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Extended Analysis of Motion-Compensated Frame
Difference for Block-Based Motion Prediction Error
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Abstract—In the past, most design and optimization work on hy-
brid video codecs relied mainly on experimental evidence. A proper
theoretical model is always desirable, since this allows us to explain
the phenomena of existing codecs and to design better ones. In this
paper, we make use of the first-order Markov model to derive an
approximated separable autocorrelation model for the block-based
motion compensation frame difference (MCFD) signal. A major
assumption of our derivation is that the net deformation of pixels
is directional, in general, rather than a uniform error distribution
in a block. We have also shown that the imperfect block-based mo-
tion compensation is significant to the theoretical study and the be-
havior of motion-compensated codecs. Results of our experimental
work show that the derived model can describe the statistical char-
acteristics of the MCFD signals accurately. The model also shows
that the imperfectly formulated block-based motion compensation
can result in an incorrect MCFD autocorrelation function while,
conversely, it can form a better block-based motion compensation
scheme.

Index Terms—Autocorrelation model, compound covariance,
hybrid video coding, motion compensation, motion model.

I. INTRODUCTION

HE transform coding method with motion-compensated

prediction, abbreviated as hybrid interframe coding, is one
of the most essential methods for modern video coding stan-
dards. In this method, block-based motion compensation frame
difference signals are transform coded by the discrete cosine
transform (DCT). The pixel errors between a block in a current
frame and a motion compensated block in a reference frame are
called the block-based motion compensation frame difference
(MCFD) signals. The motion compensated block is a result of
any effective motion estimation algorithm. To limit the required
amount of bits, a quantizer carries out quantization to discard
some part of the transform coefficients.

Most of the work for the design and optimization of the hybrid
video codecs is carried out experimentally. A proper theoret-
ical treatment of motion-compensated video coding is valuable
for the design of state-of-the-art video codecs, even though it
requires many assumptions and simplifications for the analysis
of a complicated system processing real-world signals. Further-
more, even an approximate theory can provide useful insights
into the underlying mechanisms of the video codecs. In 1987,
the first comprehensive rate-distortion analysis of motion-com-
pensated prediction (MCP) was presented [1]. This theoretical
framework leads motion-compensated video coding away from
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heuristics and towards an engineering science. After this ini-
tial analysis, a number of researchers investigated this subject
in depth and developed many different techniques for efficiency
improvement [2]-[12]. These techniques include motion-com-
pensation with fractional-pixel accuracy [3], overlapped block
motion compensation [4]-[7], and loop filtering technique [12].

To design an optimal coding algorithm, a signal-source model
that is sufficiently accurate to reflect the practical signal charac-
teristics is required. It is well known that the first-order Markov
process is a successful model for still image analysis. This model
is accurate for the correlation relationship for smooth image, and
it works fairly well for the first few steps in active images. By
using the model, the correlation coefficient p for natural image
is often suggested as 0.95. Hence, we consider that the DCT is a
very close approximation of the optimum KLT [13] and widely
employed for video coding. However, for motion-compensated
errors signal, the situation is very different. It has been observed
that the MCP errors at block boundaries tend to be larger than
those at block centers [5]. It means that they are space-dependent
and the assumption of wide-sense stationary (WSS) is not valid.
As aresult, it is inaccurate to employ the simple Markov model
for the MCP errors.

In [8], Chen and Pang proposed theoretically a compound co-
variance model (the CP model) and demonstrated that the DCT
performs nearly optimally in intraframe coding. Nevertheless,
this investigation still assumed that the prediction errors are
WSS across a block. In order to reduce and to equalize the MCP
errors across a block, overlapped block motion compensation
(OBMC) was developed. In [9], Niehsen and Briinig confirmed
that the statistical means and standard deviations of the errors
may change significantly from block to block. Hence, they pro-
posed another compound covariance model (the NB model) em-
pirically, which takes the OBMC into account. According to
their experimental results, they claimed that their model closely
fitted the characteristic of practical signals. The major disadvan-
tage of this model, however, is that it lacks a theoretical basis,
and, thus, its use for other analytical purposes is limited. To re-
solve the problem, we assume that a net deformation of pixels
in a block along a certain direction is a more general situation.
In addition, we consider that the prediction errors are the result
of a motion estimation algorithm. We improve the CP model to
propose a covariance model analytically by making use of this
assumption. Our proposed model reflects the characteristics of
practical prediction errors well and is comparable to the empir-
ical model proposed in [9]. Moreover, our model explains the
deviation of the compound model [8].

