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A Segmentation Model Using Compound Markov
Random Fields Based on a Boundary Model
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Abstract—Markov random field (MRF) theory has been widely
applied to the challenging problem of image segmentation. In this
paper, we propose a new nontexture segmentation model using
compound MRFs, in which the original label MRF is coupled
with a new boundary MRF to help improve the segmentation
performance. The boundary model is relatively general and does
not need prior training on boundary patterns. Unlike some ex-
isting related work, the proposed method offers a more compact
interaction between label and boundary MRFs. Furthermore, our
boundary model systematically takes into account all the possible
scenarios of a single edge existing in a 3 3 neighborhood and,
thus, incorporates sophisticated prior information about the rela-
tion between label and boundary. It is experimentally shown that
the proposed model can segment objects with complex boundaries
and at the same time is able to work under noise corruption. The
new method has been applied to medical image segmentation.
Experiments on synthetic images and real clinical datasets show
that the proposed model is able to produce more accurate seg-
mentation results and satisfactorily keep the delicate boundary. It
is also less sensitive to noise in both high and low signal-to-noise
ratio regions than some of the existing models in common use.

Index Terms—Boundary model, Markov random fields (MRFs),
medical image segmentation.

I. INTRODUCTION

IMAGE segmentation is a task that classifies pixels of an
image using different labels so that the image is partitioned

into nonoverlapping labeled regions. Extraction of regions or
objects of interest is usually the first important step in almost
every task of image processing and high-level image analysis
and understanding. Although it is basic, image segmentation is
one of the most difficult problems that researchers are facing be-
cause most of the real objects have complex shapes, boundaries
and morphology, and true images are often corrupted by noise
that cannot be ignored.

To tackle the difficult problem of image segmentation, re-
searchers have proposed a variety of methods. Segmentation
using the Markov random field (MRF) modeling is character-
ized by probability distributions of site-interacting properties
and neighboring restriction. The most notable property of the
MRF model is that the conditional probability of one site over

Manuscript received September 6, 2005; revised May 16, 2006. This work
was supported by the Research Grants Council (RGC) of Hong Kong under
Grant HKUST6209/02E. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Giovanni Poggi.

The authors are with the Lo Kwee-Seong Medical Image Analysis Labora-
tory, Department of Computer Science and Engineering, and Bioengineering
Program, School of Engineering, The Hong Kong University of Science and
Technology, Hong Kong (e-mail: johnwoo@ust.hk; achung@cs.ust.hk).

Digital Object Identifier 10.1109/TIP.2006.884933

all the others is only dependent on the relation of the site over
its neighbors. This property, called Markovianity, embodies the
spatial interactions of adjacent sites and offers a way to incor-
porate prior information into the MRF models. The advantages
of MRF modeling are as follows. It has a relatively simple and
effective architecture for embedding the prior and likelihood
probabilities. It also takes into consideration the contextual con-
straints while maintaining the complexity at a tractable level by
keeping the size of the neighborhood system relatively small. In
terms of mathematical functional optimization, i.e., maximum
a posteriori (MAP), MRF models make many complex prob-
lems (including segmentation) in image processing computa-
tionally feasible and can give reasonable results.

When the MRF theory was first introduced into the field of
statistical image analysis in the mid-1980s, Geman and Geman
[1] and Besag [2] applied MRFs to image restoration, which can
be viewed as a generalization of segmentation. Similar to the
work of Geman and Geman [1], Geiger and Girosi [3] also added
a second MRF (line process) to the original MRF for surface re-
construction. Likewise, in the work of Jeng and Woods [4] and
Molina et al. [5], line process (edge MRF) was incorporated into
the intensity process (label MRF). In general, adopting two or
more MRFs in one task is a way to solve two or more different
problems. For example, Sun et al. [6] integrated three MRFs,
disparity, line process and occlusion, for stereo problems be-
cause these three factors are all critical to stereo matching. Sim-
ilarly, Arduini et al. [7] solved two problems, restoration of SAR
images and extraction of intensity discontinuities, by using two
distinct MRFs. Held et al. [8] used one added MRF, i.e., the bias
field, to sweep the obstacle of MRI brain segmentation but they
did not couple the two MRFs compactly because the two fields
are assumed independent.

In this paper, rather than using a single label MRF, we incor-
porate a new MRF (boundary MRF) to represent the boundary of
a region and, thus, construct a compound MRF model like [1],
[3]–[7]. Our boundary MRF is different from the line process
as we define the MRF not on the dual lattice between pixels
but on the pixel site directly. Moreover, in our model, the two
MRFs (label and boundary MRFs) interact in a more sophis-
ticated way while the line process works implicitly [9] and is
relatively simple. Rather than tackling two or more aspects of a
problem simultaneously [1], [3]–[7], our current model aims at
image segmentation alone, with the incorporation of a boundary
MRF in order to increase the segmentation accuracy. We con-
sider and construct more complex interactions of the two MRFs
(label and boundary) in a neighborhood by preferring a series of
label patterns and penalizing the other situations with a basic as-
sumption that true boundaries should be reasonably linked and
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matched with these label patterns while discontinuities caused
by random noise are not. In the experiments, we use a number
of simulated images with different signal-to-noise ratios (SNR)
and some real brain MRI datasets to test our method and other
existing MRF models. The results show that the new model
can give higher segmentation accuracy while preserving the ex-
tracted object boundary well. Other work applying MRF models
to brain image segmentation can be found in [8], [10]–[14].

