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An Improved Observation Model for
Super-Resolution under Affine Motion

Gilles Rochefort, Frédéric Champagnat, Guy Le Besnerais, and Jean-Francois Giovannelli

Abstract— Super-resolution (SR) techniques make use of sub-
pixel shifts between frames in an image sequence to yield higher-
resolution images. We propose an original observation model
devoted to the case of non isometric inter-frame motion as
required, for instance, in the context of airborne imaging sensors.
First, we describe how the main observation models used in
the SR literature deal with motion, and we explain why they
are not suited for non isometric motion. Then, we propose an
extension of the observation model by Elad and Feuer adapted to
affine motion. This model is based on a decomposition of affine
transforms into successive shear transforms, each one efficiently
implemented by row-by-row or column-by-column 1-D affine
transforms.

We demonstrate on synthetic and real sequences that our
observation model incorporated in a SR reconstruction technique
leads to better results in the case of variable scale motions and
it provides equivalent results in the case of isometric motions.

Index Terms— Super-Resolution, affine motion, multi-pass in-
terpolation, bspline, Lo approximation, projection, inverse prob-
lems, convex regularization.

I. INTRODUCTION

UPER-RESOLUTION (SR) techniques aim at estimating

a high-resolution image with reduced aliasing, from a
sequence of low-resolution (LR) frames. The literature on the
subject is abundant, see [1-6] and [7] for a recent review.

Our contribution deals with the class of ‘“Reconstruction
Based” SR techniques [8], which can be split in three steps: (1)
estimation of inter-frame motion; (2) computation of a linear
observation model including motion; (3) regularized inversion
of the linear system.

We are interested in aerial imaging applications which often
imply non isometric motion, as in the case of an airborne
imager getting closer to the observed scene, see Sec. VI-C.
Such non isometric motion fields can be estimated using
various registration algorithms [9, 10]. Hence, step (1) is not
the main issue in this context. Concerning step (2), the SR
literature is rather allusive: most published methods implicitly
assume translational motion [1,4,6,8, 11-19]. To the best of
our knowledge, if some former contributions apply to affine
[20,21] or even homographic [9,22] warps none of them
explicitly deals with variable distance from scene to imager
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in step (2)'. So,we focus on the construction of a proper
observation model for affine motions with consistent scale
changes.

Section II proposes a bibliographical survey of the SR
literature, with respect to the observation model. It is shown
that published methods are not adapted to the considered
context: its main difficulty is to account for non translational
motion in a tractable discrete model.

Section III is devoted to the proposed new observation
model that extends the popular one introduced by Elad and
Feuer [5] by replacing traditional pointwise interpolation by
techniques based on Lo approximations and shifted bspline
basis [23]. We show that our model leads to a more precise
prediction of LR frame pixel values, in the case of a combined
zoom and rotation motion.

Further comparisons are performed on SR reconstruction
results. Section IV briefly introduces the convex regularization
framework that we use for SR reconstruction. Such techniques
are customary in various inverse problems, including restau-
ration and SR [2, 5, 24].

We use the resulting SR reconstruction technique to com-
pare various observation models on synthetic (section V)
and real (section VI) datasets. These experiments consistently
show that our model is more accurate and reliable for se-
quences combining rotation and important scale changes, at
the expense of a moderate increase of computational load.

II. ANALYSIS OF PREVIOUS WORKS

This section describes several published observation models
differing by the way they account for motion through numer-
ical approximations.

A. Notations

Uppercase letters (resp. boldface letters) refer to matrices
(resp. vectors). m = [n,l]' € Z? and ¢ = [i,j]' € Z* denote
discrete positions of LR and SR pixels and u = [u,v]* € R?
denotes real positions on the image plane. An image x can
be described by a continuous field z(u), or by a sequence
of discrete coefficients x [¢] and as lexicographycally ordered
vector x.

B. General observation model

Let z(.) be the input irradiance field and y[.] be the
observed LR image. y is a sampled version of the convolution
of = with an optical point spread function (PSF) h,, integrated

't is addressed formally in [3] but not implemented nor demonstrated.



AN IMPROVED OBSERVATION MODEL FOR SUPER-RESOLUTION UNDER AFFINE MOTION. VERSION OF JULY 13, 2018 2

by a box function I corresponding to the collecting surface of
the detector:

y[n]:/R2(ho*x)(nA—v)I(v) dv,

with m € Ga. Ga C Z2 is the set of discrete detectors
positions on a grid with step A. Let us denote N = Card (Ga)
the number of LR pixels in frame .

It is customary to define a joint optics-plus-detector PSF
h=he, 1 sothat y [n] = hxz (nA).

SR methods rely on the usual “brightness constancy” as-
sumption which is the basis of many motion estimation tech-
niques, in particular intensity-based techniques [10]. In this
framework, SR methods assume that temporally neighboring
frames originate from a unique input = up to a warp modeling
relative sensor/scene motion.