The outline of this paper is as follow. Section II presents
the derivation of a mathematical model for autocorrelation of
block-based motion prediction error. The origin of our deriva-
tion is similar to that of [11], and it is easy to show that the com-
pound model [8] can be obtained analytically from our model.
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This work is also given in Section II. Section III shows our sim-
ulation results, and compares our model with other models. The
experimental results given in [8], [9], and [11] provide evidence
which verifies the accuracy of our model. Section IV summa-
rizes and concludes this study.

II. MODELING OF THE AUTOCORRELATION OF BLOCK-BASED
MOTION PREDICTION ERROR

In [8] and [11], the CP model was proposed theoretically
C(I) = A-p"+ (1= A)8(1) = CL(1) + Co(I) (1)

where C(I) is the compound covariance of the prediction errors
of the CP model [8], I is the pixel separation in the = dimen-
sion, and §() is the Kronecker delta function with 6(0) = 1 and
8(I) = 0forI # 0; with A = 0.5 and p = 0.95 for motion-com-
pensated frame difference. This model can be separated into two
parts. The first component, C;(I), in (1) represents the auto-
correlation of a first-order autoregressive process, AR(1), with
p = 0.95. The second component represents the white noise
with a flat power spectrum [8]. However, this model deviates
significantly from experimental results.

In [9], Niehsen and Briinig, proposed a different compound
covariance model (the NB model) empirically, which takes the
OBMC into account. That is

Co(1) = cplll + (1 = c)pl" @

where C,(T) is the compound covariance of the prediction error
of the NB model, and c, pg, and p; are model parameters. The
model parameters, ¢ = 0.17,p9 = 0.91, and p; = 0.38, were
chosen to fit their empirical covariance in the 1;-norm! sense.

The simplicity and analytical tractability make the first-order
atoregressive [AR(1)] model a popular one in still image and
image sequence processing. Our model is also based on the
AR(1) one and with image correlation coefficient equal to p.

For a block of pixels f;(i,j) in a frame at time t, the block-
based motion compensation uses a matched block f; 1 (i+u, j+
v) in a reference frame at time t — 1 for prediction. Hence, the
motion prediction error is given by

e(lv.]) :ft(lv.]) _ft—l(1+u,J+V) (3)

where (u,v) represent the motion vector of the block.
The autocorrelation function, C.(I, J) of the prediction error
is then given by

Ce(1,J) = E[{ fe(i,5) — fi—1(i + u,j +v)}
x{feli+1,j+J)
—fimitu+1,j+v+J)}

=2C0¢(I1,J) = Cr4(I —u, J —v)
—Cri(I+u,J +v) 4)

17, -norm is defined as the sum of absolute values. For example, the /; -norm
of error between an interested model and the empirical data is defined as:
|Erz| = Z;:O |Cmoa(I) — Cexp(I)|, where |Err|;q is the [;-norm of
error, Cpmoa(T) represents the test autocorrelation model (e.g., the NB model)
and Cexp (I) represents the empirical data in pixel distance I.
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where
C¢(.,.) autocorrelation function with correlation
coefficient p;
Cg¢(.,.) cross-correlation function between a frame at time

t and the reference frame at time t — 1, and I and
J are pixel separations in the = and y dimensions,
respectively.

We assume that the matched block ;1 (i + u,j + v) can be ap-
proximated to the current block f; (i, j) with reasonable deforma-
tion. That is, some physical models can approximate the defor-
mations. For example, the affine transform is used in MPEG-4
for the block-matching algorithm in sprite construction. Thus

ff(i+my,j+ny) =G 1(i+u,j+v). 5)

The deformation vector (my, ny ) represents the deformation of
each pixel in the current block. The values of my and n, rely
on a number of factors, such as the motion activities, light vari-
ation, inaccuracy of motion compensation, quantization error,
and noise. However, these two factors are generally independent
in our consideration. Furthermore, in this modeling, the magni-
tudes of my and n are not related to that of the u and v directly.
They depend only upon the matching or correlation between the
matched block, f;_1 (74 u, j + v) and the current block, f; (i, ).
Substituting the L.H.S. of (5) into the R.H.S. of (4) results in

Cii(I —u,J —v)
R B[fo(i +ma, j+ny) fi(i + 1,5+ )]
=Cr(I —myg, J —ny). (©)

The reasons for the block deformation include failure of the
block-based motion model for moving parts, light variation,
inaccuracy of motion compensation, quantization error, and
noise. We regard the deformation vector as a pair of indepen-
dent random variables: (—oo < m, < 00, —00 < ny, < 00),
and the expected value of the autocorrelation function, C. (7, J)
can subsequently be represented by

