that x is an a-local minimum of size nB for the discretization
step & if V}(x) < V2 |(x), because, in this case,

(1 —ah)Vi(x) < inf V(x4 hu)
We observe that if

VuenB, VI(x+hu)= Vi (x + hu)
then

V) = V(%)
and that |

VuenB, Ve(x+hu) < VI(x+ hu)

then we obtain recursively the formula

Vi(x) = 7 inf ¥V (x + hu)

1
(1 — ah)

In this case, x is an a-local minimum of size nB for the discretization
step A if

(1 —ah) ungB V(x+hu) < ME%HI)B V(x+ hu)
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We can reformulate this remark by saying that if inequality

1 .
m ulglnfB V(x -+ hu) < V: (x)

holds true, then there exists a point y € x + nhB such that V{(y) = V(»), at
which there exists a descent direction u such that V(y + hu) < (1 — ah)V(y).

If x is an a-local minimum, then we can write

1 . ah
Vi) = Vix) = = (ulelg Vi + hu) — V! (x)> 1= Vi(x)

so that if x minimizes ¥ on the ball x + AB, then

h oy — ah h
Vn—H (x) Vn (X) - 1 —ah Vn (X)

Assume that at the initial state xo, we have ¥(xo) = V%, (xo), we know
that for any x} € R#(x;), we have

1
m(Vf(xf') ~v9) < V}H{(x0) — v

Therefore, as long as V/(x") = V!, (xh), any x!,, € R}(x}) satisfies

Vi(xk) — oo < (1—al)(V(x)) —vo) < (1- ah)? (¥, (x0) — o)
If for some g we have 0 < V//(x) < V1, (x%), we know that x; is an a-local
minimum of size nB for the discretization step &

YueB, (l1—ah) V,f'(x;‘) < V,f’(x"l' + hu) + ahvgy

The algorithm stops there in this case.

These two modifications — replacing ¥* by V! and vy by v, — of the
theoretical algorithm do not guarantee anymore the convergence of the algo-
rithm to a global minimum.

Figure 2 shows an example of a trajectory converging towards the mini-
mum of a function.

Remark: Mathematical morphological tools
The recursive definition of the functions ¥} involves the operation

inf ¥ (x + hu)

ueB

which is very familiar in mathematical morphology: this is the erosion of the
function ¥ by the structuring element B. If B is a digital ball (the cube
[—a, —[—ac]l when X = R/ for instance), this is an operation which can be easily
digitalized.
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(b) Value of Liapunov function along trajectory

Fig. 2. Example of a trajectory converging towards the minimum of the function ¥ defined by
V(x1,%:) = 1 - cos(2v x} + xJ) cos(3V/x] + x3). Note that for implementing this algorithm, we
need to compute ¥’ at least at the points xp". But the knowledge of the function V} at a given
point x requires only the values of the original function ¥ on a neighborhood x + nhB of radius nh
around x.

Therefore, the “Montagnes Russes’ algorithm uses a sequence of succes-
sive erosions, each being multiplied by factor 7 := 1 /(1 — ah).

Each erosion “erases™ the basins of the local minima. The multiplication
by the factor # raises the local minima except the global one. The domain of
the optimal discrete descent function is then the basin of exponential attrac-
tion of the global minima.
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Abstract. Developing generic models to simulate complex behav-
iors is one of the great challenges of numerical simulation. We
present here a generic approach based on particle systems that has
proved to be efficient in various kinds of complex situations, such as
crowd simulation or airbag deployment. In crowd simulation each
particle represents one person of the crowd whose behavior is as-
signed according to the class it belongs to. In airbag deployment,
both the gas mixture and the bag are modeled by particles. In this
case, particles don't represent the molecules but abstract blocks
chosen to reflect the macroscopic behavior of the system. By de-
scribing these two concrete applications, we intend to illustrate how
our generic model can be successfully applied to a larger class of
problems. © 1997 SPIE and IS&T.

1 Introduction

1.1 Introduction and Objectives

This paper describes the use of particle systems as a generic
model for simulations of dynamic systems. Simulation is
one of the key problems in industry. The main objective is
to reduce cost, duration and danger generally related to
design, tests, and training of people. Starting from a given
system S, we wish to obtain a model M such that:

a. the model M is a reduction of the system: by reducing
the number of variables, one can achieve faster simu-
lations, and manipulate the equations in an easier
way;

b. the model M is an abstraction of the system: by re-

Paper RMI-04 received Oct. 15, 1996; revised manuscript received Nov. 22, 1996;
accepted for publication Nov. 22, 1996.
1017-9909/97/$10.00 © 1997 SPIE and IS&T.
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placing the real world by equations, one can predict
the evolution of the system starting from given initial
conditions;

c. the model M is simpler than the system itself: the
simplification allows us to handle the problem by fo-
cusing only on what is really important, leaving out
confusing details.

Properties of a good simulation model are:

a. the reduction conserves the essential properties of the
system,

b. the simplification does not alter the precision of the
results, which should be controilable;

c. the simulation parameters are easy to understand and
control; :

d. the model is able to give reliable predictions;

e. the model is able to adapt itself to system modifica-
tions.

There exist several approaches to modeling. These ap-
proaches can be divided in two classes: physically based
modeling, and abstract modeling. The main interest for
physically based modeling is that the degree of abstraction
is low: the model is given in the same language as the
system itself.

The same model can be physical for a given application,
and abstract for another. The computational fluid dynamics
(CFD) can be applied to compute some properties of the
flow field (such as velocities or heat transfer). In this case,
CFD is a physical model. On the other hand, if applied to
simulate car traffic, CFD is an abstract model. A model
with various applications is said to be generic.

The interest of generic models can be seen from two
points of view. The customer, who is in charge of the sys-
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Fig. 1 Particles moving in an external field. The fastest particles are the brightest.

tem S, does not have to learn anything outside of his do-
main of expertise. He can rely on the services from a spe-
cialized software company. The developer, who is in
charge of modeling, can amortize the heavy initial invest-
ment by recognizing the similarities of mathematical and
numerical problems.

