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Quality Evaluation of Motion-Compensated Edge
Artifacts in Compressed Video

Athanasios Leontaris, Member, IEEE, Pamela C. Cosman, Senior Member, IEEE, and Amy R. Reibman, Fellow, IEEE

Abstract—Little attention has been paid to an impairment
common in motion-compensated video compression: the addition
of high-frequency (HF) energy as motion compensation displaces
blocking artifacts off block boundaries. In this paper, we employ
an energy-based approach to measure this motion-compensated
edge artifact, using both compressed bitstream information and
decoded pixels. We evaluate the performance of our proposed
metric, along with several blocking and blurring metrics, on
compressed video in two ways. First, ordinal scales are evaluated
through a series of expectations that a good quality metric should
satisfy: the objective evaluation. Then, the best performing metrics
are subjectively evaluated. The same subjective data set is finally
used to obtain interval scales to gain more insight. Experimental
results show that we accurately estimate the percentage of the
added HF energy in compressed video.

Index Terms—Added high-frequency energy, blocking artifacts,
blur, motion-compensated edge artifact, objective metrics, paired
comparison, subjective tests, Thurstone’s law, video compression,
video quality assessment.

I. INTRODUCTION

STANDARDIZATION bodies such as the Video Quality Ex-
perts Group (VQEG) [3] have been coordinating research

efforts towards designing an efficient objective video quality
metric. The goal of an objective video quality metric is the auto-
matic prediction of perceived quality, useful not only to assess
the quality of reconstructed video, but also for fine-tuning and
design of video coding systems. Mean-squared error (MSE) and
peak signal-to-noise ratio (PSNR) have seen widespread use as
video quality metrics due to their implementation simplicity and
adequate performance. Unfortunately, they do not take into ac-
count the perceptual characteristics of the Human Visual System
(HVS). Previous research [4] showed that PSNR cannot perform
well in video sequences with significant luminance or spatial
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masking. Incorporating HVS models into video quality metrics
is highly desirable.

Objective quality metrics can be categorized as full-, re-
duced-, and no-reference (NR) metrics. Full-reference (FR)
metrics have access to both the original and the reconstructed
video. An example is PSNR. Reduced-reference metrics rely
on some features that have been previously extracted from the
original video content by some other means. These metrics do
not have direct access to the original video. Finally, NR metrics
have access only to the reconstructed video sequence and its
bitstream. These metrics are universally deployable, since they
do not require access to the original sequence.

Video quality has both spatial and temporal dimensions [5].
We treat the spatial component of video quality. Visual quality
assessment is a highly nonlinear process that involves the HVS
and high-level cognitive functions. Quality depends on the user.
The user’s assessment differs due to variations in sensory capa-
bilities (eyesight), personal expectations, experience, and moti-
vation. Second, quality depends on the environment, such as the
room lighting, the type of screen (LCD or CRT) used for the
evaluation, and the viewing distance. Third, quality is content
dependent, since the judgment criteria change whether the sub-
ject is watching a TV commercial or a sports program.

Furthermore, viewers perceive quality on many axes simulta-
neously. For example, an image may be blurry, blocky, or have
ringing artifacts. Temporally, a video may have jerky motion, or
added “mosquito” noise. In this paper, while we are interested
in video quality, we assess only the quality of the individual still
images (frames) that comprise the video. Video quality is a func-
tion of four types of impairments: blocking,1 blurring, ringing,
and motion-compensated edge artifacts.

Blockiness arises from the vertical and horizontal edges along
a regular blocking grid that result from the block-based pro-
cessing in many image and video codecs. Coarse quantization
yields more blockiness, while edge-attenuating filters reduce its
perceptual effect. We concentrate on blocks of size 8 8 as it
is the default DCT block size. Blurriness is caused by the re-
moval of high-frequency content from the original image/video
signal. Increased blurriness can be caused by coarser quantiza-
tion, edge-attenuating filters, fractional-pixel motion compensa-
tion (MC) or overlapped block motion compensation (OBMC).
Ringing artifacts, also known as the Gibbs phenomenon, are
caused by the absence of high-frequency terms from a Fourier
series due to coarse quantization. They are perceived as ripples
and overshoots near high-contrast edges, and are most prevalent

1In [1], the term blocking referred to the sum of both on-grid blocking, as
well as motion-compensated edge artifacts. In this work, blocking refers to the
traditional on-grid impairment.
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in wavelet coders. Motion-compensated edge artifacts (MCEA)
are typical in video codecs that use block-based MC predic-
tion. When coarse quantization is combined with MC predic-
tion, blocking artifacts propagate from I-frames into subsequent
frames and accumulate, causing structured HF noise that is no
longer located at block boundaries (off grid). Fractional-pixel
MC and edge-attenuating filters can reduce this artifact. By def-
inition, the MCEA involve HF noise within the blocks, while the
blocking impairment involves HF noise along the block bound-
aries (on grid). These motion-compensated edge artifacts were
called “false edges” in [6]. An in-depth discussion of these arti-
facts can be found in Section III.

The estimation of blocking, blurring, and ringing with the
help of HVS models was the scope of [7]. All three can be
encountered in both compressed still images and compressed
video. Most research on video quality assessment has concen-
trated on blocking and blurring. These components are not or-
thogonal; interactions between two artifact types affect the per-
ceived strength of each. Farias et al. [8] indicated that when ar-
tifacts are perceived to have equal strength, blurriness is more
annoying than blockiness. One approach to quality assessment
involves the use of HVS principles to determine a single value-
index that characterizes the overall video quality [9], [10]. An
alternative is to design metrics that assess a single impairment
type, such that the impact of multiple impairments can be sub-
sequently combined into a single quality value [11], [12]. In this
paper, we concentrate on evaluating single-impairment quality
metrics in the context of video compression, without transmis-
sion errors.

Reviews of image and video quality metrics include [13]–[17].
A comprehensive overview of monochrome image quality met-
rics dating from 1974 to 1999 was presented in [13], which
focuses on describing HVS models without evaluation. Several
monochrome FR image quality metrics were evaluated in [14],
using the correlation between the metric output and a subjective
evaluation. In [15], four quality metrics were evaluated in an
error-prone environment: the SNR, PSNR, ITS [18] (an objective
metric based on subjective tests), and MPQM [9] (an objective
metric based on HVS). Three still FR image metrics that use
HVS criteria were compared in [16] using subjective tests. Three
quality metrics [19]–[21] were evaluated for video streaming
in [17], which indicated the metrics had difficulty correctly
ranking the quality produced by different codecs.

