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Fast and Stable Bayesian Image Expansion
Using Sparse Edge Priors

Ashish Raj and Kailash Thakur

Abstract—Smoothness assumptions in traditional image expan-
sion cause blurring of edges and other high-frequency content
that can be perceptually disturbing. Previous edge-preserving
approaches are either ad hoc, statistically untenable, or compu-
tationally unattractive. We propose a new edge-driven stochastic
prior image model and obtain the maximum a posteriori (MAP)
estimate under this model. The MAP estimate is computationally
challenging since it involves the inversion of very large matrices.
An efficient algorithm is presented for expansion by dyadic factors.
The technique exploits diagonalization of convolutional operators
under the Fourier transform, and the sparsity of our edge prior,
to speed up processing. Visual and quantitative comparison of our
technique with other popular methods demonstrates its potential
and promise.

Index Terms—Bayesian estimation, edge-driven priors, image
expansion, interpolation, subspace separation.

I. INTRODUCTION

IMAGE expansion, whether by polynomial/spline interpo-
lation or by more recent model-based methods, is an im-

portant, but evolving, field. This paper presents a Bayesian ap-
proach under a novel edge-driven prior image model and a real-
istic observation model. A novel efficient algorithm is then pre-
sented for fast processing of the computationally challenging
Bayesian problem.

This paper is organized as follows. The rest of this section
discusses the prior art and formulates the expansion problem.
Section II proposes the edge-driven prior model, derives the
Bayesian estimate, and describes our practical implementation.
Section III develops an efficient subspace separation algorithm.
Sections IV and V contain results and conclusions.

In our notation, scalar quantities are italicised (e.g., “ ”), vec-
tors are straight boldface (“ ”), and matrices are upper case
(“ ”). denotes the matrix transpose and the conju-
gate transpose. The th element of is denoted by .

denotes the joint probability distribution of the elements
of vector , and denotes the expectation of . We use

to denote a diagonal matrix whose diagonal entries are
given by the vector .
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A. Review

Images have traditionally been expanded by interpolating in-
termediate data points from the available coarse grid [1]. Piece-
wise polynomial fitting [2], splines [3], or convolution kernels
[4] have been used for this purpose. Generalised interpolation
was recently proposed using an approximation theory formula-
tion [3], [5]. These methods have proved adequate for interpo-
lation within the Nyquist rate, and for rotational or fractional
resampling. However, there are two major problems with using
these methods for image expansion by multiple factors. First, as
described below, image expansion is not really the same as in-
terpolation. Second, interpolation based on polynomial fitting,
splines or convolution assumes global continuity and smooth-
ness constraints that produce perceptually unsatisfactory results
with blurred edges and textures.

Many ad hoc edge-preserving interpolation techniques have
been reported to handle the second problem, including adap-
tive splines [6], POCS interpolation [7], nonlinear interpolation
with edge fitting [8], and edge-directed interpolation [9]. The
latter uses edge orientation to perform directional polynomial
interpolation so that interpolation occurs only along an edge,
and not across it. Problems include the need for a separate, ac-
curate edge detection step and high computational complexity
due to its use of iterative projections. The same is true of [7],
another POCS method. In [8], a nonlinear interpolation is pro-
posed that incorporates local edge fitting in order to avoid inter-
polation across edges. Space-warped polynomial interpolation
[10] reduces edge blurring by assigning smaller weight to data
samples on different sides of an edge than those on the same
side. A rough local-gradient edge measure was proposed, but the
method is highly sensitive to edge localization. The parameter
choices are ad hoc and not locally adaptable. Ad hoc methods
are nonoptimal since they do not use any underlying prior or
likelihood model.

Some principled model-based approaches have also been re-
ported. Wiener [11], Kalman [12], and adaptive-filter-based [13]
methods achieve spatial adaptation, but at the cost of processing
time. However, the value of these essentially causal/temporal
techniques is unproven on images, whose statistics are liable to
change abruptly and noncausally. Local statistic estimation re-
quires large windows for accuracy but small windows for local
adaptation, resulting in a limiting tradeoff. For instance, [11]
proposed a promising way to interpolate between four neigh-
boring pixels via a Wiener process to achieve sensitivity to edge
orientation. Their results are impressive but do not indicate suf-
ficient sensitivity to edges due to this tradeoff. Further, covari-
ance estimates were obtained from the available low-resolution

1057-7149/$25.00 © 2007 IEEE
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Fig. 1. (Solid lines) Camera acquires a low-resolution image by integrating over coarse pixels. (Dashed lines) The expansion task is to deduce intensity values
that would arise if the integration is carried over a smaller pixel area, denoted by the finer grid.

image instead of the required (but not available) high-resolu-
tion image, a classic image expansion issue which can be ne-
glected only for asymptotically dense sampling. An improve-
ment to this technique was reported by Muresan et al. [14] who
propose a novel technique, called AQua, for arbitrary expan-
sion factors. AQua constrains the signal to belong to an adaptive
quadratic signal class and reportedly shows better sharpness and
edge preservation compared to [11]. However, both methods ap-
pear to exhibit excessive directional smoothing (see Section IV).