The theme of this paper is basically the same as our pre-
vious conference paper [15], but we modify the boundary model
and make it more systematic and less heuristic. More expla-
nation of the ideas and formulation can be found in the fol-
lowing sections. In Section II, the proposed model is introduced
in detail. Section III presents the control models and the experi-
mental results of comparison. Then, some discussions are made
in Section IV. We conclude this paper with Section V.

II. MODEL FORMULATION

In this section, we introduce our coupled MRF model that is
formulated in a probabilistic framework based on the Bayesian
theory. The elements of the framework are given and details on
the boundary model and the coupling of two MRFs (label and
boundary MRFs) are discussed.

A. MAP-MRF Framework

Let index sites in an image lattice, sup-
posing that the image of interest has pixels.
and are two MRFs representing label tag and
boundary tag, respectively. is assigned one of the labels in

where represents the number of pos-
sible classes. belongs to one of the binary tags in ,
where 0 and 1 represent nonboundary and boundary sites, re-
spectively. The observed field is denoted by ,
where is the known image intensity. Let

and be the configuration
spaces of the label MRF and boundary MRF , respectively.

Advocated by Geman and Geman [1] and others, the max-
imum a posteriori (MAP) approach is commonly used to es-
timate the optimal solution of MRF models. This MAP-MRF
framework allows us to develop algorithms systematically based
on the Bayesian decision and estimation theory. The posterior
probability in our model represents the joint proba-
bility of label and boundary MRFs, and , given the observed
intensity field and can be estimated using the Bayes’ theorem

(1)

where reflects the likelihood of the observed
intensity values given the information of labels and boundaries
in an image; embodies the joint prior knowledge
of the label MRF and boundary MRF ; and
is the likelihood of the observed intensity values. Since
the observed intensity values are known and unchanged,

is thought to be constant so that (1) further leads to

. The MAP estimation for
the optimal solution is then estimated by

(2)

where is the final segmented image that we target.
By virtue of the Markovianity of MRF theory, interactions

between sites in are constrained in a neighborhood system
, where denotes a set of sites in

the vicinity of site . According to the Hammersley–Clifford
theorem, is an MRF with respect to if and only if
is a Gibbs distribution with respect to . A Gibbs distribution
of is given by

(3)

where is a temperature constant, is an energy function
and is a normalizing constant. Supposing that the likelihood
function can be expressed in Gibbs distribution, the MAP esti-
mation becomes

(4)

where and are the likelihood and prior
energy functions, respectively. This further leads to an energy
minimization problem, i.e.,

(5)

where is the solution to the segmentation problem. We as-
sume that the intensity field and the boundary MRF are
independent of each other because the observed image intensity
is not affected whether the site is on the region boundary or in-
side the region. Therefore, the likelihood energy becomes

(6)

Assuming that each region is without texture and nearly homo-
geneous before it is corrupted by a Gaussian noise with zero
mean and standard deviation , we can formulate the likelihood
energy as

(7)

where represents the mean intensity of region ( ).
The standard deviation (SD) can also be dependent on region
class. In that case, only a small change is needed to make in (7),
and we should use different SDs, for
each region . However, in this paper, since we assume that an
image is corrupted by independent and identically distributed
(i.i.d.) noise, we use a uniform noise SD for the whole image.
The formulation of the prior energy function is introduced in the
next subsection.
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Fig. 1. Subfigure (a) illustrates the numbering of edge positions along a column
according to its height (4 and 1 represent top and bottom edges, respectively, and
0 represents no edge in the column). The rest [(b)–(d)] are examples of some
edges passing through a 3� 3 window and their corresponding numbers. For
example, (b) shows no edges in three columns of the 3� 3 windrow and, thus,
gives the number: 000. The letters “a” and “b” represent two distinct region
labels.

B. Coupling Label MRF With Boundary MRF

The prior energy defines the interactions between
the label MRF and boundary MRF and is the major con-
tribution of this paper. Here, we adopt a general model that does
not need prior training about the boundary patterns. We assume
that a boundary is part of a region and an edge is located between
two regions (boundaries). If all the first-order neighbors of a
pixel and the pixel itself belong to the same region, we regard
this pixel as inside one region and not a boundary point. Other-
wise, it is located on the boundary of its region. An edge belongs
to no region and actually is on the dual lattice of the image. We
systematically study the situations when a single edge passes
through a 3 3 window to see what the likely configurations
of the two MRFs, and are. On the assumption that the
boundary of the object of interest is linked and continuous, we
select a number of preferable cases from all the possible combi-
nations of and configurations in and penalize the other
cases. In the energy minimization framework, as stated in (5),
preferred cases should make the energy low and the
penalized ones should make the energy value high. For instance,
the case where site and all its first-order neighbors are
labeled as the same class and there is no boundary site in
is preferable so we assign a low energy value to it. The case can
be formulated as an energy function by

