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Ant Colony Optimization for Image Regularization

Based on a Nonstationary Markov Modeling
Sylvie Le Hégarat-Mascle, Abdelaziz Kallel, and Xavier Descombes

Abstract—Ant colony optimization (ACO) has been proposed as
a promising tool for regularization in image classification. The al-
gorithm is applied here in a different way than the classical trans-
position of the graph color affectation problem. The ants collect
information through the image, from one pixel to the others. The
choice of the path is a function of the pixel label, favoring paths
within the same image segment. We show that this corresponds to
an automatic adaptation of the neighborhood to the segment form,
and that it outperforms the fixed-form neighborhood used in clas-
sical Markov random field regularization techniques. The perfor-
mance of this new approach is illustrated on a simulated image and
on actual remote sensing images.

Index Terms—Ant colony, classification, image model, Markov
random field (MRF).

I. INTRODUCTION

T
HE development of algorithms for global classification,

such as maximum a posteriori (MAP) under Markov

random field (MRF) modeling has been an area of active study,

in particular, since Geman and Geman [1]. For a given neigh-

borhood system with clique potential functions, the equivalence

between MRF and Gibbs field is established, and a global en-

ergy term is defined that should be minimized. Apart from

local minimization processes, such as the iterative conditional

mode (ICM), global minimization is generally achieved using

the simulated annealing (SA) technique. In this modeling,

the neighborhood form is considered to be independent of its

location in the image. This may lead to classification errors

for pixels located at the segment borders or extremities, since

their neighborhoods contain some pixels belonging to other

segments or classes. To overcome this problem, one approach

consists of defining a line process [2]. Due to the induced

complexity, in the framework of image restoration, some spe-

cific potentials to preserve edges can be used as an alternative

[3], [4]. Another solution could be to relax the assumption of

neighbourhood stationarity. The lack of an efficient heuristic is

probably the main cause of the absence of published work (to

our knowledge) dealing with nonstationary neighborhoods.
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Ant colony optimization (ACO) is currently a popular algo-

rithm [5]. The classical application is to routing in telecom-

munication networks, on which a number of papers have been

published [6]–[11]. ACO has been applied to various problems

with good results [12]–[17]. Just as the techniques of simulated

annealing and genetic algorithms imitate computing strategies

arising from natural physical or biological phenomena, ACO de-

rives from the behavior of social insects. The success achieved

using such methods is due, in large part, to the introduction of

randomness in the search procedure, permitting to escape from

local minima and, thus, achieving a more globally favorable so-

lution. In ACO, the information gathered by simple autonomous

mobile agents is shared and exploited to solve the problem.

Ant-based systems have also been used for clustering prob-

lems, modeling real ant abilities to sort objects. For instance, in

[18], the clustering is based on the definition of an “odor” as-

sociated to each sample (represented by an ant) and the mutual

recognition of ants sharing a similar “odor” to construct a colo-

nial odor used to discriminate between nest mates and intruders.

In other approaches, when a specialized ant meets a given ob-

ject it collects it with a probability that is the higher the sparser

are the objects in this region, and, after moving, it brings in

the object with a probability that is the higher the denser are

the objects in this region. Besides ACO, ant colony systems

(ACS) have been proposed. In [19], it is used for edge detection

as follows: The ants evolve on the image itself by reinforcing

pheromone levels around pixels with different gray levels or pre-

senting gestalt features. The ant system evolves during genera-

tions moving to adjacent pixels at each generation and having

more favorable survival and reproduction conditions depending

on the local features of the image (for edge detection, the most

contrasted the most favorable a region is). In [20], the notion of

visibility determined using the maximum variation of gray level

of the image intensity is used to drive the ant displacement.

In the context of global image classification under the clas-

sical MRF assumption, Ouadfel and Batouche [21] have shown

that ACO produces equivalent or better results than other sto-

chastic optimization methods like SA and genetic algorithm. In

[21], the authors make an analogy between pixel labeling in the

global classification problem and the assignment problem, as it

is done in the graph coloring problem. Each ant constructs its

own solution, and a trace of the best solution is kept (though

the pheromone deposit technique) during the iterative construc-

tion of the final solution. Such a use of ACO can be seen as

an extension of the SA technique. At each iteration the new

solution is constructed taking into account not only the very

last one, like in [1], but a combination of several previous so-

lutions (their number depending on the pheromone evaporation
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rate). Moreover, at each iteration, not only is one new solution

constructed, but several (as many as ants) to produce the one

which will be “memorized” (generally the best solution). In this

sense, it shares some ideas with the particle filtering [22] and

the Bayesian bootstrap filtering [23] techniques.

In this study, we propose to use the ACO by exploiting its

ability of self-organization, according to an optimization ap-

proach which is similar to the traveling salesman problem, and

the routing problem in telecommunication systems. It allows

a more flexible image modeling in particular concerning the

neighborhood form, and it offers a meta-heuristic to solve it.