Applications of simulations, ranging from physical phe-
nomena to virtual reality, are too numerous to be detailed
here. We would like to focus on what we think to be a
generic model for simulation, particle systems.

1.2 Particle Systems

Particle system technology addresses a growing need to
simulate complex systems for predicting real world perfor-
mance. The complex system is modeled as a collection of a
large number (typically millions) of constituents (par-
ticles). Particles interact among themselves, with other par-
ticle sources and with surrounding surfaces or obstacles.
They can be subject to external forces and coupled with a
surrounding medium (such as a fluid flow). The results can
then be output as a 3D rendered visual to view the system
simulation results. More or less complex and complete
models of particle systems have been developed, mainly for
two classes of applications: prediction and visualization of
physical phenomena, and computer graphics.

1.2.1 Prediction and visualization of physical
phenomena

The ability to follow the motion of many particles is crucial
to both theoretical and experimental studies. The simplest
idea is to use particles as cork tangle by the flow, moving in
an external field given by experimental or computed data

(Fig. 1).

Applications of partlclc systems cover a wide range of
physical phenomena plasma, astrophysics, phase transi-
tions are some examples. One can even think of gaining
insight to the early universe by visualizing for example the
parton distribution inside the proton during the process of
hadronization.>

Particles can be used in order to solve some fluid dy-
namics problems. To calculate the properties of turbulent
reactive flow fields, some authors have developed a class of
methods known as pdf (probability density function) which
aims to solve the transport equation for the velocity-
composmon joint pdf.* Lattice gas hydrodynamics is a
method aiming at solving the Nav1er—St0kes equation using
particles constrained to a lattice.> Hybrid models (particles
plus fluid) are becoming increasingly attractive.

1.2.2 Computer graphics

Particle systems were ﬁrst introduced in computer graphics
by W. T. Reeves in 19836 for the modeling and the visual-
ization of natural fuzzy phenomena such as clouds, water,
gases and fire. The principle consists of defining objects as
clouds of elementary primitives, the particles, assigning to
each of them physical attributes that determine their tem-
poral evolution in terms of physical laws. Major difficulties
are caused by the fact that modeling complex phenomena
implies the ability to treat a great number of particles in
interaction for many time steps.

Most of the studies on particle systems were initiated to
confer a more realistic aspect to the animation of such
fuzzy objects, by ennchmg the rendering algorlthms with
statlstlcal techniques,” elaborated light models® or motion
blur.’ Interesting results were also obtained by borrowing
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physical models to sculpt particle clouds.? Particle systems
are a very competitive field of research in computer graph-
ics.

1.3 Outline of the Paper

We want to introduce a new approach to particle systems,
which is described in Section 2. This approach allows us to
handle complex systems relying on Newton’s law (equation
of motion), mixed with interaction between particles. This
rather general approach is perfectly suited to model a wide
range of applications, abstract or physical. We will present
two of these applications: crowd simulation (Section 3) and
airbag deployment (Section 4). We will conclude (Section
5) by presenting work under study.

2 Particle Systems

2.1 A New Formalism

With the aim of explaining why we have designed a new
formalism, let us describe what is called a collisional sys-
tem, which are phenomena whose length scales are long
with respect to the mean separation of physical particles.

Let ' be the phase space dxdv=dx;...
dx,dv . ..dv,x; being space coordinates and v; the veloc-
ity coordinates. The description of the particle system is
formally given through transport equation applied to the
probability density f in I" space:

af _of

of Fof
7wt mtma ) )

where f(Xy,...XpsU s« Up.0)dxy...dx,dvy...dv, is
the probability that the system is in the volume [(x{,x;
+ dx;)...] of T space at time ¢, F is the total force (in-
ternal and external) applied at position (x,v). Equation (1)
is obtained from the definition of a hierarchy of distribution
functions starting from Liouville’s conservation equation
from probability densities in phase space, and integrating
over successively fewer particles coordinates. This equa-
tion thus relies on an appropriate mathematical description
of function f.

The left-hand side of equation (1) simply states that par-
ticles evolve according to Newton’s Laws (equations of
motion):

d

—x=v

dt

2

4 =F
7 (mv)=F.

The right-hand side of equation (1) (C(f)) formally ex-
presses the rate of changes of f due to collisions and simply
describes the effect of the graininess of the medium. If
C(f ) = 0, there are no collisions in the system, which then
satisfies the equations of motion (2). Differential equation
(1) is rather difficult to solve explicitly in the general case.
On the one hand, one has to find a stable numerical scheme
dealing with C(f ), and on the other hand, this numerical
scheme can be hard to put into play due to boundary con-
ditions on the mesh.

96/ Journal of Electronic Imaging / January 1997 / Vol. 6(1)

It is rather difficult to generalize equation (1) to take into
account other types of interactions such as for instance
chemical transformations. In order to deal with the com-
plexity of interactions, we have developed a formalism
based on the transfer matrix, which allows us to solve in a
stochastic way the transport equation. The essential idea is
to discretize the system in time, and then to construct a
Markov matrix (called the transfer matrix), which allows us
to pass the state vector from one time step to the following
time step. If there is no interaction, this approach amounts
to solving the Newtonian equations of motion. As soon as
there is some kind of interaction, the system can be solved
using realizations of the Markov chain that we construct by
our model. For this approach to be valid, the key point is to
consider a time step longer than the typical time of interac-
tion.

Note that particles are not merely infinitesimal points in
the phase space. Using differential cross section, we can
handle complex shapes by the transfer matrix, in a stochas-
tic way. The whole approach is thus very efficient to deal
with complex scenes, especially if we remark that for short
range interactions, the transfer matrix is quasi diagonal. Us-
ing this property, one can implement on computers an €x-
tremely fast software, able to manipulate several thousands
of objects interacting in real time. ArSciMed has developed
such a software, called Kinema/Sim. We will next describe
it more precisely.