(8)

where if , ; else . The sign rep-
resents the “exclusive or” operation and is the penalty if the
configuration does not belong to this case. The configuration of
label MRF is illustrated in Fig. 1(b), and (8) corresponds to
row 1 in Table II (more explanations about the configurations
and table are given later in this section). For another example,
we also prefer the case where there is a straight edge passing
through the 3 3 window as illustrated in Fig. 1(c). This case
can be formulated by

(9)

TABLE I
EACH ROW LISTS THE CONFIGURATION CASES THAT ARE EQUIVALENT

AFTER FLIPPING OR ROTATION. EVERY ROW CORRESPONDS

TO ONE CASE IN FIG. 2, IN WHICH THERE ARE 20 CASES

This formulation corresponds to row 9 of Table II. If we con-
sider the two above instances simultaneously, the energy func-
tion should be given as

(10)

Equation (10) is actually a combination of (8) and (9).
We explore all the possible scenarios of a single edge passing

through a 3 3 window. They are listed in Fig. 2. In the figure,
we list up to 73 pairs of MRF and configurations in a 3 3
window, e.g., 111-D1, 123-D6, and so on. To facilitate the de-
scription of different configurations, we number these cases and
differentiate them according to the position of edge and the level
of edge height. In a 3 3 window, along a column, there are four
edge height levels plus one (no edge); see Fig. 1(a). Since there
are three columns, the total combinations are . For
example, 222 means that there are three edges with height equals
2 in the three columns of the window; see Fig. 1(c). Thanks to
the rotation invariance, many cases share the same configuration
after rotation (e.g., 90 , 180 , and 270 ). For example, 222 and
333, 123, and 234. Similarly, symmetric cases also share the
same configuration. For example, 123 and 321, 123, and 432.
All isomorphic (equivalent) configuration codes are grouped and
shown in Table I. Therefore, the number of label configurations,

, that we need to consider is 20. This is exactly the number
of rows in Fig. 2 (double columns). In addition, it is often not
the case that one label configuration of corresponds to only
one boundary configuration because of the difference in edge
orientation outside the window. As such, it is necessary to con-
sider these situations. For example, the 111 label configuration
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TABLE II
USING THE FIRST-ORDER NEIGHBORHOOD SYSTEM, THIS TABLE LISTS THE COUNTING RESULTS OF ALL THE PREFERABLE MRF X AND D

CONFIGURATIONS. THESE RESULTS SHOW 1) WHETHER THE CENTER PIXEL BELONGS TO BOUNDARY OR NOT (SECOND COLUMN), 2) HOW

MANY NEIGHBORS BELONG TO BOUNDARY (THIRD COLUMN), 3) HOW MANY NEIGHBORS BELONG TO DIFFERENT REGIONS FROM THE

CENTER PIXEL (FOURTH COLUMN), AND 4) WHAT ARE THE CORRESPONDING MRFS X AND D CONFIGURATION CASES SHOWN IN FIG. 2.
IF A SINGLEX CODE IS SHOWN, ALL ITSD CONFIGURATIONS ARE INCLUDED. FOR EXAMPLE, “212” MEANS “212D1-D3” (FIFTH COLUMN)

Fig. 2. Considering a single edge passing through a 3� 3 window, this figure shows all the desirable configurations of MRFsX andD in the window. One config-
uration of label MRFX can correspond to more than one configuration of boundary MRFD, e.g.,D1; D2; . . . ; D6.

has six corresponding boundary configurations (each having
the same configuration in the 3 3 window but a different edge
orientation outside the window), (see left top
row in Fig. 2), and 113 has three (see left third row in Fig. 2).

There are two points worth noticing with regard to the con-
figurations shown in Fig. 2. First, we do not show the scenarios
where there are no edges in some columns, i.e., 0XX, X0X, and
XX0. We find that when it comes to the energy formulation,
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each of these scenarios is equivalent to one of the cases listed
in Fig. 2, e.g., after a 90 clockwise rotation, 012 is the same
as 211. This is also equivalent to 112 in Fig. 2 because of the
symmetry so we do not show them in the figure for the sake of
brevity. Second, multiple edges can appear in a 3 3 window
(but not often) and, we do not show them in Fig. 2 for the reason
that they can be equivalent to the single-edge situations in terms
of energy formulation (e.g., the case where two straight, hori-
zontal edges pass through a 3 3 window, that is, a combination
of configurations 222 and 333, shares the same energy formula-
tion as the case of row 13 in Table II). This makes the presenta-
tion more concise. Note that it is very complicated to consider
all the possible scenarios of multiple edge configurations. There
can be 24 edge segments altogether in a 3 3 window, including
the 12 edge segments surrounding the window. Therefore, the-
oretically, there are (over 16 million) combinations of the
multiple edge configuration in the 3 3 neighborhood. These
include both the preferred cases and unreasonable cases. In this
paper, we mainly focus on the single edge scenarios to simplify
the problem.