We consider a MRF modeling with a nonstationary neighbor-

hood. We propose an ACO scheme which jointly estimates the

regularized classification map and the optimal nonstationary

neighborhood.

Section II deals with the image modeling. In Section III, we

present the proposed method based on ACO meta-heuristics.

Section IV shows some results, firstly obtained on simulated im-

ages, and secondly, obtained on an actual remote sensing image

acquired by SPOT/HRVIR satellite sensor. Finally, Section V

gathers our conclusions.

II. IMAGE MODEL AND CLASSIFICATION PROBLEM

Let us introduce the following notations. is the dimension

in lines of the image and its dimension in columns. The

total number of pixels is then . is the set of the pixel

locations, and is its cardinal: . The image

is defined as a random field taking values in , and the label

image is a random field which takes values in , where

and is the class number

A. Case of Classical Stationary Neighborhood

The problem of image classification is to determine the real-

ization of , knowing those of . According to the MAP crite-

rion derived from the Bayes theory, the optimum estimate maxi-

mizes . Assuming the distribution law of the pixel

values conditionally to their class, i.e., an independent Gaussian

in our case, is written as follows:

(1)

(2)

where and are respectively the mean and the variance of

the class of pixel , labeled .

The prior model is defined assuming that a pixel and

its neighbors have a high probability to share the same label.

We consider a MRF modeling [24]. Defining a neighborhood

system such that, if a pixel has a pixel within its neighbor-

hood , then is a neighbor of

(3)

Then, according to the Hammerley–Clifford theorem [25],

follows a Gibbs distribution

(4)

where is the set of the image cliques that describe the inter-

actions between pixels, is a normalization constant, and

is the potential. Finally, the MAP criterion leads to the mini-

mization of the global energy

(5)

The first two terms within the brackets are called the “data at-

tachment” energy. The minimization of (5) is performed using

the fact that the global energy difference between two label

image configurations only differing by one pixel label, either

or , only depends on this pixel and its neighborhood

(6)

Generally, the pixel neighborhood is defined in the same

manner at each pixel location , i.e., it is assumed that

the neighborhood geometry is stationary. For example, in

the case of 4-connectivity, the neighborhood of a pixel lo-

cated in where is the line number and the column

one, is constituted by the pixels whose locations belong to

, and for

a 8-connectivity, the neighborhood contains the pixels located

within 1 in line and 1 in column. Such an assumption of

neighborhood stationarity may not be true in many cases.

B. Case of Nonstationary Neighborhood

In this section, we consider a MRF with a nonstationary

neighborhood form, optimal with respect to the classification

map in the sense that two pixels having different labels are

unlikely to be neighbors. Let us begin with a simple example

of an image with 4 5 pixels and two labels. Fig. 1 shows the

nonstationary neighborhood system optimal with respect to a

binary labeling (triangles and circles represent the label). Note
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Fig. 1. Neighborhoods of each of the pixels on the simple example of an image with 4 � 5 pixels and two classes. The class of a pixel is represented either by a
circle or a triangle. The neighborhood of pixel s is represented with s in black and its neighbors in gray.

that reciprocity property (3) is verified. More generally, the non-

stationarity of the neighborhood is motivated by the diversity of

the areas or object shapes: more or less large, elongated, thin,

with some peaks, etc. In this study, we relax the neighborhood

stationarity assumption and propose an algorithm where the

neighborhood form is automatically adjusted. The used criteria

to construct the neighborhood at each location pixel are:

• the neighbor pixels are connected;

• the neighbor pixels have a high probability to share the

same label;

• each pixel has the same number of neighbors.

The last assumption allows us to have for each pixel of the

image the same weighting between the prior and the “data at-

tach” terms.

Now, for the classification problem, (5) is still valid except

that the cliques are now defined over nonstationary neighbor-

hoods. In the simplest case, only cliques of cardinal 2 are con-

sidered. Assuming the Potts model for the potentials, for a given

neighborhood system, the function to minimize is given by

(7)

where is the number of neighbors having

a different label than , and is a positive parameter weighting

the relative importance of the “data attach” term and the neigh-

borhood one. The factor 1/2 is due to the fact that, for cliques

of order 2, their potentials are counted 2 times when the sum is

done over the pixels rather than over the image clique set.

Relaxing the neighborhood stationarity assumption, the op-

timal neighborhood now depends on the label . Therefore, we

cannot directly obtain an expression of the energy difference

between two label image configurations as simple as (6). In-

deed, now the cliques involving are not the same ones when

and when since they depend on the neigh-

borhood geometry which varies with . Moreover, due to the

constraint of constant neighborhood cardinal, when neighbor-

hood is changed, the neighborhoods of some other pixels are

also changed: The pixel previous neighbors, that have lost

one neighbor (namely ), have to find another pixel neighbor re-

placing it, and the new neighbors, that have gain one neighbor

, have to get rid of another pixel neighbor, and so on.