E[C.(I,0)] =2C(I,J) = 2E[C{(I —my, J —ny)]. (7)
By applying the separable 2-D AR(1) model, we have
Ci(T,7) = o7 plllpl7! ®)

where a]% is the variance of the pixel values in the AR(1) model,
and

E[C¢(I —my,J —ny)] = U}%E [pll—mm\le—n“] )

For the sake of simplicity, a separable autocorrelation model
is our objective. Hence, my and n, are generally independent
in our consideration. Equation (9) along the = axis can then be
expressed as

EK%(I—wnz“]—7%ﬂ:ZJ;E[pU—mﬂ}E[pU—"H}
I>0, J=0. (10
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The deformed block of the
matched block at frame t

(mgn,)

(men) is deformation vector of pixel a

o € 0..N-1 is index of pixels in a block

N Number of pixels in a block, N=64
in this example

The matched block of the
current block

Fig. 1. Tllustration of the assumption that pixels in a deformed block tend to deform along a definite direction.

The term F[p!’==!] can be computed as

B [l = / p(my)p!! dm, (11)
where p(my) is the probability density function (pdf) of my.

At this stage, let us assume that pixels in a deformed block
tend to deform along a definite direction rather than deforming
randomly. In other words, the mean vector of the deformation
vectors (my,ny) is not regarded as zero according to this as-
sumption. This assumption is based on the nature of 1) part of
an object being translated, 2) partial rotation of a moving part,
3) zooming, and 4) inaccuracy of motion compensation.

Fig. 1 illustrates our assumption on the deformation using a
simplified version of the affine transform as an example. The
relationship between the coefficients of this deformation model
can be written as

x x
y| =Mx |y (12)
1 o 1 «
where
(z,y)a coordinate of pixel « in the current block;
(z',y")o coordinate of the corresponding pixel « in the
deformed block;
and

M 3 x 3 affine transform matrix, which represents rotation
and scaling in this example.

Let us define the deformation vector of pixel « as,
(mg,ny)a = (2,9 )a — (2,Y)a, and the mean deforma-
tion vector of (my,ny), in a block as (g, pty ), where

N-1 (m ) N-1 (TL )
(s ) = | 3 Ao 5 M (13)
a=0 a=0

for N is the number of pixels in a block and is equal to 64 in
this example.

Let also 0,4, and o,,,,, be the standard deviations of the x-
and y-components of the deformation vectors (my, ny), in the
block. Fig. 1 demonstrates that part of a current block is not pre-
dicted accurately enough, because not all pixels in the block are
translated in the same direction and their moving distances are
not identical. However, they still present some motion tendency.
Thus, a finite mean vector (jux, ) can be defined for the defor-
mation vectors of (m,,n,) in a block. Hence, we refine (11)
with the above consideration. It then becomes

E I:p‘I—qu = /p(mx,ux)pll_m"l dmy (14)
where p(m.,, j1.) is the probability density function (pdf) of m,,
with mean deformation .., where 1, is the z component of the
mean deformation vector in each block.

Equation (9) represents the variance-normalized cross-corre-
lation function between the matched block and the current frame
in terms of the image correlation coefficient, p. It is a matching
or correlation measure of the matched block in the current
frame expressed conceptually. The assumed block deformation
makes the cross-correlation function, E[C¢ (I — my, J — ny)]
and the error autocorrelation function depend on the direction
of the mean deformation vector. However, an error autocor-
relation function must be an even function with respect to I.
To remedy this directional dependence, we only consider the
absolute value of p. In addition, the physical meaning can be
interpreted graphically in Fig. 2, which shows the difference
between the autocorrelation function of a frame at time ¢, and
the cross-correlation function between the frame at time ¢ and
the reference frame at time t — 1. To consider the absolute
value of iy, let us consider only the prediction errors within the
domain of a compensated block. Then, we further assume that
Ly 1s randomly distributed. It gives

B ot ] = / / p (o Y (pax) o1~ i dp
' (15)

where p(puy) is the probability density function of fi,.
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C, autocorrelation function of frame at
time ¢

cross-correlation function between a
frame attime ¢ and the reference
frame at time #-1

:— C -G,
I

Domain within a motion

compensated block

Fig. 2. Difference between the autocorrelation function of a frame at time ¢ and the cross-correlation function between the frame at time ¢ and the reference frame

at time ¢ — 1 in the 1-D case.