Once we know which configurations of label MRF and
boundary MRF should be chosen and how they should be
matched, it is not difficult to count the number of labels dif-
ferent from the center pixel using , and count
the number of the neighboring boundary pixels using .
These are essential for the energy function construction. The re-
sults are listed in Table II. Note that although we show 3 3
window in Fig. 2 to illustrate the preferred configurations, we
adopt the first order Ising neighborhood system for MRFs. The
correspondence of Table II and Fig. 2 is obvious. For instance,
row 3 of the table corresponds to four cases (pairs) in the figure,
i.e., 111-D2, 111-D3, 112-D1, and 112-D4. This relation of
Table II and Fig. 2 is shown in the last column of Table II.

It is straightforward to convert the tally information in Table II
to an energy formulation. Each row in the table corresponds to a
term in the energy function and should be assigned a low energy
value when the three conditions ( , and

) are satisfied. The configurations that are not in the table
should be penalized and assigned a high energy value. Further-
more, in the energy function, the three conditions in each row
are linked with addition, and those terms representing each row
are connected with multiplication. Thus, we get our new prior
energy formulation, which is given as

(11)

where represents the “exclusive or” operation and is the
penalty. Terms and account for nonboundary ( )
and boundary ( ) situations, respectively. If the conditions
of any row in Table II are satisfied, or becomes zero and
a low prior energy is obtained. Originally, there should be 15
terms in the energy formula. It changes into this form because
some terms can be combined. Here, we set the same weight to
all preferred cases, but we can also assign different importance
to each individual case. For example, if we believe that smooth
boundaries are more likely, we can set a higher penalty ( ) to
those terms of 111 and 222 than those of 141 and 414. This
makes the model more flexible for different applications.

The motivation to use this model is that a true boundary or
edge without noise should be continuous at least in a small
window, like a 3 3 neighborhood. If one site is corrupted by
noise and regarded as a boundary, probably the neighborhood
would not conform to the true pattern of a reasonable boundary
because of the randomness of noise. Then, due to the penalty
given by the prior energy term, this case would most likely be
discarded. Moreover, this model is capable of keeping com-
plex boundary information because it is tolerant of all kinds of
boundary shapes of true objects.

III. EXPERIMENTAL RESULTS

In this section, we perform a series of segmentation experi-
ments on synthetic images, simulated medical images and real
clinical images. Most of the datasets have complex boundaries
and considerable levels of noise, and, thus, result in challenging
segmentation tasks. We apply the proposed model to both bi-
nary and multiclass segmentations, and compare the results with
three other existing MRF models in the literature: the multilevel
logistic (MLL) model [8], [9] and two types of MRF models
with line process (LP) [1], [3].

A. Parameter Estimation

There are a few parameters related to the proposed method
needed to be estimated before we perform segmentation. These
parameters are the mean intensity for every region [in (7)],
the standard deviation of the noise [in (7)], the threshold for
the gradient map and the weight, , of the prior energy [in (11)].

There are usually two ways to estimate the mean intensity
of each region . One is the supervised method which requires
a user to select a region of interest (ROI) inside each region
and calculate the mean of the ROI intensity. The assumption
is that a small part (the aforementioned ROI) of the image is la-
beled manually. Another way is the unsupervised method [16].
The estimation can be performed by some statistical approaches
such as simultaneous segmentation and estimation [9], or the
expectation minimization (EM) algorithm [11]. These methods
are often related to the analysis of the image intensity statistics,
e.g., histograms. The unsupervised approach helps to make the
segmentation method more automatic because it does not need
manual initialization or training data [16]. However, the unsu-
pervised methods are usually not as accurate as the supervised
ones because the formers face more challenges such as estima-
tion and segmentation can result in a chicken-and-egg dilemma
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[9]. Therefore, in the experiments, we adopt the supervised esti-
mation of the means for both the proposed model and the control
models because manual segmentations are available. Similarly,
we estimate the standard deviation of the noise using the su-
pervised method. As such, the likelihood model in (7), which
is not the main contribution of this paper, can be as accurate as
possible.

We also need to choose a global threshold in the gradient
map of the input image so that the line process in the control
models or the boundary MRF in the proposed model can be
initialized. The requirement for setting the threshold is that the
boundary between different regions should be recognized as ac-
curately as possible. One estimation method is to set the global
threshold comparable to the minimum of all the absolute dif-
ferences of mean intensity between two distinct neighboring re-
gions in the intensity image (i.e., , where regions

and are adjacent). Since the mean intensity for each region has
been already estimated, the estimation of the global threshold
can be achieved.