To reprocess one convenient mathematical framework, we as-

sume the existence of another random field that corresponds

to the definition of the nonstationary neighborhood in every

pixel. Such an approach is similar to the line process one [1], or,

more recently, and in a more general form, to the triplet Markov

field approach introduced by Pieczynski [26], [27]. In our case,

the values of the restriction of to a pixel , denoted , are the

sets of “active” neighbor pixels. Its cardinal is ,

except at the image borders where it is equal to ,

and at the image corners where it is equal to .

Each value verifies the connection condition (first criterion

to construct the pixel neighborhood), and, when varies,

values are not independent: They are linked by the reciprocity

constraint.

We assume that the couple is a Markov field. Actually,

is a Markov field since, due to the reciprocity of the connex

nonstationary-form neighborhood

(8)

where is in , one realization of , is except

in , one realization of , and is a neighbor-

hood of size lines and columns around

3



(fixed-square neighborhood), and is the size of the nonsta-

tionary neighborhood (e.g., 4 or 8). We remember that ,

is assumed to be constant (equal to ), i.e., only the assump-

tion on the neighborhood shape is relaxed, but not those on its

cardinality. Then, assuming is a Markov field (as usually), the

couple is also a Markov field over the neighbor-

hood system. We define the cliques set over neighbor-

hood system as in (9), shown at the bottom of the page, where

, , and .

Note that with such a definition, all active neighborhood solu-

tions even those not verifying the reciprocity condition are pos-

sible. Then, classically

(10)

after simplification of

that was present at the numerator and at

the denominator of the fraction. In the following, we

denote the local energy “attached to” pixel

. Then

(11)

Now, comparing two configurations only differing by , if,

for one of these two configurations, the reciprocity condition is

not verified for the active neighborhood , the probability of

this latter will be very low once . Here, because of the size

of the solution space, simulated annealing, that investigates any

solution even very improbable, fails, and a classical heuristic

such as the ICM would also fail, due to the high number of local

configurations. Therefore, alternatively, we propose to define

a meta-heuristic that focuses on the solutions verifying the

reciprocity and that converges to a favorable local minimum.

Now, the problem is to construct the neighborhood with the

constraint that each pixel, except for on the image border, has the

Fig. 2. Possible locations for the choice of the first, second, and third neighbor.
Dark gray cells indicate the already selected neighbors, and light gray cells in-
dicate the possible neighbors.

same number of neighbors, and such that the symmetry property

(3) is satisfied. For example, in 8-connectivity, eight neighbors

have to be selected, each of them been located in a range of

[ 1, 1] lines and the column of another neighbor. The order

of selection of the neighbors is without importance. Therefore,

during the neighborhood construction, the following neighbor

can be selected among any of the pixels located in a range of

[ 1, 1] lines and the column of an already selected neighbor.

As illustrated in Fig. 2, for the choice of the first neighbor, eight

locations are possible, for the second neighbor, the number of

possible locations ranges between ten and 12, depending on the

first neighbor position, for the third neighbor, the possible loca-

tion number ranges between 12 and 16 depending on the relative

positions of the previous neighbors, and so on. Table I gives the

number of possible configurations of connected neighborhoods

with cardinal . Besides, when a pixel changes its label, gen-

erally it will also completely change its neighborhood (e.g., con-

sider a pixel at the border between two regions having different

labels. Depending on its own label , will take preferably its

neighborhood in one or the other of the two regions). Therefore,

to base neighborhood estimation on the current one is not ade-

quate. Moreover once a pixel has constructed its “active” neigh-

borhood , the “active” neighborhoods of some other pixels

(those belonging to ) are already partially constructed, due

to the symmetry property (3): Subsequent neighborhood con-

structions should take into account already achieved neighbor-

hood constructions. Therefore, if the pixel “active” neighbor-

hoods are constructed sequentially, the obtained result depends

if and

if and and

if and and

if and or and

(9)
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TABLE I
NUMBER OF POSSIBLE CONFIGURATIONS OF CONNEX NEIGHBORHOODS WITH CARDINAL N

on the order of selection of the pixels and provides no guaranty

of optimality. Since the number of neighborhood solu-

tions is too large (even restricted to those satisfying the reci-

procity condition) to allow a practical comparison of each of

them, a meta-heuristic has to be defined to find the “optimal”

neighborhood configuration: i) knowing the image obser-

vation, i.e., realization, and ii) assuming the image label, i.e.,

realization.

Among the meta-heuristics, we focus on the ACO. This

choice is motivated by the two following analogies: the first one

between the research of an optimal path (between nest and food)

by ants and the research of an optimal set of connected pixels

from a given “originate” pixel, and the second one between

the environment modification through pheromone deposit and

the symmetry property (3). Indeed, in ACO the environment is

used as a medium to register any already achieved (partial or

complete) solution and take it into account in the research of

some other solutions. In our case, it allows us to model the fact

that the construction of a pixel “active” neighborhood should

be guided by the previous “active” neighborhood constructions

(either of this pixel or of some other pixels). Moreover, as we

will see in next section, it allows introducing a competition

between neighborhood constructions: The pixel “active”

neighborhoods are researched in parallel, and the “better”

ones are the first ones modifying the environment. There is no

mathematical proof of the optimality of the obtained solution,

but the performance of the ACO approach to a large number of

various problems.