In order to obtain statistically sound expansion from
under-sampled data, Bayesian methods using Markov random
fields (MRFs) have been proposed [15]. Other Bayesian
methods were reported by many authors using wavelets [16],
EM algorithm [17]; an efficient algorithm was reported in [18].
Unfortunately, finding reliable estimates of prior distributions
is difficult from available low-resolution data, and optimization
of the resulting nonconvex cost functions is computationally
intractable, even in simpler MRF techniques [15]. The Bayesian
methods above have concentrated mainly on super-resolution
from multiple low-resolution images. The expansion problem,
in which only a single low-resolution image is available, is
obviously more challenging. For this reason, fully Bayesian
methods for arbitrary expansion factors using MRF priors
appear too ambitious in terms of underlying models and com-
putational feasibility.

In summary, current edge-preserving expansion methods are
limited by two major issues.

1) They rely on accurate edge information that is, in fact, not
obtainable from coarse data.

2) After incorporating edges, optimal Bayesian solutions are
no longer computationally tractable.

In this paper, we propose a method to exploit sparsity in the
prior model to achieve speed-up while retaining the essential
characteristics of a locally variable Bayesian image model.

B. Problem Formulation

The problem we address is depicted in Fig. 1. The original
“world” image intensity undergoes blurring by the
camera’s optics, then spatially averaged over the sensor pixel
area to produce a digital intensity value . Instead of
trying to reproduce the exact continuous intensity
from the available discrete image , following [19], [20],

Fig. 2. Decimation model corresponding to (2). The effect of optical PSF and
pixel averaging is combined in H .

in this paper, we consider instead a more realistic goal. Given
intensity samples obtained at the coarse grid

we wish to obtain the set of more finely sampled intensity values
at the finer grid, assuming no aliasing on either grid. Fig. 1(b)
and (c) show the two grids and how they are related to each
other. Note the departure from traditional interpolation which
assumes direct subsampling.

Approximating intensity to be uniform over each
subpixel, denoting by the vector the lexicographically ar-
ranged set of finely sampled intensities , and by
the coarser samples , this becomes a 2-D convolution
followed by decimation (see Fig. 2)

(1)

with . Hence, image expansion in-

volves not only up-sampling but also deconvolution. Camera
PSF is included in , if necessary, yielding finally the decima-
tion model

(2)

where is , and is additive noise, generally
assumed i.i.d. white Gaussian. The decimation model (2) has
been widely used in the problem of super-resolving satellite
imagery from multiple low-resolution images [15]–[19]. It is
related to a more general observation model described by [20],
whose model simplifies to (2) under the assumption of negli-
gible aliasing in the high-resolution image . For expansion
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factors , , we have

but we will solve this as a series of interpolations, ig-
noring the fact that noise properties actually depend on in-
stead of being white Gaussian for all . Our implementation
focuses on dyadic expansion factors, but we note that this is a
practical rather than theoretical restriction. In principle, a sim-
ilar approach can be derived for any integer expansion factor.

Equation (2) can be solved directly via least squares methods
traditionally used in decovolution/restoration [21], [22]. The
expansion problem (2) is similar, but is, in addition, severely
underdetermined. The least-squares methods can handle
ill-posedness by introducing a regularization term which
penalizes deviation from some a priori constraint. In Bayesian
terms, this might represent knowledge of image covariance.
Standard Tikhonov regularization employs global smoothness
constraints: , where matrix represents the
finite differences operator. The stabilizing term reduces noise
amplification by preventing small singular values, acting as a
filter on the matrix spectrum.

Unfortunately, Tikhonov-regularized least squares does not
preserve the integrity of sharp edges due to unrealistic global
smoothness assumptions on images, which are, in fact, better
modeled as nonstationary processes. We now introduce an in-
teresting edge-driven prior model of images, and derive the op-
timal maximum a posteriori (MAP) estimate for expansion.