2.2 Generic Description

Kinema/Sim is a software system allowing the statistical
simulation of the dynamic behavior of a generic particle
system. It is based on Newtonian mechanics and transfer
matrix theory.

A particle system is defined by:

o the description of the particle types,

o the particle sources which generate the particles,

» the 3D geometry, including obstacles,

« the evolution of these particles within the system.

To define each one of the system parameters, Kinema/Sim
can use probability distributions or time-dependent func-
tions. Once the system is defined, the simulation consists in
computing the evolution of its state over the time steps.

2.2.1 Description of particles

A particle object belongs to a class (or type) defined by the
following physical characteristics:

» its mass, leading to a gravitational force, F = m § s
o itg lifetime (deterministic or stochastic): leading to ei-
ther disintegration or disappearance,

« its diffusion properties (random perturbations of posi-
tion, velocity and/or acceleration),

» its charges, i.e. coefficients with respect to the electric
and magnetic fields:

Fo n=qeE(x;.y:% B+ G0 X BX;. Y1235,

o its transformation probabilities for particles closer
than a given range,




its drag with respect to the surrounding medium:
Fy= mk(vi_vmedium)

its values for interactions with surfaces (stick, bounce,
penetrate, transform, etc.),

its cross section (for self collisions),

o its visualization parameters: color, size, transparency,
trail memory, geometry.

All parameters may vary either as a function of absolute
time, of the particle’s age after leaving the source, or fol-
lowing a population curve. For example, one can introduce
a white noise or have particle mass vary as a Gaussian
distribution.

2.2.2 Generation of particles

Generating particles implies the description of an initial
state for the system, by defining particles of different types,
with imposed positions and velocities. During the simula-
tion, the interaction of these particles with the system will
change these initial values, but the user will have the pos-
sibility to create new particles, with defined position and
velocities.

The particles are generated by sources. Sources are geo-
metric entities emitting only one type of particle. They are
defined by:

o their position in the space and their dimension
0,1,2,3),

o their size and geometry,

» their rate of emission as a function of time,

» their direction of emission: a given vector, a local nor-
mal to a surface, or a given trajectory.

Sources can move during time, following user-defined tra-
jectories.

2.2.3 Evolution of particles

The evolution of position, velocity or type of a particle can
be affected by:

e spontaneous transformations of particles,
« gravitational, electromagnetic fields,
» drag fields defined in the system,

» elastic or inelastic collisions with other particles or
with obstacles,

o transformations or reactions for particles closer than a
given range.

The inertial mass gives the relation between the accelera-
tion of the particle and the sum of the forces exerted on it,
before the introduction of the random effects:

5=m~'>, F+random

where
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are the forces exerted on the particle,
is the mass of the particle,

<: 3 T

is the acceleration of the particle.

It is then possible for the system to compute the position of
the particle from the knowledge of its initial position and
velocity and the definition of forces at each time step.

Velocity:v = f v+ random,

Position:x = [ v +random.

Newtonian mechanics is here complemented by the transfer
matrix formalism. It adds randomness to the trajectories of
particles, by defining states associated with the system, and
matrix functions that define the probability to evolve from a
state i at time ¢ to a state {" at time ¢ + dtf. Transitions of
state correspond to certain events that can be global (inde-
pendent of particle position) or associated to local distribu-
tions of particles. Particle positions, velocities and accelera-
tions can also be perturbed by noises.
The state (state;) of particle i at time ¢:

statei( l‘) = [xiy iZis Uin yl_Uzi, ‘Vx,- ’Yyi ’)’z,.,

color(r,g,b); ,a; ;mass; ,charges; ;size; ,lifetime; ,... .]

where

X;¥;Z; is position of particle i,

v is the velocity of the particle,
¥ is the acceleration of the particle,
a is the transparency of the particle.

The key parameter set by the user is the range (R) of forces
since particles are assumed to interact only within a certain
range. The user also sets the size of the simulation time step
At where Kinema outputs its data to the user. Kinema di-
vides the simulation space into a 3D grid structure or a set
of cubes of size R. If two particles are more than one cube
(R) away from each other then interactions are ignored.

The state of particle i at the first time step (z + At¢) com-
puted by Kinema is then based on the state of all the par-
ticles N, within range R of i to take into account interac-
tions:

state;(t+At)=f[state; 5 ; N, within-Ri(t)]'

Therefore, if the simulation has a particle velocity and a
simulation time step such that vA¢ = R, Kinema may de-
cide to compute internally at a much finer time step. This
guarantees that one does not miss the effect of particle in-
teractions between fast moving particles that occur between
successive simulation time steps.

The overall state of the system (STATE) at time (¢
+ At) is then based on the collection of all the individual
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particle states at time ¢. In Kinema, local effects in a part of
the system can therefore propagate through the entire sys-
tem.

Kinema is more than just a deterministic model since it
can compute the probability of an event happening since
there is jitter, noise and other randomness. If there is a
non-zero probability, then a random number generator de-
termines the outcome. The user has control over the seed
used in the random number generator.

For example:

Prob[ state;(r+ Az) =STATE]
=flstateys,...i....N, within—g (1), STATE].

Transfer matrices are also used for the modeling of colli-
sions between particles. Collisions concern sets of particles
and are defined by:

o classes and numbers of particles that can collide,

» cross sections: function that define the probabilities
for a particle to emerge in given directions and speeds.

Kinema/Sim allows the modification of the particles’
state when they meet an obstacle. This obstacle object is
defined as surfaces or volumes (2D or 3D) that are capable
of reacting, as the particles do, to the forces in the system,
but that possess, in addition, a rigidity or elasticity aspect.
The user controls the outcome of particle-obstacle encoun-
ters by first defining the obstacle by:

e its position in the 3D space,
s its geometry,

® its size,

s jts orientation.