Available blocking metrics were primarily developed for use
with image codecs; thus, they ignore motion-compensated edge
artifacts. With the help of subjective tests, we show that the per-
ceptual effect of this unexplored visual impairment is signifi-
cant. We propose a novel quality assessment measure that esti-
mates the DCT energy of the MCEA.

Our goal is to test the ability of available similarity, blocking,
and blurring metrics to correctly order the subjective impact
of different 1) spatial content, 2) quantization parameters, 3)
amounts of filtering, 4) distances from the most recent I-frame,
and 5) long-term frame-prediction strategies. Because many
metrics appear to work well when averaged over an entire
video sequence, we explore their performance on a per-frame
basis. Our evaluation consists of two parts: the ordinal scale
and the interval scale evaluation.

The ordinal scale evaluation is comprised of both an objective
and subjective evaluation. In the objective evaluation, expecta-
tions are derived to systematically explore the impact of mul-
tiple parameters that affect compressed video quality, based on
common sense. This objective evaluation exposes several inade-
quacies in the performance of many metrics. We then describe a
subjective evaluation methodology designed to verify the logic
and intuition behind our expectations and to further evaluate the
metrics. All metrics undergo the objective evaluation; the ones
that perform best are further evaluated using more exhaustive
subjective tests. Interval scales are obtained from the same sub-
jective data set of the ordinal evaluation with the help of Thur-
stone’s Law to further study these metrics.

The objective evaluation framework is useful to anyone de-
signing quality metrics for compression. In contrast, subjective
tests are often constrained with respect to the examined parame-
ters and their conclusions are not easily applicable to cases other
than the original experiment. Hence, it makes sense to evaluate
metrics both with objective and then with subjective tests.

The paper is organized as follows: Existing evaluated metrics
are summarized in Section II. We propose a new metric to cal-
culate the effect of propagating edge artifacts in Section III. We
derive our expectations for the ordinal scale objective evalua-
tion in Section IV. We then introduce the subjective evaluation
methodology in Section V. The results of the ordinal scale ob-
jective evaluation are described in Section VI. The worst per-
forming are weeded out, and the surviving metrics are further
studied through the subjective tests. The same metrics are fi-
nally studied with the help of subjective test interval scales in
Section VII. The paper is concluded in Section VIII.

II. EXISTING QUALITY METRICS

In this paper, we consider three similarity, nine blocking,
and three blurring metrics. All of the similarity and one of the
blocking metrics are FR measures. The rest are NR metrics.

A. Three Similarity Metrics

The similarity metrics all require both the original and de-
graded images. Similarity metrics are also known as compre-
hensive quality metrics. PSNR: MSE and, equivalently, PSNR
use a pixel-by-pixel comparison between two images. SSIM:
The structural similarity index (SSIM) [22] uses means, vari-
ances, and correlations of both images. PIQE-S: The psychovi-
sual image quality evaluator (PIQE) [23] is a FR method con-
sisting of two parts: a blockiness component and a similarity
component, denoted PIQE-S, which counts the number of edges
common to both the original and degraded image.

B. Nine Blocking Metrics

We consider one FR and eight NR blocking metrics. None
of the evaluated blocking metrics uses temporal masking, or is
parameterized with respect to the viewing distance. PIQE-B:
The blockiness component PIQE-B of PIQE [23] uses the DCT
DC coefficients of the current block and its eight neighboring
blocks of both the decoded and the original frame to compute
a FR blocking measure. BD: The boundary discontinuity (BD)
[24] metric was initially proposed to identify frame areas with
increased blocking artifacts so that de-blocking algorithms
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may be applied. The boundary discontinuity is defined as
the amount of the slope increase in the boundary pixels as
compared to the slopes of the internal pixels of a block. MSDS:
This metric was proposed in [25], and shares the same original
motivation (de-blocking) as well as the same assumption with
the BD metric. BAM: Gao et al. [26] present a blocking artifact
metric (BAM) based on differences of averages of eight-pixel
rows (columns) across vertical (horizontal) block edges. Phase
Correlation (PC): In this method [19], the denominator of
the metric measures interblock similarity while the numerator
measures intrablock similarity.

The remaining four blocking metrics all incorporate some
form of HVS modeling. GBIM: In the generalized block im-
pairment metric (GBIM) [21], HVS masking is incorporated by
means of weights derived from localized averages and standard
deviations across pixel block boundaries. Power Spectrum: In
[20], the power spectrum of the 1-D absolute difference signal
is calculated using the fast Fourier transform. Luminance and
texture masking are exploited to scale the signal prior to the
frequency analysis. DCT-Step: The DCT-Step metric [27]
models blocking artifacts as 2-D step functions, and weighs
results using local background luminance and activity masking
measures. PSBIM: The perceptual block impairment metric
[28], which modifies GBIM to include more comprehensive
luminance masking, has a similar structure to the phase corre-
lation metric in [19]. In PSBIM, the numerator represents edge
strength, while the denominator represents the inner-block
spatial similarity.

C. Three Blurring Metrics

All three evaluated blurring metrics are NR metrics. DCT-
Histogram: The first blurring metric computes a global blur for
an image using a histogram of DCT coefficients gathered from
the compressed bitstream [29]. Edge-blur: The second metric
computes the spatial extent of each edge in an image using in-
flection points in the luminance to mark the start and end of
an edge [30]. The spread of edges in an image is estimated by
observing the smoothing effect of blur on edges. Kurtosis: The
third blurring metric computes sharpness, the inverse of blur-
ring, by calculating local edge Kurtosis [31]. Kurtosis is inter-
preted as the extent to which the signal is non-Gaussian.

III. MOTION-COMPENSATED EDGE ARTIFACTS

An example of MCEA appears in Fig. 1. This 42 37 pixel
segment, with its top left corner at the (207 155) pixel of frame
21 of the image sequence “foreman” at CIF resolution (352

288), was encoded using the H.263+ encoder with QP set
to 22. The original content is shown in Fig. 1(a). The same
frame is encoded first as an I-frame, and then as a P-frame with

, where is the distance from the last I-frame. In
Fig. 1(b), the regular blocking grid is well perceived as it is a
portion of an I-frame. P-frame coding with in Fig. 1(c) is
similar to the previous case with minor spatial displacements of
some of the block edges. For Fig. 1(b) and (c), the spatial content
within each block has low spatial frequency. As increases, we
observe significant changes in Fig. 1(d)–(e). Not only do block
boundaries of the blocking grid dissipate, but high-frequency

artifacts, that are not part of the original image content, appear
within the block boundaries.