For the sake of simplicity and because of its separable prop-
erty, we use Gaussian distributions to represent the conditional
distribution function, p(mg||p.|) and the pdf, p(ux). The
E[p!T=™=] is then given by

E |:p|1_m"|:| = 2 71
OuV 2T Oy V2T .
%0 —(mx—lux|)? .
x / e A Ul dm du, (16)
—oo

where

oy standard deviation of the mean deformation vector;

omv  standard deviation of the deformation vectors in a

single block.

Assume that the block deformation in the « and y dimensions
can be modeled with the same standard deviations o, and oy
Making use of (8) and (10), the error autocorrelation function
along x direction in (7) can then be expressed as

E[pu_mzl]E[pIJ_nyl]}
I>0, J=0 (17)

EC.1, )] = 203 { o1l -

and the variance-normalized autocorrelation function of the
block prediction error is given by

E[C.(1,0)] _ T plol — B [plT=mal] E [pl=ms]]
E[Ce(0,0)] 1— B [pm=1] E [pI"]]
I>0, J=0. (18)

The result of (18) can be obtained by numerical calculation.
However, this form is not convenient for analytical purposes.
We will describe the derivation of its approximated form below.

We use an expected value of the mean deformation vector in
(15), instead of using the pdf, p(ux) to approximate the auto-
correlation model. The expected value of the mean deformation

vector is
\/ T / “ \/ ( )
X “ x = Op .
5 12 e’ (1/14 I 19

ﬁX(Uu

Making use of the expected value of i, fi,, (16) can be sim-
plified, approximately, in the form of a single integral

E [pll*mxl} = /p(mx||/1X|)p”1|7m"|dmX

mx \ALx\) +[|T|—my| Inp
dmy
\/27r

I m 1
1 /||e (;t [ax)? +(|1]— mx)lnﬂd
= — o5 My
Omv V2T | J—0o

oo M my — n
+/ P +( 1)1 pdm;| C))
I

These two integrations are expressed in terms of the error
function, erf(z). Finally, we have

E I:p‘I—mx‘iI

1 fomying)? — |fx| + 02,
~ Lo (=l [1 4 ﬁ( x
2 { [ Ty V2
I

)]
(|1|—|,Lx|)[ < | = lpix| — o mvlnp>:|}
O—mx\/5
1 (omving < 1
\1\2 ( 21 )2 {p“lz [1+erf<| | |,LL |+Um\ np>:|

O-mv\/_
—2|I|- | I|—|ﬂx|—02,lnp
N MHI&)P_eﬁ<| iy
p o.nlvﬂ
= me(Lﬂva'mvvp)-

Using (21), we can approximate the variance-normalized auto-
correlation function of the block prediction error which is given
by (18) as

=P

2y

E[C.(L0)] -
EIC (0.0 CC x;0mv (I/ 0)
B[0.(0,0)] ~ Voo 1 ~
11| |o] 1 = R(L, fix, Omy, P)R(O, fixc, Oy, p)

1- R(07 Fox; Oy 5 ﬂ)R(07 Hx; O, P)

= plp"IR(L, 3, fix, T, )] 5=0- (22)

=p
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Finally, we express a separable 2-D variance-normalized auto-
correlation function as

E[Ce(L, 0)]E[C.(0, )]
E[C.(0,0)]?
= pl}lpl;” §R(I/ 07 s Omvxs px)gﬁ(o J7 .H'yv Omvy, py)

(23)

Details of the deviation of (21) from (20) are shown in
Appendix I.

In fact, the function R(I, J, iz, Oy, p)|7=0 is equivalent to
the role of A(a) in [11] in the 1-D case, which is shown by (1).

Moreover, we can show that the compound covariance model,
(1), proposed in [8] can be obtained from (22). The model of
(1) is a 1-D case that is derived based on a translational mo-
tion model and a composite motion-estimation-error probability
density function (pdf) consisting of a uniform pdf for the gran-
ular estimation errors and an impulse pdf for the background
regions with zero estimation errors.