The effect of an obstacle can either be global (same effect
for all the particles) or specific to each type of particle. The
user then sets the different available transformation op-
tions:

« bounce or rebound (the surface may also rebound due
to momentum transfer),
final_ 7 _ initial
v =dyy
U|t|'ma1: _dlvfxua]
o adherence or painting where the particle sticks to the
surface and follows its motion,

o disappearance with or without decay into other par-
ticles,

s ignoring the surface or volume for transmission
through the obstacle.

One can also specify equations to define various drag fields,
gravitational, and electromagnetic fields. These fields can
depend on position and time and operate in a grid basis, or
on the actual position of the particle.

When the available information is partly kinetic and
partly dynamic, Kinema allows the user to draw the aver-
age trajectories. The forces generating those trajectories
will be calculated by the computer.
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Kinema/Sim can display and store the following data
from a simulation:

o individual: data concerning particles characterized by
their identity number or their behavior,

« collective: data concerning classes or an ensemble of

objects,

statistical: such as average velocities and the moments

of their distributions,

o local: such as the number and velocities of particles
traversing the surface of a detector,

images including volume rendering.

2.2.4 Parallelism

Because of the parallel nature of particle systems, they are
well suited for highly parallel computation. First studies
were proposed on a Connection Machine system,9 but these
studies did not take into account interactions between par-
ticles.

The approach that we developed at ArSciMed'® consists
of three steps: distribute the 3D world between a set of
processors, then compute the motion of particles on each
processor, and finally make the particles migrate from one
processor to another. The principal difficulty in this algo-
rithm lay in the dynamic allocation of the 3D world on the
set of processors: we want this allocation to preserve on the
same processor (or at least on neighbor processor) neigh-
boring particles. We solve this difficulty by a linear con-
figuration of the set of processors, and by a dynamic load
balancing.

A PVM (parallel virtual machine) version of this algo-
rithm has been developed allowing a quasi linear accelera-
tion in performance as a function of the number of proces-
sors. A multithread version is available for shared memory
processor (such as multi-pentium on Windows NT) that
leads to linear acceleration.'"

2.2.5 Advantages of the Kinema approach to
particle systems

For the needs of scientists and engineers, Kinema/Sim of-
fers powerful capabilities in visual modeling, statistical
data collection and time-dependent parameter set ups. In
addition, Kinema/Sim offers a number of specific advan-
tages over competing particle systems. The system can:

o handle collisions of particles with objects, surfaces
and with other particles,

« handle external forces such as the effect of gravity,
electricity or magnetic fields on particles or surfaces,

o handle the influence of surrounding medium such as
air, water or viscous fluids, with turbulent dynamics,

s manage the interaction of up to typically hundreds of
thousands of particles interactively,

o provide volume rendering, in terms of the spatial den-
sity distribution of particle data, from either Kinema
or other systems,

o manage the position of sources and emission param-
eters (rate, direction, speed).
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This generic approach can be applied to a wide variety of
problems (Fig. 2). We will first describe the crowd simula-
tion.

3 People Flow Simulation

Most methods of people flow simulations are based on a
global approach. By calculating the projected surface on
the ground occupied by each individual, and the surface of
the ground, it is possible to compute the density of the
stream:

n
_ 218

o

©)

where
§; is the projected size on ground of individual i,

o is the total surface on ground occupied by the
stream.

Empirical laws were obtained, linking velocities of pe-
destrians to density. For very simple situations like streams
of pedestrians along a straight way,'? the average velocity
is given by:

|5(p)||=57—217p+434p%—380p> + 112p*. @

It becomes much more difficult, even unrealistic, to adopt
such an approach to model complex situations, when the
pedestrian flow is constrained by a complex environment
and when the flow is composed of heterogeneous individu-
als. Besides, the microscopic approach allows us to simu-
late detailed behavior patterns, not just averages. The abun-
dant empirical data is however very useful for the
validation and the calibration of the microscopic model.

Another approach consists of adapting hydrodynamics
tools by considering pedestrian stream as a fluid.'’ The
main problem is that human flow is not a continuous me-
dium (i.e. people in a small area can have very different
behaviors) and the corresponding fluid is therefore highly
turbulent. Classical fluid dynamics is not very useful in
these cases.

3.1 From a Physical Particle System to the
Simulation of Pedestrian Flow

Particle systems were adapted for studying crowd move-
ments. For low density situations, Henderson'* used a
model based on kinetic theory of gases. For a high density
situation, Peschl’® modeled panic situations by particle
streams.

In our approach, human beings are modeled as an inter-
acting set of particles.!® It was necessary to consider inter-
actions between particles so that the human behavior could
be simulated.

Using our three-dimensional particle system, we have
developed a ‘2 1/2-dimensional’’ (where space is a collec-
tion of planes) version called ‘‘Kinema/Way’’ for the simu-
lation of pedestrian flows.

Since the motion of people is based on Newtonian
forces, the definition of these forces is critical to our model.

Forces can be constant for the whole system (for instance
gravity) or caused by the presence of local fields restricted
to one plane of the 2 1/2 system:

f‘(x,y)=Resulting force at point(x,y).
I:I(x,y)=vector field at point(x,y).

q=charge. 5)

Fields are defined by placing different kinds of objects in
the scene. They can be “‘attracts,” or ‘‘local lines.”” If A is

" an attract positioned at point Pa with a field strength of

Sa, a particle at position P will be subject to the field:

- -

. P,—P

1 +£lf[Pa"‘P|2

=

with
E,= attraction field,
as=attenuation factor (drop rate).

Local lines correspond to geometric segments and define
““line’’ fields by the formula:

. ~ T(x.y)
B y)=Sn T a dtny)? ’

where

T(x ,¥) is the tangent to the local line L(x,y) at point
(x,y),
dxy) = min (xI-x0)*+0I-y)?,
(lyheL(xy)
L(x,y) is the nearest local line from point (x,y).