Let yx (k = 1,..., K) denote a neighboring frame of y,
then (i) yj, derives from an irradiance field zj, through sensor
h: y [n] = h*xz (nA) and (i) there is a warp wy, such that
xy (u) = x (wg (u)). Combination of both equalities yields

Yk [n] = h* (xowy) (nA) . (1

The next step is discretization of x for the sake of numerical
computations. The irradiance field = is decomposed on a
shifted kernel basis:

z(u) =

> alile(w—id). 2
N
Gas is the SR grid, with step A’ and M = Card (Ga/) is
the number of SR pixels. The ratio L = A/A’ defines the
practical magnification factor (PMF) of the SR process: it is
usually greater than two. Note that it does not imply that the
actual resolution improvement is as high as the PMF.

¢ may be any classical interpolation kernel (box function,
bilinear, ...). In the sequel, we use bspline basis, which encom-
pass most classical interpolation schemes [25-27]. Then ¢ is a
separable bspline kernel of order m: ¢ (u) = 5™ (u) 8™ (v),
where 5™ (u) is the (m+1)-fold convolution of a box function.

Let us rewrite (1) as:

yr [n] = /]R2 z (wi(v)) h(nA —v) dv. 3)

Injecting (2) yields:
yeln] = Y axln,dald],

1E€EG A
ax[n, i = / o (Wi (v) — i) h(nA —v)dv. (4
RZ

Using lexicographically ordered vector representation of im-
ages, a matrix formulation writes:

Y = Ak:c

The whole matrix A = [A; ... Ak]|' is huge with dimensions
KN x M, M ~ NL?. For instance, a sequence of K =
10 frames, with dimensions N = 1282 and a PMF L = 2
leads to about 43 billion elements. Of course, Ay is a sparse
matrix with a band structure, as practical PSF h spreads over
two or three LR pixels at most and ¢ is a separable bspline

kernel, whose support is (m + 1)A’ wide. However, the cost
of computing all non zero elements of A remains formidable
for general warps wy.

In the following, we review landmark SR papers with
respect to the way they compute A. We discuss three main
approaches:

1) Exact computation for special cases of wy, h and ¢

2) Convolve-then-Warp approximation

3) Warp-then-Convolve approximation

C. Exact computation

Exact computation is tractable only in two special cases:

« motion is a global translation;

e @ and h are both box functions and motion is affine.

1) Global translation: When wy, is a global translation,
(1) leads to a simple convolution. Indeed, replacing wy(u) =
u — T, inside (4) yields:

ag[n, i) = o *x h (NA —iA" — 14) ,
and the observation equation writes:

yr [n] :Zg@*h(nLA'—iA’—Tk)x[i] = gp ¥z [nL]
K2
with gi(u) = (p*h)(uA’ — 7). For a given integer L, each
LR frame appears as a subsampled version of the discrete
convolution of z with kernel g.

Most of the early SR literature is devoted to this global
translation case. It naturally leads to either Fourier tech-
niques [1,11,12] or equivalent multi-channel filtering tech-
niques [13] based on the generalized Papoulis theorem [28].

2) ¢ and h are box funtions: When ¢ and h are box
functions [2,3,29], (4) is the common area between each
detector and each warped SR pixel (see Fig. 1).

N\

< [,
L] 3\
NP
i
N 5 LA
|
3
NP A
L1

"

Fig. . ¢ and h are assumed box functions and motion is a rotation.
The fine grid represents the grid of SR pixels, while the coarse one
is the grid of detectors. Common areas between the middle detector
and each SR pixel are colored.

Such an observation model has been proposed by Stark and
Oskoui for rotational warps [29]. No indication is provided in
their paper about the numerical computation of the relevant
intersections.

Assuming affine motion, each warped SR pixel is a convex
polygon, and computation of the intersection of two convex
polygons can be performed by a “clipping” algorithm such
as [30]. However, this technique is not suitable for SR purpose
due to its high computational burden.
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D. Convolve-then-Warp

Let us start back from (3). In practice, h scarcely spreads
over two or three LR pixels, thus integral (3) extends on a
neighborhood V (nA) around nA. Let us assume that wy, (u)
can be locally approximated by a translation:

wi(u) ~ wg(nA) + u — nA | u eV (nA).

Then (3) can be approximated by a convolution:
yi [n] = (h* z)(wi(nA)) . %)

Such an approximation is depicted in Fig. 2. The center of
each detector is well positioned, but the integration area is a
rough approximation. Such an approximation leads to errors
in the integration step for large rotations and scale variations.

1

(a) Correct detector integration area.
warp and resulting detector area.

Fig. 2. llustration of the Convolve-then-Warp approximate model (5): white
regions are not accounted for, gray ones are integrated once while black
regions are incorrectly integrated in two detectors output.