C. Our Approach

MAP methods are computationally prohibitive since matrix
diagonalization is no longer possible by Fourier transforma-
tion. We will model both the likelihood and the prior in terms
of distances, which makes the MAP problem essentially
quadratic. We reduce complexity by exploiting sparsity of dis-
continuous transitions and obtain a “near-diagonalization” re-
sult which allows fast processing. Quadratic inverses involving
variable weights typically suffer from instability and ill-condi-
tioning. Our approach divides the solution space into two or-
thogonal subspaces, which allows the quadratic inverse to be
obtained independently and stably within each subspace.

For a practical implementation, we further reduce computa-
tional burden by tiling the image and solving a series of 1-D
problems, first on rows, followed by columns. This is possible if
the decimation kernel is separable into row and column vectors.
The method is naturally progressive—simpler, approximate es-
timates are obtained first, and fed back to obtain more exact
(and expensive) estimates. Our derivations assume that a large
sparse Toeplitz matrix can be replaced by a circulant one without
error—a standard assumption in many Fourier methods. In im-
ages, this assumption causes problems only near boundaries,
and is easily mitigated by zero padding.

II. MAXIMUM A Posteriori (MAP) IMAGE EXPANSION

USING PRIOR EDGE INFORMATION

A. Sparse Edge-Driven Prior Model

Images are well modeled by piecewise smoothness punc-
tuated with edge discontinuities [23]. Traditionally, images

have been stochastically modeled as having translation-in-
variant global smoothness of the kind , where is
an i.i.d. signal and matrix models the spatial correlation
of the image signal and is usually expressed as a Toeplitz
matrix corresponding to some smoothing convolution kernel.
It has been shown that under this model MAP reproduces
Tikhonov regularization with the equivalence [24].
We wish to modify this model to incorporate edge priors. The
classic difficulty of this approach is that the information about
edge location, orientation and magnitude is data-dependent;
hence, it can hardly be called a “prior” in the normal sense.
Therefore, direct use of edge detection results as edge priors
may be considered statistically unsound under noise, blur and
other artifacts. Certainly, this is highly problematic for image
expansion where the data are highly blurred and decimated,
although limited justification for this approach was presented
in [11]. In this paper, we argue that although accurate edge
priors relying on steepness and resolution of edges in cannot
be obtained from available data , the approximate location and
magnitude of edges can be easily and reliably obtained. Instead
of using edge information as a hard decision step, we propose
a stochastic framework to allow soft decisions.

For the purpose of edge detection, we first expand the ob-
served image to the same size as desired image , and ob-
tain . We used bilinear interpolation for this, but any popular
method could be used, for instance polynomial kernel or nearest
neighbor. Let us denote by is an edge in image
the set of edge locations obtained from edge detection on .
Edge set is obtained as follows; the coarse image is fil-
tered by the derivative of Gaussian (DoG) to get a rough map of
intensity slopes [25]. The width of DoG was empirically chosen
to match the noise. A small width allows finer edges to be reg-
istered, but increases false detection due to noise. Some amount
of initial operator supervision is, therefore, inevitable. We do
not implement complex and expensive edge detection steps or
cross validation for optimal edge parameters since our aim is
to minimize execution time. Simple edge detection followed by
hierarchical edge linking [26] was found sufficient. Image is a
blurry, low-resolution image, so more sophisticated edge detec-
tion methods are not helpful; in any case, our stochastic model
shown below serves to desensitize the effect of edge detection.

We introduce a sparse, independent “edge” point process
, where is an independent binomial point process which

can take the values 0 or 1, is an independent Gaussian sto-
chastic process, and multiplication “ ” is point-by-point. Our
probability model is

where is the variance of identically distributed Gaussians
and is an inverse distance specified later. Let be an i.i.d.
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stochastic process with variance 1 and be a Toeplitz matrix
that captures the spatial correlation of the image. Then our new
image model is

(3)

This reproduces a spatially correlated (smooth) image process
interspersed with edge point processes of random but Gaussian
distributed magnitude. This edge model may not be entirely sat-
isfactory for 2-D images, but is justifiable under our separable
1-D approach.

We now make the standard assumption: Process is jointly
(zero mean) Gaussian, with

(4)

where is the signal covariance matrix. From
(3), we have , assuming
independence between and . Using the independence of
and , and . From (3)

The diagonal matrix is given by ,

, and . For convenience we define

an edge-weighted map ,
.

