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Image Denoising by Averaging of Piecewise
Constant Simulations of Image Partitions

Max Mignotte

Abstract—This paper investigates the problem of image de-
noising when the image is corrupted by additive white Gaussian
noise. We herein propose a spatial adaptive denoising method
which is based on an averaging process performed on a set of
Markov Chain Monte-Carlo simulations of region partition maps
constrained to be spatially piecewise uniform (i.e., constant in the
grey level value sense) for each estimated constant-value regions.
For the estimation of these region partition maps, we have adopted
the unsupervised Markovian framework in which parameters are
automatically estimated in the least square sense. This sequential
averaging allows to obtain, under our image model, an approxi-
mation of the image to be recovered in the minimal mean square
sense error. The experiments reported in this paper demonstrate
that the discussed method performs competitively and sometimes
better than the best existing state-of-the-art wavelet-based de-
noising methods in benchmark tests.

Index Terms—Image denoising, Markov chain Monte-Carlo
(MCMC) simulations, Markovian segmentation.

I. INTRODUCTION

UE to the imperfection of image acquisition systems
Dand transmission channels, images are often corrupted by
noise. This degradation leads to a significant reduction of image
quality and then makes more difficult to perform high-level
vision tasks such as recognition, 3-D reconstruction, or scene
interpretation. In most cases, this corruption is commonly
modeled by a zero-mean additive white Gaussian random noise
leading to the following additive degradation model

y=z+n ()
where y, x, and n represent respectively the noisy observed
image (of size N pixels), the clean image and the corrupting
additive white stationary Gaussian noise (AWGN) with variance
o2. In this context, the problem of recovering x from y is usu-
ally known as a denoising problem.

To this end, there has been considerable interest, over the last
decade, in wavelet-based denoising methods [1]-[21]. In these
schemes, the basic idea consists in projecting the noisy image
onto a properly selected orthogonal set of basis functions and,
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before reconstruction, in finding some kind of threshold that will
tend to remove more noise (mostly represented by low wavelet
coefficients) than important image edge information (mostly
represented by high-value coefficients).

Many researchers have then investigated wavelet-based
denoising tools with variation on the basic procedure (and
with some notable improvements), including shrinking instead
of thresholding, Bayesian thresholds, translation invariant
transforms, modification or level-dependent or adaptive choice
of thresholding functions, overcomplete decompositions (e.g.,
curvelet transform [7]), etc., to name a few.

Among the research works that do not use wavelet based
transforms or, more generally, the reconstruction principle using
projections onto set of basis functions, we can cite the numerous
existing local smoothing filters such as the Gaussian spatial filter
and its variants such as the adaptive smoothing filter proposed
by Lee [22]. More recently, we can cite the fractal-based de-
noising procedure proposed in [23] for which one can reason-
ably think that most of the denoising process is due to the deci-
mation associated with the contractive spatial maps, used in the
fractal transform. A wavelet extension of this work, with some
improvements, has also been recently proposed in [24]. We can
also cite the original non local means denoising algorithm re-
cently proposed in [25] which chooses for each pixel of the de-
noised estimated image a weighted average of grey level values
presenting a close neighborhood configuration. In this proce-
dure, the denoising process (especially well suited for denoising
images containing textural patterns) is due to the regularity as-
sumption that self similarities of neighborhoods exist in a real
image and that a neighborhood configuration can then be effi-
ciently used for predicting the central value of the pixel, as was
first shown in [26] for texture synthesis with a somewhat similar
non parametric sampling strategy.

To the best of our knowledge, little attention has been
given to the use of segmentation(s) for the purpose of image
denoising. Nevertheless, image denoising and segmentation
remains two related, fundamental problems. Some researchers
even think that these two problems are dual and complementary
and should be treated in parallel as it was put in a mathematical
form in the seminal paper proposed by Mumford and Shah
[27]. The segmentation process allows to capture the under-
lying geometrical structure hidden in real images corrupted by
random noise and this information may efficiently be exploited
by the denoising strategy.