All blocking metrics presented in Section II assume constant
blocking boundaries, ignoring propagation of blocking artifacts
and are, therefore, not designed to measure these artifacts in
P-frames. Pixel-based [21], [28] metrics require exact knowl-
edge of artifact location, which is difficult to achieve due to the
combination of fractional-pixel MC and variable-sized blocks.
It would also be very difficult to modify frequency-based
blocking metrics such as PC and Power Spectrum to measure
these artifacts. These methods rely on the periodicity of the
blocking grid [see Fig. 1(b)], which vanishes as increases.
Therefore, we develop a new metric to measure the energy of
these MC edge artifacts.

A. Scheme Formulation

Our approach involves the calculation of MCEA energy on a
block basis. Let the set of all 8 8-pixel blocks in a frame be

. The received DCT coefficient in the compressed bitstream
(transmitted prediction residuals) at location of an 8 8
block in frame is . We consider the set of all
AC DCT coefficients. The measured DCT coefficient obtained
from the 8 8 DCT transform of the reconstructed frame is

. Finally, denotes a DCT coefficient from the
block in the original source frame, and denotes a DCT
coefficient from the motion-compensated prediction block.

To encode the source, the encoder selects a motion-com-
pensated prediction block because it is the best fit overall
according to some criterion (e.g., sum of absolute differences).
The encoder compresses and transmits the prediction residuals

with available bits, resulting in quantized
residuals , that help reduce prediction errors. The trans-
mitted residual DCT energy is

(1)

and the measured DCT energy is

(2)

We can compute the energy in the prediction block ex-
actly, using the measured DCT coefficients in the reconstruc-
tion, , and the received coefficients,

(3)

, , and are known exactly, given the decoded pixels
and the compressed bitstream. We seek to design a NR metric
that estimates the percentage of high-frequency energy in
that is not part of the original image content.

The coefficient energy sent by the encoder in reduces the
visual impact of the error . The AC image
distortion is, thus, . Our metric
seeks to estimate the HF energy added through MC
and not removed by the transmitted coefficients with energy .
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Fig. 1. Visual sample of propagating motion-compensated edge artifacts in “foreman.” (a) Original content, (b) I-frame, (c) P-frame d = 1, (d) P-frame d = 6,
and (e) P-frame d = 14.

HF energy is added and removed through the AC coefficients,
which characterize the frequency content of the signal. As a re-
sult, we do not include the DC coefficient in our calculations.
Hereafter we refer to our proposed metric as MCEAM, to dif-
ferentiate it from the MCEA artifacts it measures. We formulate
it on an energy basis . How-
ever, is unknown at the decoder and must be estimated.
We denote this estimate . This estimate is close to the
energy of the prediction block in the previous frame. The pre-
diction blocks will often overlap the blocking grid, and, thus,
their energy content may be contaminated with the energy of
blocking artifacts. To alleviate this, the energy of the unknown
source block is calculated as the weighted average energy of
the four on-grid blocks in the past decoded frame that overlap

the prediction block. These blocks carry fewer blocking artifacts
within them. We assume that the energy of regular grid blocks
in a small neighborhood does not change significantly from one
frame to the next.

To estimate the source energy for a given block, , we let
indicate the set of (up to) four on-grid blocks in frame that
are used to predict block in frame . The prediction of uses

percent of the block . Then, the energy estimate

(4)

approximates the energy content of the source for the block in
the current frame.
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The recursive per-block MCEAM energy metric is obtained

(5)

The last term is the propagated MCEA energy from the previous
referenced blocks. Note that can be negative,
indicating that the transmitted energy was enough not only
to counter the potential new MCEA energy but also
to reduce previously propagated MCEA energy. Furthermore,

is constrained to be non-negative.
This block-based approach addresses the occurrence of skip

and I-blocks with the efficient use of recursion. For example,
if the current block is a skip block, the MCEA energy is set
equal to that calculated for the co-located block in the previous
frame. Similarly, for I-blocks, we merely set it to zero as it is by
definition.

In those few cases that the transmitted energy is found to
be greater than the HF energy added through MC and
greater than the increase in local energy (measured energy
minus the estimated energy ), the calculated metric for
the block is set to be zero disregarding previously accumulated
energy. Intuitively, if the transmitted DCT energy was enough to
offset , and was again larger than the increase in local
energy, we can speculate that it was enough to counterbalance
all previously propagated MCEA energy (since the increase in
energy can be solely attributed to the image content). The final
metric is then scaled to incorporate texture masking

(6)

where is the measured energy content of
the entire frame . MCEAM is an estimate of the percentage of
DCT energy in the reconstructed video frame that is caused by
motion-compensated edge artifacts.

IV. ORDINAL EXPECTATION FRAMEWORK

Here, we derive a comprehensive ordinal scale objective eval-
uation framework that systematically changes parameters af-
fecting compressed video quality to sample a significant part
of the image quality parameter space.

Typical of many video quality assessment studies, video
sequences were encoded at a single rate in [17] and the sole
parameter explored was the frame number. Quality perception
is affected by many parameters, including the six we con-
sider: 1) QP of the I-frames, , 2) QP of the P-frames, ,
3) distance between the current frame and the most recent
I-frame, 4) video content: static versus high-motion activity,
5) presence of edge attenuating filtering, and 6) the video
codec. We note that filters can be applied before compression
(prefiltering), during compression (in-loop filtering), after
reconstruction (postprocessing), or implicitly by using OBMC
and fractional-pixel MC. For video codecs, we considered
H.263+ and H.264/AVC. These differ, in part, in the size of
their block partitions (minimum blocksize of 8 8 and 4 4,
respectively) and the degree of fractional-pixel MC prediction
(half-pixel and quarter-pixel accurate MC, respectively).

To help identify metrics that perform inadequately, we rely
on common sense to create a list of expectations that a well-
designed metric should satisfy.

Foreman is characterized by large moving uniform areas,
while coastguard has extensive high-frequency detail that
masks artifacts. Common sense dictates that foreman will have
more visible blocking artifacts compared to coastguard. This
leads to the first expectation.

A) For the same QP and no filtering, coastguard is less blocky
and has less MCEA than foreman. Also, the quantized
coastguard is more similar to its original than is the quan-
tized foreman. This expectation should hold across all
codecs and frame-types.

B) Without filtering, i) blockiness for I-frames increases as
QP increases, ii) MCEA in P-frames increases as QP in-
creases, and iii) similarity for both I- and P-frames de-
creases as QP increases.

C) With edge-attenuating filtering, blurriness increases and
similarity decreases as QP increases.

D) For fixed QP and , more filtering decreases blockiness,
MCEA, and similarity but increases blurriness. It should
hold across all possible codecs, frame-types, and spatial
content.

E) For fixed QP and filtering and for a single reference frame,
i) blurriness increases with , ii) the sum of blockiness
and MCEA increases (because artifacts accumulate) with

, and iii) similarity decreases as the distance from the
most recent I-frame increases [1].