Since the appropriate form of is not known a priori, we
have tried various intuitive forms including Gaussian, linear,
quadratic, etc. Overall, the inverted truncated linear model

seemed to work best—this
appears to mirror current literature on robust image estimation
[18], [27]. For this choice of , forms a distance metric, and
can be efficiently computed in terms of a distance transform
in linear time [28]. Note that and are prior model pa-
rameters which are basically unknown, and such quantities are
determined heuristically after trial and error in most Bayesian
applications. We found the best results by setting and

. The plot of for these settings and the corre-
sponding values of weights and are shown in Fig. 3
as a function of in the vicinity of an edge location .
Adaptive and spatially variable choice of these parameters can
lead to improved performance, but this is a subject of future
work. Note also that, in practice, the elements of are so far
apart that it is possible to use nearest neighbor processing to
speed up the computation of the distance transform.

B. Deriving the MAP Estimate

Using this prior, we wish to estimate . The optimal MAP
estimate maximizes the posterior .
The likelihood function comes from the decimation

1Subscript x emphasizes that process p captures the statistics of image x,
including its variance

Fig. 3. Plot of edge-driven functions used as edge prior in this paper: (solid) �,
(dashed) B and (dotted) W . All curves are for i in vicinity of edge location j ,
assuming there are no other edge locations in this neighborhood.

model

(5)

MAP is typically obtained by minimizing ,
which from (4) and (5) becomes

(6)

The parameter is theoretically determined by prior and noise
energy: . In practice, good unsupervised estimates
of these variances might be difficult, so is chosen empirically.
Many cross-validation techniques are available to automate the
process [29], but this issue was not explored in the current work.
The closed form solution of (6) using is given by

(7)

Here, we have defined the “pseudo-inverse” as the regular-
ized inverse of . This closely resembles a regularized least
square problem but with variable regularization weights. The
MAP estimate basically imposes a locally varying smoothness
constraint whose local weights come from prior knowledge of
edge locations and the assumed distance function .
This allows for a probabilistic rather than hard interpretation of
edge information deduced from observation , thus providing a
more robust and statistically sound approach.

A direct matrix inversion of (7) is not advisable due to pro-
hibitive computational cost, as well as instability and ill-condi-
tioning in regions with small weights. Section III proposes in-
stead a new computationally efficient and stable subspace-based
inversion algorithm. However, first we give an overview of the
image expansion algorithm.

C. Practical Implementation Using Separable 1-D Processing

To reduce computational burden, deconvolution is sometimes
done one row at a time or over tiled subimages [30]. We take this
approach by making the separable assumption on .



RAJ AND THAKUR: FAST AND STABLE BAYESIAN IMAGE EXPANSION 1077

Fig. 4. (a) Separable decimation model showing how a low-resolution image
y arises from x via separate horizontal and vertical processes. The convolution
kernels h and h are 1-D. (b) The Separable MAP solution is obtained by
“undoing” the horizontal and vertical decimations in (a) sequentially. Opera-
tions denoted by H and H are described in Section III.

Definition: The 2-D impulse response is considered sepa-
rable if it can be expressed as

where and are column vectors representing vertical and
horizontal impulse response. This assumption is clearly valid for
our model , with and . If
separability does not hold, Fig. 2 can still be resolved as shown
in Fig. 4(a).

Our separable scheme first inverts horizontal decimation,
then uses the result to invert vertical decimation, as shown in
Fig. 4(b). Due to separability, each 1-D inversion and
is performed independently on rows and columns of , via
an efficient subspace method (Section III). To further reduce
computational burden, we break the image into several subim-
ages, and perform the separable operations on each. In practice,
the subimage grid is designed so that there is some amount
of overlap between adjacent subimages. The overlap allows a
better merging of subimages without causing grid artifacts. The
overall algorithm is presented as follows.

Algorithm A1: Overall Separable Image Expansion Algorithm

• Compute weight map and diagonal weight matrix
as in Section II-A.

• Break into subimages , , of size .
Similarly break into .

• For each subimage .
1) Compute the inversion , as follows:

— For

row of row of

where inversion is via algorithm A2 in Section III,
and uses the weight map .

2) is now of size .
3) Compute the inversion , as follows:

— For

column of column of

where inversion is via algorithm A2.

Fig. 5. Pictorial representation of subspace partitioning—searching for cost
minimization staring from x , and ending at x .

4) Assign as the th expanded subimage.
• Stitch all s back into the overall expanded image .
• If expansion factor is , , then repeat the whole

process times.