Among the rare segmentation-based denoising approaches,
we can cite the ones using, once again, wavelet transforms. In
these models, the segmentation is generally exploited to make
the wavelet-based denoising procedure spatially adaptive to the
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image behavior. It is indirectly the case of the numerous sta-
tistical denoising methods using a particular (sometimes local)
prior distribution mixture model in order to segment the wavelet
coefficients and to exploit their local statistics related to the local
behavior of the image. In this context, a certain choice of prior
mixture model for the wavelet coefficients implies a statistical
estimate that produces the (possibly multiple and level depen-
dent) spatially adaptive thresholding or shrinkage functions [5],
[15]-[21]. It is also the case of the procedure described in [14]
which proposes to denoise each preliminary segmented region
independently of the others with a multiple compaction domain
wavelet-based algorithm. It is also the case of the method de-
scribed in [28] which applies two different wavelet coefficient
distribution models for each of the two segmented classes of
region generally present in any given image; namely, edges/tex-
ture regions and flat areas. Among the denoising approaches
combining spatial filtering and segmentation, we can cite the in-
teresting Filtering Using Explicit Local Segmentation (FUELS)
algorithm proposed by Seeman and Tisher in [29]. In this ap-
proach, each overlapping squared neighborhood encompassing
the current pixel to be denoised is filtered using only the inten-
sity level of the pixels belonging to the same class (segment)
of the considered central pixel. To this end, a binary segmen-
tation, involving a (minimum mean square error) thresholding
procedure is precomputed on each neighborhood region before
the spatial filtering process. We can also cite [30] in which a wa-
tershed analysis (i.e., a binary segmentation process that sepa-
rates the pixels into high-gradient and lower gradient connected
group of pixels) is exploited by the spatial filtering process. Let
us note that segmentation and denoising can also be carried
out in parallel in order to automatically estimate an adaptive
threshold which enables the correct segmentation of nonuni-
formly illuminated scenes as proposed in [31] or sequentially
in order to constrain other restoration problems such as the de-
convolution problem [32], [33].

In this paper, we propose to use an adaptive denoising method
which relies on simulations of oversegmentation maps. More
precisely, these simulations of oversegmentations allow to per-
form a double averaging process. The first one is a spatial local
averaging process and is performed on estimated constant-value
regions of the input image. This averaging allows to reduce the
Gaussian noise while preserving contours of the image. This
first averaging process is in accordance with our image model
which expresses the fact that any image can be well approxi-
mated as a union of a number of nonoverlapping and distinct
regions of uniform (i.e., constant) grey level value. In our appli-
cation, this region partition map is obtained from an unsuper-
vised Markovian oversegmentation using a classical local Potts
prior and appropriate Gaussian conditional luminance distribu-
tions, automatically estimated in the least-square (LS) sense.
The second one is a sequential averaging process and is per-
formed on a Markov chain sequence of simulations of these
above-mentioned segmentation maps according to its posterior
distribution model. This sequential averaging allows to obtain,
under our image model, an approximation of the image to be
recovered in the minimal mean-square sense error (MSE). The
performance of this denoising scheme will be demonstrated and
some comparisons with the best available wavelet-based images
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denoising methods will be given in order to illustrate the effec-
tiveness of the proposed model.

The remainder of this paper is organized as follows. The pro-
posed denoising model is described in Section II. In Section III,
we present the procedure of region partition. Section IV details
the empirical estimators of the regularization parameters of our
procedure. Finally, Section V presents a set of experimental re-
sults and comparisons with existing denoising techniques.

II. PROPOSED APPROACH

Our goal, in this denoising problem, is to obtain an estimate
Z of = from y such that the expectation of the MSE, i.e.,
E[|lz — £||>/N ] is minimized. In fact, this MSE measure,
which is the simple Euclidean distance between the original
and denoised estimated image, is also commonly proposed in
the denoising community in order to quantitatively measure the
achieved performance improvement of a denoising technique
leading to the well-known peak signal-to-noise ratio (PSNR) ex-
pressed in decibels thanks to the relation 20 log,[255/vMSE].
Under some assumptions, the optimal regularization scheme, in
the minimum MSE sense, is provided by the linear Weiner filter
[34]. However, this optimality is obtained under the assumption
that the image and noise processes are second-order stationary
(in the random process sense). This assumption is not valid for
most real-world images since statistics may change across an
image due to the presence of spatially localized phenomena
such as edges, textures, homogeneous regions, etc. For such
spatially nonstationary images, the Weiner filtering approach is
inappropriate.

In our approach and in order to regularize the solution (i.e.,
the denoised estimated image), we restrict the admissible solu-
tions, x, to piecewise constant (smooth) images. More precisely,
we define a regularized solution as a sum of Ny 2-D piece-
wise constant functions (i.e., regions) as proposed in [22]. In
this model a version of & = (z1,...,zx)? can be represented
by

Nr
wIZZuJI{LERJ} for 'LZI,,N

i=1

@

where 1; denotes the mean grey value of the j th region, N is
the total number of pixels, # € R; means “the 7 th pixel is in
the j th region,” I is the indicator function for the event E and
Npg is the total number of regions. In our formulation, we have
chosen to use single indexing (rather than double indexing) for
labelling pixel coordinates. This image model simply expresses
the fact that any (real-world or synthetic) images can be approx-
imated by an union of a number of nonoverlapping and distinct
regions of uniform (i.e., constant) grey level value. This asser-
tion is true, without error, for region of size 1 pixel and a good
approximation for regions with at most W,. = 10 — 20 pixels
(see Section V and Fig. 1 for confirmation).