The parameter balances the importance between the prior
energy and the likelihood energy. In our previous work [17],
we used trial and error to estimate the optimal weight by trying
on different values individually. Other work adopted more au-
tomatic methods, e.g., generalized cross validation method or
standard regularization method [3]. All these approaches can be
used in the proposed method. In the current experiments, we
set the initial value of based on the mean intensity of all the
regions and the noise level of the given input image from the
simulated or real datasets. The initial value of is set based on
a measure, ( , refer to any two
region numbers). This measure gives the ratio of the smallest ab-
solute difference between the mean intensity in two regions to
the noise level. Note that the means and standard deviation have
already been estimated. If ME is relatively low (i.e., lower than
4.5), the image is relatively noisy or it contains regions having
relatively close intensity values. As such, we set the initial value
of to 15 in order to attach more weight to the prior energy and
impose more prior constrain. If ME is relatively high (i.e., not
lower than 4.5), the image is relatively clean or the regions inside
the image have relatively large intensity gaps. Therefore, we set
the initial value of to 5 in order to give less weight associated
with the prior energy and trust the likelihood energy more. We
then perform searching around the initial value within a small
integer range [initial , initial ] and pick up the value that
makes the model work best (i.e., with the lowest error rate).

B. Synthetic Images

We first test and compare the segmentation performance of
the three existing MRF models and our model using some syn-
thetic data including bars and circles with different widths in
different images. Thick bars or circles in the synthetic images
are around six-pixel wide while thin ones are three-pixel wide.
The image size is 128 128 pixels. However, in order to test
images with complex boundaries, we do not generate smooth
bars and circles with regular boundaries and we make the

Fig. 3. Some examples of the synthetic images. Subfigures (a) and (b) are the
true patterns of bar and circle images, respectively. Subfigures (c) and (d) are
the corresponding noisy images with SNR = 3 and 2, respectively.

boundaries bumpy instead. The bumpiness of the boundary is
generated by randomly perturbing the originally straight and
smooth boundary with a small shift along the normal direction
(the direction can be either inward or outward). The range of the
perturbation is within two pixels. For example, at a boundary
pixel, if the randomly generated offset is , the boundary on
this pixel is shifted along the positive normal direction by two
pixel length. If the offset is , the boundary is shifted along
the negative normal by a pixel. We repeat this random oper-
ation everywhere on the boundary. Then, the original smooth
boundary is converted to a bumpy shape. Moreover, the inner
regions of objects and background are interspersed with square
holes (with 1 to 2 pixels in dimension). These holes are also
randomly distributed; see Fig. 3 (a) and (b) for two examples,
whose objects are bars and circles, respectively. These images
serve as the ground truth for validation of methods. The objects
are high in intensity and the background is dark. We then corrupt
each synthetic image with a Gaussian noise having zero mean
and the same standard deviation (SD) following the style in our
previous work [17] [see Fig. 3(c) and (d)]. The SNR is calcu-
lated by , where and are the true intensities
of object and background regions, respectively, and represents
the SD of the added noise. In the experiments, and

. The above steps lead to a difficult binary segmenta-
tion task.

To evaluate the performance of the proposed model, we com-
pare it with three existing MRF models using these synthetic
images. The first model uses a single label MRF, , for the seg-
mentation and has the same prior energy definition without bias
field as in [8] (hereafter referred to as MLL). This is the widely
used multilevel logistic (MLL) model [9]. The second model,
which is derived from [1], makes use of the line process (here-
after referred to as LP1). The third model [3] also adopts the line
process but with different interactions between discontinuity
sites (hereafter referred to as LP2). The likelihood function (7)
is the same for these three MRF models and our model. The dif-
ference between these models and ours lies in the prior energy
function which embodies the interactions between sites. The
prior functions of the first [MLL, (12)], second [LP1, (13)], and
third [LP2, (14)] models are given, respectively, in (12)–(14),
shown at the bottom of the next page. Here, if , ;
else . and are the sets of neighbors in ver-
tical and horizontal directions, respectively. Equation (12) cor-
responds to the [8, Eq. (3)], and the potential function

if ; else, .
The second prior energy, LP1, as described in (13), is derived

according to the Geman and Geman’s paper [1, right column,
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fifth and sixth paragraphs on p. 732]. Equation (13) is slightly
different from the description in their paper in that we introduce
the cost of inserting an edge between two adjacent pixels (while
[1] did not consider). This makes the model more flexible. For
instance, if the sites and have different labels and , it
is more preferable to insert a vertical edge with the cost of .

and are small constants, which are significantly smaller
than 1. In the experiments, we set them to 0.1. When and
equal 0, this model reduces to Gemans’ model. Similar style of
line process formulation was also adopted in [9, Sec. 2.3.1, Eq.
(2.40) ]. The last term of (13), , is illustrated in [1, Fig
5(a)]. It assigns potentials to various patterns of line process.

Equation (14) corresponds to [3, Eqs. (27) and (28)]. and
represent the , coordinates of the image lattice. The only

difference lies in that the reference paper [3] used a piecewise
continuous model for surface reconstruction and we use a piece-
wise constant model for image segmentation.

We optimize all four MRF formulations using the iterated
conditional modes (ICM) algorithm [2]. ICM is a general simple
algorithm which is gradient-based. Simultaneously, ICM allows
only one label to be changed and the label making the lowest
energy is chosen. This is repeated at every site. Then, one itera-
tion of ICM is completed. When no change of one site label can
make the energy further decrease, the algorithm comes to con-
vergence. The pseudo-code of the ICM algorithm for the pro-
posed model is shown in Algorithm 1. This framework is suit-
able for the other three models if we replace the prior energy
function with corresponding forms (e.g., (12) but without
the summation over every pixel). and in (15)
should include all the terms in the total energy that may change
due to the change of and . In the experiments, is
set to 10.