To derive (1), we assume that a video sequence with very
low motion activity is under simulation. For this reason, the
block-based motion model can properly compensate the mo-
tion of each block between successive frames, and, thus, i, and
ome are set to zero and 0.5, respectively. Using the properties
of erf(z)

2 —z° 27> (2Z2)2 .
erf(z) = 4 v=¢ |1t izt @5 ) ifz <1
17 le > 1
(24)

an approximation of (21) can be obtained. For |I| equal to zero,
we express the erf(-) in (21) as the first term of its expanded
series, and for [T| greater or equal to one, the erf( - ) is expressed
as unity. Hence, (21) is approximated as

o]

1 (omy In 9)2 2 _(omvlinpy2
M Ze="= 111 (Fmeant)
p 26 {[ +ﬁe

Omv Inp
x T5(|I|) +(1- 6(III))]
—%my In 0)2

+ |:l—ie_( V3 L"lnp

2 Il s}

2 _(omvlnp
144/ e ) e I 5OHJ
v

(25)

(omy In p)?
|I|e n]v2

Let 8 = /(2/m)e=(uvp/V2) 5 1np, and substitute it
into (25). We have

- 1—é%ﬁw [1+ B8(1)) - [1 + )
Con o (L0) = pll
issoae (L 0) R p — elome PP 1 4 ]2

= oA + (1 = A)s(|T)]

(26)
where

1— e(amv In p)2 [1 + /8]
1— e(amv In p)? [1 + ﬂ]2

A= Q7
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Fig. 3. Autocorrelation function of MCFD signals generated from Trevor
sequence.

The numerical value of A is equal to 0.497 with p = 0.95 and
omv = 0.5. Hence, (1) is derived. Details of the deviation of
(26) are shown in Appendix II.

III. SIMULATION RESULTS

Let us consider an analytical treatment of the motion-com-
pensated frame differences (MCFD). A covariance model that
can represent the empirical covariance result accurately enough
is required. Hence, it is necessary to verify a covariance model
by comparing its fitness to empirical results. We have made use
of the experimental results from [8], [9], and [11] to compare
the fitness of our model with that of the CP model and the NB
model. The empirical result of the “Trevor” sequence extracted
from [11] and the result of the sequence “Miss America” in [§]
are used to evaluate the accuracy of our model and compared
it with the CP model in the 2-D situation. Because some ex-
perimental parameters, such as the coordinates of the blocks of
interest, the motion estimation algorithm used and the resulting
motion vectors, were not indicated in [8] and [11], we had to
choose some typical values to fit these parameters in our real-
ization. We have also implemented additional experiments, in
which the required parameters have been obtained experimen-
tally, in order to compare the performance of the three models.
We compared the accuracy of our model with that of the NB
model in a 1-D case by using the statistical result of a number
of standard sequences in [9].

Fig. 3 depicts the 3-D plot of an autocorrelation function of
an MCFD signal generated from the “Trevor” images [11]. The
spatial autocorrelation function of the “Trevor” image has a high
value with p = 0.99 measured in [11]. Authors of [11] stated
that the MCFD was generated from frames 59 to 60 but did not
state definitively the coordinates of their target block. Frames
59 to 60 show multiple people video conferencing. The motion
activities in the = and y directions are presented, including activ-
ities such as the swinging of papers, closing a book, etc. We re-
gard these activities as having a medium amount of movement.
The whole conferencing background is a slowly moving cur-
tain. Hence, we considered the presence of deformation in the
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(b)

Fig. 4. Representation of the autocorrelation function of Trevor’s MCFD signals by using separable models: (a) our improved CP model and (b) original CP

model.

\\V O

ey
": ’\'\v‘v‘
‘ )

\l

Fig. 5. Autocorrelation function of the MCFD of sequence Miss America.

z and y directions only. We set 1, = p1,, for simplicity, and we
do not know the position of the target block. In H.261, integer
pixel accuracy is applied. We considered that the medium mo-
tion activities have a deformation larger than the mean motion
estimation error, 0.5. We selected 1, = 1, = 0.75. Similarly,
we set o, equal to 0. The value 0, = o, = 1.15 is arbitrarily
selected to fit the shape of Fig. 3.

The result of our improved model is plotted in Fig. 4(a) by
substituting p, = py, = 0.99,0, = o, = 1.15, and p, =
ty = 0.75 into (21). We plotted the result of the CP model with
Pz = py = 0.99 in Fig. 4(b) for comparison. According to the
prediction from the CP model, the autocorrelation function is
decreasing slowly for [I|, |J| > 1. It deviates significantly from
the empirical result. However, the improved model represents
the autocorrelation function more accurately than the original
CP model. The improved model correctly represents the rapidly
decreasing autocorrelation for |I|, |[J| > 1.