Under this (regularized) image model, the proposed de-
noising approach then consists in defining the estimated image
Z, in the minimal MSE sense, by

&= FElzly] 3)
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Fig. 1. (a) Cropped image from the original 512 x 512 Lena image. (b) Noisy image with AWG noise with variance 02 = 15 (MSE = 224.6, PSNR =
24.62 dB). (c) Unsupervised nine-class segmentation. (d) Another unsupervised Markovian nine-class segmentation (obtained for another seed). (e) Partition into
regions of the segmentation presented in (c) with W,. = 15. (f) Partition into regions of the segmentation map presented in (d) with W,. = 15 showing 26142
regions with variable sizes (1 to 15 pixels for the original non cropped Lena image) and an average size of 10 pixels size. (g) Realization x (1) based on the partition
into regions presented in (e) (MSE =~ 86). (h) Realization z(2) based on the partition into regions presented in (f) (MSE = 87).

in which the expectation is only over the admissible solutions.
Thanks to the law of large numbers, (3) is approximated by

R 1
e Al CORSERECR) )

where z(;y, @ = 1,..., Ns are admissible realizations of X
(with the convention that X is the random process associated
to the particular realization x) according to a distribution which
is not analytically defined but which gives a realization z of X,
under the image model given in (2), by the following procedure.

A simple way of simulating a regularized realization x given
the observed and noisy data y consists in simulating a partition
into regions R of this image and then in replacing each pixel
value belonging to each region R; of R by its grey level mean
according to (2). To this end, R is obtained from an overseg-
mentation of y by breaking its connected regions (i.e., the set of
connected pixels belonging to a same class) into small disjoint
pieces of no more than W, pixels. Substituting (2) in (4), we
obtain

1 Nr(1)
;= Fs( ; iy Tiier; o3+
Nr(ng)
Sy uj(NS)I{ieRj(Ns)}) for i=1,...,N (5

i=1

where Ng(;) is the total number of regions of the ith simula-
tions. R(;) and j5(;) denote, respectively, the j th region from

partition ¢ and the mean grey value of the j th region from par-
tition 4.

We explain in the following section how to obtain this over-
segmentation according to an MRF model, how to subdivide
this segmentation into small disjoint pieces and finally how to
estimate the parameter vector g = {u;xy}, & = 1,..., Ng,
Jj =1,..., Nr(). Note that the same approach could be used
with various segmentation methods.

III. UNSUPERVISED REGION PARTITION PROCEDURE

A. Unsupervised Markovian Oversegmentation

To this end, we have considered the monoscale version of the
Markovian estimation model of segmentation into K classes de-
scribed in [35], and already successfully applied to noisy sonar
images. In this denoising application we take a Gaussian law as
degradation model to describe the luminance distribution within
each class. In this Bayesian approach, the MRF-based estima-
tion problem of segmentation consists first in inferring the pa-
rameters of the grey value distribution on each class ®,, which
is achieved thanks to an iterative method called iterative con-
ditional estimation (ICE) [36] which gives the best estimation
of é'y in the LS sense. This ICE procedure is initialized by a
K-means clustering procedure [37] as proposed in [35] and a
Gibbs sampling is used for the simulation process. This itera-
tive procedure allows to both estimate Cf'y and to obtain, at con-
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(a) (b)

Fig. 2. (a) Segmentation into 12 classes of a noisy version of Lena image
(o = 20) obtained at convergence of the ICE procedure. (b) Partition into re-
gions of the segmentation map presented in (a) exhibiting different randomly
chosen subdivision patterns, of W, = 15 pixels maximal size, for the different
regions associated to one (highlighted) class of the segmentation. The patterns of
subdivision are randomly chosen as being vertical horizontal or diagonal atomic
structures.

vergence,! a segmentation map based on Py 5 (z]y). In our
application, we take ; (¢ = 1,...,4), the parameters of the
a priori model and the number of classes K as a function of
the variance of the AWG noise (this will be made explicit in
Section V). Fig. 1(c) and (d) displays two examples of unsuper-
vised nine-class segmentation of y, exploiting parameters <i>y
estimated with the stochastic ICE procedure (for a different seed
for each example).

