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Abstract

We propose two new image compression-decompression methods that reproduce images with better

visual fidelity, less blocking artifacts, and better PSNR, particularly in low bit rates, than those processed

by the JPEG Baseline method at the same bit rates. The additional computational cost is small, i.e., linearly

proportional to the number of pixels in an input image. The first method, the “full mode” polyharmonic

local cosine transform (PHLCT), modifies the encoder and decoder parts of the JPEG Baseline method.

The goal of the full mode PHLCT is to reduce the code size in the encoding part and reduce the

blocking artifacts in the decoder part. The second one, the “partial mode” PHLCT (or PPHLCT for

short), modifies only the decoder part, and consequently, accepts the JPEG files, yet decompresses them

with higher quality with less blocking artifacts. The key idea behind these algorithms is a decomposition

of each image block into a polyharmonic component and a residual. The polyharmonic component in

this paper is an approximate solution to Poisson’s equation with the Neumann boundary condition, which

means that it is a smooth predictor of the original image block only using the image gradient information

across the block boundary. Thus the residual—obtained by removing the polyharmonic component from

the original image block—has approximately zero gradient across the block boundary, which gives rise

to the fast-decaying DCT coefficients, which in turn lead to more efficient compression-decompression

algorithms for the same bit rates. We show that the polyharmonic component of each block can be

estimated solely by the first column and row of the DCT coefficient matrix of that block and those of

its adjacent blocks and can predict an original image data better than some of the other AC prediction

methods previously proposed. Our numerical experiments objectively and subjectively demonstrate the

superiority of PHLCT over the JPEG Baseline method and the improvement of the JPEG-compressed

images when decompressed by PPHLCT.
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EDICS Category: 1-STIL, 1-STAN, 2-NFLT, 2-REST

I. INTRODUCTION

Currently, the most popular image compression scheme is the JPEG standard for still images and the

MPEG standard for video sequences. Although new standards such as JPEG-2000 and MPEG-21 (both of

them have adopted wavelets) are emerging, many systems including digital cameras and image databases

still use the JPEG standard [1], [2], which is based on the Discrete Cosine Transform (DCT) [3], [4], [5].

The reasons why DCT—sometimes called DCT Type II or DCT-II [4], [5]—is used in many compression

algorithms instead of the Discrete Fourier Transform (DFT) or the Discrete Sine Transform (DST) are

the following.

1) DCT theoretically approximates the Karhunen-Loève Transform (KLT) if we assume the first order

Markov property in a given set of signals to be compressed [6]. It is well known that KLT is the

most efficient linear transform for a collection of signals if the reconstruction error is measured in

the mean square error (MSE) [6], [7].

2) Even more important is its treatment of the block boundaries. Taking DCT of an image block is

equivalent to: a) extending the data by even reflection at the block boundaries; b) taking DFT of

the extended data by viewing it as periodic with the period twice as long as that of the original

block; and c) discarding 3/4 of the resulting coefficients that were created by the even reflection

and extension. This implies that DCT views the data as a continuous function across the block

boundaries as long as there is no intrinsic singularity within the block. This should be contrasted

with DFT and DST: they view the data as discontinuous across the block boundaries even if there

is no intrinsic singularity within the block. This leads to the faster decay of the DCT coefficients

than the DFT or DST coefficients, which is a desirable property in any transform coding system

because it allows us to approximate the original data with a fewer number of terms in the series

expansion used in the transform. More precisely, let Fk be the kth DCT coefficient of an image

block, where k = (k1, k2) is a pair of indices specifying the spatial frequencies along vertical and

horizontal directions. Then, one can show that |Fk| ≤ C‖k‖−2 = C/(k2
1 + k2

2) for some constant

C > 0 (see also Section II). We denote this by Fk = O(‖k‖−2) in this paper. On the other hand,

the magnitude of the DFT and DST coefficients of the same block is of O(‖k‖−1), i.e., those decay

slower than the DCT coefficients. See Theorem 1 in Section II for the precise statement relating

the smoothness of a function and the decay rate of its Fourier coefficients.

3) The lowest frequency basis vector of DCT is completely flat, i.e., truly measuring the important
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“DC” component of an image block, which is not the case in DST and in the other versions of

DCT called DCT Type I, III, and IV (see e.g., [4], [5]).

Although DCT-based codecs, such as the JPEG Baseline sequential codec, are quite popular, there

are two problems in them that we want to overcome. First, the decay rate O(‖k‖−2) of the DCT

coefficients is still too slow. We would like to make the transformed coefficients decay faster in order

to achieve better compression. Second, such codecs generate the infamous blocking artifacts (visible

discontinuities between adjacent blocks) when the compressed data—especially the ones with low bit

rates—are decompressed, which are quite noticeable and annoying for human observers. Many techniques

have been developed to remove the blocking artifacts while keeping the objectively measured image

quality (e.g., PSNR) constant, e.g., [8], [9], [10], [11], [12]. These all operate on the spatial domain, i.e.,

these are post-processing techniques after the decompression is done. On the other hand, another set of

techniques has been suggested as an option in the JPEG standard [1, Sec. 16.1] and further explored in

[13], [14], [15]. These methods are all based on the prediction of the AC coefficients by fitting quadratic

or cubic polynomial surface using the DC coefficients of several blocks. In general, polynomial surface

fitting techniques are effective to remove the blocking artifacts especially for images compressed in low

bit rates. However, for the actual implementation of these techniques, there is a common difficulty to

distinguish intrinsic singularities in the original image from the artificial discontinuities that cause the

blocking artifacts.

To address these problems, Saito and Remy recently developed a new transform called Polyharmonic

Local Sine Transform (PHLST) [16], [17]. PHLST decomposes the data in each block into two compo-

nents: the polyharmonic component and the residual. The polyharmonic component is obtained by solving

the polyharmonic equation (e.g., Laplace’s equation, biharmonic equation, etc.) given the boundary values

(i.e., the pixel values along the block border) possibly with the estimates of derivatives across the boundary.

Once this component is obtained, this is subtracted from the image block data to obtain the residual,

whose Fourier sine series expansion has quickly decaying coefficients since the boundary values of the

residual (possibly with their normal derivatives) vanish. If we use Laplace’s equation as the polyharmonic

equation in PHLST, then the DST coefficients of the residual component decay as O(‖k‖−3), which is

faster than the DCT coefficients of the original block do. See Section II-C for more about PHLST.

Although PHLST is very promising in certain applications such as local feature computation, directional

derivatives estimation, image interpolation, and image zooming, it cannot directly and fully utilize the

infrastructure of the JPEG Baseline method due to its use of DST instead of DCT as well as its storage
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requirement of the block boundary information.

In this paper, we propose the Polyharmonic Local Cosine Transform (PHLCT) that compensates these

problems of PHLST: it gives us the residual coefficients decaying as O(‖k‖−4), yet fully utilizes the

JPEG Baseline infrastructure. There are two modes in PHLCT. One is the full mode that modifies the

encoder and decoder parts of the JPEG Baseline procedure. The goal of the full mode PHLCT is to: 1)

reduce the code size by encoding the DCT coefficients of the residual component that decay as O(‖k‖−4);

and 2) reduce the blocking artifacts in the decoding process by the interpolation using the polyharmonic

function. The other mode is what we call the partial mode. This mode modifies only the decoder part,

and consequently it can take JPEG-compressed images and reproduce images with less blocking artifacts

compared to those reproduced by the JPEG Baseline standard. Our methods can also be viewed as new

and improved AC prediction methods over the previously proposed ones, e.g., [1, Sec. 16.1], [13], [14],

[18], and [15].

The organization of this paper is as follows. In Section II, we set our notation and review the Fourier

cosine series and PHLST. In Section III, we propose PHLCT and show why the Fourier cosine coefficients

of the residual decay as O(‖k‖−4). Section IV describes how to compute the PHLCT representation

of an input image from the DCT coefficients of that image. In Section V, we derive more practical

approximation of the polyharmonic component than that in Section IV solely using the DC components

of the current and adjacent blocks. Then we describe our compression-decompression algorithms using

full and partial modes of PHLCT in Section VI. Section VII describes our numerical experiments. There

we compare the performance of our methods in predicting the original AC coefficients with that of the

other AC prediction methods mentioned above. Also, we quantify the image quality improvement of our

methods over the JPEG Baseline method using several image quality measures. We finally conclude our

paper in Section VIII with our future plan.

II. REVIEW OF FOURIER COSINE SERIES EXPANSION AND POLYHARMONIC LOCAL SINE

TRANSFORM

In this section and the next, we shall deal with data in an arbitrary dimension n ∈ N since our method

may be useful for compressing not only 2D images but also 3D data such as 3D seismic data. We shall

then focus on the case of n = 2 for images starting Section IV.
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A. Fourier series expansion and periodization

Let Ω be a block domain Ω = {x ∈ R
n|0 < xi < 1, i = 1, 2, . . . , n}, where x = (x1, x2, . . . , xn). Let

us now consider a function f defined on the closed domain Ω = Ω∪∂Ω, where ∂Ω denotes the boundary

of Ω. Then let us extend it periodically over the whole space R
n, and let f̃ be this periodic extension of

f . We have the following basic theorem that relates the decay rate of the Fourier coefficients (i.e., the

inner products between f̃ and the complex exponentials) and the smoothness of the function f̃ . For the

details and the proof, see Appendix of [17].

Theorem 1: Let f be a function defined on Ω ∈ R
n and f̃ be its periodic extension to R

n. Furthermore,

let us assume that 1) f̃ ∈ Cm(Rn), where m is some nonnegative integer; and 2) ∂m+1f̃/∂xm+1
i ,

i = 1, . . . , n, exists and of bounded variation in Ω. Then the Fourier coefficient ck of f decays as

O(‖k‖−m−2), k = (k1, . . . , kn) ∈ Z
n, and ‖k‖ is the Euclidean (i.e., `2) norm of k.

Note that if some head and tail of f do not match, i.e., unless we have f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

= f(x1, . . . , xi−1, 1, xi+1, . . . , xn) for all i ∈ {1, . . . , n} and all xk with 0 ≤ xk ≤ 1, k 6= i, which is

almost always violated in real data, then the periodic extension f̃ becomes discontinuous. Thus its Fourier

coefficients decay only as O(‖k‖−1) and reveal the annoying Gibbs phenomenon [19, Sec. 5].