The application of constant forces to particles would
cause constant accelerations, not constant velocities as
needed for human displacements. We have introduced,
therefore, a parameter to simulate the friction. This is done
by decreasing the acceleration of a particle by a vector D
which is calculated from the previous velocity of the par-
ticle [Eq. (8)]. For a constant acceleration, the velocity of a
particle will increase until a constant velocity is reached

D(r+dt)=—kv(z) (®)

where
¥(1)is the particle velocity,
k is the friction coefficient.

Particles enter the scene by sources that are described by
their shapes, positions, directions and rates of emission.
The “‘2 1/2-dimensional’’ scene is composed of a set of
2-D planes that can be animated in the 3-D system by ani-
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(b)

Fig. 2 Two examples of particle system applications. (a) Simulation of rain on a car with moving

windshield wipers. {(b) Simulation of urban pollution.

mation of positions and rotations of references. The motion
of the particles is restricted to these planes with possible
communications between them by predefined regions. This
enables the simulation of places with several stairs, moving
staircases, vehicles, etc.

3.2 Human Behavior and External Parameters

The simulation of pedestrian behavior has proven to be a
very useful application of interactive particle systems. We
have found many analogies between the displacement of
particles in such a model and the behavior of individuals in
a crowd. The concept of particle classes is translated to
people with a similar behavior pattern, so that defining a set
of characteristics enable us to take into account very large
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numbers of people with minimal effort. Typically, classes
of people can be assigned to sex, age, strength, and physi-
cal state.

The use of physical parameters for the definition of the
different classes makes them easy to adjust because they
correspond to real characteristics of people. For instance
mass associated to a class of particle will correspond to the
real mass of the individual. Another example concerns the
typical behavior of drunken fans (encountered in a concert
or during sports events), modeled by adding noise to their
positions or their velocities.

In a public gathering, people often come in groups,
which try to stay together. The cohesion force of such
groups may vary from rather weak values (fans of the same
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sports team), to a very high one (family). For the sake of
the simulation, we treat the latter case as an extended indi-
vidual, while the visnalization takes into account all the
individual members. A weakly coupled group may be
treated as one unit as long as the separating forces are
smaller than a given threshold. Beyond that threshold, the
group may break up to a set of smaller groups and indi-
viduals.
We divided the modeling of human behavior into:

o reflex (immediate) reactions,

» inference reactions {decisions), resulting from knowl-
edge of the scene.

3.3 Modeling of Reflex Reactions

In our model, reflexes concern the ability to avoid other
people as well as obstacles detected at the last moment.
These reflexes must be interpreted as very local phenom-
ena.

The way people avoid each other depends on the den-
sity. For low density, the direction of motion is activated at
a certain distance and collisions are rather exceptional; as
the density increases, the collisions become more frequent
and can involve more than two individuals at a time. Our
avoidance model can treat situations where n1 + n2 per-
sons of two different classes are confronted. It consists of
defining a collision rate and a distance that determine the
vicinity for avoidance detection (Fig. 3). The number n of
avoidance events during time dt, between two particles of
velocities 171 and i'fz from classes 1,2 in the area S can be
computed as (for instance):

n=dt rate vv,S|v,—v, ©)

with
rate=collision rate
v; =number of particle of class i present in S/S.

The velocity directions are modified during avoidance by
an angle depending on the relative directions of incoming
particles. The speed may be modified by a multiplicative
parameter.

Collisions between more than two particles can be taken
into account in two ways:

» A sequence of two particle collisions during adjacent
time steps. '

» A sudden event involving all participants at the same
time.

In all cases, the time sampling of the simulation must be
adjusted according to the pedestrian velocity in such a way
that collisions ‘are not missed because of intervals that are
too long. The way people avoid solid obstacles like walls is
modeled as a real collision:

Ot agrer)= &~ 0 (Epegore) NN+ BG (thefore) - T)T.  (10)

N is the Normal to obstacle at intersection point.

T is the Tangent to obstacle at intersection point.
« is the normal damping coefficient.
B is the tangent damping coefficient.

3.4 Modeling of Decisions

A more difficult problem is to model human decisions.
These decisions depend on a set of parameters: destination,
density, intended duration of stay at a particular point, pres-
ence of obstacles.

Our approach consists of associating with each person a
state that defines his or her reaction as a function of what he
or she perceives. Some of the perceived events can be
translated to displacements and others can produce a
change of state. A state is composed of a set of charges that
we call “‘decision charges’’ that are influenced by fields
that we call “‘decision fields.”” These notions can be com-
pared to electric charges and electric fields in the sense that
a particle with an electric charge will be influenced by an
electric field in the same way as a person with a “‘decision
charge’’ confronted to a “‘decision field.”” The reaction
strength is proportional to the charge, so that different be-
havior may be obtained by adjusting charges. Members of
class 1 may react very strongly to the corresponding deci-
sion field while those of class 2 may be indifferent to it.

The notion of goal is well represented by decision fields.
As we have seen an electric field can be defined by particu-
lar objects that we called “‘attracts.”’ In the same way we

‘can add ‘“decision attracts’’ to the system that will materi-

alize goals for individuals who have a nonvanishing *‘de-
cision charge.”” It is thereby possible to define paths asso-
ciated with people by specifying key positions (attracts).

Another important point is the way people avoid ob-
stacles. The reflex reaction was defined before. Under nor-
mal conditions, we use the concept of ‘‘local line’” fields.
To each obstacle in the system, a set of local lines will be
associated, creating a ‘‘local decision field’’ parallel to the
tangent to the obstacle (Fig. 4).

The local field is calculated by

ad r—f(x Y )
E(x.y)=7777 (11)
YT T d a7
where
d, is an attenuation factor (drop rate)
d is the distance to the nearest obstacle and
people

T(x,y) is the direction of tangent to nearest obstacle
of position (x,y).