Let us use another experimental result, the autocorrelation
function of the MCFD of the sequence “Miss America” in [8],
to evaluate the accuracy of our model and that of the original CP
model. The pixel correlation coefficients are 0.88 and 0.80 in the
vertical direction (indicated by arrow J) and horizontal direction
(indicated by arrow I) as stated in [8]. The corresponding auto-

correlation function of the MFCD is shown in Fig. 5. Authors
of [8] chose the motion compensated blocks (32 x 32) around
the head area in the 15th fame of the sequence to generate the
result in Fig. 5. The motion of the head area in the 15th frame is
slow but the lips are opening with medium motion activity. We
assumed the symmetrical motion of the lips and the slow motion
of the other region would generate a low degree of deformation,
with i, = p,, approximated to zero. The value 0, = o, = 1.15
was selected identical to the “Trevor” sequence because it is
within the typical range of our experimental results.

Fig. 6(a) illustrates the representation of the autocor-
relation function of “Miss America’s” MCFD signals
by our improved model with the following parameters
pz = 0.80,p, = 0.88,0, = 0y = 1.15,and py = py = 0
in (24). Instead, Fig. 6(b) gives the result of the original CP
model with p, = 0.80 and p, = 0.88. Fig. 6 shows that
both models compare favorably with the experimental results
in Fig. 5. Because the original CP model is not concerned
with the practical motion properties of a video sequence, it
assumes that the block-based motion estimation can success-
fully compensate for the motion of each pixel in a block. This
assumption is only valid in a sequence with very slow motion
activities, such as the “Miss America.” However, we can still
find that, in the I direction, the CP model shows a sudden drop
of autocorrelation value at [I| = 1, which is incorrect when
compared to the empirical result in Fig. 5. The improved model
can represent correctly the trend of the autocorrelation function
in both directions.

To further justify the improved model, we measured the auto-
correlation functions of the MCFD of the “Football” sequence
and the “Salesman” sequence. The typical positions of two
sample Macroblocks (MB) with a size of 16 x 16 pixels of the
“Football” and “Salesman” are indicated in Fig. 7(a) and (b),
respectively. Fig. 8(a) and (b) illustrates, respectively, the 3-D
plots of the autocorrelation functions of the MCFD of the MBs.

We performed the simplest exhaustive search motion estima-
tion between frame 2 and frame 1 of the “Football” sequence
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(b)

Fig. 6. Representation of the autocorrelation function of Miss America’s MCFD signals by using separable models: (a) improved CP model and (b) original CP

model.

(@)

(b)

Fig. 7. Position of the target MBs at the measured frames of the sequences: (a) Football and (b) Salesman.

1.0

N J
Vil N
<TRIEA T )
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'/'//,/,,,gi;;m;% [
.‘-:;;t:‘ - I

Fig. 8. Autocorrelation function of the MCFD of sequences: (a) Football and (b) Salesman.

(Frame 1 is identical to Frame 0 in the “Football” sequence). The
motion estimation for the Salesman sequence was performed
between frame 1 and frame 0. We performed the motion esti-
mation with a search range of —16 to 16 pixel distance with in-
teger pixel accuracy to obtain motion vectors of each block. The
deformation vectors of each pixel were measured by dividing a
block into a number of 2 x 2 pixels sub-blocks and then the mo-
tion estimation with a search range of —2 to 2 pixels and with

half pixel accuracy was carried out. Hence, a mean deformation
vector and the standard deviations of the deformation vectors in
a block can be estimated. Moreover, the averaged pixel corre-
lation coefficients of the target MBs were measured along the
vertical and horizontal directions within a window of 33 x 33
pixels centered with the target MBs, respectively.

Fig. 8(a) gives the autocorrelation function of Football’s
MCEFD signals. Our improved model with the following pa-
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Fig. 9. Representation of the autocorrelation function of Football’s MCFD signals by using separable models: (a) improved CP model and (b) original CP model.

rameters: p, = 0.979,p, = 0982,0, = 1.29,0, = 1.35,
and p, = 0.453, p, = 0.539 is plotted in Fig. 9(a) using
(21). Meanwhile, Fig. 9(b) gives the result of the original CP
model with p, = 0.979 and p, = 0.982. Fig. 9 shows that both
models can predict that, on average, the autocorrelation in the
J direction is larger than that in the I direction for |I],|J| > 1.
However, in terms of numerical values, both of these two
models are not as good as the NB model when comparing the
results as shown in Fig. 10. This figure shows that the results of
the 1-D normalized autocorrelation of the Football’s MCFD in
the I and J directions. Fig. 10(a) depicts that the real autocor-
relation signal decreases extremely fast from I = 0 to |I| = 2
and tends to zero in the I direction. In the J direction, the real
autocorrelation signal decreases relatively slowly and tends
to about 0.05. The original CP model seriously overestimates
the autocorrelation values. It predicts that the autocorrelation
function tends to about 0.41 and 0.48 in the I and J directions,
respectively. The estimation from the improved model is more
accurate, but it still suffers from serious overestimation. It
predicts that the autocorrelation function approaches to about
0.22 and 0.27 in the I and J directions, respectively. On the
other hand, the NB model indicates that the autocorrelation
function decreases rapidly from I = 0 to |[I| = 2 and then
tends to about 0.1 in both I and J directions on average. The
“Football” is a video sequence with fast motion activities.
Moreover, the helmet part in the target MB has moderate light
variation. The improved CP model can predict successfully that
the autocorrelation in the J direction tends to have larger values
than that in the I direction.