B. Fourier cosine series expansion and even reflection

We now consider the Fourier cosine series expansion of a non-periodic function f ∈ Cm′

(Ω) for some

m′ ∈ N. Because of the equivalence of the Fourier cosine series expansion of f and the complex Fourier

series expansion of the even-reflected version of f as briefly discussed in Introduction, the even-reflected

version becomes at least continuous and periodic over the extended domain [−1, 1]n. Thus, applying

Theorem 1 with m = 0, the Fourier cosine coefficients of f decay as O(‖k‖−2). Unfortunately, even

if f is sufficiently smooth on the block, i.e., f ∈ Cm′

(Ω) with large positive m′ including the case of

m′ = ∞, there is no guarantee that the even reflection preserves the continuity of the derivatives across

the boundary. Therefore, the Fourier cosine coefficients cannot decay faster than O(‖k‖−2) in general.

C. Polyharmonic local sine transform

In order to have expansion coefficients decaying as O(‖k‖−3) or faster without generating the Gibbs

oscillations, Saito and Remy proposed the Polyharmonic Local Sine Transform (PHLST) [16], [17].

PHLST also compensates several problems in the local trigonometric transforms (LTTs) of Coifman and

Meyer [20] and Malvar [21], [22], such as the overlapping windows and the slope of the bell functions.

Although PHLST can be defined quite generally as in [17], we restrict ourselves to the simplest case in
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this paper. Let f be a function defined on the block domain Ω as before. Then PHLST decomposes f into

two components as f = u+ v. The components u and v are referred to as the polyharmonic component

and the residual, respectively. The polyharmonic component is obtained by solving Laplace’s equation,

∆u = 0 in Ω, (1)

with given boundary values

u = f on ∂Ω, (2)

where ∆ =
∑n

i=1 ∂
2/∂x2

i is the Laplace operator in R
n. Note that Laplace’s equation is the simplest

case of the more general polyharmonic equation: ∆mu = 0, m ∈ N. Eq. (2) is referred to as the Dirichlet

boundary condition that enforces the function values of the solution u on the boundary ∂Ω to match those

of the original signal f over there. Note that in 1D (n = 1), u is simply a straight line connecting two

boundary points of an interval Ω. However, note also that in higher dimensions (n ≥ 2), the solution of

(1) with (2) is not a tensor product of algebraic polynomials in general. Now subtracting the u component

from f gives us the residual v = f − u satisfying v = 0 on ∂Ω. Since the values of v on ∂Ω vanish,

the extension of v by odd reflection with respect to the boundary ∂Ω is a C 1 periodic function on the

extended domain if there is no intrinsic singularity in Ω. Therefore, one can apply Theorem 1 with m = 1,

which implies that the Fourier sine coefficients of v decay rapidly, i.e., O(‖k‖−3). More precisely, we

have the following theorem.

Theorem 2: Let Ω be a bounded rectangular domain in R
n, and let f ∈ C2(Ω), but non-periodic.

Assume further that ∂3f/∂x3
i , i = 1, . . . , n, exist and are of bounded variation. Furthermore, let f = u+v

be the PHLST representation, i.e., the polyharmonic component u is the solution of Laplace’s equation

(1) and the Dirichlet boundary condition (2), and v = f − u is the residual. Then, the Fourier sine

coefficient bk of the residual v is of O
(
‖k‖−3

)
for all k 6= 0, where k = (k1, . . . , kn) ∈ Z

n
+.

The proof of this theorem and its generalization can be found in [17]. The polyharmonic components

can be computed quickly by utilizing the computationally-fast and numerically-accurate Laplace/Poisson

solver developed by Averbuch, Braverman, Israeli, and Vozovoi [23], [24] as long as the boundary data

are available. Combining this feature with the quickly decaying expansion coefficients of the residuals,

the usefulness of PHLST to image approximation was demonstrated [16], [17]. However, there are two

disadvantages in PHLST: 1) it has a more complicated data structure because the boundary pixels of each

block must be stored separately from the inside of the block (although one can use the 1D version of

PHLST to store the boundary pixels efficiently as shown in [17]); 2) it cannot utilize the infrastructure

of the JPEG standard since it is based on DST instead of DCT.
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III. POLYHARMONIC LOCAL COSINE TRANSFORM

The disadvantages of PHLST described in the previous section motivated us to develop a cosine version

of the transform, the polyharmonic local cosine transform (PHLCT). Our goal is to find a decomposition

f = u + v so that: 1) it is based on the Fourier cosine series expansion of the v components for the

compatibility with the JPEG standard; and 2) the expansion coefficients decay as O(‖k‖−4) or faster.

To do so, we want to make the residual v a C2 periodic function after the even reflection at the block

boundary so that we can apply Theorem 1 with m = 2. Thus, what we need to do is to match the

normal derivatives of u across the block boundary with those of f because this forces the residual v to

have the zero normal derivatives over there, which in turn allows the even reflection of v to have desired

C2 smoothness if there is no intrinsic singularity in the original data f in Ω. This can be explained

more easily in 1D as follows. Let Ω = (0, 1) and ṽ be an even-reflected version of v at the boundary

x = 0 followed by its periodic extension of the interval [−1, 1] into the entire real axis R. Thus we have

ṽ(−x) = ṽ(x) for all x ∈ R. It is clear ṽ′′(0) is well defined when x approaches to 0 from both sides.

Also, the condition of the zero derivative at the boundary, v ′(0) = 0 sets ṽ′(0) = 0. Similary, we can

show that ṽ′′(1) is well defined and ṽ′(1) = 0. Hence, ṽ becomes a C2 periodic function with period 2.

Coming back to the higher dimensional case, therefore, we need to replace the Dirichlet boundary

condition (2) by the Neumann boundary condition:




∆u = 0 in Ω,

∂u

∂ν
=
∂f

∂ν
on ∂Ω,

(3)

where the normal derivative ∂f/∂ν at x ∈ ∂Ω is defined as the directional derivative ν(x) · ∇f(x)

along the normal vector ν(x) that is perpendicular to the boundary ∂Ω at x pointing to the outside of

Ω. However, Eq. (3) cannot have a solution in general, and we need to introduce the source term in the

righthand side of Laplace’s equation as follows:




∆u = K in Ω,

∂u

∂ν
=
∂f

∂ν
on ∂Ω,

(4)

where K := 1
|Ω|
∫
∂Ω

∂f
∂ν

dσ(x), |Ω| is the volume of the block Ω, and dσ(x) is a surface (or boundary)

measure. Appendix I explains why we have to use (4), not (3). Laplace’s equation with the source term

is called Poisson’s equation [25, Chap. 2]. It is a well-known fact that (4) has a unique solution modulo

an additive constant; see e.g., [25, Sec. 2D].

The solution u to (4) is not just a function having the matching normal derivative at the boundary with

the original function f ; the following theorem further characterizes u:
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Theorem 3: Let p be a C2(Ω) function and M(p) be the total squared curvature integral defined by

M(p) :=

∫

Ω
(∆p)2 dx .

For any p with ∂p/∂ν = ∂f/∂ν on ∂Ω, the solution u to (4) satisfies M(u) ≤ M(p). In other words,

the solution u is the minimizer of the total squared curvature integral on Ω.

The proof of this theorem can be found in Appendix II. Theorem 3 guarantees that the influence of

the boundary data to the entire shape of u is kept to a minimum in terms of the mean curvature. The u

component can also be viewed as a smooth predictor of the original block f solely based on the gradient

information across the block boundary.

Once we get the solution u, the residual v = f − u clearly satisfies ∂v/∂ν = 0 on ∂Ω. Since

f ∈ C2(Ω) and ∆u is constant in Ω, ∂2u/∂xi∂xk, 1 ≤ i, k ≤ n, must be bounded as x approaches to

∂Ω. Therefore, this leads to at least C2 smoothness of the residual v across the block boundary when it

is extended by the even reflection. Thus, we can apply Theorem 1 with m = 2, and consequently, we

have the following.

Corollary 4: Let Ω be a bounded rectangular domain in R
n, and let f ∈ C2(Ω), but non-periodic.

Assume further that (∂/∂xi)
3f , i = 1, . . . , n, exist and are of bounded variation. Furthermore, let f =

u + v be the PHLCT representation, i.e., the polyharmonic component u is the solution to (4), and

v = f − u is the residual component. Then, the Fourier cosine coefficients of the residual v is of

O
(
‖k‖−4

)
for all k 6= 0, where k = (k1, . . . , kn) ∈ Z

n
+.

This fast decay of the Fourier cosine coefficients will shorten the code size when encoding the residual

component. The function u can also be viewed as an interpolated image surface over the Ω, which can

be contrasted with the other AC prediction methods such as QSFIT [1, Sec. 16.1] and LAKHANI [13].

We shall compare these methods in Section VII in details.

IV. COMPUTATION OF PHLCT FROM DCT COEFFICIENTS

In the previous section, we have derived the asymptotic behavior of PHLCT in the spatial-frequency

domain in R
n, n ∈ N. From now on, we shall only deal with two-dimensional images (i.e., n = 2).

Hence, we set Ω = (0, 1)2 = {(x, y) | 0 < x < 1, 0 < y < 1}, the unit square in R
2. We shall now

derive the DCT coefficients of the u component directly from the DCT coefficients of the original data f .

Consequently, we shall achieve the PHLCT representation of the original data in the DCT domain, which

leads us to our new compression-decompression algorithms as we shall examine in detail in Section VI.
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Let f(x, y) be in C2(Ω). Assume that we are given the discretized version of f sampled at (xi, yj) ∈ Ω

for i, j = 0, 1, . . . , N − 1, where xi = (0.5 + i)/N and yj = (0.5 + j)/N . Let F = (Fk1,k2
) be a matrix

of size N ×N , whose entries are the 2D-DCT coefficients of f defined as

Fk1,k2
:=

λk2

√
2

N

N−1∑

j=0

(
λk1

√
2

N

N−1∑

i=0

f(xi, yj) cos πk1xi

)
cos πk2yj , (5)

where k1, k2 = 0, 1, . . . , N − 1 and

λk :=





1/
√

2 if k = 0,

1 otherwise.
(6)

Let us denote the 2D-DCT coefficient matrix of the u component, i.e., the solution of (4), by U . The

objective of this section is to compute U when the 2D-DCT coefficient matrix of the original data F is

available. Clearly, once U is computed, the 2D-DCT coefficients of the residual are readily available via

V = F − U .