III. NEW SUBSPACE SEPARATION METHOD

FOR MAP IMAGE EXPANSION

Direct inversion of (7) suffers from high computational cost
as well as instability and noise amplification in regions with
small weights. To address the computational issue, many pa-
pers on deconvolution and restoration have previously proposed
diagonalizing of least squares problems like (7) via the DFT.
Unfortunately, due to variable weights in the MAP formula-
tion, this is no longer possible. A new stable and efficient frame-
work is now obtained by basis change which “almost diagonal-
izes” the problem. Solution space (spanned by some unitary ma-
trix ) is partitioned into two orthogonal subspaces and

, so that the inverse problem is independent, well-posed
and stable in each subspace

(8)

where is any solution to the under-determined system
, and , are vectors of length . Fig. 5 depicts the sit-

uation, where can be anywhere on the line defining ,
and is shown orthogonal to . and are given
by the SVD of .

Henceforth, the minimization of (6) is conducted over
. We will show that this basis change “almost bidiag-

onalizes” the system and in the absence of variable weights
solves a bidiagonal system. To efficiently handle variable
weights in the MAP estimate, we exploit the sparse edge
assumption. These three steps, depicted in Fig. 6 are now
explained in detail.

1) Specifying , , : SVD of Toeplitz matrices is given
by the Fourier Transform. It is well-known [31] that the fol-
lowing approximate Toeplitz diagonalization applies

(9)

where is the unitary -point DFT matrix and diagonal
contains the singular values of , which are in

turn given by the DFT of the impulse response . Equation
(9) is accurate when the length of is much smaller than ,
and becomes perfect in the asymptote. Potential errors due to
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Fig. 6. Three steps involved in finding the MAP estimate. Estimates x to x are intermediate solutions, and x is the exact MAP solution. These quantities are
summarized under Algorithm A2. The incremental numerical cost of each estimate from the preceding step is shown alongside. � is the sparsity ratio of the edge
weights.

Fig. 7. (a) Singular values of H (i.e., diagonal elements of �), and (b) of decimated matrix H (i.e., diagonal elements of � ).

this approximation occur only near image boundaries, and are
easily mitigated by zero padding.

Analogous results for the row decimated matrix appear to
have gone unreported, which we now explicitly derive. Recall
that skipping every other point of a signal amounts to aliasing
(wrapping) in the Fourier domain. is obtained from by
skipping rows; hence, the singular values of must come from
the aliasing of the frequency response of . Define permuta-
tion operators and which select the even and odd rows, re-
spectively. Define also the overall permutation .
Then, the SVD of is summarized in Lemma 1, with proof in
Appendix A.

Lemma 1: Let be the -point DFT matrix and a
diagonal phase matrix: . Let

. Then, the SVD of is given by

Recall that is real and symmetric, and the impulse response
corresponding to is assumed real and anti-symmetric. Hence,

, , and are all real, and is not needed above.
Fig. 7 shows the singular values of a typical convolution ma-

trix (i.e., the diagonal elements of ) corresponding to
. Singular values of the associated deci-

mated matrix (i.e., the diagonal elements of ) are also
plotted. We note that even though the full matrix has some small

singular values, making the system badly conditioned, the dec-
imated matrix possesses good conditioning, which guarantees
that exists and is bounded.

For , any vector satisfying will do, but we select
the one with minimum norm

(10)

It is easy to show that both the expression in the middle
above (“right pseudo-inverse”) and on the right (“truncated
SVD”) are equal, have the minimum norm, and are computed in

time. In comparison the traditional way of doing
direct matrix inversion in (7) via the SVD would take
flops in general.

2) Approximate Bidiagonalization of (7): With a change of
basis, (6) becomes

(11)

Taking partial derivatives and equating to zero, we get

where , and . In fact, the turning points
are minima, since and are positive definite. Using the SVD
of , we have , and

. Thus

(12)
In absence of variable weights, is diagonalized by the DFT

because is Toeplitz: . Since and both
contain aliased DFT vectors, it is the case (see Appendix B) that



RAJ AND THAKUR: FAST AND STABLE BAYESIAN IMAGE EXPANSION 1079

all matrices in (12) are, in fact, diagonal in the absence of .
Thus, (12) becomes a bidiagonal system and is speedily solved
in linear time. However, variable weights destroy diagonaliza-
tion, and (12) appears no better than the original (7). However,
in practice, the variable weights are sparse, and approximate di-
agonalization continues to hold, due to Theorem 1.

Theorem 1: Let , , , be as before. Let

and . Let us assume that

the diagonal entries of are mostly one, except at a small
proportion of points . Then, the system (12) can be split

into a “dominant” bidiagonal system with

diagonal , and a “residual” nonsparse .