III. ACO METHOD

ACO is modeled on the problem-solving ability of social in-

sects such as ants. The nature-inspired basis of the technique

is as follows. While searching for food, ants deposit trails of

a chemical substance called pheromones to which other ants

are attracted. As shorter paths to food will be traversed more

quickly, they have a better chance of being sought out and rein-

forced by other ants before the volatile pheromones evaporate.

Other ants then follow suit, and so on. Thus, using pheromones

and random search procedures, the colony is able to find the

shortest paths to food rapidly.

More conceptually, the problem of the ant colony is the

following: Given a function to minimize (the delay between

the ant’s nest and food), different solutions are examined (ant

exploration), and each of them is memorized (thanks to the

pheromone deposit) depending on its quality, and guides the

research of the next solutions until convergence.

A. Application to Neighborhood Construction

In this study, we use the ants to find some solutions over the

over the neighborhood system satisfying the symmetry

property (3), i.e., without cliques having potential value equal

to . Considering a pixel , we aim at comparing two configu-

rations only differing by the potential values of the cliques in-

cluded in , the sized neighbor-

hood around . Indeed, it allows us to use a similar computation

as given by (11), simply replacing the “local energy attached

to pixel ,” by a “local energy attached to .” Practi-

cally, this means that, for any pixel of having

“active” neighbor(s) outside of , these

neighbors are fixed, and only the other

“active” neighbors are “free” and can be changed with other pos-

sible neighbors belonging to . This is the choice of these

“free” neighbors that will be optimized by the ants.

Denoting the Kroenecker function: if

, otherwise, writes

. Then, using (3) (i.e., considering only

configurations verifying the reciprocity condition), (7) can be

written in a more convenient way to guide the construction of

the neighborhoods

(12)

and local energy relative to is similarly computed

(13)

In (13), is the set of free neighbors. For each

pixel , the active neighborhoods are constructed so that they

minimize the sum within the brackets and satisfy the symmetry

property. To achieve this construction, ants are used as follows.

The pixels emit ants. The ants gather the information about

neighbor label, along some paths of connected pixels including

, the emitting pixel. During their paths, or neighborhood solu-

tion constructions, the ants select the following neighbor from

“routing indicators.” These latter are based on previously de-

posed pheromones (either by ants emitted by or by ants emitted
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by other pixels having chosen as neighbor) and the “energy

hop” defined as

(14)

Equation (14) shows that the following neighbor is chosen

considering its label (relative to the emitting pixel label ) and

also its “data attach” energy, which gives a hint about the con-

fidence. According to the ACO procedure, the next neighbor is

chosen either randomly according to the probability of random

exploration (necessary once stepping over a “bad” neighbor is

necessary to reach “good” neighbors.), or minimizing a function

of and pheromone deposition. Practically, to simulate the

pheromone deposition we define, for each pixel a “neighbor-

hood” matrix of size representing all the

possible neighbor pixel locations from . The “neighborhood”

matrix values are real, with the matrix norm equal to 1, i.e., this

matrix is somewhat a fuzzy representation of the neighbor fea-

ture of the pixels around . Denoting the value of the

neighborhood matrix of in ,

we define the cost of the choice of as following neighbor as

. Note that this weighting be-

tween pheromone deposition and energy hop terms is empirical.

Arriving at a selected neighbor pixel, an ant waits a time pro-

portional to the cost , before selecting the next neighbor.

Each ant has to find a number of neighbors equal to the number

of “free active neighbors” of its emitting pixel. When an ant

achieves this number, it stops and returns.

On its return, the ant deposits pheromones on the visited

neighbor pixels. Practically, for each pixel visited by an ant

emitted by pixel , is increased by the quantity of

pheromone deposit . Due to the reciprocity condition (3),

pheromones are also deposited on the “neighborhood” matrices

of the selected neighbors, on the pixel corresponding to in

these “neighborhood” matrices, .

Due to the waiting time proportional to the cost , pixels

on “good” paths are visited frequently by ants, thus increasing

neighborhood matrix values for pixels contained in those paths

and diminishing those of the other pixels. Ants on poorer paths

arrive later, and have only short-lived effect on the estimation of

the neighborhood matrices.

B. Global Classification Algorithm

The ant algorithm works in the following way.

1) Initializations: data image ( realization) and class

features loading, blind classification, stop criterion

definition, initialization of the a priori parameters:

pheromone deposit quantity , probability of random

exploration , experience duration , and initialization

of the “neighborhood matrix” consisting of a set of

possible neighbors (located in a range of in lines

and in columns) with an isotropic neighborhood.