Algorithm 1. The pseudo-code for the iterated conditional
modes algorithm used for the proposed MRF model.

Step 1: Let be the iteration index and set .

Step 2: Let be site index and set .

Step 3: Compute (15), shown at the bottom of the page, where
and

[functions , are defined in (11)].

Step 4: If , then go to Step 5; else, and go to
Step 3. is the total number of sites.

Step 5: If or , , for every
, then go to Step 6; else, , and

go to Step 3. is the maximum number of iterations.

Step 6: Final estimate .

Since we know the ground truth of the synthetic images, it
is convenient to quantify the performance of each segmentation
method by calculating the error rate. The error rate of the seg-
mentation is given by

(16)

The initial configuration of the label MRF is ob-
tained by using the maximum likelihood estimate [9],

, and the initial configuration

of the boundary MRF can be set by the methods stated in

(12)

(13)

(14)

(15)
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Fig. 4. Error rates of the three existing MRF models and our model over various
SNRs.

Section III-A. All parameters in the likelihood functions are
known for the synthetic images.

We repeat each experiment five times (with regenerated
random noise), calculate the means and SDs, and plot error
rates of four methods over different values of SNR in Fig. 4.
As expected, when the noise level goes up, the segmentation
errors of all models increase. For SNRs from 2 to 6, our model
can increase the segmentation accuracy by 1 to 8 percentage
points, as compared with the other three MRF models. The
MLL model always has the highest segmentation error rates
and the two LP models (LP1 and LP2) give comparable results
to each other. The proposed model always obtain the lowest
segmentation errors because its segmented results are closer to
the ground truth, as quantitatively shown in Fig. 4.

C. Simulated Medical Images

We then apply the proposed model together with the three
existing control MRF models to a series of simulated medical
images. These brain images are obtained from the simulated
brain database, BrainWeb (available online [18]). The database
contains a volume of brain magnetic resonance (MR) images
with known anatomical labels to each voxel. We select a 2-D
slice (the 90th slice) with different levels of noise from the
database and perform multiclass segmentation on those images.
We divide all brain image pixels into four classes, [gray matter
(GM), white matter (WM), cerebrospinal fluid (CSF), and
others]. The datum on which we perform tissue classification is
a T1-weighted MR image and has 181 217 pixels. We assign
zero intensity to those tissues belonging to “others” (e.g., fat,
skin, skull, etc.) and focus on the segmentation of GM, WM,
and CSF, because these three tissues occupy most of the brain
volume and are characterized by complex structures. Since we
know the true tissue label assigned to each pixel, it is easy to
estimate the parameters in the likelihood energy function. Here,
we set the mean intensities for “others,” CSF, GM, and WM
to 0, 58, 117, 156, respectively. BrainWeb database offers four

Fig. 5. Ninetieth slice of the BrainWeb dataset. From left to right are images
with 3%, 5%, 7%, and 9% noise levels, respectively.

TABLE III
SEGMENTATION RESULTS ON THE 90TH SLICE OF THE BRAINWEB

T1-WEIGHTED IMAGES WITH DIFFERENT NOISE LEVELS. THE

LOWEST ERROR RATES ARE HIGHLIGHTED IN BOLD

image volumes with four different levels of noise, 3%, 5%, 7%,
and 9% (see Fig. 5), and we test them all. The segmentation
results in terms of the error rate are listed in Table III. The seg-
mentation accuracy decreases when the images are corrupted
by a larger amount of noise. The proposed method achieves
more accurate segmentation results with the advantage of 0.3
to 1.3 percentage points over the other three MRF models.

To testify the use of our boundary MRF model for finding
closer boundaries to the ground truth, we compare the bound-
aries obtained by using the four models with the true, known
boundaries. Since the MLL model does not contain boundary
MRF and the style of line process is different from the proposed
model (LP defines discontinuity in between pixels and we define
it on pixels), we directly extract the boundary information from
the segmented images generated by each model. The closeness
to the ground truth is measured by the means of distance to the
closest point (DCP) [19]. In detail, we calculate the distance of
every point in a set of boundaries from the control models or
our model to the closest point in another set of boundary from
the ground truth. Then we sum up all values of DCP and regard
the summation as the measure of interest, namely boundary dif-
ference. Obviously, the smaller this measure is, the closer the
two sets of boundaries are. Due to the complexity of the bound-
aries, we classify the boundaries in each set into different types,
e.g., the boundary between GM and WM, the boundary between
GM and others, and the boundary between WM and others, etc.
In total, there are six types of boundaries for four classes: GM,
WM, CSF, and others. In calculation of the boundary difference,
we only consider the distance between the boundaries of the
same type in order to make the measure more specific and ac-
curate. The results on the BrainWeb data are listed in Table IV,
where we observe that the proposed model obtains boundaries
closer to the ground truth than the other three MRF models, and
the two LP models (LP1, LP2) get closer boundaries than the
MLL model. This is also positively relevant to the segmentation
results, as listed in Table III.
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TABLE IV
USING THE 90TH SLICE IN THE BRAINWEB T1-WEIGHTED IMAGES

WITH DIFFERENT NOISE LEVELS, THIS TABLE LISTS THE RESULTS

BASED ON BOUNDARY DIFFERENCE. THE SMALLEST BOUNDARY

DIFFERENCES ARE HIGHLIGHTED IN BOLD

Fig. 6. Segmentation results for an adult male subject brain (top subfigure) and
a child subject brain (bottom subfigure). We subtract the error rates of our model
from those of the other three models for easy inspection.