Specifically

(13)

and . satisfy Frobenius

norm conditions .
Proof: Expressions for and proof are in Appendix B.

Recall that for matrix , the Frobenius norm is
. Theorem 1 is a statement on the ac-

curacy of the diagonalization of (12) in terms of Frobenius norm
of nondiagonal matrix elements. It basically says that for suffi-
ciently sparse weights, the MAP estimate is close to the globally
smooth Tikhonov regularized estimate, and specifies a fast algo-
rithm to obtain it in time (by computing ).

On the other hand, the full, exact MAP solution is compu-
tationally expensive in general, requiring operations,
where is usually much higher than unity. However, (12) is in
fact strongly decoupled for small . To see this, consider the
top block-row of (13). Due to the smallness of , we expect

. Thus, we propose a decoupled algorithm to solve
(12).

1) Solve the bidiagonal system

2) Solve for

3) Finally, solve for

Step 1) is linear time since it is a bidiagonal system. The errors
due to the use of instead of is expected to be small since we
expect . Therefore , Step 2) is reasonable. Steps 2)
and 3) could be iterated in an EM-type loop for greater accuracy,
but this was not found to produce additional improvement. The
MAP solution is given by

(14)

3) Efficient Inversion of (12) Using Sparsity of : We now
describe an efficient and stable algorithm for Step 2), involving

inversion of diagonally dominant matrices. Step 3)
uses the same algorithm. Following Appendix B, is written
as

(15)

Since most entries of the diagonal matrix are zero,
is rank deficient, which implies that , where is
a matrix given by . Here, we
replaced with the matrix consisting of only
nonzero diagonal elements, and the matrix is
obtained by removing the corresponding columns of . Using
the formula [32]

(16)
and letting yields the inverse of . (16) al-
lows us to invert a matrix instead of a
matrix. Careful inspection will reveal that the total cost of com-
puting this inverse is . Typically, ,
and the computational cost of inverting is several
orders of magnitude smaller than direct inversion. As summa-
rized below, the subspace algorithm produces four approximate
solutions that progressively build on each other. The numerical
cost of each step was summarized in Fig. 6.

Algorithm A2: Progressive solutions to the full
1-D MAP Expansion problem

1) Find the minimum norm/pseudo-inverse/truncated SVD
solution

2) Solve the bidiagonal system

3) Obtain as follows.
(a) Create the “thin” matrix from the

nonzero columns of .
(b) Compute by simple scaling and

addition.
(c) Replace by simple

matrix-vector multiply.
(d) Compute the “small” matrix inverse

.
(e) Get by simple

matrix-vector multiply.
4) Get by steps analogous to (a)–(e) above.
5) Then, finally

Estimates , , and are very quickly obtained in al-
most linear time, but only provide globally smooth results with
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Fig. 8. Results of 4� 4 expansion on a region of the “Flowers” image. (a) Edge
map obtained from the low-resolution image, which is used to derive the sparse
edge prior. (b) Cubic interpolated result. (c) Result of intermediate solution x .
(d) MAP solution x .

ringing near sharp edges (see Fig. 8). Both and prevent
blurring across edges, but at higher cost. is cheaper than
(the full MAP solution) since it requires only one matrix inver-
sion instead of two. is in fact a constrained least squares [21]
solution of the MAP problem—see Appendix C.

IV. RESULTS

Experiments were conducted on a set of high-resolution im-
ages as follows. The original image was decimated according to
Section I-B and fed into our and other popular methods. First,
we show the difference between the linear-time approximate so-
lution ( in Section III), and the more expensive MAP solu-
tion , in Fig. 8, which shows the expansion of the
“Flowers” image. The edge map in (a) was obtained from the
observed low-resolution image as described in Section II. The
main difference between our two solutions is at or near object
boundaries indicated by the edge map, where the MAP result is
noticeably better.

Fig. 9 contains comparative results on the “Bike” image.
A portion of the original image is shown in Fig. 9(a). In
Fig. 9(b)–(e), we show results from the following algorithms.

1) Cubic—Keys’ standard cubic interpolator [4]—Fig. 9(b).
2) AQua—Optimal recovery interpolation based on

Golomb–Weinberger theory [14]—Fig. 9(c). AQua results
were obtained from code supplied by the authors of [14].

3) AltaMira—A commercial Fractal-based image expansion
from AltaMira Corp. [33]—Fig. 9(d). This undisclosed al-
gorithm can be considered an industry benchmark, and has
been widely used for comparative evaluation in recent lit-
erature [34], [35].