2) As long as the stop criterion is not verified.

2.1. For each pixel :

2.1.1. for each pixel of ,

computation of the number of

active neighbors located inside

, and setting

2.1.2. Computation of the current

local energy term according to the current

neighborhood matrices of pixels included in

and their current labels

(15)

2.1.3. For each new label to test .

2.1.4. Optimization of the active

neighborhood: pixels emit

simultaneously several ants. Each ant stores the

label of its emitting pixel .

2.1.4.1. Each ant advances to subsequent

pixels either minimizing the cost

function , or with a small “exploration

probability” , by picking a next neighbor

pixel randomly. On the way, at each visited

pixel, it waits a time proportional to the cost

value corresponding to the chosen neighbor.

2.1.4.2. After hops, an ant emitted by

pixel has constructed an active neighborhood

solution (or its restriction to ) denoted

. Then, it follows the identical path

in the reverse direction. At each pixel

on the return path, i.e., , the

neighborhood matrix value for the ant source

pixel is updated, as are the neighborhood

matrix values for the ant-visited pixels

(16)

where its element of

neighborhood matrix , and is a

normalization factor such that the sum

of elements be equal to 1. is an a

priori parameter representing the quantity of

pheromone deposit.

2.1.4.3. If the “experience duration” is not

expired, each time an ant is back to its source

pixel , generates a new ant, and go to step

2.1.4.1.
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2.1.5. When the experience has finished,

computation of the local energy

corresponding to the tested label and

estimated pixel active neighborhood

(17)

For notation convenience, we subscript (2) all

labels in (17) but note that .

2.1.6. Decision to change the label from to

if is negative.

2.2. New estimation of the parameter “experience

duration,” equal to five times the average duration of

an ant path.

In step 2.1.3, the tested labels can be chosen either ran-

domly or systematically ranging from 1 to (the number of

classes).

With this algorithm, the convergence is ensured by the fact

that the global energy is decreased at each step. Indeed, for a

configuration change restricted to label and active neighbors

of pixels, such that and pixels belong to , the global

energy difference induced is equal to local energy dif-

ference. Therefore, accepting only configuration changes corre-

sponding to energy decreases ensures the global energy

decrease, just as for the iterative conditional modes (ICM) [28].

However, as for the ICM, the achieved result is only a local min-

imum depending on the initialization. To overcome this problem

and obtain a global minimum, step 2.1.5 could be stochastic and

some changes may be accepted even if be positive, just as

for the classical simulated annealing application to MAP clas-

sification. Now, on our images the algorithm is already rather

long; therefore, we prefer to keep step 2.1.5 determinist.

There are two kinds of algorithm parameters: the image

model parameters and the ACO algorithm ones.

The image model parameters are:

• the class features , , ;

• the neighborhood size ;

• the neighborhood weight .

The ACO algorithm parameters are:

• the exploration probability ;

• the quantity of pheromone deposit ;

• the experience duration .

The class features are assumed to be known: They have been

estimated previously either from learning areas, model simula-

tions, or a clustering algorithm. Different values of neighbor-

hood size have been tested, ranging from to 4 to 12. We find the

algorithm is not very sensitive to the exact value; in our case,

good results were obtained for about equal to 8 (which is the

same value as in classical MRF considering the neighborhood

surrounding the pixels). Finally, value has been estimated em-

pirically, just as for the classical MAP classification.

Fig. 3. Simulated data (noise � = 40): (a) label image, (b) data image with
Gaussian white noise, and obtained classifications, (c) blind result, and (d) ACO
result.

The exploration probability, the quantity of pheromone de-

posit and the experience duration should allow the emergence

of a stable ant solution. For this purpose, they will not be

chosen independently: The lower the exploration probability,

the higher the pheromone quantity, the lower the experience

duration. In our case, the experience duration is deduced from

the mean waiting time (of the ants in visited pixels) as:

, where the factor 5 has been chosen empiri-

cally, and is not very sensitive. The pheromone deposit quantity

is 0.4, and the exploration probability 0.04. These empirical

choices have been done among several tested values. However,

the obtained results were not very sensitive provided that the

decrease of and are sufficiently slow, and sufficiently

large.

IV. RESULTS

A. Method Validation

First of all, we validate the proposed algorithm on simulated

data. Fig. 3(a) shows the label image. There are four classes,

centered on {100, 200, 300, 400}, respectively, and having stan-

dard deviation equal to 40 (variance 1600). The pixel value dis-

tribution, for a given class, is Gaussian . Fig. 3(b)

shows the data image in the case of a Gaussian white noise.