Fig. 8(b) shows a 3-D plot of the autocorrelation function
of the Salesman’s MCFD signal. From our measurement, pa-
rameters of the sequence “Salesman” are: p, = 0.970,p, =
0.960, 0, = 1.327,0, = 1.140, and p, = 0.469, j1,, = 0.789.
Our improved model is shown in Fig. 11(a), while the orig-
inal CP model is shown in Fig. 11(b) with p, = 0.970 and
py = 0.960. Our improved model shows an extremely different
autocorrelation function between the I and J directions. From
Fig. 12, our improved model predicts that the autocorrelation

decreases slowly and then tends to 0.3 in the I direction. While
in the J direction, the autocorrelation is predicted decreasing
rapidly when |I| < 2 and tends to zero. The CP model pre-
dicts that the autocorrelation decreases rapidly from I = 0 to
|[I| = 1 and then tends to about 0.5 and 0.3 in the I and J di-
rections, respectively, as shown in the Fig. 12. Our improved
model provides an extremely good prediction in the I direc-
tion, for |I| < 4, and the best prediction in the J direction
when compared with the other two models on real signals. In
the I direction at |I| < 4, the autocorrelation function of the
Salesman’s MCFD signals decreases slowly to about 0.29. The
improved model decreases gradually to about 0.36. However,
the CP model and the NB model decrease too rapidly and tend
to 0.52 and 0.13, respectively. In the J direction, only our im-
proved model can predict correctly that the signal tends to zero.

In [9], the authors used four MPEG test sequences to verify
and proposed their 1-D NB model, which empirically fitted in
the sense of the /; -norm. Their experimental results are shown in
Fig. 13. This figure gives the maximal, minimal and mean of the
normalized autocorrelation functions of the MFCD at different
pixel distances. Let us use these results to evaluate the fitness of
the original 1-D CP model, the NB model and the improved CP
model. These models are givenin (1), (2), and (22), respectively.
In this simulation, we set p, = 0.95,0, = 1, and u, = 1in
(22). We had to choose the values for o, and p,. in order to fit
close enough to the experimental results. The value of p, =
0.95 is chosen, making it identical to the original CP model.

In Fig. 13, we find that the original CP model does not fit ac-
curately with the empirical autocorrelation of the MCFD. The
CP model decreases slowly with pixel distances, for I > 1,
which differs from the empirical results significantly. Tables I
and Il summarize the performance of the NB-model, CP-model,
and our improved CP-model for football and salesman video
sequences. The NB model fits the experimental results closely,
because the required parameters of the NB model are chosen
to fit the experimental result in the [;-norm sense. The fitness
of each of the three test models is compared in terms of their
statistical results, the /;-norm errors. The NB model gives the
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Fig. 10. One-dimensional normalized autocorrelation of the Football’s MCFD in (a) I direction and (b) J direction; (a) 1-D normalized autocorrelation of the
MCEFD in I direction; (b) 1-D normalized autocorrelation of the MCFD in J direction.

smallest error value of 0.05. The improved CP model follows
the NB model, with an error value of 0.10 whilst the original
CP model results in the largest error value of 1.69 as shown in
Fig. 13. However, the NB model is purely empirical and without
any theoretical foundation. The usage of this model for analyt-
ical purposes is very limited. On the other hand, the improved
CP model successfully represents the autocorrelation function
of the MCFD. Moreover, the improved model is derived from

the simple first-order Markov model and takes into consider-
ation the net deformation of pixels in a block due to imper-
fect block-based motion compensation. Hence, the improved CP
model is suitable for analytical design and the investigation of
signal decomposition algorithms in motion compensation. For
instance, using o, = 1 and p,, = 1 indirectly suggests that the
motion compensation errors in a block are not distributed uni-
formly. It is a property of the motion compensation error that
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(b)