3.5 Critical Situations

A situation becomes critical when the decisions of an indi-
vidual person can no longer influence directly his or her
motion. It occurs when the density becomes very high, at
least Jocally. Depending on the particular situation, and on
the characteristics of the classes of people present, they will
try to avoid the density peaks. The avoidance of a local
high density place is simulated by assigning to this place a
negative attract field that repulses arriving people.
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Fig. 3 Effects of decreasing vicinity in collisions.

Inside the high density region, people will try to escape
in the direction of lower density. This is simulated by ap-
plying a force depending on the density gradient:

Fop=k,VD (12)

with
k., =coefficient of strength of individual
D =depsity field.

An evacuation planning can be validated by tracing “‘local
lines™ corresponding to emergency paths. By disabling all
charges, except for the one that corresponds to these ‘“local
lines” as evacuation begins, people will act as in real situ-
ations trying to reach exits following indicated paths. The
evacuation process can thus be observed in detail, including
its duration and the presence of dangerous passages.

3.6 Visualization

All simulations can be visualized with different quality of
rendering. People can be displayed as simple geometric
primitives or following much more realistic models with
shading. It is also possible to display trajectories by record-
ing previous positions. The point of view can be fixed or in
motion and can be associated to a selected person so that
the simulation is perceived from inside the crowd.

3.7 Conclusions

Section 3 describes a microscopic approach to the simula-
tion of human behavior in the presence of crowds. Each
person is a simulation object (“‘particle’’), so that the
crowd becomes an interacting particle system. The only
elements of that behavior which are directly simulated are
those related to motion (position, velocity, acceleration).
The formalism used is Newtonian mechanics, enhanced
with events to which probability laws are assigned. It is
therefore rather similar to a Boltzmann gas.

The main advantage of a microscopic model is that it
provides a unified framework for dealing with situations
that may differ significantly in the macroscopic (or global)
appearance.

We have applied the above model to various types of
situations, ranging from leisure shopping to catastrophic
overdense crowds. The behavioral parameters are easy to
adjust because they correspond to intuitive values for hu-

102/ Journal of Electronic Imaging / January 1997/ Vol. 6(1)

0

Obstacle
Obstacle

fo) positions of people
-——> direction of local decision field

Fig. 4 Direction of local decision fields as a function of the ob-
stacles.

mans. The validation of these parameters is done by apply-
ing the model to well-known situations and with iterative
adjustment of behavior until empirical results are repro-
duced.

In the context of emergency, we typically obtain results
that are more realistic compared with that which could be
calculated with a global approach, which tends to underes-
timate the risks. This can be explained by the complexity of
the system that engenders cheetic events. We have ob-
served phenomena like shock waves and very local high
densities that represent extreme danger, in situations judged
acceptable by a global approach.

Our software CPU performance has permitted the com-
putation of simulations with up to 45,000 persons during
real periods of about one hour, in approximately 7 hours
computing time on a Silicon Graphics Indigo R4000 work-
station. In addition, we have develog)ed a parallel version of
the software that we have applied"’ to the real-time simu-
lation of the Stade de France. It was demonstrated at the
Imagina 96 show, using an SP2 with 16 processors R6000
Power 2, and allowed 45,000 persons per second to move
in an immersive environment provided by the software
3DIX from IBM (Fig. 5).

Future works will permit the association of the initial
conditions of the simulation with a real situation as per-
ceived by sensors and cameras. Computing the evolution of
the system faster than real time will allow testing different
solutions to prevent catastrophes, or to help alleviate them
while they are occurring.

4 Airbag Deployment Simulation

41 Introduction

ArSciMed is currently applying its particle-based simula-
tion and visualization tools to the airbag deployment prob-
lem.

Both the gas mixture and the bag are considered to be
composed of a large number of particles. Our simulation
software can handle an a priori unlimited number of par-
ticles. That number is however bounded by considerations
related to the available memory and CPU performance. It is
therefore clear that the particles are not to be identified with
the molecules of the gas or the bag. They are instead ab-
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stract building blocks, whose dynamics are chosen to re-
flect the macroscopic behavior of the system.

The natural time scales of the molecular system are of
the order of 1078 seconds, the typical time interval between
collisions. For obvious reasons, the time step of the simu-
lation must be significantly longer. Each of these steps
should therefore integrate the effects of many molecular
events.

Our approach consists therefore of replacing the molecu-
lar content of the system by a different ‘‘microscopic’” de-
scription, whose coarse-grained space-time behavior ap-
proximates the macroscopic dynamics. Note that the gas in
the bag is a mixture, and contains various molar fractions
r(i) of gas type i.

We have developed a hybrid approach in order to solve
this problem. We will first see that neither the simple ideal
gas approach, nor the particle system approach are suffi-
cient by themselves to give a solution to the bag deploy-
ment problem. The first one is too simple to give realistic
results, while the second one can be heavily computational
time expensive. So we will combine these two approaches
to obtain a valid model.

4.2 Phase Space

Define the phase space element d7 = d°xd*vdT;,,, where
x is the positions, v the velocities, and d7;,, corresponds to
the internal degrees of freedom (such as rotations, vibra-
tions or orbital excitations).

The spatial distribution of the molecules is given by

N(x,t)=Jf(x,F,t)dF, where dl'=d’vdr,.

4.3 Ideal Gas in Thermal Equilibrium

Assume a homogeneous gas entirely composed of mol-
ecules of type i in thermal equilibrium. The equation of
state is PV = NkT, where k is the Boltzmann constant, P
the pressure, V the volume, N the number of particles, T
the temperature.

The velocity distribution of the particles follows the
Maxwell-Boltzmann expression:

fo=n exp(—ml2kT(v— vo)?),

where n is the particle density N/V, m the mass of the
molecule, v, the translational velocity of the gas.

The most probable velocity (relative to the overall trans-
lational velocity) is 0 = v,,, = V2kT/m, and the root mean

m
square velocity iS v s = V3kT/m.