The discretization of this model is much easier than the
general model (1), because it is an irregular sampling of a
convolution. The simple model of Schultz and Stevenson [2]
is a special case of this approach when h and ¢ are both
box functions and the detector center positions are rounded
to integer multiples of A’. Then, the components ay[n, ¢] are
binary, with ai[n, 4] = 1 if the i-th SR pixel is inside the n-th
detector area, approximated as in Fig. 2(b). A refined version
of this model is used in [31].

As a conclusion, this model appears computationnaly at-
tractive but is clearly unable to correctly account for non-
translational warps because of the fixed detector geometry (see
Fig. 2).

E. Warp-then-Convolve

This approach consists in using the convolution relation-
ship (1) between the data y, and the warped SR image
zk(u) = x(wg(w)). If a discretized version &) of x; over
the A’-shifted basis functions ¢ is available, (1) can easily be
discretized as:

Y = DH.’f}k

where D is a down-sampling matrix, and H is the convolution
matrix associated to the optical-plus-detector response.

(b) Local translation approximation of the

Now the main problem is to construct &j; using the dis-
cretized SR image coefficients z[.] defined by (2). A first
approach may be to enforce equality on the grid nodes:

Yo Elile(@-9)Aa)= Y elile(w(a) —5A").
iegA/ ngA/

If ¢ is a bspline of order m = 0 or m = 1, it satisfies
w((l—=1)A) =6 —1), and we get:

> x il (we (1A) - §A) . 6)

JEGAr

In other words, the discrete coefficient 2 [I] is the interpo-
lation of x at point wy, (IA). If ¢ is a box function (m = 0),
(6) reduces to nearest neighbor interpolation and if ¢ is a
triangle function (m = 1), (6) is a bilinear interpolation.

Interpolation (6) leads to the definition of a warping matrix
Wi, which summarizes all motion information. The complete
image formation model is then:

y, = DHW,x. @)

This is exactly the formulation proposed by Elad and Feuer [5,
21] referred to as “E&F” model in the following.

Fig. 3 summarizes this method: starting from the sought
SR image Fig. 3(a), an intermediate high-resolution image
Fig. 3(b) is constructed with a pixel grid aligned with the
detector grid using either bilinear or nearest neighbor interpo-
lation. Integration and subsampling are then straightforward.

(b)

Fig. 3. Illustration of the E&F model: starting from SR image
Fig. 3(a) an intermediate high-resolution image Fig. 3(b) is con-
structed with a pixel grid aligned with the y;, data detector grid using
either bilinear or nearest neighbor interpolation.

Compared to the previous approach, the E&F model seems
much more precise for rotation warps. However, one can
foresee aliasing problems in the case of scale changes due
to the pointwise interpolation step (6).

III. PROPOSED OBSERVATION MODEL

This Section introduces an original observation model ex-
tending the E&F model, by replacing pointwise interpola-
tion (6) by a technique based on Ly function approximation.

Dealing with variable scale using Lo approximation tech-
nique is not easy in 2-D. In this context, Catmull and
Smith [32] introduced an efficient decomposition of 2-D affine
transforms into separable 1-D transforms.

First, we will introduce such decomposition into our obser-
vation model. Next, we focus on the 1-D operations in order to
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achieve a Ly approximation on a bspline basis. Finally, we will
compare observation models and point out the improvements
provided by the proposed model.

A. Warping decomposition

Thevenaz and Unser showed that 2-D invertible affine
transforms can be handled by two-shear or three-shear decom-
positions [23]. Each shear is a vertical or horizontal coordinate
transform such as:

Sulu) = <a02 %) (Z) * <€02> ’
Su(u) = (51 681) (Z) - (2) '

Both ot them are one-dimensional affine transforms separably
applied row-by-row or column-by-column. As an example,
Fig. 4 provides the intermediate images resulting of each shear
of the following affine motion and decomposition:

(—11/4 71//146> - <—11/4 1(/)2> (é 1{4) '

®)

€))

(10)

(a) Original image. (

(c) Vertical shear.

Fig. 4. Example: the affine transform of (10) is decomposed in two
steps. Each step is a shear along one coordinate image axe.

This decomposition is not unique, and the choice of one
particular decomposition impacts the transformed image qual-
ity. Catmull and Smith [32] mentioned the bottleneck problem
resulting from a down-scaling in one pass followed by up-
scaling in the next pass, resulting in a loss of resolution.

Many approaches have been proposed to minimize image
degradation, depending on the considered transform. For in-
tance, Paeth [33] has proposed a three-shear decomposition
well-suited for rotation. Other authors refer to N-pass decom-
position [34].

Multi-pass interpolation techniques and their limitations are
outside the scope of this article, the reader can refer to [34]
for deeper insight. In the sequel, we consider only two-shear
decompositions. In this case, there are two possibilities, and
one selects the decomposition which reduces the involved
scale variations [23, 35, 36].