Fig. 3(c) shows the blind classification result. Fig. 3(d) repre-

sents the result of the ACO method. The parameters are the fol-

lowing: , , and initial values of

are (4%,40%,100). For comparison (in the following), the

value has been chosen equal to those empirically optimized for

the stationary neighborhood MAP. We note that the blind re-

sult is very noisy. Analyzing the ACO result versus this blind
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Fig. 4. Normalized neighborhood potential functions of the four classes (one by column) computed over the auto-adaptive neighborhood: first row corresponds
to the classical fixed-form neighborhood; second row is after ACO first iteration; and last row shows the result after ACO convergence.

classification (i.e., spatial regularization versus data attach), we

note that regularization seems to have occurred at the expected

places. Before further analysis and comparison with alternative

classification, we check whether the algorithm succeed in the

construction of the adaptive neighborhoods.

Fig. 4 shows the normalized neighborhood potential,

corresponding to the four classes. We

check that the neighborhoods are constructed to be label homo-

geneous. Before convergence, the potentials are estimated over

the fixed-form 8-connectivity square neighborhood (initializa-

tion). We see that many pixels have mixed-class neighborhood.

After convergence, even at the class border most of the poten-

tial values are very close to 1 (white color) or 0 (black color),

indicating a homogeneous neighborhood. Indeed, the effect of

having a nonstationary auto-adaptive neighborhood is that the

pixels having a different label are not included in the neighbor-

hood. Only in some very few cases, the ants fail to construct a

completely uniformly-labeled neighborhood, probably because

of the relatively high level of noise in the data image. However,

we note that the neighborhood function value of the pixel label

is always much closer to 1 than the value obtained by classical

8-connectivity.

We now aim at comparing the ACO result with the results

obtained using alternative approaches. Fig. 5(a) and (b) show

the ICM one and the MAP obtained by simulated annealing,

both using 8-connectivity isotropic neighborhood and the Potts

model (different values of have been tested, only the best re-

sult is presented). Fig. 5(c) is the result provided by the line

process as described in [1]. Fig. 5(d) is the result provided by the

Chien model [4], [29]. This model, defined on a 5 5 neigh-

borhood, depends on three parameters which control the local

energy of edges, lines, and noise. These two approaches (line

process and Chien model) have been selected, for comparison

with the proposed method, as much more sophisticated (and
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Fig. 5. Simulated data (noise � = 40), alternative classification results:
(a), (b) best result with 8-connectivity and Potts model respectively using ICM
and simulated annealing algorithms, (c) result using line process [1], (d) result
using high-order cliques (Chien model, [4]).

complex) than the isotropic neighborhood model. They are

a priori able to preserve image fine structures while regularizing

the configuration. The ACO result was presented in Fig. 3(d).

With the ICM 8-connectivity isotropic neighborhood, most

of the “isolated” errors have been corrected relative to the blind

classification [presented in Fig. 3(c)]. Packet errors can not be

corrected without damaging the fine structures. The simulated

annealing produces an almost equivalent result (slightly better

thanks to the global minimization instead of the local one). The

fact that the ICM and the simulated annealing produce very

close results shows that the remaining errors are not due to

the optimization process but rather to the image model, and in

particular (but not exclusively) to the assumption of stationary

neighborhood. This is confirmed by the examination of the

other results, where several errors have been corrected either

due to the use of a more complex image model (line process,

Chien model), or to the relaxation of the stationary neighbor-

hood assumption (ACO). Among the considered approaches,

ACO leads to the best result, even if some errors remain due to

the high level of noise in the initial image: The fine structures

are more or less preserved and most classification errors are

corrected. Several examples illustrating the interest of the pro-

posed approach are pointed out in Figs. 3 and 5. For example,

one can see that the fine longitudinal structures in the middle

right of the image have been lost by the ICM or MAP classical

approaches. Preserving it with classical isotropic neighborhood

would require to decrease parameter, but at the expense of the

correction of some blind classification errors. Using some more

sophisticated approaches, such as the line process, the Chien

model, or the adaptive neighborhood, allows preserving these

structures. On the other hand, there are some cases, such as

those pointed by the circles in Figs. 3 and 5 (except the bottom

right one), where the simple classical image model (with

two-order potential functions) performs better than the line

process or the Chien model, but slightly worse than the adaptive

neighborhood one. Finally, the area pointed by the bottom right

circle shows a case where only the auto-adaptive neighborhood

is able to correct initial blind classification errors. This can be

explained by the fact that our model is less constrained than

the line process which requires a priori on the structure of

edges or the Chien model which constrains the orientations of

shapes and lines [30]. The proposed model, while avoiding the

over-regularization effect of the Potts model, adapts locally

the neighborhood and is, therefore, more flexible than more

complex priors. Note also that here we focus on the cases where

the more interesting approach is the proposed one, but there are

some cases where it is one of the alternative methods (generally

the line process or the Chien model).