B. Partition Into Regions

We now exploit this oversegmentation? in order to get a re-
liable partition R of the image into homogeneous regions. To
this end, we simply search the set of disjoint regions (i.e., the
set of connected pixels belonging to the same class). In order
to limit regions with a large number of pixels, which could be
in accordance with our image model, we subdivide all the re-
gions with more than W, pixel size. In our application, we take
W, = o which induces that the segmentation-based spatial av-
eraging process will be proportional to the standard deviation
of the Gaussian degradation model. In order to avoid visual ar-
tifacts, we subdivide each region of each segmentation with a
different subdivision pattern (see Fig. 2 and Algorithm 2). The
parameter vector g = {/t;(x)}, is then simply estimated by

1 N
0 = = > i lier, 6
130 = o] 20 i i) ©)

where |R (x| denotes the cardinality of the j th region from par-
tition k. Due to the stochastic aspect of the simulation process
we obtain different possible oversegmentations [cf. Fig. 1(c) and
(d)] and, thus, different partitions into regions of the same input
image [see Fig. 1(e) and (f)]. These simulations of region maps
are differently partitioned. Nevertheless, the localized charac-
teristics of the image such as the main structures, the edges and
the details are preserved by these partitions which define a set
of possible low-level representations of the input image. These

ITo this end, we can use an adaptive criterion for the number of iterations as
the one proposed in [35] which is based on an indicator of the “stability” of the
procedure.

2An oversegmentation is a partition of the image in which small regions are
favored and which is beyond what is needed to divide the image semantically
into different objects of interest. The different elements or atomic regions of an
oversegmentation are sometimes called superpixels or segments.
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Fig. 3. Optimal value ensuring the minimal MSE denoising measure (and in-
terval for ensuring MSE | minimal MSE + 10%) for a set of 15 test images
and for (a) 3 the regularization parameter of the posterior distribution (with
Ns = 20 and K = 6) and (b) the value of K (with 5 = 1.0 and N5 = 20).

sets of competing partitions allows to define realizations of =
according to our image model given in (2) [see Fig. 1(g) and
(h)] which are already a denoised version, due to the spatial av-
eraging process on each region. This can be noticed simply by
visual evaluation or by comparing the MSE result of the noisy
image (MSE = 225) with the one obtained after the spatial av-
eraging process (MSE = 86) for each of z;. This spatial local
averaging process, performed on estimated regions of the input
image reduces the noise while preserving contours of the image
but also introduces some visual artifacts due to the inherent false
contours generated by the segmentation process. These artifacts
(and, consequently, the MSE result) will be all the more reduced
than the sequential averaging process leading to the final de-
noised estimate, will be done on a great number of simulations.

IV. ESTIMATION OF REGULARIZATION PARAMETERS

First, we have tested the sensitivity of the two following
parameters of our segmentation-based denoising model which
both act as a regularization parameter, namely:

1) B (=p1=...=p4), the regularization or prior term of our

prior distribution and
2) K, the number of classes of the Markovian segmentation
model
on the result of the minimal MSE (or equivalently the maximal
PSNR) measure for the denoising problem. Fig. 3 shows the
optimal value for the parameter (3 and K the number of classes
ensuring the minimal MSE for a set of 15 (512 x 512 black and
white) test images (training population). First, we can note that
the optimal value for  has to be around 3 = 0.3 — 0.8 for a
degradation model with variance ¢ = 10, around § = 1.0 for
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Fig. 4. Evolution of the MSE measure along the number of simulations for the
denoising of the Lena image (and for o = {10, 20, 30}).

o = 20 and around 8 = 1.4 for ¢ = 30 which leads to the
following empirical estimation model for (3

- o
} = {0.2 5, 2 } 7
[ = max 5 20 7)
Second, we can also note that the optimal value for K is around
K = 10 — 15 for a degradation model with variance ¢ = 10,
around K = 6 —8 foro = 20 and around K = 4—6 foro = 30
which leads to the following empirical estimation model for K

K = max { 6, [Number of gr;,y levels = 206} } ®
o

where [z] denotes the superior integer part of z and a minimal
number of classes (six in or application) is required in order to
avoid visual artifacts created by false contours generated by a
segmentation with a low number of classes, i.e., segmentations
computed on images corrupted by important noise. In order to
minimize visual artifacts and the MSE result, we have empiri-
cally noticed that a nonfixed number of classes, and more pre-
cisely a random value of the number of classes between 3, and
the maximal number given in (8) allowed us to improve the de-
noising result. We, thus, use a Gibbs sampling with K, randomly

chosen in
256
— 5. 9
20 }] ©)

As already said in Section III-B, we take Wr = ¢ which
induces that the segmentation-based spatial averaging process
will be proportional to the standard deviation of the Gaussian
degradation model (this value is empirically determined and
ensures minimal MSE denoising results on our training image
database). The required number of simulation is also empiri-
cally set. To this end Fig. 4 shows the evolution of the MSE
measure along the number of simulations for the denoising of
the Lena image for, respectively, the three following degrada-
tions models:o = {10, 20, 30}. This graph show us that a con-
vergence is achieved in less than 60 iterations. This number of
simulations will be used in our tests.