A. Computing U assuming the ideal boundary condition

We shall now solve Poisson’s equation with the Neumann boundary condition (4). Let us assume for

the moment that the following discretized Neumann boundary data are available:

g
(1)
i := −fy(xi, 0), g

(2)
i := fy(xi, 1), g

(3)
j := −fx(0, yj),

g
(4)
j := fx(1, yj), i, j = 0, 1, . . . , N − 1 , (7)

where fx := ∂f(x, y)/∂x and fy := ∂f(x, y)/∂y, respectively. In practice, the righthand sides of (7) are

not readily available, and need to be estimated from the image samples. In Section IV-B, we shall derive

a practical method to approximate the righthand sides of (7) using the DCT coefficients of the original

data in the current and adjacent blocks, which will be used in our implementation. Let us now consider

the following finite Fourier cosine series of the Neumann boundary data:

g(`)(t) :=

√
2

N

N−1∑

k=0

λk G
(`)
k cos πkt ,

=

√
2

N

(
G

(`)
0√
2

+

N−1∑

k=1

G
(`)
k cos πkt

)
,

0 ≤ t ≤ 1 , ` = 1, 2, 3, 4 ,
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where λk was already defined in (6), and
{
G

(`)
k

}
0≤k≤N−1

are the 1D-DCT coefficients determined by the

boundary data
{
g
(`)
j

}
0≤j≤N−1

in (7). Clearly g(`)(tj) = g
(`)
j , where tj = (0.5+j)/N , j = 0, 1, . . . , N−1,

and ` = 1, . . . , 4. Now, it is straightforward to show that for ` = 1, the function

u(1)(x, y) :=

√
2

N

(
G

(1)
0√
2

(y − 1)2

2

+

N−1∑

k=1

G
(1)
k

cosh πk(y − 1)

πk sinhπk
cos πkx

)

satisfies the following Poisson’s equation with the Neumann boundary condition:




∆u(1) =
1

|Ω|

∫ 1

0
g(1)(t) dt =

G
(1)
0√
N

in Ω,

∂u(1)

∂ν
=




g(1) on Γ(1),

0 on ∂Ω\Γ(1),

where Γ(1) := {(x, y) ∈ ∂Ω | 0 ≤ x ≤ 1, y = 0 }. See also Figure 1. Similarly, we can derive u(`) for

` = 2, 3, 4, and consequently we obtain the solution of (4) as follows:

u(x, y) = u(1)(x, y) + u(2)(x, y) + u(3)(x, y) + u(4)(x, y)

=

√
2

N

N−1∑

k=0

λk

{(
G

(1)
k ψk(y − 1) +G

(2)
k ψk(y)

)
cos πkx

+
(
G

(3)
k ψk(x− 1) +G

(4)
k ψk(x)

)
cos πky

}
+ c , (8)

where c is an arbitrary constant that will be determined shortly and

ψk(t) :=





t2/2 if k = 0,

cosh πkt/(πk sinhπk) otherwise.

We note that we derived the solution (8) by modifying the highly accurate Dirichlet problem solver

developed by Averbuch, Israeli, and Vozovoi [23] for our Neumann problem.

Finally, by applying 2D DCT to (8), we obtain Uk1,k2
, k1, k2 = 0, 1, . . . , N − 1:

Uk1,k2
= G

(1)
k1

ηk1,k2
+G

(2)
k1

η∗k1,k2
+G

(3)
k2

ηk2,k1
+G

(4)
k2

η∗k2,k1
, (9)

where

ηk,m := λm

√
2

N

N−1∑

i=0

ψk(xi − 1) cos πmxi ,

η∗k,m := λm

√
2

N

N−1∑

i=0

ψk(xi) cos πmxi . (10)
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TABLE I

NUMERICAL VALUES OF ηk,m COMPUTED UP TO FOUR DECIMAL PLACES

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

k = 0 0.6641 0.4026 0.0986 0.0421 0.0221 0.0126 0.0070 0.0032

k = 1 0.4027 0.2000 0.0783 0.0376 0.0206 0.0120 0.0067 0.0031

k = 2 0.0988 0.0785 0.0480 0.0283 0.0171 0.0104 0.0060 0.0028

k = 3 0.0425 0.0380 0.0285 0.0197 0.0132 0.0085 0.0051 0.0024

k = 4 0.0229 0.0214 0.0177 0.0135 0.0097 0.0066 0.0041 0.0020

k = 5 0.0139 0.0132 0.0115 0.0093 0.0071 0.0051 0.0032 0.0016

k = 6 0.0090 0.0087 0.0078 0.0066 0.0052 0.0038 0.0025 0.0012

k = 7 0.0061 0.0060 0.0054 0.0047 0.0038 0.0028 0.0019 0.0009

Note that ηk,m and η∗k,m are independent from any image sample values: once the number of samples N

is fixed, they are completely determined and precomputed independently from an input image. For the

convenience of the reader, the values of ηk,m for N = 8 are listed in Table I. Finally, we determine the

constant c in (8) so that U0,0 = 0. In fact, from (9), (10), we can explicitly determine this constant:

c = −4N2 − 1

24N2.5

(
G

(1)
0 +G

(2)
0 +G

(3)
0 +G

(4)
0

)
.

Thanks to Corollary 4, the decay rate of the DCT coefficients of the residual Vk = Fk − Uk for k =

(k1, k2) 6= (0, 0) should be O(‖k‖−4).

B. Approximation of the Neumann boundary condition

In practice, the Neumann boundary data, i.e., the righthand sides of (7), need to be estimated from

the image samples. To do so, we need not only the image samples of the current block but also those

of the adjacent blocks. Let us consider the four blocks adjacent to Ω as shown in Figure 1. We assume

that f is also defined on these adjacent blocks and sampled with the same rate as the current (or center)

block Ω. Let us denote the image samples on each block Ω(s,t) in Fig. 1 by f (s,t)
i,j := f(xi + s, yj + t),

i, j = 0, 1, . . . , N − 1, where s, t ∈ {−1, 0, 1}. For convenience, let us also set Ω(0,0) = Ω and f (0,0)
i,j =
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Ω Ω(0,1)

Ω(−1,0)

Ω(0,−1)

Ω(1,0)

-�

Γ(1)

��

Γ(2)

6� Γ(4)

?
�Γ(3)

?x

-y

Fig. 1. The configuration of the adjacent blocks and boundary segments of Ω.

f(xi, yj). We now approximate the normal derivatives at the boundary of Ω as follows.

g
(1)
i ' X

(−1)
i −X

(0)
i , g

(2)
i ' X

(1)
i −X

(0)
i ,

g
(3)
j ' Y

(−1)
j − Y

(0)
j , g

(4)
j ' Y

(1)
j − Y

(0)
j , (11)

where

X
(t)
i :=

1

N

N−1∑

j=0

f
(0,t)
i,j , Y

(s)
j :=

1

N

N−1∑

i=0

f
(s,0)
i,j ,

are the row-wise and column-wise averages, respectively. Let F (s,t) =
(
F

(s,t)
k1,k2

)
be the DCT coefficient

matrix of f (s,t) on Ω(s,t). Then, using (5) and (11), we can express each 1D-DCT coefficient G(1)
k of the

Neumann data g(1) as a simple function of the first column of the 2D-DCT coefficients of the current

and the adjacent blocks as follows:

G
(1)
k = λk

√
2

N

N−1∑

i=0

g
(1)
i cos πkxi

' λk

√
2

N

N−1∑

i=0

{
X

(−1)
i −X

(0)
i

}
cos πkxi

=
1√
N

(F
(0,−1)
k,0 − Fk,0) , k = 0, 1, . . . , N − 1 ,

Similarly we have

G
(2)
k ' 1√

N
(F

(0,1)
k,0 − Fk,0), G

(3)
k ' 1√

N
(F

(−1,0)
0,k − F0,k),

G
(4)
k ' 1√

N
(F

(1,0)
0,k − F0,k),
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which are simple functions of either the first column or the first row of the 2D-DCT coefficients of the

current and adjacent blocks. Inserting these into (9), we have the Uk1,k2
for the approximate discretized

Neumann data as

Uk1,k2
=

1√
N

{
(F

(0,−1)
k1,0 − Fk1,0)ηk1,k2

+(F
(0,1)
k1,0 − Fk1,0)η

∗
k1,k2

+ (F
(−1,0)
0,k2

− F0,k2
)ηk2,k1

+(F
(1,0)
0,k2

− F0,k2
)η∗k2,k1

}
, (12)

for all k1, k2 = 0, 1, . . . , N−1 except k1 = k2 = 0. Strictly speaking, Eq. (12) should be an approximation

rather than an equality. However, we assume Uk1,k2
as the righthand side of Eq. (12) from now on because

we only use the approximate Neumann boundary data Eq. (11) in practice. One can view Eq. (12) as

the new definition of Uk1,k2
. As we discussed at the end of Section IV-A, U0,0, the DC component of u,

vanishes. Hence the DC component of the original data f is carried over to that of the v component, i.e.,

V0,0 = F0,0. This will become important for our further modification of PHLCT algorithm in Section V

and our new compression-decompression algorithms in Section VI.

In the above discussion, we have approximated the first normal derivatives at the block boundary by

using the DCT coefficients of the current and its adjacent blocks. Clearly, this approximation scheme is

not applicable to the outmost blocks of an input image where some of their adjacent blocks do not exist.

In such a case, we set the Neumann boundary function simply by zero, i.e., g(`)(t) = 0 for appropriate

`.