B. I-D affine transform approximation

Let us consider a 1-D affine transform with parameters
(a,7): f(u) = f((u—7)/a). With this notation, a < 1 yields
a signal reduction and a > 1 yields a signal magnification.
It is clear that signal reduction may result in important dis-
cretization errors (as naive subsampling undergoes a frequency
aliasing).

In the line of Thevenaz et al. [23], let us decompose f on
the 1-D shifted bspline basis:

= > fKB"(u—k),

keGq

(1)

where Gg C Z denotes the set of @) discrete samples (for
instance the set of pixels of a row of the image). We search
for coefficients g [k], k € G such that g, defined by

> gkl (u—k),

keGq

g(u) = (12)

achieves the best approximation of f ((u —7)/a) in the Lo
sense, i.e. minimization of [ [f ((u —7)/a) — g(w)]? du. The

approximation is the orthogonal projection, and the optimal
coefficients satisfy the orthogonality equations

(s -1 (=) o -n) =0

for k € Gg. Replacing (11) and (12) in (13) yields:
Z gli Z Fla&(k

with ﬂg” (u) = 8™ (u/a) /a and " = B G™. The so-called
bi-kernel £ encodes the geometric transform of a sample to
a different scale space [36], and actually provides an optimal
anti-aliasing filter [37]. If a # 1, £* is not a bspline kernel,
but remains a piecewise polynomial. A closed form expression
of £7* is provided in [35].

Finally, the sought coefficients g [k] write:

a Y fIEM

leGq

13)

ﬁ2m+1 - T — Cll) )

glk] = (B>~ k—r—al) |, (14)

and the inverse filter (527’L+1)_1 can be efficiently imple-
mented through recursive filtering [27].

To sum up the process, given a sequence of signal samples
f (k) and 1-D affine transform parameters (a,7) the approxi-
mation goes through four steps:

1) compute bspline coefficients f [k];

2) compute the bi-kernel function &£*;

3) compute g [k] with (14) and

4) post-filter coefficients g [k] to get samples values g (k).

Remark 1 — The first and the last steps are not required
when the bspline representation order m is 0 or 1. Indeed,
for these particular orders, bspline coefficients are identical
to image samples.

Remark 2 — In the translation case (a = 1), " (u) =
32"+ (). The Ly approximation then turns to a mere bspline
interpolation with a higher-order kernel.
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C. A two-shear observation model

In the proposed model, the k-th observed frame y, (in
vector notation) writes:

y, = DHS;S?x

where S} and S} are shear operators. Each operator is an 1-
D row-by-row (or column-by-column) affine transform, which
is implemented as described in the previous section. In the
sequel, we use an order-O bpline kernel. Thus, as a conse-
quence of Remark 2, our model is identical to that of Elad
and Feuer with bilinear interpolation for translation motion.
The resulting model is denoted TSO for Two-Shear model with
0-order bspline basis.

D. Comparing observation models

In this section we illustrate the quality of each observation
model compared to exact computation in the special case of h
and ¢ chosen as box functions and affine motion, see Sec. II-C.

We represent the components of the observation matrix
ay [n,e] for a unique LR pixel in the form of an image
patch. This patch displays the weighting coefficients actually
applied on SR image pixels for computing one LR detector
output. The first rows of the following three arrays of patches
show the exact components for rotation angles {0, 15, 30,45}
degrees, scale variations of 1 (Fig. 5(a)), 1.2 (Fig. 5(b)) and
1.6 (Fig. 5(c)) and a PMF of 5.

The remaining patches show the approximated components
obtained using Elad and Feuer models with nearest neighbor
interpolation (E&FO) or with bilinear interpolation (E&F1) and
the proposed model (TSO0).

The Convolve-then-Warp model is not presented, but would
lead to the same image patch made of a fixed size square
pattern, whatever rotation and zoom factor.

Fig. 5 shows that E&FO is always incorrect even with
limited rotations and/or scale variations. It is noticeable that
in Fig. 5(a), some coefficients value reach two: some SR
pixels (white colored) contribute twice to the detector. Such
a behavior has been previously observed for the “Convolve-
then-Warp” approach, see Fig. 2(b). In the same time several
SR pixels do not contribute at all to the detector.

E&F1 provides a better approximation. Still, contributions
of SR pixels are not uniform inside the detector footprint. This
is already observed in Fig. 5(a) with rotations, and takes more
importance in Fig. 5(b) and Fig. 5(c) with scale factor and
rotations. As E&F1 contributions appear as a smoothed version
of E&FO ones, one wonders if a bicubic interpolation (E&F3)
would give correct contributions. This is not the case, as shown
by Fig. 6. Moreover, as bicubic interpolation does not preserve
positivity, the E&F3 model exhibits negative contributions.

Whatever the interpolation method, Elad and Feuer models
become inaccurate for rotations as low as 15° and zooming
factor as low as 20%.

In contrast, the TSO observation model ensures that the
contributions of SR pixels are uniform inside the detector
footprint whatever rotation and/or scale factor being applied.
Remaining differences between exact contributions and TSO
ones are located on the detector boundaries: TSO contributions
spread on slightly more than true ones.