F) For fixed QP, filtering, and , using a long-term (LT)
high-quality reference frame improves quality; namely,
it increases similarity and reduces blurring, MCEA, and
blocking. This expectation is based on observations using
coastguard with and without LT prediction. The section
of coastguard we considered particularly benefits from
LT prediction because occluded areas were uncovered.

V. SUBJECTIVE EVALUATION

Next, we conduct subjective tests to verify the validity of
our ordinal expectations discussed in Section IV, and to yield
a ground truth data set against which good metrics can be com-
pared. The method of paired comparisons [32] is used. We de-
rive both ordinal scales as well as interval scales from the ob-
tained data set. The experimental results are analyzed and con-
verted into interval scales using Thurstone’s Law of Compara-
tive Judgment [33].

A. Why Paired Comparison?

In a subjective experiment, ordinal scale information is easy
to obtain. Objects (in our case frames encoded with different
coding parameters) are ranked according to the underlying prop-
erty of interest (e.g., visual quality). The magnitude of the differ-
ence between objects is not determined. With an interval scale
(e.g., Celsius temperature scale), the magnitude of the differ-
ences between scale values indicates the extent to which one ob-
ject will be preferred over another. Finally, with a ratio scale the
ratios of differences are equal across the range of the scale [34].
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Ratio scales (e.g., Kelvin temperature scale) require an “abso-
lute” origin point. In our subjective experiment, we seek to ex-
plore both the ordinal and the interval scales.

Three general methods are available to obtain interval scales.
First, with the rank-order procedure, the test subject orders a
small set of objects. With one observer, this produces an ordinal
scale, but by combining results of many observers, one can ob-
tain an interval scale [35], [36]. Second, a single stimulus test
involves the presentation of one stimulus (a motion video [3],
or a still video frame as in our case). The test subject evalu-
ates the stimulus by assigning values from a continuous interval
scale. This has many weaknesses [34]: scales of test subjects
have unequal intervals, scales do not correspond between ob-
servers (personal, social, and situational factors can affect the
test subject’s results), and scales can be inconsistent within one
observer over time. Third, paired comparisons [32], address
most of the above problems. The test subject is presented with
two stimuli and asked to select one. All three problems are ame-
liorated, since only binary decisions are made. This robustness
is a result of the minimal thought process that a forced-choice
comparison involves.

Paired comparison [32] requires presenting all possible pairs
of the investigated objects. To evaluate frames encoded with
different coding parameter values, the resulting pairs
have to be evaluated by at least test subjects to ensure
sufficient statistical reliability [37].

B. Ordinal Scales

To order the investigated stimuli, the following simple algo-
rithm is employed: Each stimulus is assigned a numerical score
equal to the number of times that that particular stimulus was
chosen over the others in all trials where it was presented. The
stimuli are then ordered increasingly according to their numer-
ical scores to produce the ordinal scales.

C. Interval Scales

Thurstone’s Law [33] is used to derive the associated interval
scale values, , . These are estimated as the average
of the interval distances between the stimulus and all other
stimuli , where (hence, the need to conduct all pairwise
comparisons), as

(7)

The interval distances are estimated as follows: Let and
be interval scale values of two stimuli. When a test subject com-
pares the stimuli pair of 1 and 2, two internal HVS responses

and are elicited, modeled as gaussian distributed random
variables. The and interval scale values can be thought of
as the “mean values” of the internal HVS responses and .
When the response is larger than response , stimulus 1 is
preferred; otherwise, stimulus 2 is preferred. Thurstone’s Law
is now written

(8)

where is the normal deviate corresponding to the proportion
of outcomes where 1 is selected over 2, i.e., .

The standard deviations of random variables and are
and . The correlation between them is . Assuming that the

are uncorrelated and that , Thurstone’s Law
can be simplified as

(9)

This is known as Case V of Thurstone’s Law. The unit normal
deviate is equal to , where is the inverse
cumulative normal distribution function (inverse Z-score).

The ordering obtained through intervals is similar but not
identical to that obtained with the trivial ordinal scale method.
Thurstone’s Law obtains the numerical score by summing the
inverse Z-score of the preference ratios. The trivial scheme sums
the ratios themselves. Due to the nonlinearity of the Z-score, the
ordering can be different.

D. Subjective Testing Methodology

The H.263+ video codec from the software library FFMPEG
of the video player/encoder package MPlayer-1.0pre4 (available
from http://www.mplayerhq.hu/) was used to encode the test se-
quences. The motion vectors were obtained with half-pixel ac-
curacy (introducing weak blurriness and block edge artifact at-
tenuation). The in-loop filtering of H.263+ was used to provide
loop-filtered sequences. A minimum block-size of 8 8 pixels
was adopted. INTRA frames were inserted every 15 frames.
Two image sequences were examined at CIF 352 288 resolu-
tion with YUV 4:2:2 color representation: the medium-low mo-
tion video-conferencing sequence “foreman” and the medium-
high motion “coastguard” sequence, with camera panning and
water ripples. We evaluated the effects of the quantization pa-
rameter QP and the distance from the I-frame.

Thirty experts and nonexperts took part in the experiment,
and were compensated for participating. Each paired compar-
ison was repeated thirty times, yielding trials. Six pre-
liminary paired comparisons with frames other than those used
in the test were conducted to train the test subjects. All possible
pairwise combinations of the examined parameter space were
investigated. Two decoded frames from sequences encoded with
different coding parameters were presented to the viewer at the
same time. The spatial content was the same (same frame). Be-
fore the next pair, a gray image was shown for half a second to
eliminate contextual effects. Left/right positioning was random,
as was the order in which image pairs were presented. Each pair
was viewed only once. The viewer was asked to evaluate the
frame pair. Three questions were asked:

1) “Which of the two images is blockier?”
2) “Which of the two images is noisier?”
3) “Which of the two images is worse?”

During the preliminary training comparison, it was made clear
to the viewers, both orally and by displaying characteristic ex-
amples, that “blockier” refers to traditional on-grid blocking ar-
tifacts, and “noisier” refers to off-grid edge artifacts (MCEA).
The “worse” attribute refers to the overall image quality. It is
not meant to be a sum of “blockier” and “noisier.” The “worse”
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attribute will be discussed in Section VII. We are interested in
correlations of “blockier” and “noisier” with “worse.”

Two categories of subjective pair comparisons were con-
ducted. Neither used loop filtering. First, with set to 0, we
showed all possible pairwise combinations of 10, 15,
20, 25. In this case, and ; hence,
trials are enough. The same was done for . Second,
the QP was fixed to three values: 10, 20, and 30. All pairwise
combinations of 0, 1, 6, 10, 14 were shown. In this second
case, and ; hence, trials are
sufficient. Results are presented in Section VII.