Quantitatively, the performance of a result is measured by the

ratio of well-classified pixels, or by the Kappa function, both

defined from the confusion matrix by

(18)

where
(19)

Table II shows the performance of different classification

results obtained from the data images with different white noise

levels: standard deviations of the classes respectively equal to

20, 40, and 60, whereas the class centers remain the same in

the three cases. The performance is compared in terms of the

percentage of good classification and the Kappa value

obtained from blind classification, fixed square form (8-connec-

tivity) neighborhood MAP approach, line process, Chien model

and the ACO auto-adaptive 8-connectivity result. We note that

the improvement between auto-adaptive neighborhood (thanks

to ACO) and fixed-form neighborhood modeling (two-order

clique MAP, optimized by simulated annealing) is until few

percents. However, we also note that in the case of high noise

level, the auto-adaptive neighborhood ACO is less performing

than the Chien model. For further understanding, Fig. 6 presents

the simulated data images and classification results respectively

obtained using the ACO and the Chien model, in the two cases

of noise and noise. Now, remember that

the auto-adaptive neighborhood approach does not use any

a priori information about neighborhood (except its cardinal),

conversely the some approaches privileging some neighbor-

hood form through the definition of the clique potentials. From

Fig. 6(d)–(f), we see that, in the case of important noise, due

to the local optimization, the less constraining approach may

fail to recover the actual solution, conversely to the case of the

lower noise [illustrated in Figs. 3(d), 5(d), and 6(b) and (c)].
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TABLE II
COMPARISON OF THE PERFORMANCE OF THE DIFFERENT CLASSIFICATION ALGORITHMS IN THREE CASES OF SIMULATED DATA

Fig. 6. Simulated data: (a) data image with Gaussian white noise (� = 20); (b) ACO classification result; (c) Chien model classification result; (d) data image
with Gaussian white noise (� = 60); (e) ACO classification result; (f) Chien model classification result.

We point out that the global improvement in the results cor-

responding to the proposed approach is due to the use of non-

stationary neighborhood rather than to the ACO. Indeed, ACO

used with a classical fixed-form MRF model would lead to re-

sults similar to simulated annealing ones [21]. Here, ACO is

used as one way to derive the nonstationary neighborhood so-

lution. In particular, as an alternative to the ACO, an optimiza-

tion using a Gibbs sampler with simulated annealing was tried

to retrieve the couple (defined in

Section II-B). However, the energy landscape on the solution

space is too much irregular to achieve satisfying results: In par-

ticular, changing only one pixel neighborhood configuration

at each step makes impossible a direct transition between two

configurations checking the reciprocity condition (there is at

least one intermediate nonreciprocal neighborhood configura-

tion, i.e., with high energy).

B. Application to Actual Data

In this section, data were acquired by the SPOT4/HRVIR

sensor, which performs measurements in the three following

channels: green, red, and near infrared, and has a pixel size

equal to m . For the study of vegetation areas (e.g.,

forest, agricultural areas), vegetation indices are estimated from

the radiometric measurements: either empirical vegetation in-

dices defined from simple channel combinations [31], such as

the normalized difference vegetation index (NDVI), or vegeta-

tion indices obtained from physical radiative transfer modeling,

requiring the knowledge of acquisition conditions, such as the

vegetation fraction cover (FCOV).

The considered data were acquired over an agricultural test

site in Romania in June 2001 (ADAM database). From the

whole image, a subset of 256 256 pixels was extracted, and
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Fig. 7. SPOT4 data and results: (a) vegetation fraction cover image; (b) blind classification result; (c) classification result using the classical isotropic 8-connec-
tivity neighborhood; (d) classification result using the self-organized neighborhood.

the FCOV image was calculated [32]. It is shown in Fig. 7(a).

Five main classes of vegetation densities can be distinguished:

from null vegetation cover (water or bare soil), small vegeta-

tion cover (corresponding to winter cereal fields almost all at

stubble state at the end of June), to maximum vegetation cover

(corresponding to fully developed crops at the end of June, e.g.,

beans, or grassland areas). Table III shows the features of these

five classes estimated by fuzzy c-means [33], and their color

code for classification. We note the great complexity of the

landscape, and, in particular, the thinness of most of the fields

(excepting winter cereal ones) as a result of both agricultural

practices and sensor pixel size. In addition, this image presents

two main issues for classification regularization. First, some

large fields may present heterogeneous stages of vegetation

(e.g., from clear bare soil to stubble), such as those pointed

by circled areas 3–6 in Fig. 7(a). These field subparts have

generally a geometric form that is based on soil geometry

(namely field borders) and soil properties (namely moisture,

roughness). For classification, one may expect that they will

TABLE III
CLASS FEATURES FOR THE SPOT4 VEGETATION FRACTION COVER IMAGE

either be removed by regularization (when their corresponding

vegetation stages are not very different from the local back-

ground ones), or preserved but retaining their highly structured

(i.e., not smoothed) boundaries so that they can still be iden-

tified as heterogeneous subareas rather than well delimited

fields. Second, due to the pixel size m , the image
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Fig. 8. Comparison of the classification results: respectively, from left to right, isotropic neighborhood (a), (d), (g), adaptive neighborhood (b), (e), (h), and Chien
model (c), (f), (i), in the case of three 50� 50 pixel subparts of Fig. 7 (pointed by blue squares): upper left corner, upper middle right, and bottom right.

contains some mixed pixels, in particular corresponding to

field borders. Considering hard classification, one may expect

that these mixed pixels be classified either in one of the classes

composing the mixture (and not in an intermediary class, e.g.,

low vegetation density class for a pixel straddling a dense

vegetation and a bare soil field). We will now see how the

different classification methods manage with these issues.