True

E&F0

E&F1

TS0

Bl
@
&
IS
o

(a) scale factor 1.

True

E&F0

E&F1

ju(=|nim
'DOED
EIEEES
EEEC

(b) scale factor 1.2.

True

E&F0

E&F1

TS0

@
&

45 degrees

(c) scale factor 1.6.

Fig. 5. Comparing observation models: SR pixels contributions to
one detector. Scale factor 1.0 5(a), 1.2 5(b) and 1.6 5(c), rotation
up to 45 degrees. The models being compared come from the E&F
methods with order O (E&FO) and order 1 (E&F1) interpolation. The
last line shows the proposed TSO model, while the first line shows
the true contributions.
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E&F1

E&F3

15

Fig. 6. Comparing E&F1 model with an Elad and Feuer model with
bicubic interpolation (E&F3), Scale factor 1.6 and rotation up to 45
degrees.

0

30 45 dearees

IV. REGULARIZATION FRAMEWORK

The inversion step is tackled within a classical convex
regularization framework [24] as in many other SR methods [2,
5]. The estimated SR image is the (possibly constrained)
minimizer of a regularized criterion based on observation
model and convex edge-preserving penalty:

I@) =Y [y — AP + 23" v, (vla) .
k

ceC

(15)

The first term of criterion (15) is a least squares discrepancy
between data and model output: A°4¢! stands for the obser-
vation model which is to be inverted and derives either from
the Elad and Feuer approach or from the proposed model of
Sec. III. The second term is a convex penalization term [24].
C is the set of cliques: it consists of all subsets of three
adjacent pixels either horizontal, vertical and diagonal. v,
denotes a second-order difference operator within clique c.
The regularization parameter A\ balances the trade-off between
the two terms of the criterion. The potential v, is chosen as
a Lo — Ly hyperbolic function:

¢s(u):2s(\/m—s).

Parameter s sets the threshold between the quadratic behavior
(u < s), which allows small pixel differences smoothing and
the linear behavior (u > s) aimed at preserving edges. The
latter part produces a lower penalization of large differences
compared to a pure quadratic function. i has the same
qualitative behaviour as the Huber function of [2].

Finally, for a given observation model, four solutions are
computed, based on:

o quadratic penalty

o quadratic penalty and positivity constraint

« hyperbolic penalty

« hyperbolic penalty and positivity constraint.

The criterion is convex by construction and has a unique
global minimizer. The optimization can be achieved by iter-
ative gradient-like techniques [38] and we resort to a limited
memory BFGS algorithm?. It belongs to the class of Quasi-
Newton algorithms which only requires evaluation of the cri-
terion and its gradient (no second order derivative is explicitly
needed) and it is known to have better convergence properties
than gradient algorithms.

2The implementation named VMLMB, has been provided by Eric Thiébaut
(thiebaut@obs.univ-lyon1.fr).

V. EXPERIMENTS WITH SYNTHETIC SEQUENCES

This section presents the experiments conducted on syn-
thetic sequences. Using synthetic sequences has two main
advantages:

e Sequences are built from a reference HR image which
will later be used as a reference to compare with recon-
structed SR images;

« We control all imaging parameters: noise level, PSF and
image size. Motion is exactly known too.

A. Synthetic data

To generate a sequence of LR frames, the observation
matrices Ay are computed exactly according to assumptions
of Sec. II-C that ¢ and h are box functions. As previously
said, such a technique is very time consuming.

We simulate a smooth motion with a rotation up to 20
degrees and a zoom factor up to 1.6. Each frame is 128 x 128
and is built from a 256 x 256 HR reference image. In Fig. 7(a),
we show the first, middle and last frame generated from the

reference HR image Lena.

(a) Lena.

]

(b) Mire.

Fig. 7. We show the first, middle and last frame of sequences
Lena 7(a) and Mire 7(b).

We also generate another sequence from a bitonal calibra-
tion pattern named Mire. The first, middle and last image of
the sequence are shown in Fig. 7(b).

B. Results

Four regularized solutions and three observation models
(E&FO, E&F1 and TSO) are then available. Hence, we finally
compare performances of 12 SR settings with respect to the
reference HR image, by means of the PSNR (Peak Signal-
to-Noise Ratio, PSNR= 201log;, (255/+/¢), with e the mean
square error). For each setting, the presented result is obtained
with the best regularization parameter (i.e., selected to get the
highest reachable PSNR).

Let us first deal with the “Lena” sequence of Fig. 7(a).
Fig. 8(a) sums up the performance levels which have been
achieved. First note that, on these relatively smooth images,
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various regularization settings lead to similar performances,
and unconstrained quadratic regularization suffices to obtain
good results. But we observe strong differences between
observation models. On the average, there is an improvement
from 4 dB (noisy case) up to 6 dB (no noise) between the
E&FO and the E&F1 models. Moreover, there is also a gain
of 1 to 6 dB between the E&F1 model and the TSO model.