VI. ORDINAL SCALE RESULTS

In this section, we compare the metrics and identify those per-
forming poorly using the systematic expectation framework in-
troduced in Section IV. The worst-performing metrics are ex-
cluded from further analysis. In Section VII, the surviving met-
rics are compared using the subjective test described in Sec-
tion V. Ordinal scale information is solely used in this section.

A. Simulation Framework

Three cases are considered. The first, All I-frames, consists
only of I-frames with varying . We explore expectations
A–D for H.263+ and H.264/AVC with and without loop fil-
tering across different spatial content. The second, P-frames,
consists of an I-frame followed by multiple P-frames, where
we vary the quantizer while keeping . For this case,
we explore expectations A–E, focusing on three values of

, 6, 14. The third case, P-Frames LT, is designed to
examine expectation F, the visual impact of using a high-quality
LT prediction frame in H.264/AVC [38]. Here, we fix both

(nearly lossless) and (medium quality) and
vary across all values from 1 to 14.

To isolate the impact of spatial content, we choose identical
frames for the comparison, regardless of the prediction struc-
ture. Thus, for frame number 21 to use , we set frame
20 to be an I-frame, while to achieve , frame 7 is an
I-frame. We examine two sequences, foreman and coastguard
(frames 21 and 141, respectively). “Foreman” exhibits large uni-
form moving objects which when coarsely quantized lead to
extensive blocking artifacts. “Coastguard” is characterized by
continuous motion, but texture masks most of the compression
artifacts. We evaluate our proposed MCEAM metric on two ad-
ditional video sequences: “mother-daughter,” a highly static se-
quence, and “mobile-calendar,” a sequence with extreme spatial
(texture) masking.

For the tests on All I-frames and P-frames, we vary the
quantization parameter using constant increments starting
from nearly lossless (2 for H.263+ and 18 for H.264/AVC) to
nearly unwatchable (30 for H.263+ and 45 for H.264/AVC).
Our H.263+ test sequences are computed using the H.263+
codec in MPlayer/MEncoder [39]. For H.263+, we considered
no filtering, 8 8 block motion vectors and OBMC. The
H.264/AVC test sequences, with and without loop filtering,
are generated with the JVT reference software version JM 8.2
using CABAC.

B. Auxiliary Comparison Tools

The monotonicity requirements of expectations B and C are
evaluated with the help of Kendall’s . The MCEAM metric is
further evaluated with the help of a simple FR metric.

In addition to holding across all possible codecs and spatial
content, expectations B, C should also be monotonic. For ex-
ample, as QP increases, blockiness and MCEA should increase
monotonically. To characterize how well a blocking or blur-
ring metric is able to capture this monotonic increase, we use
Kendall’s tau, [40], which is an estimate of the probability
that a pair of variables is more likely to be correctly ordered
than incorrectly ordered. For a set of data , ,
which should always increase, Kendall’s tau is defined to be

, where is the number of pairs
, for which (i.e., the number of pairs

correctly ordered), is the number of pairs incorrectly ordered,
and is the number of pairs for which . Note that

. For completely monotonic data,
. As pairs become incorrectly ordered, decreases.

We preferred Kendall’s over Spearman’s rank correlation
. Spearman’s is satisfactory for testing a null hypothesis

of independence between two variables but is difficult to inter-
pret when the null hypothesis is rejected. Kendall’s improves
upon this by reflecting the strength of the dependence between
the variables being compared. Kendall’s statistic has greater uni-
versality and has an intuitively simple interpretation [41], [42].

As a further reference for comparison, we designed a simple
FR metric, denoted FR-MCEAM, that calculates the actual
added HF energy due to MC. As the original signal is
available to an FR metric, we calculate the energy difference on
a block basis between the reconstructed video and the original
sequence. The FR-MCEAM metric is

(10)

C. Objective Evaluation Results Discussion

Table I summarizes how well each metric satisfies the expec-
tations. Ability to satisfy expectations A, D, E, F is indicated
by “Y,” while inability is indicated with “x.” Results for expec-
tations B, C show the minimum value of Kendall’s achieved
across the set of situations considered for the given video codec
(H.263+ or H.264/AVC). Recall that means that a metric
completely satisfies this expectation (perfect monotonicity),
while negative strongly indicates an inability to satisfy this
expectation. For expectation B, we consider I and P frames
separately.

1) Similarity Metrics: Results for the FR similarity met-
rics are shown in Table I(a). Expectation A is satisfied solely
by PIQE-S. Expectation B is satisfied by all three metrics ex-
hibiting good Kendall monotonicity values. The metrics’ per-
formance seems unaffected by the choice of codec (H.263+
or H.264/AVC). Finally, expectations D–F are all satisfied by
PSNR and SSIM. However, PIQE-S fails in all of them for rea-
sons explained later in this section.
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TABLE I
ABILITY OF EACH METRIC TO SATISFY EXPECTATIONS A–F. A “X” IN COLUMNS A, D, E, F MEANS METRIC FAILED EXPECTATION; “Y” DENOTES SATISFACTION.

COLUMNS B, C DENOTE KENDALL’S � CHARACTERIZING MONOTONICITY. (A) SIMILARITY, (B) BLOCKING, AND (C) BLURRING METRICS

2) Blocking Metrics: Results are given in Table I(b). We note
that qualitatively the GBIM graphs are representative of the per-
formance of the other blocking metrics (omitted due to space
constraints).

Expectation A was satisfied by GBIM, PSBIM, and
MCEAM. “Foreman” was shown to be blockier than “Coast-
guard.” MCEAM was further evaluated on two additional
sequences: “mobile,” where MCEA are masked by the abun-
dance of HF image content, and “mother-daughter” where
MCEA are practically invisible. It correctly rank-ordered the
four sequences. The low motion “mother-daughter” is easy to
encode and exhibits zero MCEA, so the MCEAM metric mostly
measures image content and quantization noise. It correctly
showed the percentage of MCEA energy as extremely low.

Expectation B requires that blockiness and MCEA increase
with increasing QP. While most metrics did well for I-frames,
PC and PIQE-B were clearly the weakest for H.263+. When
H.264/AVC is used to encode the sequence, PC, BD, and MSDS
perform the worst. PIQE-B, while unsatisfactory with H.263+,

proved better when used on H.264/AVC video. The reason may
be the combination of smaller transform size and the use of
DC values. Since MC causes off-grid blocking artifacts, most
metrics are at a disadvantage. For P-frames, BD, MSDS, and
PC are clearly the weakest in H.263+, while for H.264/AVC,
Power Spectrum shows a sharp degradation in performance.
Still, PIQE-B, PSBIM, BAM, DCT-Step, MCEAM, and GBIM
perform reasonably well in this situation.