V. MODIFYING PHLCT FOR PRACTICE

At this point, let us consider what information must be stored in the forward PHLCT described in the

previous section in order to recover the original data f on the block Ω. Both U and V are of course

necessary in order to recover f exactly. However, we do not need to store all these 2N 2 coefficients in

PHLCT. Note that each Uk1,k2
is a simple function of the first column or row of F (s,t) with (s, t) ∈ I5 :=

{(0,−1), (−1, 0), (0, 0), (1, 0), (0, 1)}. Therefore, in order to exactly recover f of the current block, we

just need N 2 + 6N − 2 coefficients: N 2 for all the entries of V ; 6N for Fk1,0, F0,k2
, F (0,−1)

k1,0
, F (0,1)

k1,0
,

F
(−1,0)
0,k2

, F (1,0)
0,k2

where k1, k2 = 0, 1, . . . N − 1; and −2 for counting the DC component F0,0 three times

(note that F0,0 = V0,0). Considering an application of PHLCT to image compression, this situation is

not desirable although it may be acceptable for other purposes such as interpolation, zooming, feature

extraction, etc. What we want to have is to recover f exactly from V with the smallest possible number

of DCT coefficients from the adjacent blocks. It turns out that we can manage to recover f exactly by
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N2 + 4 coefficients: N 2 for V and 4 for the DC components of the adjacent blocks. To do so, we need

to modify both u and v components in the original PHLCT. In the forward PHLCT, we construct the

modified version of U denoted by Ũ as follows:

Ũk1,k2
:=





0 if k1 = k2 = 0;

1√
N

{
(F

(−1,0)
0,0 − F0,0)η0,k1

+(F
(1,0)
0,0 − F0,0)η

∗
0,k1

}
if k1 6= 0 = k2;

1√
N

{
(F

(0,−1)
0,0 − F0,0)η0,k2

+(F
(0,1)
0,0 − F0,0)η

∗
0,k2

}
if k1 = 0 6= k2;

Uk1,k2
otherwise,

(13)

where Uk1,k2
is defined in (12). In essence, the only difference between U and Ũ are their first columns

and rows, and those of Ũ can be computed only using the DC components of the current and adjacent

blocks of the originals. On the other hand, the first column and row of F are necessary to compute those

of U ; examine (12) by setting k1 = 0 or k2 = 0. Once we obtain Ũ , then we complete the forward

PHLCT by computing the modified residual Ṽ simply by F − Ũ . More explicitly, we compute

Ṽk1,k2
:=





F0,0 if k1 = k2 = 0;

Fk1,0 − 1√
N

{
(F

(−1,0)
0,0 − F0,0)η0,k1

+(F
(1,0)
0,0 − F0,0)η

∗
0,k1

}
if k1 6= 0 = k2;

F0,k2
− 1√

N

{
(F

(0,−1)
0,0 − F0,0)η0,k2

+(F
(0,1)
0,0 − F0,0)η

∗
0,k2

}
if k1 = 0 6= k2;

Fk1,k2
− Uk1,k2

otherwise.

(14)

As for the storage, we only need to store Ṽ , not Ũ at all.

Let us now consider the inverse PHLCT. Given the 2D-DCT coefficients Ṽ , it is clear that we can

reconstruct the original data f as follows: 1) Recover the first column and row of Ũ using the DC

components, F (s,t)
0,0 (= Ṽ

(s,t)
0,0 ), (s, t) ∈ I5 via (13); 2) Recover the first column and row of F (s,t),

(s, t) ∈ I5 by summing those of Ũ and Ṽ (see (13) and (14)); 3) Recover other entries of Ũ via (13),

(12) and the results of Step 2; 4) Set F = Ũ + Ṽ ; 5) Apply Inverse 2D DCT to F to recover f .

It is now obvious that the forward and inverse PHLCT algorithms of this modified version, in particular,

the inverse algorithm, become much simpler than those of the original PHLCT in the previous section.
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However, it is natural to ask what we have lost instead. Because of the uniqueness theorem [25,

Sec. 2D, 3E] (modulo an additive constant), it is true that, the ũ component, the inverse DCT of Ũ ,

does not satisfy Poisson’s equation (4) unlike the u component in the previous section. Strictly speaking,

this means that ũ does not satisfy Theorem 3 anymore. However, in terms of the Neumann boundary

condition, it is easy to show that ∂ũ/∂ν = ∂u/∂ν on ∂Ω, since the difference

u− ũ=

√
2

N
√
N

N−1∑

k=1

[
{ (F

(0,−1)
k,0 − Fk,0)ηk,0

+(F
(0,1)
k,0 − Fk,0)η

∗
k,0 } cos πkx

+ { (F
(−1,0)
0,k − F0,k)ηk,0 + (F

(1,0)
0,k − F0,k)η

∗
k,0 } cos πky

]

clearly satisfies ∂(u − ũ)/∂ν = 0 on ∂Ω thanks to the cosine terms above. Thus, it is still true that

∂ṽ/∂ν = 0 on ∂Ω, and consequently Ṽk = O(‖k‖−4). Hence in practice, we have not lost anything.

From now on, we shall not use the original PHLCT of the previous section, and only use the modified

version developed in this section. Therefore, to simplify our notation, we shall drop˜ and simply use U

and V for Ũ and Ṽ .

VI. APPLICATION OF PHLCT TO IMAGE COMPRESSION

In this section we propose new compression-decompression algorithms using PHLCT and show its

practical advantage over the JPEG Baseline method.

A. Brief review of the lossy JPEG image compression standard

In the JPEG Baseline method, the amount of compression and the quality of reconstructed images is

controlled by an 8 × 8 quantization table. Let Q be a quantization table to be used and let Qk (≥ 1) be

the kth entry of Q where k ∈ K := {(k1, k2) | k1, k2 = 0, 1, 2, . . . , 7 }. Then DCT coefficients {Fk} in

each block is quantized simply by

ik := round(Fk/Qk); FQ
k

:= Qk × ik, k ∈ K . (15)

This scheme truncates any DCT coefficient Fk with |Fk| < Qk/2. Although the JPEG standard allows

one to use any user-supplied quantization table, the most commonly used one is a scalar multiple of

the standard Luminance Quantization Table (LQT) shown in Table II. These values were determined by

extensive psychophysical experiments on the visibility of the DCT basis vectors [1, Sec. 4.1.3].

The user can change the values of this standard LQT by specifying a parameter called the quality

factor ranging from 0 (the worst reconstruction quality and the best amount of compression) to 100 (the
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TABLE II

THE LUMINANCE QUANTIZATION TABLE RECOMMENDED BY THE JPEG STANDARD.

k2 = 0 k2 = 1 k2 = 2 k2 = 3 k2 = 4 k2 = 5 k2 = 6 k2 = 7

k1 = 0 16 11 10 16 24 40 51 61

k1 = 1 12 12 14 19 26 58 60 55

k1 = 2 14 13 16 24 40 57 69 56

k1 = 3 14 17 22 29 51 87 80 62

k1 = 4 18 22 37 56 68 109 103 77

k1 = 5 24 35 55 64 81 104 113 92

k1 = 6 49 64 78 87 103 121 120 101

k1 = 7 72 92 95 98 112 100 103 99

best reconstruction quality and the worst amount of compression). Let T be an 8×8 matrix whose entries

are the standard LQT shown in Table II. Let q be the qualify factor. Then, the actual quantization table

Q for 8 bit grayscale images is typically computed as

Qk = Qk(Tk; q)

=





min
(

round
(

50·Tk

q

)
, 255

)
if 0 ≤ q ≤ 50;

max
(

round
(

(100−q)·Tk

50

)
, 1
)

if 50 ≤ q ≤ 100.
(16)

Note that when q = 100, then Qk = 1 for all k. In this case the loss due to the quantization is minimum

(only the rounding operation is applied directly to the DCT coefficients).

After the quantization, the DC component is encoded as the difference from the DC term of the

previous block because the DC components of the adjacent blocks usually correlates strongly and the

differential encoding further reduces such correlation or redundancy. The integer sequence {ik} in (15) is

then ordered into the “zig-zag” sequence, and encoded by some lossless entropy coder, e.g., the Huffman

or arithmetic coder, to further compress the sequence before transmitting or storing it.

To decompress the compressed representation, the integer sequence {ik} in (15) is first recovered by

the decoding algorithm corresponding to the lossless encoder followed by undoing the zig-zag ordering.

Then the quantized coefficient matrix FQ is recovered via (15). Finally, the 2D inverse DCT (IDCT) is

applied to FQ. For the details, see [1], [2].
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B. “Full mode” PHLCT: Further reduction of JPEG-DCT bit-rate

As shown in Section III, PHLCT can improve the decay rate of the DCT coefficients up to O(‖k‖−4)

compared to O(‖k‖−2) if the approximations of the normal derivatives given by (11) are effective.

This means that for the same prescribed quality, the bit-rate should be reduced by PHLCT. We shall

demonstrate our claim by numerical experiments in Section VII.

Let us now propose our new compression/decompression algorithm using our modified PHLCT detailed

in Section V. We shall call our new algorithm the “full mode” PHLCT (or simply PHLCT for short)

because this is a full and direct application of our decomposition and reconstruction algorithms in

Section V to image compression/decompression, which requires modifying both the encoder part and

the decoder part of the JPEG Baseline method. We can summarize our proposed algorithm as follows:



Compression:

• Divide an input image into blocks of 8 × 8 pixels.

• Apply DCT to compute F in each block.

◦ Compute U via (13) and (12) and set V = F − U .

• Quantize V via ik = round(Vk/Qk)

and encode {ik} in the same way as JPEG.





Reconstruction:

• Decode {ik} and reconstruct V Q via V Q
k

= Qk × ik.

◦ Compute UQ via (14), (13), and (12) using V Q,

and construct UQ + V Q.

• Apply IDCT to UQ + V Q in each block.

The steps marked by white dots are added to the original JPEG standard, and the other steps are exactly

the same as the JPEG standard. The new step added in the reconstruction procedure is exactly the same as

the inverse PHLCT algorithm described in the previous section except that the available coefficients are

quantized. The increment of the computational cost compared to the original JPEG standard is mainly

due to the computation of U in the encoder and UQ in the decoder. It is clear from (12) and (13) that

the computational cost of U or UQ is approximately 3C1N
2 + 4C2N

2 for each block of size N ×N

pixels, where C1 and C2 denote the unit costs for the arithmetic addition and multiplication, respectively.

The values of ηk1,k2
, and η∗k1,k2

are common in all blocks and computed in O(N 2 log2N) operations
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via FFT; see Table I. These quantities should be computed only once in the encoder and in the decoder.

In addition, both the encoder and the decoder clearly require C1N
2 operations per block for computing

F − U and UQ + V Q, respectively.

C. “Partial mode” of PHLCT: Restoration of truncated JPEG-DCT coefficients

It is of practical interest to have a new decompression algorithm that can: 1) reproduce images of

improved quality compared to the ones obtained by the JPEG Baseline method while keeping the same

bit rate; and 2) accept JPEG files, i.e., image data already compressed by the JPEG standard. In this

section, we propose an algorithm to do just that. This means that our algorithm does not touch the encoder

and assumes the availability of the quantized DCT coefficients FQ
k

in each block instead of V Q
k

. This

new algorithm will be referred to as the partial mode PHLCT (or PPHLCT for short) because it only

modifies the decorder part of the JPEG Baseline method unlike the full mode PHLCT.

In short, our key idea in PPHLCT is the use of UQ
k

to “fill in” the truncated FQ
k

by the encoder. Let

us now discuss this idea in details. The amount of data compression in the lossy JPEG standard mainly

comes from the truncation of the high frequency DCT coefficients. Now, the asymptotic behavior of Fk

and the residual Vk are given by

Fk = O(‖k‖−2) , Vk = O(‖k‖−4) as ‖k‖ → ∞ .