A2 74

43,00 3236 42:69
42,00 M |
41,00 —
40,00 L
39,00 —
38,00 —
37,00 36 36.89 36,
36,00 }
35,00
34,00 —
33,00 —
32,00 —
31,00 . . . L
L2 L2* L2L1

PSNR(dB)

(a) No additional noise.

35,99

34,7

W
w
Ex
i
T3

31,8 31,6 31,5 31,8
31,50 . : . L

L2 L2* L2L1 L2L1*
(b) Additive Gaussian noise of variance 2.

Fig. 8. SR performances on the Lena sequence. Three observation
models (E&FO (cyan), E&F1 (magenta) and TSO (yellow)) and four
criteria are compared. Solutions which use a positivity constraint are
labelled with a star.

Fig. 10 illustrates the differences between reconstructed SR
images, using Lo — L; regularization and positivity constraint,
depending on the chosen observation model. Once again,
the reconstructed images shown on the first row of Fig. 10
have been obtained with the best regularization parameters.
The E&F reconstructions are slightly more blurred than the
SR image obtained from the proposed TSO model. This is
confirmed in the lower row which shows image error with
respect to the reference HR image: the TSO observation model
yields a better reconstruction on high frequency areas, like the
feather on the hat or the eyes.

We have also measured CPU time on a Pentium 4 at
2.66GHz. For this particular sequence, one iteration duration
is respectively 2.0 and 4.6 seconds, for E&F0 and E&F1
methods. Our model requires 5.9 seconds per iteration. All
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Fig. 9. SR Performances on sequence Mire. Three observation
models (E&FO (cyan), E&F1 (magenta) and TSO (yellow)) and four
criteria are compared. Positivity constraint is labelled with a star.

methods converge roughly with the same number of iterations.
Hence our method is 30% more time consuming than E&FI.

We now consider the bitonal “Mire” sequence shown in
Fig. 7(b). Results are reported in Fig. 9 in terms of PSNR. As
expected, this high-frequency sequence leads to much stronger
differences between regularization terms and constraints.

As previously, strong differences are observed between ob-
servation models. On the average, there is a gain improvement
from 5 dB (noisy case) up to 10 dB (no noise) between E&F1
model and TSO. Such an improvement is due to the high
contrast in Mire image. Indeed, we know from Sec. III-D
that our observation model does not induce non homogeneous
contributions in the case of variable scale motion. The induced
errors in the reconstructions are more visible in high contrast
areas, see Fig. 11 compared to Fig. 10.

We also note that, in the noiseless case, hyperbolic regu-
larization does not improve performances of E&F methods,
whereas we notice a gain up to 1 dB on the average, with the
TS0 model.

E&F reconstructions are much more noisy than the one
obtained with the TSO model. Let us recall that these recon-
struction are obtained with a regularization parameter adjusted
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Fig. 10.

First row, reconstructed SR images. From left to right: E&F0, E&F1 and TSO observation model. All reconstructions are performed

with a hyperbolic regularization and positivity constraint. Second row: differences between HR reference image and reconstructed SR images.

to get the better PSNR w.r.t. the reference HR image. The
selected regularization parameter is lower (10~%) with the TS0
model than with E&F models (10~3). This might indicate
that the more precise the model is the less it is necessary
to regularize. In other words, regularization compensates for
model errors which are lower with the proposed TS0 model.

By using synthetic sequences with rotational and variable
scale motion, we have shown that the TSO observation model
leads to better reconstructed SR images than E&F methods,
whatever the regularization involved.

As a general comment, it should be emphasized that perfor-
mances are much more sensitive to a change of observation
model than to a change of regularization. In other words, a
good choice of the observation model leads to much higher
improvement than changing the regularization term, at least in
the context of rotation and scale variation explored here.

VI. EXPERIMENTS ON REAL SEQUENCES

In this section, we compare observation models on real
sequences. We first discuss prior assumptions on the sequences
with an emphasis on motion modelization and estimation, then
we present the results obtained on two real datasets.

A. General assumptions and motion estimation

SR requires the knowledge of the sensor response and of the
motion field between frames. We use the common box function
model for the PSF. Note that all the tested observation models
can accomodate a more general PSF.

We restrict our experiments to affine motion between
frames, since the proposed TSO model is limited to these
motion fields. Affine model accurately describes the motion

of a planar scene through orthographic projection [39]. Such
assumptions are usually not valid on the whole field of view
(except in special purpose experiments, see VI-B), nevertheless
the affine motion model is often a good local approximation
of complex motion fields [9], valid in a restricted part of
the image support (see an example in the aerial sequence of
Sec. VI-C).

We focus on sequences which exhibit large affine motions,
with total zoom factor greater than 1.4 and rotations higher
than 20 degrees (with inter-frame zoom up to 1.2 and rotation
5 degrees). Note that such experimental settings are not
considered in the previous papers on SR, even those which
address the non translational context [9,22].