K € [3,max{6,

60 T T

T T T
1 simulation and 13 classes
1 simulation and 7 classes

1 simulation and 6 classes --------
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Fig. 5. Evolution of the MSE measure for different maximal region size for
respectively (from top to bottom) one and an averaging of 60 simulations.

V. EXPERIMENTAL RESULTS

A. Image Model Validity

First, we can check the validity of our image model expressed
in (2). To this end, we compute the MSE error between the un-
noisy 512 x 512 Lena image and its approximation obtained by
our Markovian segmentation procedure under our image model
for different maximal region sizes and respectively for a number
of classes respectively equals to 13, 7, and 6 (obtained, for ex-
ample, for a degradation noise respectively equals to o =10,
20, 30) (see Fig. 5 the MSE as a function of the maximal region
size). We have also shown on the second graph, the MSE error
between the unnoisy 512 x 512 and the averaging of 60 simu-
lations of segmentations as expressed in (5) as a function of the
maximal region size and respectively for randomized value of
number of classes respectively comprised between [3 — 13], [3
— 71, and [3 — 6] (obtained for example for a degradation noise
for which ¢ =10, 20, or 30). These curves show us both 1) the
improvement obtained by the sequential averaging process and
2) alower bound for the MSE result (for the Lena image) related
to each of the considered degradation model. For example, for
o = 20 and , thus, a maximal region size set to 20 (W,. = o)
and a number of classes simulated in [3 — 13] (9), a lower bound
for the MSE result is approximatively equals to 22.
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Fig. 6. From left to right, respectively, original 512 x 512 image (from top to bottom; Boat, Barbara, and Goldhill), noisy images corrupted with a Gaussian noise
of ¢ = 20 and obtained denoising result with our unsupervised approach (i.e., algorithm USBD) (from top to bottom; M SE =64.59, 153.96, 72.63, see Tables II
and IV ).

B. Comparison With State-of-the-Art Methods (algorithm called USBD or Unsupervised segmentation-based
denoising). Second, we consider our model for which the in-

We have considered two variants of our algorithm. First we ternal parameters are manually tuned [algorithm called super-
consider our model for which the internal parameters are given vised segmentation-based denoising (SSBD)]. For these two al-
by the empirical estimation given by (7), (9), and W, = o  gorithms, we consider a sequential averaging process made on
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TABLE I
MSE RESULTS FOR DIFFERENT DENOISED 512 X 512 IMAGES AND FOR SEVERAL STATE-OF-THE-ART WAVELET-BASED
DENOISING METHODS (ORTHOGONAL TRANSFORMS TO THE LEFT AND REDUNDANT TRANSFORMS TO THE RIGHT)

[1] [2] [13] [14] (8] 9] [10] [3] [6] (7] (11] [12] (51 (4] [38]
in [2]
LENA
o /MSE
10/ 100 60.10 | 24.10 | 23.12 - 38.91 - 23.04 - 21.85 - 17.87 | 21.78 | 20.56 19.16 34.06
157225 91.40 37.76 36.73 48.20 - - - 29.90 - - 26.49 32.36 32.59 28.15 -
20 / 400 122.8 | 51.53 | 50.94 - - - - 4020 | 4420 | 41.50 | 35.24 | 4227 | 4396 | 37.71 50.79
25/ 625 151.0 | 65.33 | 65.93 - - 74.48 | 63.55 50.80 - - 44.06 | 52.58 | 56.63 | 47.48 -
30/ 900 - - - - - - - - - - 62.38 - 57.87 69.80
BoAT
o /MSE
10 / 100 - - - - - - - - 34.00 - 28.51 - - 32.10 68.58
15/ 225 - - - - - - - - - - 43.96 - - 47.92 -
20 / 400 - - - - - - - - 68.50 - 59.58 - - 64.33 97.10
257625 - - - - - 90.80 - - - - 75.17 - - 81.37 -
30 / 900 - - - - - - - - 104.1 - - - - 96.72 122.68
TABLE II TABLE III

MSE RESULTS FOR DIFFERENT DENOISED 512 X 512 IMAGES AND FOR
SEVERAL RECENT NON WAVELET-BASED DENOISING METHODS.