D. Real Clinical Images

Finally, we apply the four MRF models to the segmentation
of real clinical brain images. These real cerebral images are ob-
tained from the Internet Brain Segmentation Repository (IBSR)
[20]. IBSR provides manually-guided expert segmentation re-
sults along with magnetic resonance brain image data. We test
the four MRF models on all brain image slices from two sub-
jects. One is a male subject (56 slices) and the other is a child (76
slices). Both subjects undertook T1-weighted brain scans. The
original images have 256 256 pixels but contain a lot of irrele-
vant black background regions so we select a rectangular region
of interest (ROI) just including the brain volumes in the images.
This ROI selection can also make the segmentation more effi-
cient. According to the given ground truth available at IBSR, we
classified the image pixels to three classes [gray matter (GM),
white matter (WM), and others]. Similar to the experiments on
simulated brain volumes, we set the intensity of those pixels be-
longing to “others” to zero and focus on the segmentation of GM
and WM. We estimate the initial model parameters, e.g., mean
intensity and standard deviation of each class, based on the true
classification of the image volume. The quantitative segmenta-
tion results in terms of error rate are shown in Fig. 6, which

Fig. 7. Boundary evaluation for the four models. The data are the same as in
Fig. 6. We subtract the boundary difference of our model from those of the other
three models for easy inspection.

Fig. 8. Examples of IBSR data and segmentation results. Subfigures (a) and (b)
are the images to be segmented and ground truth, respectively. Subfigure (c) is
the result of MLL model. Subfigures (d) and (e) are the labeling and boundary
results of the proposed model. Subfigures (f)–(i) are the results of labeling, ver-
tical line process, horizontal line process, and combination of vertical and hori-
zontal line process of LP1 model. Subfigures (j)–(m) are the results of labeling,
vertical line process, horizontal line process, and combination of vertical and
horizontal line process of LP2 model.

plots the results of all slices of both subjects. Notice that we
plot the differences between error rates of the controls and our
model. More precisely, we subtract the error rates of our model
from those of the other three models individually. If the positive
value is obtained after the subtraction, this means that the error
rate of our model is smaller. As shown in Fig. 6, it is found that
the proposed model outperforms the other three models (MLL,
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Fig. 9. Closer checking of the segmentation results near boundaries. Subfigures (a)–(e) are the segmented images obtained by using the ground truth, MLL model,
the proposed model, LP1 model and LP2 model, respectively. The first row is the magnified region near boundaries when we zoom in near the top left corner of
the brain image.

LP1, LP2) in terms of segmentation accuracy because much of
the figure’s three curves is above the zero level except for very
few exceptions. The two LP models are similar in terms of seg-
mentation accuracy and perform slightly better than the MLL
model.

Similar to the experiments in the previous section, we check
the boundary difference of the four models using the ground
truth. The results on the IBSR data are shown in Fig. 7. In the
figure, we calculate and show the difference between boundary
differences of other models and ours. We subtract the boundary
difference of our model from those of the three other models.
As shown in the figure, most parts of the three curves are larger
than zero. There are only one or two exceptions. This means that
most of the boundary differences between the proposed model
and ground truth are less than the boundary differences between
the other three models and ground truth. As such, the proposed
model can find boundaries closer to the ground truth than the
other three MRF models, and LP models get closer boundaries
than MLL model in general.

To visualize the difference between the four models, we show
some segmentation results in Fig. 8. These results are based
on the same brain image volume so that we can visually com-
pare the results obtained by using the four models. We show
the segmented images, in which bright regions represent WM,
the gray regions represent GM, and the black regions represent
other tissue classes or the background. It is observed that the
segmentations of image volumes obtained by using the four dif-
ferent MRF models do not differ significantly. However, when
we zoom in to look closer at the subtle boundary areas, we can
find that the proposed model tends to preserve the boundary
shape better than the other MRF models (see Fig. 9, in which
our method does not over smooth the boundary). Besides, al-
though the boundary results are not our solitary objective, they
can infer the quality of segmentation to some extent. We can
see that the proposed method gets better boundaries than the
other two line process methods because the former boundaries
have less breaks and are closer to ground truth even though the
boundaries change subtly.