Expectation D was not satisfied by three metrics: PSBIM,
PIQE-B, and PC.

Expectation E is satisfied only by the FR PIQE-B metric and
the MCEAM metric.

Expectation F is satisfied by one metric: PSBIM. Blockiness
and MCEAM have small values for coastguard frame 141.

We then use Kendall to evaluate the ordinal scales of our
MCEAM method and the FR-MCEAM metric. The result of
the FR-MCEAM is taken to be the ground-truth and the output
of MCEAM is compared against it by re-ordering the MCEAM
output according to the ordering of the FR-MCEAM metric, and
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calculating Kendall’s . For “foreman,” “coastguard,” “mother-
daughter,” and “mobile-calendar” the values are 0.8473, 0.8030,

0.4680, and 0.8374. The Kendall is negative for “mother-
daughter” for reasons given above. Our method behaves simi-
larly to FR-MCEAM, and estimates the energy of MCEA with
sufficient accuracy.

3) Blurring Metrics: As shown by the results for blurring
metrics in Table I(c), all are effective at satisfying expectation
D by showing that filtering increases blurriness, while none was
able to satisfy expectation E, that increasing increases blurri-
ness. Only edge-blur was successful with F, the LT prediction,
while Kurtosis was the weakest with regard to expectation C.

D. Reasons for Failure

The blocking metrics share a number of weaknesses for our
sequences. First, only four incorporate some form of HVS mod-
eling, but even so DCT-Step and Power Spectrum fail in expec-
tation A. Second, BD and MSDS both assume that the encoding
process preserves the inner-block structure and pixel slopes. Un-
fortunately, the experimental results indicate that this assump-
tion does not hold for the codecs we considered. Third, many
metrics appear to discard useful information when they compute
blockiness. For example, PIQE-B and BAM use only DC coef-
ficients on a block and row/column level, respectively. Further,
BAM employs a very strong cutoff threshold for measuring an
edge. In DCT-Step, the simple 2-D step function model discards
many coefficients. Similarly, the Phase Correlation method [19]
discards vital information during spatial subsampling. Fourth,
as pointed out in [17], many blocking metrics assume blocking
artifacts appear only on 8 8 block boundaries and are unable
to measure MCEA in P-frames. A further problem is the as-
sumption on the periodicity of the blocking grid. Finally, most
of these metrics average the blockiness across the image. Thus,
a very strong edge will be averaged with weaker edges. On the
other hand, humans are likely to perceive blockiness using only
the most visible blocking artifact. HVS masking is often used to
give more weight to stronger edges, but often this is not enough.

None of the blurring metrics incorporates any HVS modeling.
The Kurtosis metric and edge-blur are similar to PIQE-S, in
that they are heavily dependent on obtaining reliable edge infor-
mation. Edge-attenuating filtering during compression reduces
the number of available edges in their sample space, which de-
creases the statistical reliability and consequently the perfor-
mance of both Kurtosis and PIQE-S. However, the same is not
true for the edge-blur metric. Even though fewer edges are de-
tected, the fact that the edge-blur metric measures the extent of
those edges and is not highly dependent on the actual number of
measured edges, makes it robust to compression. Finally, DCT-
Histogram which is based on receiving DCT coefficients to form
a histogram, suffers performance degradation for heavily quan-
tized P-frames, as received DCT coefficients become scarce.

E. Conclusions and Insight From Objective Evaluation

The quality metrics we consider all have some weakness in
measuring the quality of still frames from compressed video. We
derive our expectations using common sense and each metric
is unable to correctly rank order images for at least one of our

common-sense expectations. Several metrics also prove inad-
equate when applied on H.264/AVC video, since they are de-
signed for 8 8 DCT blocks. Kurtosis and Power Spectrum are
particularly weak for H.264/AVC due to its complex blocking
structure.

The most challenging expectations for the metrics to satisfy,
as a whole, are to correctly characterize (A) the impact of spatial
content, (B) the impact of blocking and MCEA in P-frames, (E)
the increased blurriness as the distance from the most recent
I-frame increases, and (E) the increased perceivable blocking
and MCEA with increasing . The inability to characterize the
second and fourth of these are due to the fact that these metrics
have been designed for images, and are then applied to stills
taken from video which may have propagated MCEA. This im-
pairment is what the MCEAM metric was designed to detect,
and as these preliminary results show, it accomplishes its goal.

A combination of the best performing blocking metric and the
MCEAM metric could yield a high-performance quality metric.
Through this first evaluation, we identified the most promising
blocking metrics. Four of them will be further evaluated: GBIM,
PSBIM, DCT-Step, and BAM. The metric from BAM exhibits
excellent values but fails expectation A. PSBIM fulfills it
but fails the critical expectation D. DCT-Step performs slightly
worse than BAM. Finally, based on our expectation framework,
GBIM seems the most promising blocking metric. In the next
section, we evaluate MCEAM and the two FR metrics: PSNR
and SSIM, in addition to the above four blocking metrics. Here-
after, noisiness and added HF energy will be used interchange-
ably with MCEA.

F. Subjective Results

Ordinal scales of the quantization parameter QP and the dis-
tance are obtained through the process outlined in Section V.
Images encoded with various QP (or ) values are ordered ac-
cording to the perceptual strength of the attribute in question
(“block,” “noise,” and “worse”). The subjective ordinal scales
obtained in this way are then compared with the objective or-
derings. Thus, the ability of each objective metric to correlate
well with subjective results is evaluated. Before doing that, we
are interested in investigating the interattribute correlations; one
would like to know whether the “block” attribute has more sim-
ilar ordering to the “worse” attribute than the “noise” attribute
does, and vice versa. Last, we are motivated to use the subjec-
tive ordering information to verify the validity of our expecta-
tions described in Section IV. Expectation A is easy to verify
visually. Expectations C and D are also valid since the low-pass
filtering effects are known. In addition, expectation F is valid
since access to a higher quality reference frame can only im-
prove the prediction. Thus, expectations A, C, D, and F need
not be verified further. However, we are particularly interested
to verify expectations B and E, which characterize a metric’s
response for varying QP and , respectively.