Hence, we have Fk ' Uk as ‖k‖ → ∞, although we can only reach ‖k‖ = 7
√

2 ≈ 10 when each block

consists of 8 × 8 pixels. However, this observation suggests a possibility to approximately restore the

truncated higher frequency components using Uk. It is important to note that Uk can be well approximated

even after the quantization thanks to (12) and (13) in which F (s,t)
k

is replaced by F (s,t)Q
k

. This is because

those low frequency coefficients used in the righthand side of (12) and (13) are less affected by the

quantization process compared to the higher frequency coefficients. Since it is obvious from (10) that

|ηk1,k2
| = |η∗k1,k2

| , we have the following error estimate using (12) and (13):

|Uk − UQ
k
| ≤ 1√

N
(2Ek1,0|ηk1,k2

| + 2Ek1,0|η∗k1,k2
|

+2E0,k2
|ηk2,k1

| + 2E0,k2
|η∗k2,k1

|)

=
4√
N

(Ek1,0|ηk1,k2
| +E0,k2

|ηk2,k1
|)

for all k = (k1, k2), where Ek denotes an estimation of the quantization error max
(s,t)∈I5

|F (s,t)
k

− F
(s,t) Q

k
|.
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From these considerations, we propose the following scheme for the approximate restoration of the

truncated DCT coefficients:

Replace FQ
k

by FQ
k

+ dk , dk :=





UQ
k

if k ∈ Kt,

0 if k ∈ K\Kt,

(17)

where Kt :=
{

k ∈ K
∣∣∣ FQ

k
= 0 and |UQ

k
| < Qk/2

}
. In words, the truncated DCT coefficients FQ

k
(= 0)

is replaced by UQ
k

(6= 0) if |UQ
k
| is as small as |Fk|. Note also that d0,0 = 0 by definition.

Unfortunately, this method is not effective enough to eliminate the blocking artifacts that become

noticeable and annoying particularly in the case of low bit-rate compression. We therefore propose an

additional procedure to reduce the blocking artifacts. Let us now consider the reduction of the blocking

artifacts on the boundary Γ(1) between the current block Ω and the neighboring block Ω(0,−1) (see

also Fig. 1). The reconstructed image fQ(x, y) obtained from FQ of (17) still has the following mean

discontinuity across the boundary Γ(1):

δ(1) =
1

N

N−1∑

i=0

(
fQ(xi, 0−) − fQ(xi, 0+)

)

=

√
2

N

N−1∑

k=0

λk(F
(0,−1)Q
0,k cos πk − FQ

0,k) ,

where fQ(xi, 0−) and fQ(xi, 0+) denote the left and right limit values at y = 0, respectively, and

the second equality follows from the definition of the DCT coefficients (5). In order to remove this

discontinuity, we add the following quadratic polynomials to fQ(x, y) on Ω(0,−1) and Ω, respectively:

φ(0,−1)(x, y) := (αy − 1)(y + 1)
δ(1)

2
,

φ(x, y) := (αy − 1)(y − 1)
δ(1)

2
,

where α denotes a constant to be determined. Since φ(0,−1)(xi, 0) = −δ(1)/2 and φ(xi, 0) = δ(1)/2, the

mean discontinuity across Γ(1) vanishes as follows:

1

N

N−1∑

i=0

{(fQ(xi, 0−) + φ(0,−1)(xi, 0))

−(fQ(xi, 0+) + φ(xi, 0))} = 0 .

These polynomials do not affect the mean discontinuity computation across the boundary segments other

than Γ(1) because: 1) φ(0,−1)(x,−1) = 0 and φ(x, 1) = 0; and 2) the mean values of φ(0,−1)(x, y)

and φ(x, y) along the other boundary segments of Ω and Ω(0,−1) also vanish if we set the constant
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α = (6N2)/(2N2 + 1), i.e.,
N−1∑

j=0

φ(0,−1)(0, yj) =
N−1∑

j=0

φ(0,−1)(1, yj) = 0 ,

N−1∑

j=0

φ(0, yj) =

N−1∑

j=0

φ(1, yj) = 0 .

Applying this procedure to Γ(2), Γ(3), and Γ(4), we can remove the discontinuities at the block boundary

of Ω. In fact, we add the DCT coefficient matrix P = (Pk1,k2
) of the following quadratic polynomial to

FQ(x, y) on each block:

p(x, y) := (αy − 1)(y − 1)
δ(1)

2
− (α(1 − y) − 1)y

δ(2)

2

+(αx− 1)(x − 1)
δ(3)

2
− (α(1 − x) − 1)x

δ(4)

2
, (18)

where

δ(2) =

√
2

N

N−1∑

k=0

λk(F
(0,1)Q
0,k − FQ

0,k cos πk) ,

δ(3) =

√
2

N

N−1∑

k=0

λk(F
(−1,0)Q
k,0 cos πk − FQ

k,0) ,

δ(4) =

√
2

N

N−1∑

k=0

λk(F
(1,0)Q
k,0 − FQ

k,0 cos πk) .

By the straightforward computation using (5) and (18), we have

Pk1,k2
=





0 if k1 = k2 = 0;
√
N
(
γk1

δ(3) − γ∗k1

δ(4)
)

if k1 6= 0 = k2;
√
N
(
γk2

δ(1) − γ∗k2

δ(2)
)

if k1 = 0 6= k2;

0 otherwise,

(19)

where

γk := λk

√
2

N

N−1∑

i=0

{(αxi − 1)(xi − 1)} cos πkxi ,

γ∗k := λk

√
2

N

N−1∑

i=0

{(α(1 − xi) − 1)xi} cos πkxi .
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TABLE III

NUMERICAL VALUES OF γk , γ∗

k COMPUTED UP TO FOUR DECIMAL PLACES

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

γk 0.0000 0.8053 0.5869 0.0842 0.1316 0.0251 0.0417 0.0063

γ∗

k 0.0000 0.8053 −0.5869 0.0842 −0.1316 0.0251 −0.0417 0.0063

Based on the above discussions, we propose the following PPHLCT algorithm that provides better

approximation to the original DCT coefficient F than the JPEG Baseline method does:
{

Compression: Same as the JPEG standard.





Reconstruction:

• Decode the compressed sequence

and reconstruct FQ via (15).

◦ Compute UQ via (13), (12).

◦ Compute dk as (17).

◦ Compute Pk via (19).

◦ Replace FQ
k

by FQ
k

+ dk + Pk if |dk + Pk| ≤ Qk/2.

• Apply IDCT to FQ in each block.

The computational cost of PPHLCT is slightly larger than that of the PHLCT decoder due to the

computation of dk and Pk. The computation of dk requires 3N 2 comparisons per block. if we implement

the absolute value computation in (17) simply by the comparison operation. The cost for Pk is essentially

negligible; in fact, it is of O(N) per block instead of O(N 2) since Pk has a nonzero value only if

k1 · k2 = 0 and the values of γk, γ∗k are common for all the blocks.

For the convenience of the reader, we list the numerical values of γk, γ∗k in Table III.

VII. NUMERICAL EXPERIMENTS

In this section, we describe our numerical experiments and demonstrate the effectiveness of our

methods. The grayscale images “Gabor”, “Lenna”, and “Barbara” shown in Figure 2 (512 × 512 pixels,
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(a) Gabor (b) Lenna (c) Barbara

Fig. 2. Original images (512 × 512 pixels, 8 bits/pixel grayscale).

8 bits/pixel) are used in the experiments. The image “Gabor” is a synthetic image, which is a two-

dimensional Gabor function sampled on the regular grid.

A. How close U and UQ are to F ?

As we mentioned in Section III, the u component (or its DCT representation U ) can be viewed as a

predictor of f (or its DCT representation F ) using the gradient information across the block boundary.

Clearly, the U component with good prediction capability helps encoding the residual V in PHLCT. It is

also of our interest to know how well the UQ component predicts the original F in the decoding stage

particularly in the case of PPHLCT. (Note that in PHLCT we should be satisfied if the UQ predicts F as

well as U does.) From the viewpoint of prediction, there are several algorithms, [1, Sec. 16.1], [13], [14],

[18], [15], which predict three to nine low frequency AC components of F . Therefore, in this section,

we shall measure the performance of U and UQ as a predictor of F and compare the results with those

obtained by [1, Sec. 16.1] and [13]. We shall not conduct the comparison with the methods proposed by

[14], [18], [15] because: 1) the predictors F̂k for some range of k’s proposed by [14] and [18] in the

encoding stage require the values of Fk themselves and hence the comparison in the encoding stage with

our methods does not make sense; 2) the method in [15] needs an optimization by linear programming

in order to predict the low frequency AC components of F , in addition to the same problem described

in 1).

The goodness of a given predictor F̂k of Fk for a given input image can be measured by the following
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quantity:

R[F̂k] := 100 ·
(

1 − 〈 |Fk − F̂k| 〉
〈 |Fk| 〉

)
, k1, k2 = 0, 1, . . . , 7 ,

where 〈 · 〉 denotes the mean value over all blocks in the input image (the outmost blocks are not included).

If F̂k perfectly predicts Fk, then R[F̂k] = 100.

Table IV shows the prediction performance of various methods for the first 14 DCT coefficients in

the zig-zag order after the DC component. Note that this table lists those coefficients not in the usual

zig-zag order: it lists the results at the first column and row followed by those at the other indices. In

the table, we denote the prediction performance at the encoding stage and the decoding stage by Rk

and RQ
k

, respectively. In PHLCT, we set F̂k = Uk in the encoding stage while in the decoding stage

F̂k = UQ
k

. The performance values in Table IV were obtained from V Q’s compressed at 0.3 bits/pixel

(bpp) for both images.

As for PPHLCT, it is only applicable for the decoding stage. Thus, we put “NA” (Not Applicable) in

the encoder performance column in the table. Recall that the predictor F̂k = UQ in the decoder stage is

computed from the quantized original FQ instead of V Q in PPHLCT. Hence, the performance should be

different from that of the predictor in the decoding stage of PHLCT. In this case, F Q’s were obtained

by compressing the original F ’s at 0.3 bpp, which were also used in the other methods described below.

QSFIT in the table denotes an AC prediction method described in [1, Sec. 16.1]. This method is based

on the quadratic surface fitting using the DC components of the current and its eight adjacent blocks. Note

that the JPEG standard presents the prediction formulas for the lowest five AC components corresponding

to k ∈ {(0, 1), (1, 0), (2, 0), (1, 1), (0, 2)} in Eq.(16-2a)–Eq.(16-2e) in the encoding stage and Eq.(16-

3a)–Eq.(16-3e) in the decoding stage in [1], and hence recommends (as an option) the prediction of

these five AC components only. For comparison with our PHLCT and PPHLCT, however, we computed

the prediction performance of the first 14 AC components in the zig-zag order by actually fitting the

quadratic surface at each block using true DC components in the encoding stage and using the quantized

DC components in the decoding stage instead of using the formulas Eq.(16-2a)–Eq.(16-3e).