4.4 The Particle System Approach

We wish to represent the gas mixture by a system contain-
ing as many particles as can be reasonably handled by a
computer, say a few millions, while keeping the macro-
scopic quantities approximately unchanged. There is a good
theoretical reason to believe that this can be done. The
opposite would imply that by purely macroscopic measure-
ments one would be able to derive the real number of mol-
ecules in the system, and therefore infer the atomic scale of
mass, which is contrary to physical intuition.

Assume that we replace N molecules by N, particles,
and define z = N/N,. By fixing the total mass, which is a
macroscopic quantity, we find m, = zm. Apply this trans-
formation to the ideal gas. If we fix P, V, and T, we find
that in the particle system world, the Boltzmann constant
would be much higher, k, = zk. This is not surprising, since
k in the real world is a tiny number when expressed in
MACroscopic units.

Another, more fundamental, justification for the above
relation, and which defines its limitations and extensions,
results from the definition of the entropy: S = k log(N,),
N, being the number of microscopic states compatible with
the macroscopic quantities.

For large N, log(N,) is proportional to N, and we con-
firm the relation k, = zk. Corrections to the simple propor-
tionality rule lead to a systematic expansion of the particle
system parameters as a function of z~ L

To leading order, we find k,/m, = kim, and the
Maxwell-Boltzmann distribution is therefore identical for
the gas and its particle system representation.

4.4.1 Particle collisions

The mean free path is the average distance a molecule trav-
els between two successive collisions, and 7 the average
time between collisions. They are given by:

)\_1\/;1 _)\
“iN2ne T o

o is the cross section for inter-molecular collisions, which
is of the order of the surface area of the molecule.

Typical values for these parameters for light molecules
in room temperature are:

7~10° m/sec,A~10"° m,7~10"% sec.

As we have seen, a particle system representation would
have the same average velocities. We should now deduce
the values for the collision parameters for that system,
based on macroscopic quantities related to particle colli-
sions. Those quantities are the thermal conductivity and the
viscosity.

Define the energy flux as @;Qg St

q= j evfdl,

where € is the energy. Assume that a small volume of the
gas is moving as a whole with velocity V. We place our-
selves in a co-moving frame, ( )'. The velocities of the
individual molecules in the original frame are v = v’ + V.

v’ follows the Maxwell-Boltzmann distribution. The
energies in the two frames are related by

e=¢€' +mV-v' + 1 mV2
Therefore
q=V(} pV2+W), W=Ne+P

is the heat function per unit volume.
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IDM 3D Interaction Accclerater=

Fig. 5 Simulation of a crowd inside the Stade de France by the software Kinema/Way (Architects:

Macary, Zublena, Regembal, Costantini).

The thermal conductivity « is macroscopically defined
implicitly by

q=—«VT.

The transport equation implies k « kv/o, which should be
equal to the particle system value «, « k,0,/0,. We find
0,=20.

Similarly, the kinetic theory determines a value for the
viscosity 7 « mi/o. From the macroscopic constraint 77,
= 7, werederive o, = z0.

The mean free path \,x1/(n,0,)=1/(no), and
therefore A ,=\. Since the average velocities are the same
for the molecules and the corresponding particles, we con-
cluder,= 7.

The above results imply that it is possible to represent
the gas as a particle system with a relatively small number
of particles, but that the natural length and time scales of
the problem would be unchanged. The time interval for the
simulation is 30 msec. With a time step of 1078 seconds,
we would have about a million steps, which we cannot
achieve in a reasonable computing time. We are therefore
forced to sum over the individual collisions and develop a
time integrated formalism.

Our approach is to consider the gas as a hybrid system
containing a fluid in the classical sense (obeying fluid dy-
namics equations of motion) and particles in interaction
with it. Both elements correspond to the same physical sys-
tem, but they represent different aspects of it. The fluid
represents the part which is in thermal equilibrium, while
the particles are not necessarily in such a state. This ap-
proach has the advantage of dealing both with the turbulent
and near-equilibrium aspects of the problem. As our re-
search evolves, we will fine-tune our model so that it de-
scribes as closely as possible the gas in the bag.
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4.5 The Hybrid Approach

Consider each one of the gases in the mixture to be made
up of two components:

1. A gas in thermal equilibrium (the ‘‘background gas,”’
or BG). Since we will not treat the BG particles in-
dividually, we may as well take them to be the con-
stituent molecules.

2. A collection of heavy particles (the “‘particle gas,”’
or PG) interacting often with the background gas and
rarely among themselves. Each one of the heavy par-
ticles represents a large number of molecules. The
interactions are insufficient for achieving thermal
equilibrium for the heavy particles. The definition of
the two components is local, so that transitions be-
tween the states are allowed.

4.5.1 Collision in a mixture of gas

We compute the change of momentum between the particle
gas and the background gas, which act as a drag force on
the heavy particle. This leads us to define the drag coeffi-
cient K implicitly by

fdrag= _K(VP—-VBG)s

where K can be expressed in terms of microscopic quanti-
ties. With typical values for an ideal gas, and Np ~ 10°, we
get K ~ 1 (Joule-sec)/(meter)?.

4.5.2 The background as an ideal gas

The simplest imaginable fluid model is an ideal gas at rest.
This model may naturally be improved later, but it is al-
ready highly nontrivial in the hybrid model context. We
therefore assume vgg = 0, and that the temperature, pres-




From crowd simulation to airbag deployment

sures and densities are homogeneous in the bag. These
quantities will be determined by the ideal gas equation of
state, as well as the energy balance.

The BG molecules are assumed, due to the large
Maxwell—-Boltzmann velocities, to fill ‘instantaneously the
available (unfolded) volume in the bag. In the hybrid gas
model, we are not obliged to represent the BG by particles.
It is, however, rather convenient to do so for ‘‘accounting’’
purposes (counting the number of particles, the total mass,
energy, etc.). We take the ratio z to be the same for BG and
PG.