The first problem is to register each image of the sequence
with respect to the reference image (usually the more resolved
one). In this context, direct intensity based methods, which
minimize a DFD (displaced frame difference) criterion are
subject to false local minima, even using a multiresolution
approach. This is due to the sensitivity of DFD criterion with
respect to large rotational and scale changes. Hence, we use a
two-step approach:

1) compute a rough affine motion from scale-invariant
keypoints matching;

2) refine the affine model using multiresolution DFD min-
imization on a restricted part of the image.

The first step uses Scale-Invariant Fast Transform (SIFT)
keypoints of D. Lowe [40]. We match hundreds of keypoints
between the considered frame and the reference one by SIFT
descriptor correlation, then we robustly fit an affine model on
selected matches using a crude rejection threshold. The second
step is essentially a domestic version of the pyramidal image
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(a) E&FO.

Fig. 11.

(b) E&F1.

(c) TSO.

Top-left parts of SR reconstructed images with hyperbolic regularization and positivity constraint. 11(a): E&F0 model, 11(b):

E&F1, and 11(c): proposed TSO model. Parameters have been adjusted to get the best PSNR w.r.t. HR reference image.

registration method of Thevenaz et al. [10].

B. Lab tests

We made several SR experiments by using sequences of a
bitonal resolution chart printed on an A4 paper sheet observed
with a AVT-046B SVGA Marlin B/W camera. We acquired
image sequences with variable inter-frame translation, rotation
and zoom factor: some examples are shown in Fig. 12.
Each frame of a sequence is registered with respect to the
reference frame as explained in the previous section. We
ran SR reconstructions with the three concurrent observation
models and quadratic or hyperbolic regularization, subject
to positivity constraint. For each setting, several values of
the regularization parameter have been tried. Indeed, most
of the time there is a certain range of (low) values of the
parameter where differences between methods can easily be
observed, whereas above some regularization strength, all
methods become equivalent and yield an oversmoothed result.

| ; EE]_lil]iE[?

—
—
=

1

=
=]
f— 1

b -

Fig. 12. A sample of frames of the resolution chart, for various
rotations and zoom factors, left column shows a zoom on the region
used for further SR comparison. Up: reference frame, which is the
most resolved one.

As a first example, we process a purely translational se-
quence, using 7 frames with a PMF L = 3 and a quadratic

regularization: comparison on a small (240 x 240) region is
shown in figure 13, for a low value of A\ = 7.1073. As
expected, in this case E&F1 and TSO lead to quasi-identical
results (PSNR = 68dB) whatever the parameter \, while E&F0
shows some instability for low A.

Fig. 13. Reconstruction results with PMF L = 3 using 7 frames with
global translation motion, in an under-regularized quadratic setting,
A = 7.102. From left to right: E&F0, E&F1 and TSO models.

Fig. 14 and Fig. 15 show compared SR results on 7 frames
of a sequence with both rotation (up to 25 degrees) and
zoom (there is a factor 1.5 between the reference image
and the farthest view). We use either quadratic regularization
(upper part of the figures) or hyperbolic regularization with a
threshold parameter s = 10 (lower part).

For a low value of the regularization parameter (A =
1073 with quadratic term and A = 3.10~3 with hyperbolic
regularization), see Fig. 14, E&F0 and E&F1 suffer from
artifacts in the form of a pseudo-periodic texture, which is
of high amplitude in E&FO and less important, but manifest,
in E&F1. Not surprisingly, this phenomenon is amplified
by the hyperbolic regularization. For the same regularization
parameter, TSO does not encounter such instabilities, but
exhibits ripples which are typical of an under-regularized
quadratic solution, and appear amplified by the hyperbolic
edge-preserving potential.

For a more balanced value of the regularization parameter,
see Fig. 15, E&FO is still clearly degraded by instabilities.
E&F1 and TSO are now very close, but a careful examination
of both solutions reveals that small amplitude artifacts remain
in the E&F1 reconstruction.

C. Aerial sequence

Fig. 16 displays the first and the last frames of an infrared
sequence captured by an array sensor mounted on an airborne
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Fig. 14. Reconstruction results with PMF L = 3 using 7 frames with
zoom and rotations, in an under-regularized setting. Up: quadratic
regularization, A = 10~%. Down: hyperbolic regularization, s = 10,
A = 3.10"2. From left to right: E&F0, E&F1 and TSO models.
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Fig. 15. Reconstruction results with PMF L = 3 using 7 frames
with zoom and rotations, using a balanced regularization strength. Up:
quadratic regularization, A = 10™2. Down: hyperbolic regularization,
s = 10, A = 3.1072. From left to right: E&F0, E&F1 and TS0
models.

platform. As the plane gets closer to the scene, the last frame
is the most resolved one and is chosen as the reference frame.
The scene is a harbour with the sea and waterfront in the
foreground, a building with a vertical antenna in the middle
and a series of cans lined up in the background. Two ships
are present in the right low part of the last frame. Because of
perspective effects — the lowest part of the frame is closer to
the sensor than the upper part — apparent motion is closer to
an homography than an affinity. From the first frame to the
reference one, the lower part (resp. upper part) of the field of
view is magnified with a factor about 1.4 (resp. 1.6). Therefore
our method can only be applied to small regions of the frames.