4) MAP—Our fast, sparse MAP image expansion—Fig. 9(e).

Fig. 9. Results of 8 � 8 expansion on a region of the “Bike” image. (a) Orig-
inal.(b) Cubic. (c) AQua. (d) Altamira. (e) MAP.

This is repeated in Figs. 10 and 11 for the “Face” and
“Lighthouse” images. We show 8 8 expansion results for
the “Bike” image. The factor 8 represents an extreme case,
and shows up many artifacts that crop up during expansion by
various methods. The “Face” results are also 8 8, while the
“Lighthouse” results are 2 2.

The following summarizes the parameters used and other rel-
evant choices.

1) We used , and omitted camera PSF. If
camera PSF is not negligible and not known, it will obvi-
ously affect performance. We have not investigated sensi-
tivity to PSF mismatch, but is probably noncritical in com-
parison with pixel averaging. Experimentation with addi-
tional PSFs indicated little change in the relative perfor-
mance of the algorithms.

2) Finite difference operator: We used the first difference
kernel . Longer, smoother kernels were also
tried, but without perceptible change.

3) The regularization parameter was determined in each
case after a small number of trials; yielded a
reasonable result in most cases.

4) The size of tiling blocks was set at 64 64, with overlap
margins of ten pixels on each side.

The results show the edge preserving effect of our MAP al-
gorithm. Sharpness around edges, which was lost in both cubic
and AQua interpolation, was recovered by MAP. The propri-
etary fractal-based software AltaMira does better than cubic or
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Fig. 10. Results of 8� 8 expansion on a region of the “Face” image. (a) Orig-
inal. (b) Cubic. (c) AQua. (d) Altamira. (e) MAP.

AQua in preserving edges, but not to the same extent as our al-
gorithm, for instance in Fig. 9. This 8 8 expansion example
shows that while fine textures and characters have little hope
of being resolved in the expanded image (by any technique), it
is possible to preserve the integrity of strong edges even with
such a large expansion factor. The sharpness of some dominant
edges in the MAP output is almost as high as the original! The
sharpness of the biker’s collar is preserved in our output, but
lost in other methods. In all images, Altamira does a reasonable
job of edge-preservation, but sometimes introduces unaccept-
able streaking and “leaking” artifacts causing objects to appear
to “leak” across boundaries. Our output does not suffer from this
problem. These results also seem to support the observation that
MAP performs better edge-preservation in edges that registered
during the prestep, but Altamira does better for edges that the
prestep missed. This is entirely expected since MAP will smooth
out regions it considers edgeless. MAP also exhibits some spu-
rious high-frequency artifacts, a common feature of edge-pre-
serving algorithms, and imposes a practical trade off between
edge-preservation and clutter artifacts.

Our final results are of 4 4 expansion on a color image
“Flowers.” We show a zoomed-in portion of it in Fig. 12, com-
paring our result with Altamira, cubic and nearest-neighbor.
AQuA result was marginally worse than cubic and has been
omitted. The three colour channels were processed indepen-
dently in cubic and MAP algorithms, and jointly by Altamira
which takes colour images as direct input. Notice the presence of

Fig. 11. Results of 2 � 2 expansion on a region of the “Lighthouse” image.
(a) Original. (b) Cubic. (c) AQua. (d) Altamira. (e) MAP.

severe edge and color artifacts in the Altamira output, and their
absence in MAP. Some uncontrolled leaking of strong edges ap-
pears in Altamira. Again, edge-preservation of MAP is superior
at edges which were registered, and slightly worse in edges that
were not. Compare for instance the vertical edge on the right of
the image—it has a weak gradient and was not registered as an
edge in our method. Altamira on the other hand is still able to
resolve this edge.

The computation time of a MATLAB implementation of Al-
gorithm A1 on 256 256 images was obtained. It took around
6 s for the linear-time solution and 3 min for the full MAP
solution on a 3.2-GHz Intel Xeon processor. Compared
to this, a direct inversion of (7) via SVD on the same data took
27 min. MAP running time is likely to be reduced by many times
in an optimized implementation. The theoretical flops counts
supplied in Fig. 6 are probably much more useful in assessing
the true numerical cost of our algorithm.

Numerical PSNR results are shown in Table I. It may be ob-
served that PSNR of our results are higher than the other al-
gorithms in most cases. AltaMira exhibits comparable perfor-
mance in some cases, but does much worse than MAP-subspace
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Fig. 12. Results of 4 � 4 expansion on a region of the “Flowers” image.
(a) Original. (b) Cubic. (c) Altamira. (d) MAP.