The total internal energy of a gas constituent in BG is
therefore

Egg(i)= 3 zNpg(i)kTxg-

From the emission rate function of the gas generator one

may in principle (we will return to this question later) infer’

a partition:

AN(i) ~
R(i)=Rgg(i)=Rpg(1).R(i)= A7

In the course of the bag inflation, particles of the PG, once
their velocities become small enough (say p% of the most
probable Maxwell-Boltzmann velocity) may be identified
with the BG. This will not modify the total number of
particles. The energy of a PG particle is the sum of its
kinetic energy and the internal energy of the gas it repre-
sents:

L1 . 2,3 .
EPG(1)=§zm(t)E UP+5ZNpc(l)kTPG-

If p% < 100%, the second term on the RHS is much
smaller than the first, a necessary condition for the particle
representation to be coherent.

4.5.3 The dynamics of the surface

The surface of the bag is a collection of strong interacting
particles. The force on a given surface element is the sum
of four contributions:

F= FBG+ FPG+ FSC+ FEL .

The first three contributions are computed as follows:

» Fpg is the pressure force exerted by the background
gas.

» Fpg is computed from the total momentum transferred
to the surface by the particle collisions and from the
local pressure force exerted by the PG particles.

o Fy is the force exerted on the surface element due to
collisions with other surface elements. It is computed
from the momentum transferred during the collision of
the two surfaces, assuming damping coefficients for
the relative normal and tangential relative velocities.

o Fy; is the elastic force due to local deformations of
the surface. We apply the theory of finite element
shells as the theoretical framework for the elastic
properties of the bag.

4.6 Conclusion

We enclose (Fig. 6) one simulation of a hybrid system. Let
us notice that the particle approach is very different from
the ideal gas one, both numerically and visually.

Very little information is known on the airbag problem.
This is one case where most of what we can learn comes
from visual experiments (analysis of ultra-high speed
films). Indeed, as the airbag deployment is extremely fast, it
is rather impossible to measure such parameters as tem-
perature inside the bag for instance. It is then useful to

" obtain films, both from simulations and from experiments,

and to compare them.

The hybrid approach is a framework which allows us to
link continuously macroscopic models to microscopic ones.
In the airbag problem, the beginning of the inflation is
highly unstable, and particle systems are well suited to pro-
vide a model for highly unstable problems. On the other
hand, the end of the inflation is correctly represented by an
ideal gas model. We thus use the model which is the most
adapted at a given time during the simulation.

5 Further Simulations under Development

Particle systems can be used to solve a wide variety of
problems. Medical nuclear imaging and surface etching are
two of the fields we are currently investigating.

Medical nuclear imaging consists of representing the
distribution of radioactive sources into a human organism.
A weakly radioactive product is injected into the patient’s
body, in association with a molecular tracer, that has a ten-
dency to concentrate in the studied organ. A scintillation
camera can then detect the gamma-ray photons emitted by
the radioactive sources, and represent their topology in an
image. A simulation of the acquisition process has been
developed, using ArSciMed’s particle system.'® Obstacles
and sources management facilities enable us to model dif-
ferent kinds of phantoms (scattering environment shapes
and radioactive spatial distributions). A photon transport
model based on quantumn physics has been added. It de-
scribes interaction processes between photons and material
described by atomical or molecular properties. These ef-
fects are photoelectric absorption, incoherent scattering
(Compton effect) and coherent scattering. The results we
obtain compare well to other published simulation results,
due to an explicit collimator simulation that we have devel-
oped. These results will soon be extended by experiments
with various sources of different radioactivity levels, and of
more complex shape.

Simulation of semiconductor device manufacturing, and
in particular surface etching, is another field where the
same kind of technology can be applied. Numerous pro-
cesses involved in the deposition and etching of thin films
and bulk materials rely on the use of a flux of particles
(ions, electrons, photons,...). This is particularly the case in
the fields of microelectronics, nanotechnology and optics.
A currently interesting case is the etching of a substrate
using plasma or ion-beams to erode the substrate (physical
erosion) and/or the existence of a chemical reaction (chemi-
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Fig. 6 Simulation of an airbag deployment. The gas inside the bag is a hybrid particle system, and the
surface of the bag is a collection of particles with strong interactions.

cal etching). The introduction of a surface reactive species
may be used to increase the etch rate and to control the etch
anisotropy. The theory of surface erosion due to impact of
energetic ions (Sigmund theory) has been confirmed in
various cases by experiments and Monte-Carlo simulations.
The physical mechanisms involved in reactive gas etching
are complex and theoretical modeling remains difficult.
This is why existing simulation tools take them into ac-
count from an empirical standpoint. A first interesting and
practical objective is to be able to simulate the evolution of
a surface of arbitrary topography under the action of an ion
beam, taking into account characteristics of the beam (en-
ergy, energy dispersion, angular dispersion,...).

€ Conclusions

We have developed in this paper a generic method based on
particle systems, which aims at simulating complex sys-
tems of dynamic interacting objects. We have shown, by
two examples of applications, that this method can be ap-
plied to a wide class of problems, ranging from physical to
abstract modeling. This method is particularly suited to
problems where microscopic behavior is well known, but
where macroscopic equations are difficult to obtain. Strong
results are obtained when the particle system technology is
combined in a hybrid approach with for instance a compu-
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tational fluid dynamics approach: each method can give the
best of itself in their own domain of validation, giving birth
to a powerful third approach.

It is our opinion that technology based on differential
equations (such as, for instance Navier-Stokes equations)
are used extensively because these methods are well
known; their studies began more than two hundred years
ago, when computers did not exist. One can study a differ-
ential equation using pen and paper. But it is rather difficult
to link such a differential equation to a computer. On the
other hand, the human mind is unable to follow three inter-
acting objects, due to their chaotic behavior. But one can
easily build programs aiming at doing simulated experi-
ments. As an example, parallel particle systems are natural.
Thus, we believe that particle systems can be used exten-
sively, due to the large number of problems they can ad-
dress, and to their friendship with computers.
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tion (‘““HEUS: Hot Early Universe Soup’’) have been pro-
duced by ArSciMed on the basis of its particle system.
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