LAKHANI in the table denotes another AC prediction method proposed in [13] that is also based on

the quadratic surface fitting. We computed the prediction performance of the first nine AC components

in the zig-zag order using the prediction formulas of Eq.(7)–Eq.(15) in [13]. We note that we could not

compute the performance of all the 14 AC components because we could not derive the equation of the

quadratic surface from the constraints used in Fig. 3 of [13], and the detailed derivation was not given

in that paper.
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Table IV shows that the results of QSFIT in the encoding stage for predicting the first column and

row of F are exactly the same as those of PHLCT. On the other hand, the QSFIT performance in the

decoding stage for those k’s is exactly the same as that of PPHLCT. This is because the first column

and row of U except the DC component are exactly the same as those of the quadratic surface used

in QSFIT. Appendix III describes the detailed reason why these DCT coefficients agree. However, our

methods outperform QSFIT for the other AC components. Note that the performance of PHLCT in the

decoding stage for some k’s is slightly different from that of QSFIT and PPHLCT due to the difference

in computing the predictor from V Q and from FQ. For the first column and row of F , LAKHANI gives

the best results. However, the difference between the performance values before and after quantization is

larger than the other methods. For examples, even at k = (1, 0), the performance drop after quantization

is more than 10% relative to the true mean value 〈F1,0〉. Concerning the other range of k’s, in particular,

at k = (1, 1), (1, 2), (2, 1), our methods and QSFIT perform better than LAKHANI.

B. Image Compression

We now describe our image compression experiments. In addition to the standard LQT with the rule

(16), we also introduce a modified version of the rule here. This is based on the following observation

from our experiments and experience: the smaller the quantization error of the DC components (regardless

of JPEG-DCT, PHLCT, or PPHLCT), the more numerically accurate and the perceptually better the

reconstructed images are. In other words, controlling the quantization errors of the DC components is

much more important than those of the other higher frequency AC components. Thus, we impose an

upper bound on the quantization step size of the DC components in order to keep the accuracy even in

the very low bit-rate case. More precisely, the element Q0 in (16) is modified as the following rule: if

Q0 > M , then replace Q0 by M . In other words, the quantization step size for the DC components is

always bounded by a constant M , whatever the quality factor q is used. In the experiments below, we

set the constant M by an ad hoc procedure, e.g., M = 0.05 〈F0 〉, where 〈F0 〉 denotes the mean value

of the DC components of all the blocks of size 8 × 8 pixels in an input image. We shall denote this

modified quantization rule by QM whereas the standard rule (16) by QS.

To measure the performance of compression and decompression objectively, we use the Peak Signal-to-

Noise Ratio (PSNR) and the Mean Structural SIMilarity index (MSSIM). PSNR is normally considered

a better metric for image quality assessment than SNR and defined as

20 log10

(
max

(x,y)∈Ω
|fQ(x, y)|/RMSE

)
,
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TABLE IV

COMPARISON WITH OTHER AC PREDICTION METHODS

Rk for Gabor Rk for Lenna Rk for Barbara
k PHLCT PPHLCT QSFIT LAKHANI PHLCT PPHLCT QSFIT LAKHANI PHLCT PPHLCT QSFIT LAKHANI

(0, 1) 61 NA 61 81 28 NA 28 47 31 NA 31 41

(1, 0) 61 NA 61 81 33 NA 33 50 34 NA 34 47

(2, 0) 76 NA 76 58 13 NA 13 21 12 NA 12 19

(0, 2) 76 NA 76 58 13 NA 13 20 12 NA 12 18

(0, 3) 78 NA 78 87 8.6 NA 8.6 9.3 6.2 NA 6.2 5.3

(3, 0) 78 NA 78 87 8.4 NA 8.4 8.8 6.5 NA 6.5 7.2

(4, 0) 78 NA 78 NA 5.7 NA 5.7 NA 5.9 NA 5.9 NA

(0, 4) 78 NA 78 NA 5.7 NA 5.7 NA 2.5 NA 2.5 NA

(1, 1) 62 NA 39 16 11 NA 2.2 12 12 NA 3.4 −23

(1, 2) 72 NA 47 −67 6.2 NA 0.6 −6.6 3.8 NA 0.9 −25

(2, 1) 72 NA 47 −67 6.9 NA −0.1 −24 4.8 NA 0.7 −36

(3, 1) 73 NA 47 NA 2.8 NA 0.8 NA 1.3 NA 0.4 NA

(2, 2) 64 NA 50 NA 4.1 NA 0.1 NA 1.2 NA 0.2 NA

(1, 3) 73 NA 47 NA 1.9 NA 0.5 NA 0.3 NA 0.1 NA

RQ
k

for Gabor RQ
k

for Lenna RQ
k

for Barbara
k PHLCT PPHLCT QSFIT LAKHANI PHLCT PPHLCT QSFIT LAKHANI PHLCT PPHLCT QSFIT LAKHANI

(0, 1) 61 61 61 79 28 28 28 43 30 30 30 34

(1, 0) 61 61 61 79 32 32 32 42 33 33 33 36

(2, 0) 75 74 74 53 12 12 12 17 12 11 11 14

(0, 2) 75 74 74 54 12 12 12 19 12 12 12 15

(0, 3) 78 78 78 80 8.5 8.5 8.5 8.8 6.2 6.1 6.1 4.6

(3, 0) 78 78 78 80 8.4 8.2 8.2 7.4 6.4 6.3 6.3 5.7

(4, 0) 77 76 76 NA 5.5 5.4 5.4 NA 5.6 5.7 5.7 NA

(0, 4) 77 76 76 NA 5.7 5.6 5.6 NA 2.4 2.5 2.5 NA

(1, 1) 63 61 39 22 11 11 2.1 4.0 12 12 3.3 −37

(1, 2) 72 69 47 −79 6.0 5.9 0.6 −14 4.2 3.5 0.9 −40

(2, 1) 72 68 47 −78 6.4 6.6 −0.1 −32 4.6 4.5 0.6 −51

(3, 1) 73 71 47 NA 2.7 2.7 0.8 NA 1.4 1.4 0.4 NA

(2, 2) 65 56 49 NA 3.8 3.9 0.1 NA 1.4 1.3 0.1 NA

(1, 3) 73 70 47 NA 1.9 1.9 0.5 NA 0.4 0.4 0.1 NA

where Ω is the entire image domain (not a single block of 8×8 pixels) and RMSE (the root mean square

error) is the absolute `2 error between the original image and the reconstruction divided by the square root

of the total number of pixels. The unit of PSNR is decibel (dB). MSSIM is a more perceptually-correct

measure of similarity between two images that was recently proposed by Wang et al. [26]. This is based

on the comparison of the local patterns of pixel intensities normalized for luminance and contrast. If the

original image is regarded as the one with the perfect quality, then the MSSIM between the original and

the reconstruction can be considered as a quality measure of the reconstructed image. Note that the value

of MSSIM becomes 1 if the reconstruction perfectly recovers the original.
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Figures 3 and 4 show the comparison between PHLCT, PPHLCT, and the JPEG Baseline method for

512 × 512 grayscale images of Gabor, Lenna, and Barbara, respectively. In these figures, the quality

factor q in (16) was sampled uniformly with the sampling rate ∆q = 3 so that the bit rates take values

approximately from 0.15 bpp up to 1.0 bpp. Then, the images were compressed accordingly using the

rules QM and QS in all cases. The bit rates were computed from the Huffman codes of the quantized

data in the zig-zag order. Finally, PSNR and MSSIM were computed after decompressing them. We note

that in order to obtain the results indicated by QM, not only the decoder but also the encoder must use

the QM rule. Therefore, PPHLCT with QM is effective only when the QM rule has been used in the

encoder of the JPEG Baseline method.

In Figures 3 and 4, PHLCT(QM) is the overall winner, and the improvement over other methods by

PHLCT and PPHLCT is more clearly shown in MSSIM than in PSNR. In all cases, the performance

difference between QS and QM is particularly noticeable for the low bit-rate range smaller than 0.3 bpp.

On the other hand, if one can afford to use more than 0.3 bpp, there seems no need to use QM. The

improvement by PPHLCT(QS) is the smallest among our proposed methods, which was also expected

since this is the only case that does not modify the encoder of the JPEG Baseline method at all. The

improvement by PPHLCT(QM) is slightly larger than that by PPHLCT(QS) while it is still smaller than

that by PHLCT(QS). In addition, these figures also indicate that it is tougher to compress the Barbara

image than the other images.

Next, we show the performance difference between PHLCT, QSFIT, and LAKHANI using PSNR.

The AC predictors F̂ of QSFIT and LAKHANI were applied in the same manner as PHLCT. Only the

residuals V = F − F̂ were coded at the encoding stage. We computed F̂ from V Q and reconstructed

FQ = F̂ + V Q at the decoding stage. As for the “partial mode” versions of QSFIT and LAKHANI,

which are denoted by PQSFIT and PLAKHANI, F̂ were used in the same manner as PPHLCT only for

the decoding stage, such that

Replace FQ
k

by F̂k if k ∈ Kt,

Kt :=
{
k ∈ K

∣∣∣ FQ
k

= 0 and |F̂k| < Qk/2
}
.

Figure 5 shows the PSNR gain by PHLCT, PPHLCT, QSFIT, PQSFIT, LAKHANI, and PLAKHANI over

the JPEG Baseline method for the bit rates from 0.15 bpp up to 1.0 bpp. In Figure 5, it is clear that the gain

by PHLCT is the largest in all cases and the gain by PPHLCT is larger than PQSFIT and PLAKHANI.

The gain by QSFIT (full mode) is larger than PPHLCT (partial mode) for the Lenna and Barbara images,

which is understandable. However, for the Gabor image, the gain by PPHLCT is larger than the full
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Fig. 3. Comparison of the compression performance with PSNR between PHLCT, PPHLCT, and DCT(JPEG Baseline method).

mode versions of QSFIT and LAKHANI in the range of 0.4–1.0 bpp. In each method, the results of full

mode version are better than those of partial mode version except LAKHANI/PLAKHANI. The reason

why the gain by LAKHANI is smaller than PLAKHANI seems to be due to the large difference between

the AC prediction performance before and after quantization compared to the other methods.