TABLE I
PSNR PERFORMANCE OF EXPANSION ALGORITHMS.

HIGHEST VALUES SHOWN IN BOLD

in some other cases. Our algorithm is the only one which con-
sistently produces above-par results in almost all cases. We cau-
tion that a numerical metric may not truly reflect the percep-
tual quality of the results. The PSNR results are probably no
more than a rough indicator of performance. Further, these re-
sults should be interpreted with due regard to the fact that all
algorithms except MAP are “blind” to the decimation process
(1).

The “Face” image has areas of mostly low-frequencies,
and texture. The displayed region (“earrings”) has several
nonstraight edges, which shows up expansion artifacts like
jagged edges, excessive smoothing and the like. The “Bike”
image is slightly undersampled, with a lot of high frequencies
and visible aliasing, thus making it a challenging case for
any expansion algorithm. The “Lighthouse” image is quite
(un)popular for reconstruction problems, because it tends to
produce severe artifacts for almost all algorithms due to its
numerous straight edges. We note that with the exception of

“Lighthouse,” our algorithm clearly outperforms the others in
visual as well as metric terms (Table I), including the industry
benchmark AltaMira.

V. DISCUSSION AND CONCLUSION

Since our method is geared towards image expansion rather
than resampling, it is not well suited for fractional expansion
factors or for applications involving image rotation or warping.
Another limitation is in our edge-driven prior model, which
leads to a diagonal weight matrix. However, there are other
interesting models which may not have this property, and are
likely to prove computationally challenging if used within our
framework. While the probabilistic edge-driven prior model re-
duces the effect of incorrect hard decisions on edges, our results
indicate that actual preservation of edges is usually possible
only for large, dominant edges. Some recent work on image
deblurring using edge-preserving MRF priors [36] has been re-
ported, and it might be interesting to adapt it for expansion prob-
lems. The MRF approach incorporates piecewise smoothness
assumptions and produces deblurred images without significant
edge blurring. This is a consequence of the use of edge-pre-
serving nonconvex MRF potential terms. However, due to non-
convexity the problem is extremely hard to solve and the use of
approximate graph theoretic algorithms is necessary. The cur-
rent approach is not able to handle MRF priors without losing
computational tractability. However, our experimental evidence
demonstrates clearly that even with these limitations our ap-
proach shows considerable promise compared to other popular
methods.

Although the imaging model and the fast algorithm proposed
in this paper are applicable only to dyadic expansion factors,
we note that this is purely an implementation restriction rather
than a mathematical one. It is possible to obtain results similar
to the ones contained in this paper for any given integer expan-
sion factor. However, a reading of Section III makes it apparent
that for each expansion factor, a different fast algorithm is re-
quired. While powers of two expansion is certainly a restriction,
it is probably the most frequently used, and several earlier works
have focused on this case [8], [11]. Further work on obtaining
a unified algorithm applicable for any expansion factor is on-
going.

In conclusion, this paper describes a new Bayesian approach
to image expansion using an edge-driven prior image model.
The resulting MAP estimation problem is derived. A new ef-
ficient algorithm based on subspace separation is proposed to
make this problem computationally tractable. Separable 1-D
processing and tiling are used to further reduce complexity. Re-
sults on real consumer images show visually noticeable and
quantitatively measurable performance gains compared to other
popular methods.

APPENDIX

A. Proof of Lemma 1

Using in , we get
. Now we note some properties of
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the DFT matrix. For ,

Using these results we obtain the partition

, where is the -point DFT

matrix, and . Then

where and correspond to the two halves of the DFT of
. To get the SVD of equate above with Lemma 1 and

assign . The
rest of proof follows by using . To obtain , it is
straightforward to select a unitary matrix orthogonal to

(17)

B. Theorem 1: Approximate Diagonalization Resulting From
Sparse Prior

In the system , are such that
, with diagonal

Proof: We will derive expressions for and , and
show that . Other results follow similarly.
Now, the SVD of is ; hence, from (17)

where ; . Then

Let be a mostly zero diagonal matrix with
, . Then

with . Name
the right term above . Then

by matrix norm property. It is easy to verify that
, and . Finally, .

Therefore

Proceeding similarly with , , etc., the other
norm results follow. Further, the right hand side of (12) becomes

C. Interpretation of as a Constrained MAP Solution

Let span the nullspace of , i.e., , and let
satisfy . Then, it is easily shown from the SVD results
of Lemma 1 that

This is exactly the well-known constrained least squares so-
lution (see [32] for reference)

given
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