The subjective data set is analyzed as discussed in Sec-
tion V to yield ordinal scales for the varying stimuli:

, the QP ordinal scale, and , the
ordinal scale. Since Paired Comparison is used, each stimulus

is compared an equal number of times with all other stimuli.
The rank ordering can be obtained as the number of times that
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TABLE II
SUBJECTIVE TEST ORDINAL SCALE RESULTS FOR THE FOLLOWING DISTANCES

d FROM THE PAST INTRA FRAME: d = f0; 1; 6; 10;14g. THE LEFTMOST

VALUE HAS THE WEAKEST PERCEPTIBILITY, WHILE THE RIGHTMOST VALUE

IS THE MOST PERCEPTIBLE ACCORDING TO THE EVALUATED ATTRIBUTE

the stimulus is preferred over other stimuli. When examining
the ordinal scales, we treat all comparisons equivalently; for
example, a comparison between and is treated
the same as a comparison between and . The
interval scales, considered later in Section VII, will not make
this assumption.

We start with the evaluation of the QP ordinal scales.
Kendall’s is calculated on the experimental data set, and
yields 1 for all combinations of sequences and distances . All
three attributes, “blockier,” “noisier,” and “worse” are strictly
increasing in perceptibility as QP increases. This verifies the
validity of expectation B. Consequently, the discussion in
Section VI-C, which examines how well the metrics satisfy this
expectation is valid, as well.

We continue next with the case of the ordinal scales. The
rank ordering of is presented in Table II. We sum for every

the number of times it is preferred compared to all other ’s
over all sequences and QP combinations. We observe that the
“blockier” attribute clearly decreases with increasing , as is
expected. The “noise” attribute clearly increases with . How-
ever, the “worse” attribute behavior is neither increasing nor de-
creasing. This indicates that the overall impairment, represented
by “worse,” is affected by both “block” and “noise.”

To further study the ordinal scale results and evaluate the met-
rics, we plot the interattribute correlations and Kendall values
of the three test attributes with each of the investigated metrics
in Fig. 2. Each star represents one combination of sequence and
QP. For example, the top-left star in Fig. 2(a) is the correlation
coefficient for sequence “foreman” and between the
ordinal scale of the “block” attribute, and the ordinal scale of
the “noise” attribute.

The correlation coefficients between the attribute orderings
are displayed in Fig. 2(a). We begin our discussion with the cor-
relations: “block” has low correlation with “noise,” while the
same is observed between “noise” and “worse.” On the other
hand, “block” looks slightly correlated with “worse,” but the
correlation is still low. Moving now to Kendall values be-
tween metrics and attributes, we see in Fig. 2(b) that the PSNR,
SSIM, and MCEAM metrics exhibit low Kendall scores with
“block.” In contrast, the blocking metrics share the ordering
of the “block” attribute. Next, in Fig. 2(c), the PSNR, SSIM,
and MCEAM metrics have similar ordering with the “noise”
attribute, unlike the blocking metrics. On the other hand, in
Fig. 2(d) it is challenging to indicate metrics that clearly share
the same ordinal scale with the “worse” attribute. Using only the
ordinal scales, we are not able to draw meaningful conclusions
regarding the “worse” attribute.

Recall that expectation E stated that the sum of blocking and
MCEA increases with . The results from the ordinal scale eval-
uation prove, however, inconclusive with respect to this expec-
tation. Further evaluation of the subjective data set with the help
of interval scales will follow in the next Section to gain more in-
sight on interattribute correlations and the ordering of the eval-
uated metrics with respect to the “worse” attribute. Still, the or-
dinal scale evaluation pointed to the validity of expectation B.

VII. INTERVAL SCALE RESULTS

The interval scales obtained from the subjective data set are
first used to investigate correlations among the tested attributes:
“block,” “noise,” and “worse.” We evaluate the metrics briefly
with the QP interval scale results and then extensively with the

interval results. We then seek to learn more on the metrics’
performance with respect to the test attributes. The conclusions
are used to support the expectations of Section IV, as well as to
design a hybrid metric based on our findings.

A. Interattribute Correlations

Thurstone’s Law is used to obtain the interval scales for
increasing QP. All three attributes: “blockier,” “noisier,” and
“worse” are shown to increase with QP, coinciding with the
conclusions of the ordinal scale evaluation.

Conclusions for increasing follow. The behavior of the in-
terval scales is qualitatively similar to the ordinal scales: With
increasing , “blockier” decreases, while “noisier” increases.
The “worse” attribute is neither clearly increasing nor clearly
decreasing. It is correlated with both attributes, “blockier” and
“noisier.” Fig. 3(a) shows the spread of the correlation coeffi-
cients (marked with stars) between the three tested attributes
for the interval scales. Each star represents one combination
of sequence and QP. Compared with the ordinal scale evalu-
ation which is inconclusive on interattribute correlations, the
interval scale evaluation yields valuable information. First, the
“block” attribute has low correlation with “noise.” Second, the
“noise” attribute is more correlated to “worse,” than “block” is.
Since “worse” represents the overall impairment, and “noise”
increases with , we can conclude that “worse” also increases
with .

This last conclusion supports expectation E, which stated that
the sum of blocking and MCEA increases with . The rest of
the expectations are self-evident and easily verifiable. We be-
lieve these findings show that motion-compensated edge arti-
facts have been overlooked and comprise a significant dimen-
sion of visual impairment. The test subject’s response to the
“worse” question allows us to investigate, with the help of at-
tribute correlation coefficients, how blocking and MCEA con-
tribute to the overall image impairment. Next, we study the re-
lationship of the individual metrics with the test attributes.

B. Evaluation of Metrics With the QP Intervals

The correlation coefficients between the subjective interval
scales and the objective FR and NR metrics results are also cal-
culated. The FR metrics perform similarly with the NR blocking
metrics. In general, all metrics exhibit high correlations with the
subjective data set for varying QP. Conclusions are identical to
those of the ordinal scale evaluation.
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Fig. 2. Correlation coefficients and Kendall tau between d ordinal scale subjective test results and metrics. Cross correlation of the attribute (say “worse”)
with the output of the metric for the following distances d from the past INTRA frame: d = f0; 1; 6; 10;14g. (a) Coefficients between test attributes,
(b) “noise,”(c) “blockier,” and (d) “worse.”

C. Evaluation of Metrics With the Intervals

Recall that MCEAM increases with while GBIM decreases
with . Both increase for QP, and decrease for edge-attenuating
filtering. The remaining three blocking metrics perform simi-
larly to GBIM.