Two regions are considered in the sequel: (i) in the upper
part of the scene, the lined-up cans that remain unresolved in
the reference frame (see Fig. 17) and (ii) in the right low part
of the scene, the waterfront and the ships, see Fig. 20.

We considered five frames of the sequence, Fig. 16 displays
two of them. As already described, motion is estimated using
SIFT on the whole sequence then the intensity based method
of [10] is used to refine the SIFT estimate in each region.

SR reconstruction is performed with the algorithms of
Sec. V-A, with quadratic regularization (s = co) and positivity
constraint. PMF L = 2 along both image axis.

(a) First frame.

(b) Last frame.

Fig. 16. IR sequence captured by an airborne sensor, motion resuts
from variable distance and small rotation.

Fig. 17. Detail of the last (reference) frame. Lined-up cans zoomed up twice
using bilinear interpolation. The cans are not resolved. The black vertical line
in the low middle of the image is the antenna on the building seen in Fig. 16.

D. Upper region

The observation models are compared through the SR
reconstructions in Fig. 18.
The image quality in Fig. 18 gradually increases from the
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Fig. 18. Reconstructions obtained through E&FO (top image) , E&F1 (middle
image) and TSO (bottom image) observation model. A = 5.1073.

top image (E&FO) to the bottom image (TSO model). Even if
the latter is still not a high quality image, the improvement
in resolution enables the count of the right block of cans in
the bottom image, whereas it is less obvious in the middle
image and even impossible in the upper image. The results of
Fig. 18 look somewhat oversmooth. So a lower regularization
parameter has been tested, results are displayed in Fig. 19.

Fig. 19. Reconstructions obtained through E&FO (top image) , E&F1 (middle
image) and TSO (bottom image) observation model. A = 1.1073.

Fig. 19 reveals that E&FO and E&F1 are severely affected
by the decrease of the regularization parameter, whereas our
model seems more robust: artifacts appear in the right top part
of the scene, but cans can still be counted.

E. Right lower region

Fig. 21 proposes similar results for the ships at the right
low part of the scene. The ships appear in bright contrast. A
bicubic interpolation of the last observed frame is provided in
Fig. 20. The top image (E&FO model) in Fig. 21 has many
localized high frequency artifacts, part of them are absent
in the middle image (E&F1 model). These artifacts are not
present in the bottom image (proposed TSO model). In the

Fig. 20. Detail of the last frame of Fig. 16. Low right part of the scene:
waterfront and ships zoomed up twice using bicubic interpolation.

Fig. 21.  Reconstructions have been performed using E&F0 (top
image), E&F1 (middle image) and TSO (bottom image) observation
model. A = 1072

same time, comparison of SR results and Fig. 20 shows that
resolution has indeed been increased.

VII. CONCLUSION

The presented paper deals with SR techniques in the field of
aerial imagery. The proposed work focuses on the observation
model in the case of an affine motion whereas the main part
of SR literature deals with the inversion process or motion
estimation.

We analyzed the existing observation models used in SR
reconstruction and emphasized their underlying assumptions,
so as to clarify their limitations. As a result, it is shown that
these observation models fall into three categories:

e exact computation
« convolve-then-warp
o warp-then-convolve
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Exact computation is not tractable for general motions. The
convolve-then-warp approach is numerically efficient but is
unable to capture large rotations and scale variations. So,
only the third approach, due to Elad and Feuer is relevant
in our framework. However, we have observed inaccuracies
for rotations as low as 15° and zooming factor as low as
20%. We succeeded in extending the E&F model to cover a
more important range of affine transforms with high accuracy,
for about 30% more computation time. The pointwise inter-
polation stage in the E&F method has been replaced by Lo
functional approximation techniques. This technique combines
a two-shear decomposition for the affine transform and a 1-D
Ly projection on a shifted bspline basis.

The proposed model has been compared with various E&F-
like models. These models have been associated to several
regularization settings to be tested for SR reconstruction
purposes using synthetic and real image sequences.

These tests have stressed the importance of the observation
model in SR reconstruction when dealing with large zoom
and rotation effects. In particular the choice of a bilinear
interpolation instead of a nearest-neighbor one within an Elad
and Feuer setting dramatically improves the reconstructions.
Moreover, the proposed model consistently achieves even
better results.

Further research should be conducted to accurately deal
with homographic motion, or piecewise parametric motion.
It should unlock SR techniques to a larger application field.
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