[39] [23] [25] USBD SSBD
(in [23])
LENA
o/MSE
10/ 100 57.60 78.68 - 26.44 26.23
15/ 225 - - - 44.28 40.33
20 / 400 95.65 91.78 | 68.00 53.86 -
25/ 625 - - - 65.88 -
30 / 900 124.55 127.9 - 77.06 -
BOAT
o/MSE
10/ 100 58.06 129.7 - 30.53 30.15
15 /225 - - - 52.00 47.37
20 / 400 145.4 150.8 - 64.59 63.50
25/ 625 - - - 81.89 79.52
30/900 || 2283 | 1866 - 9845 | 96.51

N, = 60 simulations. The overall unsupervised segmentation-
based denoising procedure is outlined in pseudo-code in Algo-
rithm L.

We now present a set of experimental results and compar-
isons illustrating the performance of the proposed supervised or
unsupervised approach. For the experiments, we have replicated
the degradation models used in the evaluation of state-of-the-art
methods described in [1]-[14] and [38] for the wavelet-based
methods and [23], [39], [25] for the nonwavelet-based methods.
In these experiments, original images are Lena and Boat (of size
512 x 512) and the variance of the Gaussian noise vary from
100 to 900. We summarized the MSE results in Tables I and II.
Table IV summarized the MSE results for increasing noise
degradation model and for other commonly used test 512 x 512
images. MSE results for different noise variances obtained on
a complex image like Baboon can be compared to the results
obtained with wavelet-based denoising methods in [40] and
show than our method performs competitively. Fig. 6 shows vi-
sually some denoising restorations results on the Boat, Barbara,
and Goldhill images after corruption with a Gaussian noise of
o = 20.

TIME IN SECONDS FOR THE PROPOSED ALGORITHM ON THE DENOISING OF
512 x 512 LENA IMAGE (o € {10,20,30} AND FOR N, = 60)

” Noise | Time (sec) ||
o =10 | 287 sec.
o =20 | 180 sec.
o =30 | 168 sec.
TABLE IV

MSE RESULTS FOR DIFFERENT DENOISED 512 X 512 IMAGES
AND FOR OUR UNSUPERVISED AND SUPERVISED (IN BOLD)
VERSION OF OUR ALGORITHM (PARAMETER VECTOR [3, MAXIMAL
NUMBER OF CLASSES AND REGION SIZE | INDICATED BELOW)

ag
Image 10 [ 20 | 30
ZELDA 21.58 40.58 55.58
19.20 36.23 54.60
[1.20-11-9] [1.80-8-18] [2.00-7-30]
BARBARA 50.53 153.9 247.7
48.59 128.7 209.7
[0.68-17-11] [0.93-11-21] [1.45-11-26]
PEPPERS 26.54 51.49 75.61
- 50.91 -
[1.40-10-19]
GOLDHILL 36.82 72.63 105.9
- 71.15 101.9
[1.37-10-11] [1.60-9-18]
BRIDGE 69.80 165.8 250.1
58.78 139.3 2104
[0.89-20-4] [1.38-15-8] [1.87-14-12]
BABOON 82.85 236.7 426.0
76.7 209.8 321.8
[0.38-16-5] [0.76-11-16] [1.0-8-14]
F16 26.73 61.76 96.09
26.31 60.89 91.86
[0.93-12-9] [1.81-17-13] [2.00-13-26]
ELAINE 35.87 59.77 78.24
- 58.64 75.96
[1.91-15-19] | [2.60-11-33]

In order to observe the qualitative differences between the
state-of-the-art wavelet-based method and our procedure, we
have represented in Fig. 7 a detail of the denoised Lena image
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Fig. 7. From top to bottom, respectively, detail of the original 512 X 512 Lena image. Denoising result (¢ = 20) obtained with a curvelet-based procedure
[7] (example taken from the website of the author at http://www-stat.stanford.edu/~jstarck, MSE = 41.50) and our unsupervised segmentation-based approach

MSE = 53.86.

(o = 20) with our method compared to the curvelet-based de-
noising procedure proposed in [7] (example taken from the web-
site of the author at http://www-stat.stanford.edu/~jstarck) and
our denoising approach (see also http: www.iro.umontreal.ca
/~mignotte/IP-Denoising/ for additional results).

C. Performance of Our Denoising Process With Other
Segmenters

We have also experimented this segmentation-based de-
noising approach with a more simple segmentation strategy.
To this end, we have only considered a K-means clustering
approach (a K -class segmenter) for which a stochastic version,
required to allow our averaging step, is easily achieved by
simply randomly chosen (with different input seeds) the K
initial clusters. In this case, the algorithm of our segmenta-
tion-based denoising method is the same as the one outlined in
pseudo-code in Algorithm 1 but without considering the sub-
steps 2(b)—(d). Two versions of this K-means based segmenter
have been tested.