The spread of the correlation coefficients of the investigated
metrics with the test attributes for the intervals are shown in
Fig. 3. Six values are plotted, similarly to the ordinal scale case,
since two sequences and three QP values are investigated. In
Fig. 3(b), the “block” component is shown to have low correla-
tion with the MCEAM metric, but high correlation with the four
blocking metrics. There is no statistical difference in the per-
formance of the blocking metrics. Conversely, in Fig. 3(c) the
MCEAM metric shows high correlation with the “noise” com-
ponent throughout the parameter space. The blocking metrics
on the other hand have low correlation with the “noise” compo-
nent. Intuitively, these findings are to be expected. Moving our
attention to the two FR metrics, we notice that they have sim-
ilar correlation coefficients to those of MCEAM. They are more
correlated with “noise” than “block.” Fig. 3(b) and (c) shows
that MCEAM behaves similarly to PSNR and SSIM. We show
the correlation of the metrics with the “worse” component in
Fig. 3(d). We observe that correlation coefficients of MCEAM,
PSNR, and SSIM with the “worse” attribute are slightly more

similar compared to the ones for the blocking metrics. It is en-
couraging that our NR MCEAM metric has similar performance
with FR metrics.

D. Conclusion

Expectation E was shown to be valid. Furthermore, the rest
of the expectations, besides B, are based on widely observed
video encoder behavior and easy to verify. The subjective test
showed that visual impairment is a combination of both block-
iness and MCEA. The objective evaluation pointed to a slight
edge of GBIM over the rest of the blocking metrics. The sub-
jective evaluation that followed showed that the statistical dif-
ference among the blocking metrics is small. As a result, we are
inclined to select GBIM as the best-performing blocking metric
of this evaluation. Still, the other three blocking metrics exhibit
very good performance, marginally lower than GBIM. Neither
MCEAM nor GBIM can independently exhibit high correlation
with the “worse” attribute throughout the test parameter space
(QP and image sequence). Some combination of both, however,
should be able to.

E. Hybrid Metric Combining MCEAM and GBIM

A simple hybrid metric is now described. Instead of being
comprehensive, it serves to demonstrate that combining
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Fig. 3. Correlation coefficients between d interval scale subjective test results and metrics. Cross correlation of the attribute (say “worse”) with the output of the
metric for the following distances d from the past INTRA frame: d = f0; 1; 6; 10;14g. (a) Coefficients between test attributes, (b) “blockier,” (c) “noisier,” and
(d) “worse.”

blocking and MCEAM yields better performance. This metric
combines linearly the output of the GBIM and MCEAM
metrics. The correlation coefficients of the metrics with the
“worse” attribute (shown in Fig. 3) are used to select weighting
coefficients for the linear combination. The conclusions of the
previous paragraph motivate us to assign different weights ac-
cording to the quantization level (which can be easily retrieved
from the compressed bitstream). The weights were obtained
through a thorough exploration of the QP parameter space. The
same weighting coefficients are employed for both evaluated
sequences. We write the hybrid metric as

(11)

The coefficients are set to: (0.95, 0.05) for ,
(0.15, 0.85) for , and (0.50, 0.50) for . We re-
calculate the correlation coefficients for the “worse” component
and both sequences. The spread of the coefficients for the hybrid
metric is shown in Fig. 3(d), as well as in Fig. 2(d). Comparing
the above coefficients with those for MCEAM and GBIM we
observe that the new metric achieves good performance, which
would have been impossible by using either one of the two met-
rics alone.

VIII. CONCLUSION

The contributions of this work are summarized in the next few
paragraphs in the following order: a) expectations, b) subjec-
tive test, c) metrics comparison, d) motion-compensated edge
artifacts, and e) the MCEAM metric. We conclude with some
thoughts on future work.

Objective quality metrics are traditionally evaluated with the
help of subjective tests. However, subjective tests are often con-
strained with respect to the examined parameters and their con-
clusions are not easily applicable to cases other than the orig-
inal experiment. Furthermore, they are costly in terms of time
and resources. Consequently one should use them sparingly.
We proposed to first conduct an objective evaluation to identify
good quality metrics. Only if good quality metrics are identified
should one initiate a subjective evaluation. The efficiency of this
two-tier (objective-subjective) evaluation scheme depends on
the criteria used in the objective evaluation. We hence designed
a novel systematic objective framework to evaluate objective
video quality metrics. Expectations derived through common
sense were used to compile a collection of ordering criteria that a
good video quality metric should satisfy. The expectations char-
acterize the response of a metric for varying coding parameters
such as QP and , among others. The importance of this work
is that this evaluation framework successfully identified good
metrics without the help of subjective tests.
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A subjective test was designed and conducted to validate our
ordinal scale objective evaluation framework and further inves-
tigate the performance of the metrics. The data set was gath-
ered through pairwise comparisons. Interval scale information
was then extracted from the same data set using Case V of
Thurstone’s Law of comparative judgment. The interval scales
proved an invaluable tool, both for evaluating the metrics, as
well as exploring the relationships between the different types
of visual impairment.

We employed the systematic expectations framework to eval-
uate several existing blocking, blurring, and similarity metrics.
The systematic evaluation of metrics showed that most suffer
from weaknesses. These include: a) lack of HVS modeling,
b) the assumption that the encoding process preserves inner-
block structure and pixel slopes, c) the assumption that blocking
artifacts are located along the blocking grid of the DCT trans-
form, d) the assumption on the periodicity of the blocking grid
that breaks down when P frames are encountered, and e) the dis-
carding of useful information; i.e., taking into account only the
DC coefficients of an 8 8 DCT block. In terms of individual
blocking metrics we found that GBIM, PSBIM, DCT-Step, and
BAM performed the best. These were further evaluated with
a comprehensive subjective test and GBIM was found to be
slightly better than the other three. PSNR and SSIM were iden-
tified as good similarity metrics. After further subjective evalu-
ation, PSNR and SSIM were found to be practically equivalent.
Of the three blurring metrics, edge-blur performed well.

A new component of visual impairment was discussed and
defined, which, while being ubiquitous in modern block-based
video codecs, had not been investigated before. Called motion-
compensated edge artifact, it is a direct consequence of motion-
compensated prediction. The subjective experiments uncov-
ered correlations between overall quality, blockiness, and
the motion-compensated edge artifact. We found that visual
impairment due to compression is affected by both blocking
and MCEA. In fact, for several cases, it becomes the dominant
visual impairment.

The frequent occurrence of motion-compensated edge arti-
facts leads us to the development of a novel measurement frame-
work based on calculating and estimating DCT energies in the
current and previous frame blocks. Both the ordinal and the in-
terval scale evaluation showed the accuracy of our metric and
the potential of measurement frameworks based on DCT coef-
ficient energies. Furthermore, a trivial linear combination of the
MCEAM and GBIM metrics outperformed each of the metrics
comprising it.

Future work will explore an overall quality metric that incor-
porates both components: noisiness and blockiness. In addition,
the MCEAM metric could be used during encoding to keep the
MCEA artifacts under control. Intra blocks could be selectively
sent or the loop filter could be selectively applied (to avoid exces-
sive blurring) when the accumulated MCEA becomes too large.
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