We also conducted our experiments on six more images shown in Figure 6 in order to test our

algorithms over a variety of images with different characteristics. Figure 7 shows the PSNR gain by

PHLCT(QM), PPHLCT(QM), QSFIT(QM), PQSFIT(QM), LAKHANI(QM), and PLAKHANI(QM) for

those six images. Note that we only show the results with QM in order to save the space; the performance

with QS is inferior to that with QM similarly to our results shown in Figure 5. At least for these test

images, PHLCT(QM) was over all the winner among the full versions of the methods we tried, so was

PPHLCT(QM) among the partial versions.

Finally, to show the effect of the compression-decompression quality of our methods more clearly,

we display the center part of the reconstructed Gabor images in Figures 8−9 and the face region of the

reconstructed Lenna and Barbara images in Figures 10−13. Note that the bit rates and the PSNR values

listed with the images are computed from the entire images. The quality factors that achieved those

bit rates and PSNR values are also listed with the images. It is clear that both PHLCT and PPHLCT

improved the quality of the JPEG-compressed images under the constraint of keeping the same bit rates.

The difference is particularly noticeable for the low bit-rate case (0.15 bpp).
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Fig. 4. Comparison of the compression performance with MSSIM between PHLCT, PPHLCT, and DCT(JPEG Baseline method).

C. Quantification of Blocking Artifacts Reduction

We also evaluated the performance of the reduction of blocking artifacts in the decompressed images

by using a measure called the mean squared difference of slope (MSDS) proposed in [27] and used (with

modification) in [28] and [18]. The MSDS values were computed from the sequences of four consecutive

pixel values in horizontal/vertical directions across a block boundary or of four pixel values in diagonal

directions at an intersection of diagonally adjacent blocks as in [18]. We computed MSDS for all block

boundaries and all intersections in each image.

Table V shows our computational results of MSDS for the Gabor, Lenna, and Barbara images com-

pressed by PHLCT(QM), PPHLCT(QM), QSFIT(QM), PQSFIT(QM), LAKHANI(QM), PLAKHANI(QM),

and DCT(QM). In this table, MSDSb and MSDSi denote the mean value of MSDS computed at all the

block boundaries and that computed at all the intersections, respectively. We can observe several things

from this table. First of all, this table demonstrates that PHLCT is the best (i.e., smallest in terms of

MSDS values) among all the full version methods we examined, so is PPHLCT among all the partial

versions.

Second, the performance difference between PHLCT and the other methods for the Gabor image is

particularly noticeable. This is understandable because the original Gabor image do not have any intrinsic

discontinuity and PHLCT efficiently reduces the code size of such an image with less artifacts thanks to

its fast decaying DCT coefficients of the residual as Corollary 4 suggests.
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Fig. 5. PSNR gain by PHLCT, PPHLCT, QSFIT, PQSFIT, LAKHANI, and PLAKHANI over the JPEG Baseline method.
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(a) Girl (b) Woman (c) House (d) Venice (e) Airplane (f) Boat

Fig. 6. Test images (256 × 256 pixels, 8 bits/pixel grayscale).

TABLE V

MSDS OF RECONSTRUCTED IMAGES

Gabor Lenna Barbara
MSDSb MSDSi PSNR MSDSb MSDSi PSNR MSDSb MSDSi PSNR

Original 3 2 645 379 5190 3082

PHLCT(QM) 105 40 39.21 1372 889 29.84 6120 2893 24.19

QSFIT(QM) 863 352 35.79 2311 1250 29.46 7831 3371 23.98

LAKHANI(QM) 311 383 34.34 1742 1163 28.97 7547 3850 23.37

0.15 bpp PPHLCT(QM) 282 125 35.69 1452 932 29.38 5743 2657 23.97

PQSFIT(QM) 1245 290 33.37 2386 1275 29.00 7589 3233 23.73

PLAKHANI(QM) 1107 458 31.96 2257 1374 28.67 7232 3564 23.41

DCT(QM) 2004 710 31.41 2658 1455 28.93 8360 3593 23.61

PHLCT(QM) 30 11 47.02 1062 670 32.80 9113 4121 26.05

QSFIT(QM) 253 135 41.26 1376 817 32.57 10119 4426 25.93

LAKHANI(QM) 193 156 39.41 1230 797 32.08 9908 4663 25.38

0.3 bpp PPHLCT(QM) 62 28 40.89 1079 689 32.36 9052 4154 25.73

PQSFIT(QM) 351 181 38.68 1426 831 32.22 10047 4454 25.67

PLAKHANI(QM) 348 228 38.05 1393 851 32.06 9996 4546 25.54

DCT(QM) 417 223 38.12 1470 862 32.22 10203 4522 25.67

Finally, the MSDS values for the Barbara images reconstructed from the compressed representations

of 0.3 bpp are larger than those of 0.15 bpp. This is because the intrinsic discontinuities and textures in

the original Barbara image had been too much smoothed in the case of 0.15 bpp. However, for each bit

rate, the MSDS values of PHLCT are still smaller than the other full version methods, so are those of

PPHLCT than the other partial versions. Therefore, we can conclude that both PHLCT and PPHLCT are

effective for the reduction of blocking artifacts in terms of MSDS.
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(d) Venice, QM
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(e) Airplane, QM
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Fig. 7. PSNR gain by PHLCT(QM), PPHLCT(QM), QSFIT(QM), PQSFIT(QM), LAKHANI(QM), and PLAKHANI(QM)

over the JPEG Baseline method for various test images.
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(a) PHLCT(QS), q=

15.07, 39.12 dB

(b) QSFIT(QS), q =

12.16, 35.30 dB

(c) PPHLCT(QS),

q=6.93, 32.89 dB

(d) PQSFIT(QS),

q=6.93, 32.22 dB

(e) DCT(QS), q =

6.93, 31.17 dB

(f) PHLCT(QM),

q=14.90, 39.21 dB

(g) QSFIT(QM), q=

11.57, 35.79 dB

(h) PPHLCT(QM),

q=5.50, 35.69 dB

(i) PQSFIT(QM),

q=5.50, 33.37 dB

(j) DCT(QM), q =

5.50, 31.41 dB

Fig. 8. The center part of the reconstructed Gabor images by PHLCT, QSFIT, PPHLCT, PQSFIT, and DCT(JPEG Baseline

method) with 0.15 bpp. The bit rates and the PSNR values listed with the images are computed from the entire image, not from

the center part.

VIII. CONCLUSION

In this paper, we have described two new image compression-decompression schemes that reproduce

images with better visual fidelity, less blocking artifacts, and better PSNR, particularly in low bit rates,

than those processed by the JPEG Baseline method at the same bit rates. The first one, the “full mode”

polyharmonic local cosine transform (or PHLCT for short), modifies both the encoder and decoder parts

of the JPEG Baseline method. The second one, the “partial mode” PHLCT (or PPHLCT for short), only

modifies the decoder part: it accepts the JPEG files, yet decompresses them with higher quality than the

JPEG standard. The key idea behind these algorithms is a decomposition of each image block into a

polyharmonic component and a residual. The polyharmonic component in this paper is an approximate

solution to Poisson’s equation with the Neumann boundary condition, which can be considered as a

smooth predictor of the original image block using the image gradient information across the block

boundary. The residual—obtained by removing the polyharmonic component from the original image
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(a) PHLCT(QS), q=

52.0, 47.02 dB

(b) QSFIT(QS), q =

34.1, 41.26 dB

(c) PPHLCT(QS),

q=20.5, 40.89 dB

(d) PQSFIT(QS),

q=20.5, 38.68 dB

(e) DCT(QS), q =

20.5, 38.12 dB

(f) PHLCT(QM),

q=52.0, 47.02 dB

(g) QSFIT(QM), q=

34.1, 41.26 dB

(h) PPHLCT(QM),

q=20.5, 40.89 dB

(i) PQSFIT(QM),

q=20.5, 38.68 dB

(j) DCT(QM), q =

20.5, 38.12 dB

Fig. 9. The center part of the reconstructed Gabor images by PHLCT, QSFIT, PPHLCT, PQSFIT, and DCT(JPEG Baseline

method) with 0.3 bpp. The bit rates and the PSNR values listed with the images are computed from the entire image, not from

the center part.

block—has thus approximately zero gradient across the block boundary, which gives rise to the DCT

coefficients decaying as O(‖k‖−4) whereas those of the original image block decay only as O(‖k‖−2).

This fast decay rate in turn has led us to more efficient compression-decompression algorithms for the

same bit rates. Moreover, we have shown that the polyharmonic component of each block can be estimated

solely by the first column and row of the DCT coefficient matrix of that block and those of its adjacent

blocks. This is important in two aspects: 1) it provides a simpler decompression algorithm; and 2) it

allows us to develop PPHLCT that fills in the truncated small DCT coefficients of the original image

due to quantization with the corresponding polyharmonic components.

The additional computational cost incurred by our new methods is small. In addition to the cost of

the JPEG Baseline method, both the encoder and decoder parts of PHLCT requires O(N 2) operations

per block of size N ×N pixels and O(N 2 log2N) operations to compute Table I or Eq. (10) per image,

where typically N = 8. The cost of computing Table I is essentially negligible since this is done only
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(a) PHLCT(QS), q=

8.39, 29.50 dB

(b) QSFIT(QS), q =

8.13, 29.22 dB

(c) PPHLCT(QS),

q=7.35, 28.89 dB

(d) PQSFIT(QS),

q=7.35, 28.70 dB

(e) DCT(QS), q =

7.35, 28.70 dB

(f) PHLCT(QM),

q=7.34, 29.84 dB

(g) QSFIT(QM), q=

7.10, 29.46 dB

(h) PPHLCT(QM),

q=6.25, 29.38 dB

(i) PQSFIT(QM),

q=6.25, 29.00 dB

(j) DCT(QM), q =

6.25, 28.93 dB

Fig. 10. The face part of the reconstructed Lenna images by PHLCT, QSFIT, PPHLCT, PQSFIT, and DCT(JPEG Baseline

method) with 0.15 bpp. The bit rates and the PSNR values listed with the images are computed from the entire image, not from

the face part.

once in the encoder as well as in the decoder. As for PPHLCT, it has only a decoder part and requires

O(3N2) comparison operations per block in addition to the cost of the decoder part of PHLCT. Hence

we can claim that the additional cost incurred by our methods beyond the JPEG Baseline method is just

linearly proportional to the number of pixels in the image.