Fig. 11. Representation of the autocorrelation function of Salesman’s MCFD signals by using separable models: (a) improved CP model and (b) original CP

model.

induces a wide study of the OBMC algorithms in video coding.
In these studies of the OBMC, experimental results [6] showed
that the motion compensation error magnitude is larger at the
boundary pixels than that of the pixels around the center of a
block. In our derivation, this error distribution is assumed to
be caused by the deformation in a block that cannot be com-
pensated for by block-based motion compensation. Hence, our
model can be used to analyze the error distribution of different
motion activities. Moreover, it also explains the deviation of the
CP model from the empirical results, which is due to the lack
of concern relating to the practical situation of the block-based
motion compensation in an encoder.

IV. CONCLUSION

A proper theoretical treatment of motion-compensated video
coding is valuable for the design of most advanced video coding
systems, even though it requires a number of assumptions and
simplifications for the analysis of real-world signals. We have
shown that the first-order Markov model can be used to derive
an approximate separable autocorrelation model for the block-
based motion compensation difference signal. In the derivation,
we have assumed that a net deformation of pixels is directional
in general rather than having a uniform error distribution in a
block. We have improved the original CP model by proposing
a covariance model analytically making use of this assumption.
Simulation results show that the improved CP model can de-
scribe the characteristics of the MCFD signals accurately. We
have also found that the concern of imperfect block-based mo-
tion compensation is one important step in the study of the mo-
tion-compensated coder; otherwise, the autocorrelation function
of the MCFD signals cannot be expressed correctly. We can
make use of this improved model to provide some useful in-
sights into the analytical design and investigation of video signal
decomposition algorithms.

Even though we borrowed some concepts from the affine
transform which is a basis for sprite coding in the MPEG-4 stan-

dard, our model is general and the theory behind is fundamental.
We have set forth a new analytical tool to model the deformation
of pixels for block-based motion-compensated video coding.
This is a useful tool which allows a good insight into the un-
derlining principle of video codecs, which in turn facilitates the
future design of new coding algorithms. For example, the H.264
supports video coding with variable block sizes. Besides the typ-
ical 16 x 16 block size, we can partition a block into 16 x 8§,
8 x 16, and 8 x 8 sub-blocks. If the sample size is 8 x 8, the
H.264 allows the further partitioning of it into 8 x 4, 4 x 8§, or
4 x 4 sub-blocks. Hence, the H.264 encoder involves the mode
decision of different sub-block sizes, motion estimation algo-
rithms for different sub-blocks, and bitrate control for the pos-
sible modes. These require an in depth study of the tradeoff be-
tween encoding workload, the resulting bitrate and the quality
of the encoded video. Our proposed model can be used as an
analytical tool to study the effect of different sub-block sizes in
an encoder, because the use of various sub-bocks reflects some
kinds of deformation within the target macroblock. This enables
us to enhance our understanding of mode selection and eventu-
ally facilitates the design of an efficient video encoder. This is
a fruitful direction for further research.

APPENDIX
1. DETAILED DERIVATION OF THE PROPOSED COMPOUND
COVARIANCE MODEL FOR MOTION PREDICTION ERROR
From (20)
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Fig. 12. One-dimensional normalized autocorrelation of the Salesman’s MCFD in (a) I-direction and (b) J-direction. (a) 1-D Normalized Autocorrelation of the
Salesman’s MCFD in I-direction. (b) 1-D Normalized Autocorrelation of the Salesman’s MCFD in J-direction.

By completing the square method, the first term of LHS of (20), we have
we have the equation shown at the bottom of the next page. Let
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Fig. 13. Comparison of the predicted autocorrelation function using the tested models with experimental results in [9].
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TABLE I
1, -NORM OF ERRORS OF THE INTERESTED MODELS OF THE FOOTBALL SEQUENCE
NB-Model CP-Model Improved CP-Model
I-direction 0.16 0.40 0.27
J-direction 0.05 0.36 0.20
TABLE II
11-NORM OF ERRORS OF THE INTERESTED MODELS OF THE SALESMAN SEQUENCE
NB-Model CP-Model Improved CP-Model
I-direction 0.14 0.28 0.20
J-direction 0.15 0.33 0.10
where The second middle bracket term in the braces
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(22), we have the equation shown at the bottom of the previous
spage. As a result
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The numerical value of A is equal to 0.497 with p = 0.95 and
0mv = 0.5. The CP Model is then obtained.
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