Fig. 7(b)–(d) shows the classification results. The compar-

ison is only qualitative due to the lack of sufficiently accurate

ground truth data. The blind classification result (not shown) is

rather “noisy.” This effect can be much reduced taking into ac-

count neighborhood. Fig. 7(b) shows the classification results

using fixed-form 8-connectivity square neighborhood, Fig. 7(c)

shows the Chien model result, and Fig. 7(d) shows the self-orga-

nized (auto-adaptive) neighborhood classification. In Fig. 7(b),

we note the effect of the isotropic form of the neighborhood,

namely a removal of the fine structures, either completely (as

shown by circled areas 1 and 2) or partially (as shown by cir-

cled areas 8 and 9). However, this effect cannot be alleviated

(by decreasing the parameter) without seriously damaging the

reduction of blind result noise. Indeed, Fig. 7(b) is the best com-

promise we obtain between noise regularization and actual com-

plexity preservation. Considering either the Chien model clas-

sification result or the adaptive neighborhood one, we note that

the fields corresponding to fine structures are restituted. Now,

with the Chien model result (like with the isotropic neighbor-

hood one), we note an unrealistic smoothing of the boundaries

for the heterogeneous vegetation stage subareas (main issue 1

shown by circled areas 3 to 6). Both approaches have built up

some erroneous “blob” structures, that is not the case using the

adaptive neighborhood approach. Finally, we note that there are

some cases where the blind classification errors are removed

only in Fig. 7(d) (ACO result), as shown by circled area 7 or

in Fig. 8.

Fig. 8 allows a more precise comparison of the classification

results (respectively isotropic neighborhood, adaptive neighbor-

hood and Chien model, from left to right) in the case of three

subparts of the previous 256 256 considered image. The cir-

cled areas focus on some areas illustrating the interest of the

adaptive neighborhood:
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• better preservation of fine structures relative to the

isotropic neighborhood model (circled areas 1, 2, 4, 5, 11,

13, 14, 16);

• better restitution of the actual geometric form of the struc-

tures relative to the Chien model (circled areas 6, 8, 10, 13,

14, 15);

• better removal of blind classification errors (3, 12) in par-

ticular in the presence of mixed pixels (7, 9, 16, 17, 18, 19).

To be fair, we also admit that there are some areas where the

Chien model leads to a more plausible result, in particular if the

problem of mixed pixel misclassification is withdrawn because

the mixture is between classes contiguous in the feature space.

Indeed, for longitudinal fields the used constraint of shapes and

lines can be helpful to retrieve the actual field geometry.

V. CONCLUSION

The ACO applied to the construction of pixel neighborhoods

in global classification problems has been shown to result in near

optimal neighborhood functions and to yield a performance su-

perior to that of classical fixed-form neighborhoods in the case

of simulated images with different noise levels. This optimiza-

tion scheme allows us to consider a nonstationary MRF with

respect to the neighborhood and provides a numerical tool to

estimate locally the neighborhood.

The advantage of having a neighborhood shape which

automatically adapts to the image segment clearly appears

in the case of images containing fine elements, as shown

in the simulated example. Classifications using a classical

isotropic 8-connectivity neighborhood fail to recover the true

label image, regardless of the optimization algorithm: iterative

conditional mode, or simulated annealing, since the limits are

not due to the optimization but to the image modeling. More

sophisticated image models such as the Chien model or the line

process improves somewhat the results. Finally, auto-adaptive

neighborhood model seems the more flexible and the more

suitable to handle image complexity. Similar results have

also been obtained on actual data where the superiority of a

self-organized neighborhood was demonstrated qualitatively.

Besides its performance, an interest of the method is its ro-

bustness to the parameter fitting. In particular, the ACO param-

eters (exploration probability, quantity of pheromone deposit,

and experience duration) can be calibrated to proposed default

values. The parameter can be taken equal to the classical

isotropic 8-connectivity neighborhood optimal value. This pos-

sibility to use default parameter value or empirical estimation

provided by quick algorithms (such as the classical isotropic

ICM) is a serious advantage since the proposed algorithm is

much slower (due to the additional complexity). Indeed, future

work will deal with current approach approximations in order to

reduce computation time. One could also investigate recent op-

timization techniques such as nonparametric belief propagation

[34], that has been shown to be efficient for the exploration of

very large solution space [such as the neighborhood configura-

tions for all the pixels belonging to ], using a Gaussian

mixture approximation [35] for the messages.
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