Our numerical experiments in Section VII have demonstrated that PHLCT and PPHLCT improve the

decompressed image quality over the JPEG Baseline method under the constraint of keeping the same

bit rates. Here we have used PSNR and MSSIM as a measure of image quality and MSDS to specifically

quantify the reduction of blocking artifacts. The subjective image quality is also improved by our methods

as shown in Figures 10−13. We have also numerically demonstrated that the polyharmonic component

of our methods can predict an original image data better and more stably than the other AC prediction

methods such as [1, Sec. 16.1] and [13].

Our future work will include a more thorough investigation of polyharmonic components that may be
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(a) PHLCT(QS), q=

20.30, 32.80 dB

(b) QSFIT(QS), q =

19.60, 32.57 dB

(c) PPHLCT(QS),

q=17.95, 32.36 dB

(d) PQSFIT(QS),

q=17.95, 32.22 dB

(e) DCT(QS), q =

17.95, 32.22 dB

(f) PHLCT(QM),

q=20.30, 32.80 dB

(g) QSFIT(QM), q=

19.60, 32.57 dB

(h) PPHLCT(QM),

q=17.95, 32.36 dB

(i) PQSFIT(QM),

q=17.95, 32.22 dB

(j) DCT(QM), q =

17.95, 32.22 dB

Fig. 11. The face part of the reconstructed Lenna images by PHLCT, QSFIT, PPHLCT, PQSFIT, and DCT(JPEG Baseline

method) with 0.3 bpp. The bit rates and the PSNR values listed with the images are computed from the entire image, not from

the face part.

obtained by a polyharmonic equation of higher degree of polyharmonicity or by a different type of elliptic

equation. Furthermore, we are currently generalizing the polyharmonic local trigonometric transform for

analyzing objects of various shapes in an image, which we hope to report at a later date.

APPENDIX I

ON THE NEUMANN BOUNDARY CONDITION

The reason why we cannot use Laplace’s equation with the Neumann boundary condition in general

is due to Green’s second identity, which claims that for any u, v ∈ C 1(Ω),
∫

Ω
(u∆v − v∆u) dx =

∫

∂Ω

(
u
∂v

∂ν
− v

∂u

∂ν

)
dσ(x), (20)
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(a) PHLCT(QS), q=

5.77, 24.01 dB

(b) QSFIT(QS), q =

5.66, 23.91 dB

(c) PPHLCT(QS),

q=5.07, 23.70 dB

(d) PQSFIT(QS),

q=5.07, 23.61 dB

(e) DCT(QS), q =

5.07, 23.58 dB

(f) PHLCT(QM),

q=4.62, 24.19 dB

(g) QSFIT(QM), q=

4.48, 23.98 dB

(h) PPHLCT(QM),

q=3.81, 23.97 dB

(i) PQSFIT(QM),

q=3.81, 23.73 dB

(j) DCT(QM), q =

3.81, 23.61 dB

Fig. 12. The face part of the reconstructed Barbara images by PHLCT, QSFIT, PPHLCT, PQSFIT, and DCT(JPEG Baseline

method) with 0.15 bpp. The bit rates and the PSNR values listed with the images are computed from the entire image, not from

the face part.

where dσ(x) is a surface (or boundary) measure. Setting v = 1 in (20) together with the Neumann

boundary condition in (3), we have
∫

Ω
∆udx =

∫

∂Ω

∂u

∂ν
dσ(x) =

∫

∂Ω

∂f

∂ν
dσ(x). (21)

This is a necessary condition that u must satisfy. Therefore, we need to introduce the constant source

term in Laplace’s equation (3) as 



∆u = K in Ω,

∂u

∂ν
=
∂f

∂ν
on ∂Ω,

(4)

where K := 1
|Ω|
∫
∂Ω ∂f/∂ν dσ(x), |Ω| is the volume of the block Ω. It is easy to see that with this

constant source term, the solution of (4) satisfies (21).
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(a) PHLCT(QS), q=

12.35, 26.06 dB

(b) QSFIT(QS), q =

12.05, 25.93 dB

(c) PPHLCT(QS),

q=11.10, 25.70 dB

(d) PQSFIT(QS),

q=11.10, 25.65 dB

(e) DCT(QS), q =

11.10, 25.66 dB

(f) PHLCT(QM),

q=11.97, 26.05 dB

(g) QSFIT(QM), q=

11.70, 25.93 dB

(h) PPHLCT(QM),

q=10.70, 25.73 dB

(i) PQSFIT(QM),

q=10.70, 25.67 dB

(j) DCT(QM), q =

10.70, 25.67 dB

Fig. 13. The face part of the reconstructed Barbara images by PHLCT, QSFIT, PPHLCT, PQSFIT, and DCT(JPEG Baseline

method) with 0.3 bpp. The bit rates and the PSNR values listed with the images are computed from the entire image, not from

the face part.

APPENDIX II

PROOF OF THEOREM 3

Proof: Recall that u is the solution to the Neumann boundary problem of Poisson’s equation (4)

(modulo an additive constant).

M(p) −M(u) =

∫

Ω

(
(∆p)2 − (∆u)2

)
dx

=

∫

Ω
(∆p−∆u)2 dx + 2

∫

Ω
(∆p−∆u)∆udx

=

∫

Ω
(∆p−∆u)2 dx + 2K

∫

Ω
(∆p−∆u) dx .

Using Green’s second identity, we have
∫

Ω
(∆p−∆u) dx =

∫

∂Ω

∂p

∂ν
dσ(x) −

∫

∂Ω

∂u

∂ν
dσ(x) = 0 .
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Therefore

M(p) −M(u) =

∫

Ω
(∆p−∆u)2 dx ≥ 0 .

APPENDIX III

EQUIVALENCE OF THE FIRST COLUMN AND ROW OF U AND THOSE OF THE QUADRATIC SURFACE

USED IN QSFIT

As shown in [1, Sec. 16.1], QSFIT uses a quadratic surface

p(x, y) =A1x
2y2 +A2x

2y +A3xy
2 +A4x

2

+A5xy +A6y
2 +A7x+A8y +A9.

The coefficients A1, . . . , A9 are determined by requiring that the DC components of the current (or center)

block and its surrounding eight blocks of an input image match those of p(x, y) when p(x, y) is fitted

to these nine blocks.

First of all, we show that the first column of U in (13) except the DC component are exactly the same

as those of the DCT coefficients of p(x, y) at the current block. Let Pk1,k2
be the DCT coefficients of

p(x, y) on the current block Ω. The first column of Pk1,k2
can be expressed as

Pk1,0 =

√
2

N

N−1∑

j=0

(
λk1

N−1∑

i=0

p(xi, yj) cos πk1xi

)

=

√
2

N
λk1

N−1∑

i=0




N−1∑

j=0

p(xi, yj)


 cos πk1xi

=

√
2

N
λk1

N−1∑

i=0

(
ax2

i + bxi + c
)
cos πk1xi,

where

a=
N−1∑

j=0

(A1y
2
j +A2yj +A4),

b=

N−1∑

j=0

(A3y
2
j +A5yj +A7),

c=

N−1∑

j=0

(A6y
2
j +A8yj +A9).
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Using a, b, and c, the DC component P0,0 is expressed by

P0,0 =
1

N

N−1∑

i=0

(
ax2

i + bxi + c
)

=
4N2 − 1

12N2
a+

1

2
b+ c.

Let P (−1,0)
0,0 and P

(1,0)
0,0 be the DC components of p(x, y) on the adjacent blocks Ω(−1,0) and Ω(1,0),

respectively. Similarly, we can derive the following DC components of p(x, y) at the adjacent blocks:

P
(−1,0)
0,0 =

4N2 − 1

12N2
a− 1

2
b+ c,

P
(1,0)
0,0 =

28N2 − 1

12N2
a+

3

2
b+ c.

Solving these equations for a and b, the first column of Pk1,k2
(except the DC component) can be written

by

Pk1,0 =

√
2

N
λk1

N−1∑

i=0

{(
P

(1,0)
0,0 + P

(−1,0)
0,0 − 2P0,0

)
x2

i /2

+
(
P0,0 − P

(−1,0)
0,0

)
xi + c

}
cos πk1xi

=
(
P

(−1,0)
0,0 − P0,0

) √
2

N
λk1

N−1∑

i=0

(xi − 1)2

2
cos πk1xi

+
(
P

(1,0)
0,0 − P0,0

) √
2

N
λk1

N−1∑

i=0

x2
i

2
cos πk1xi

=
(
P

(−1,0)
0,0 − P0,0

) η0,k1√
N

+
(
P

(1,0)
0,0 − P0,0

) η∗0,k1√
N
, (22)

where we used
∑N−1

i=0 cos πk1xi = 0 to derive the second equality and the definition of η, η∗ in (10) to

derive the last equality. Now, the DC components of p(x, y) on Ω, Ω(−1,0), and Ω(1,0) must match those of

an input image in QSFIT. This means that we have P0,0 = F0,0, P (−1,0)
0,0 = F

(−1,0)
0,0 , and P (1,0)

0,0 = F
(1,0)
0,0 .

Putting these into (22) and comparing it with (13), we obtain

Pk1,0 = Uk1,0, k1 = 1, 2, . . . , N − 1.

Similarly to the case of the first column described above, it is also straightforward to show that the

first row of U except the DC component are the same as those of P i.e.,

P0,k2
= U0,k2

, k2 = 1, 2, . . . , N − 1.
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vol. 312, pp. 259–261, 1991.

[21] H. S. Malvar, “The LOT: transform coding without blocking effects,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37,

pp. 553–559, 1989.

[22] ——, “Lapped transforms for efficient transform/subband coding,” IEEE Trans. Acoust., Speech, Signal Process., vol. 38,

pp. 969–978, 1990.

[23] A. Averbuch, M. Israeli, and L. Vozovoi, “A fast Poisson solver of arbitrary order accuracy in rectangular regions,” SIAM

J. Sci. Comput., vol. 19, no. 3, pp. 933–952, 1998.

[24] E. Braverman, M. Israeli, A. Averbuch, and L. Vozovoi, “A fast 3D Poisson solver of arbitrary order accuracy,” J. Comput.

Phys., vol. 144, pp. 109–136, 1998.

[25] G. B. Folland, Introduction to Partial Differential Equations, 2nd ed. Princeton Univ. Press, 1995.

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error measurement to structural

similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–613, 2004.

[27] S. Minami and A. Zakhor, “An optimization approach for removing blocking effects in transform coding,” IEEE Trans.

Circ. Syst. Vid., vol. 5, no. 2, pp. 74–82, 1995.

[28] G. Lakhani and N. Zhong, “Derivation of prediction equations for blocking effect reduction,” IEEE Trans. Circ. Syst. Vid.,

vol. 9, no. 3, pp. 415–418, 1999.

February 17, 2006 DRAFT