The first one is the classical K-means clustering procedure
using grey level intensity as discriminant feature for each pixel.
The second one is the previous K-means segmenter followed
by a median filter (iterated two times) on the resulting label field
proposed by the K-means clustering procedure (i.e., using a ma-
jority vote on a squared 3 x 3 neighborhood of the segmentation
map). This last version allows to easily add a somewhat spatial
regularization term that could be interesting in the case of the
segmentation of a noisy image which has to be exploited (as in
our application) as input of a denoising process. These two ver-
sions also exploit our empirical estimation method for K and
W, and use 60 averagings.

We can note that the quality of segmentation is important in
the performance of the proposed denoising procedure. The two
versions of the K-means denoiser allow herein to reduce the
noise, excepted in the case of the Baboon and Barbara images
with the second version of the K-means and for ¢ = 10 for
which the resulting MSE is above the initial noise variance (we
recall that the resulting MSE gives in fact the variance of the re-
maining noise on the filtered estimate). The K-means including

TABLE V
MSE RESULTS FOR DIFFERENT DENOISED 512 X 512 IMAGES AND FOR OUR
DENOISING ALGORITHM (60 AVERAGES) USING FROM TOP TO BOTTOM
A K-MEANS SEGMENTER AND A K-MEANS SEGMENTER FOLLOWED BY
A 3 X 3 MEDIAN FILTER (ITERATED TWO TIMES)

g

Image 10 T 20 [ 30
LENA 56.3 234.1 | 590.8
32.6 59.1 93.5
BOAT 61.9 254.6 | 614.1
39.7 72.7 117.1
ZELDA 55.7 246.7 | 628.9
20.0 422 73.4
BARBARA 65.2 250.3 | 610.6
176.1 | 2293 | 2743
PEPPERS 49.8 223.2 | 565.1
31.8 56.4 89.6
BABOON 79.8 308.1 | 668.7
309.9 | 401.8 | 473.1

a postprocessing median filtering allows to improve the MSE
results compared to a simple K-means but remains less inter-
esting than an unsupervised Markovian segmentation strategy
(see Tables IV and V).

This also means that our proposed MRF-segmentation-based
denoising model is perfectible and could be improved by using
more accurate modeling that the simple Potts-MRF model using
Gaussian likelihood distributions as proposed in this paper.

D. Discussion

We can note that the proposed method performs very com-
petitively among the nonwavelet-based denoising methods
and competitively among the wavelet-based denoising
state-of-the-art methods. The unsupervised algorithm gives
MSE results relatively close to its supervised version (-’
means that no significant lower MSE result was found with
the supervised version of our denoising algorithm) and, thus,
shows that the empirical estimators are quite good and reliable
excepted for some images with micro textured regions such
as Baboon, Bridge, or Barbara for which denoising results in
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Fig. 8. Method noise MSE = 53.86 for the Lena image (initially corrupted
with AWGN of ¢ = 20) obtained by our unsupervised segmentation-based
approach (i.e., algorithm SSBD).

term of MSE is better for values of 3 and W,. lower than the
empirical estimates.

In our case, a Markovian segmentation model is preferen-
tially used in our segmentation-based denoising procedure for
several reasons. First, this statistical segmentation model is
especially well suited to take into account the additive inde-
pendent Gaussian noise that is generally considered in image
denoising (and can also be easily adapted to different kinds
of noise degradation models such as additive white Weibull
or Rayleigh random noise [35]). Second, this model allows to
model the local characteristics of the image content thanks to
a priori specification of spatial dependencies between neigh-
boring sites (this a priori acts as a regularization term which
makes this segmentation robust against noise). Finally, statis-
tical tools (e.g., ICE procedure, adaptive simulated annealing,
or MCMC Gibbs sampler) allows us to automatically estimate
(in a statistical criterion sense) the parameters of any MRF
segmentation models.

We have also computed the residual noise after a denoising
obtained by our method and displayed the result in Fig. 8. The
property of this residual noise (also called the method noise)
tells us which geometrical features or details are preserved by
the denoising process and which are eliminated [25] and, thus,
is a important criterion in order to qualitatively judge the per-
formance of a denoising algorithm.

Table III shows the time in seconds that our algorithm took
for a total of 60 simulations and for each considered degrada-
tion model (system used: AMD Athlon 64 Processor 3500+,
2.2-GHz, 4374 bogomips and running on Linux). Let us note
that our denoising system can be easily implemented in par-
allel and that three times less of simulations (for three times less
of computational cost) would lead to a quasi convergence (and
would lead to a similar MSE result) for our method (see Fig. 4).