One observation needs some discussions. Some medical
image segmentation results are not completely consistent with

our intuition. We believe that the reasons are as follows. The
ground truth is generated under the supervision of trained radi-
ologists with prior knowledge and past clinical experiences. We
have to trust the “gold standard” when the result conflicts with
our observation. For example, in Fig. 8, it appears that there is
a part of white matters in the central area, but from the results
of all the four segmentation methods, that part is proved to be
quite dim and we tend to believe that it belongs to grey matter.

IV. DISCUSSION

In the previous section, we have performed binary and mul-
ticlass segmentations on images with the known ground truth.
It is shown through experiments that the proposed method can
outperform the three conventional MRF based segmentation
methods (MLL, LP1, LP2). Using the boundary MRF , our
model has the advantage of directly taking into account the
discontinuity between different regions while a single MRF
(e.g., MLL) does not have this advantage [8]. If constructed
properly, the coupled boundary MRF would probably help
the label MRF to improve its segmentation performance
because more information, in particular boundary information,
is incorporated extensively in the segmentation process. The
MLL model is a powerful tool that is widely used to perform
segmentation based on the assumption that pixels of the same
class should cluster. As such, this model strongly prefers one
pixel sharing the same label with its neighbors or most of
its neighbors. This is reasonable but when it comes to the
boundary, the MLL model may try to smooth the discontinuity.
This is a major drawback of the MLL model. On the contrary,
the proposed model solves the problem satisfactorily by taking
into account most of the possibilities when a boundary exists
in the window of interest.

The line process was introduced because researchers in-
tended to solve the problem related to discontinuities. This
allows and models interactions between the boundary field
and the label field but works in a less effective way than the
proposed method. The interaction between boundary sites in
our model is far more sophisticated than those proposed by
Geman and Geman [1] (LP1) and Geiger and Girosi [3] (LP2).
We study all the possible scenarios of single edge occurring in
a neighborhood window, and the corresponding configurations
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of label and boundary MRFs. Moreover, we couple the two
MRFs, and , more compactly than LP2, which used a
simple model, i.e., [3, Eq. (28)]. The work in LP1 only studied
six cases of edge configurations. This seems to be insufficient
to tackle complicated boundaries. The experimental results
(e.g., Fig. 9) infer this point. The boundaries found by the
proposed model preserve better shapes than the LP1 and LP2
models. Owing to the consideration of discontinuity, the LP
models often find boundaries closer to the ground truth than
MLL model.

The contribution of this paper lies in a new formulation of
MRF model, but the final result of MRF model will also depend
on the MRF solvers. In the comparisons, we use the same solver,
i.e., ICM, to find the local optima for all models. ICM algorithm
is commonly used and very efficient. However, it is known to
be sensitive to initialization. This is the reason why we need to
obtain a relatively good starting condition in the initialization.
Another limitation of ICM is that it can only change one label
at one time and this may be the reason why the proposed model
has moderate improvement over the control models. Another
reason for the moderate improvement is that boundary is not
the majority part of the whole image and the improvement on
boundary may not be accompanied by significant improvement
of overall segmentation accuracy.

It is still under study whether there are good solvers for MRF
models with the line process or the proposed MRF model. Sto-
chastic methods such as the simulated annealing (SA) may be
considered because they are more robust to the initializations. In
theory, SA can freeze a thermal dynamic system at a global min-
imum energy level with probability one under the assumption
that the system starts at a very high temperature and the cooling
schedule is extremely slow. However, there are some limitations
related to SA. First, it is not easy to select the initial temperature
in SA [21]. Usually, we should select a high enough tempera-
ture such that almost all the transitions are accepted in the initial
stages of the algorithm. However, setting a too high temperature
will elongate the algorithm running time considerably. Second,
the choice of cooling schedule of the temperature is tricky. If
it is too slow, time complexity is very high. If it is too fast, the
final obtained energy can be quite high. Third, and most im-
portantly, the computational cost of SA is unacceptable largely
due to the huge configuration space of MRF models on images.
For example, when using SA (we implemented the Metropolis
sampler [9] in SA, which is known to be more efficient than
another popular sampler [22], Gibbs sampler) to solve the sim-
plest MLL model on a binary 128 128 image, we found that
the computation time is several hours on a 1.3-GHz computer
with 500-MB RAM. For more complex models (line process or
the proposed model) on larger images with multiple classes, it
will take even much longer time. This means SA is impractical
for the current problem. Therefore, we do not apply SA to all the
testing data but apply it to a few examples. The preliminary re-
sults show that SA can help the proposed method achieve better
results than ICM. Also, the results of the proposed method using
SA are better than the other control methods using SA.

We have considered using other deterministic methods be-
sides ICM, e.g., belief propagation [23] or the graph cuts method
[24], to solve (approximately) our model, but we are still inves-

tigating about how to apply them directly to our model because
those methods are only applicable to some specific forms of ob-
jective functions [23], [25].

V. SUMMARY

In this paper, we have proposed a nontexture segmentation
model using compound MRFs based on a boundary model. The
main target of this approach is to enhance the performance of
segmentation by emphasizing the interactions between label
and boundary MRFs. The comparisons with other existing
MRF models show that the proposed model can give more
accurate segmentation results in both high and low noise level
regions while preserving subtle boundary information with
high accuracy.
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