MRF Segmentation-Based Denoising Algorithm

[S)

o Variance of the degradation noise

N Number of segmentations/partitions

K Number of classes of the segmentation
) Regularization parameter of the posterior
W,  Maximal size of each region

1. Initialization

B — n1ax{0.25,a/20} W, —o

2. Unsupervised Oversegmentations/Partitions
for k = 1 to Ny do

K «— Random Integer in [3, max{ 6, 256/20}]
according to a uniform law

(a) K-means clustering of each pixel of y into K
clusters, initially randomly chosen (seep= k)
(b) @, — Maximum Likelihood (ML) fitting of
a Gaussian law G(u, 0?) for each cluster

((I).U = [/LI:U%7 B uK,of(])
(¢) 2w <— ML segmentation of y into K classes
based on ®,

(d) z « ICE algorithm on y (initialized with 2y,
®, and with seep= k)

(e) ()« Partition of z into IV, distinct regions
with randomly chosen patterns of subdivision
(of less than W, pixel size) in which the set
of pixel values belonging to the j" region R
is replaced by its mean value of grey level p;
ie.,

Nr
Ti(k) = ZM Iiier;y, for i=1,--- N
j=1

3. Segmentation-Based Denoising
1

Algorithm 1. MRF Segmentation-based denoising algorithm.

VI. CONCLUSION

In this paper, we have presented a new denoising method
which is based on a sequential averaging of piecewise uniform
simulated image partitions. These simulations are obtained
by a Gibbs sampler of possible oversegmentations for which
internal parameters are automatically and empirically esti-
mated. The proposed segmentation-based denoising technique
efficiently adapts to local characteristics of the data and allows
to reduce the noise while preserving contours and texture of the
original image. The proposed method challenges better among
existing nonwavelet-based denoising techniques and performs
competitively among the recently reported state-of-the-art
denoising systems using wavelet decompositions. This method
also proposes a new spatial domain promising avenue for
the denoising problem for which it is interesting to speculate
how the performance of such segmentation-based denoising
system might be improved. In that prospect, the denoising
model could be improved by using more accurate modeling
for the segmentation process since the Gaussian likelihood
model used in our segmentation process is the simplest one.
In addition a more accurate prior model could be also take
into account. To this end, Bayesian theory makes it possible
to apply (or to add to the classical Potts local prior model)
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Subdivisions Into Randomized Patterns

W,
cpt

Maximal size of each subdivision pattern
Counter

for each set of connected pixel belonging to the
same class ey of z(; and that does not belong to
any previous patterns of subdivision do

e C' « Random Integer in € [0, 3]

if [C'=0] then INCLUDEINR;PIXEL-1 (r,c)
if [C'=1] then INCLUDEINR;PIXEL-2 (7, c)
if [C'=2] then INCLUDEINR;PIXEL-3 (,c)
if [C'=3] then INCLUDEINR;PIXEL-4 (7, c)
0O INCLUDEINR;PIXEL-1 (1, ¢)
if (ept < W,.) and pixel(r,c) € e, N R,
then
cpt — cept + 1
Include Pixel (r,¢) in R;
INCLUDEINR ;PIXEL-1 (r — 1,¢)
INCLUDEINR;PIXEL-1 (4 1,¢)
INCLUDEINR ;PIXEL-1 (r,c — 1)
INCLUDEINR;PIXEL-1 (r,c + 1)
0 INCLUDEINR;PIXEL-2 (7, ¢)
if (ept < W,.) and pixel(r,c) € e, N R;
then
ept — cpt +1
Include Pixel (r,c) in R;
INCLUDEINR;PIXEL-1 (r,c — 1)
INCLUDEINR;PIXEL-1 (r,c + 1)
INCLUDEINR ;PIXEL-1 (r — 1,¢)
INCLUDEINR;PIXEL-1 (r + 1,¢)
[0 INCLUDEINR;PIXEL-3 (7, ¢)

...etc...

Algorithm 2. Partition of a set of connected pixels belonging to the same class
of z(;) into distinct regions with randomly chosen patterns of subdivision.

global prior spatial constraints, such as the size, the number
of regions or the smoothness of the region boundaries, the
shape of these regions, etc., which may be also expressed by a
probabilistic models in order to more accurately constraint the
segmentation problem [41], [42]. A better and truly statistical
estimation procedure for the regularization parameters of this
method could be also investigated. It would also be interesting
to consider a more realistic image model; and to consider that
an image is certainly more rightly approximated by a sum of
Np piecewise polynomial (and not constant) functions. Let
us also note that the proposed model can be easily adapted,
with simulation of spatio-temporal oversegmentations, for the
denoising of video image sequences. Let us finally add that
this sequential averaging-based process can easily be combined
with other complementary spatial domain denoising procedures
such as the fractal-based [23] algorithm or the non local means
procedure [25] recently proposed in order to obtain further
restoration improvements.
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