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Abstract—This paper addresses the problem of side information
extraction for distributed coding of videos captured by a camera
moving in a 3-D static environment. Examples of targeted appli-
cations are augmented reality, remote-controlled robots operating
in hazardous environments, or remote exploration by drones. It
explores the benefits of the structure-from-motion paradigm for
distributed coding of this type of video content. Two interpola-
tion methods constrained by the scene geometry, based either on
block matching along epipolar lines or on 3-D mesh fitting, are
first developed. These techniques are based on a robust algorithm
for sub-pel matching of feature points, which leads to semi-dense
correspondences between key frames. However, their rate-distor-
tion (RD) performances are limited by misalignments between the
side information and the actual Wyner–Ziv (WZ) frames due to
the assumption of linear motion between key frames. To cope with
this problem, two feature point tracking techniques are introduced,
which recover the camera parameters of the WZ frames. A first
technique, in which the frames remain encoded separately, per-
forms tracking at the decoder and leads to significant RD perfor-
mance gains. A second technique further improves the RD perfor-
mances by allowing a limited tracking at the encoder. As an ad-
ditional benefit, statistics on tracks allow the encoder to adapt the
key frame frequency to the video motion content.

Index Terms—Distributed source coding (DSC), distributed
video coding (DVC), image-based rendering (IBR), motion-adap-
tive key frames, point tracking, structure-from-motion (SfM).

I. INTRODUCTION

DISTRIBUTED SOURCE CODING (DSC) has gained
interest for a range of applications such as sensor net-

works, video compression, or loss-resilient video transmission.
DSC finds its foundation in the seminal Slepian–Wolf [1] and
Wyner–Ziv (WZ) [2] theorems. Most Slepian–Wolf and WZ
coding systems are based on channel coding principles [3]–[9].
The statistical dependence between two correlated sources
and is modeled as a virtual correlation channel analogous
to binary symmetric channels or additive white Gaussian noise
(AWGN) channels. The source (called the side information)

Manuscript received May 10, 2006; revised January 2, 2007. This work was
supported in part by the European Commission in the context of the network of
excellence SIMILAR and in part by the IST-Discover project. The associate ed-
itor coordinating the review of this manuscript and approving it for publication
was Dr. Fernando M. B. Pereira.

M. Maitre is with the Beckman Institute, University of Illinois at Urbana-
Champaign, Urbana, IL 61801 USA (e-mail: maitre@uiuc.edu).

C. Guillemot and L. Morin are with the IRISA, Campus Universitaire de
Beaulieu, 35042 Rennes Cedex, France (e-mail: cguillem@irisa.fr; lmorin@
irisa.fr).

Color versions of one or more of the figures in this paper are available at
http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2007.894272

is, thus, regarded as a noisy version of (called the main
signal). Using error correcting codes, the compression of is
achieved by transmitting only parity bits. The decoder concate-
nates the parity bits with the side information and performs
error correction decoding, i.e., MAP or MMSE estimation of

given the received parity bits and the side information .
Compression of video streams can be cast into an instance of

side information coding, as shown by Aaron et al. [10]–[12] and
Puri and Ramchandran [13]–[15]. These schemes are also re-
ferred to as distributed video coding (DVC) systems. A compre-
hensive survey on distributed video compression can be found in
[16]. One key aspect in the performance of the system is the mu-
tual information between the side information and the informa-
tion being WZ encoded. In current approaches, the side informa-
tion is generated via motion-compensated frame interpolation,
often using block-based motion compensation (BBMC) [16].
Motion fields are first computed between key frames, which
may be distant from one another. An interpolated version of
these motion fields is then used to generate the side informa-
tion for each WZ frame. The frame interpolation based on these
interpolated motion fields is not likely to lead to the highest pos-
sible PSNR, hence, to the highest mutual information between
the side information and the WZ encoded frame. To cope with
these limitations, BBMC is embedded in a multiple motion hy-
pothesis framework in [16] and [17]. The actual motion vectors
are chosen by testing the decoded frames against hash codes or
CRCs.

Here, we address the problem of side information generation
in distributed coding of videos captured by a camera moving
in a 3-D static environment with Lambertian surfaces. This
problem is of particular interest to specialized applications
such as augmented reality, remote controlled robots operating
in hazardous environments and remote exploration by drones
or planetary probes. Augmented reality applications include
scenarios where mobile-phone users would transmit videos
of their surroundings in order to get semantic or geographic
information in return. We explore the benefits of more complex
motion models belonging to the structure-from-motion (SfM)
paradigm [18]. These motion models exhibit strong geomet-
rical properties, which allow their parameters to be robustly
estimated. Unlike predictive coding, DVC has the advantage
of not requiring the transmission of motion model parameters.
Therefore, increasing the complexity of motion models, and,
thus, their ability to accurately represent complex motions,
offers potential gains in mutual information without additional
bitrate overheads.

When used in computer vision applications, SfM approaches
aim at generating visually pleasing virtual views [19]. On the
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other hand, when used in DVC, the objective is to generate in-
termediate frames (the side information) with the highest PSNR.
This requires a reliable estimation of the camera parameters as
well as sub-pel precision of the reprojected 3-D model, espe-
cially in edge regions where even small misalignments can have
a strong impact on the PSNR. In addition, constraints on latency
in applications such as video streaming, as well as memory con-
straints, prevent the reconstruction of the 3-D scene from all the
key frames at once, as is usually done in SfM. Instead, a se-
quence of independent 3-D models is reconstructed from pairs
of consecutive key frames.

In this paper, we first describe two 3-D model-based frame in-
terpolation methods relying on SfM techniques, one block based
and one mesh based, both being constrained by the epipolar ge-
ometry. These first approaches suffer from the following limita-
tion. The motion fields associated to the intermediate frames are
interpolated with the classical assumption of linear motion be-
tween key frames. This creates misalignments between the side
information and the actual WZ frames, which have a strong im-
pact on the rate-distortion (RD) performances of the 3-D model-
based DVC solution.

This observation led us to introduce two methods to estimate
the intermediate motion fields using point tracks, instead of in-
terpolating them. The motion fields are obtained by computing
the camera parameters at intermediate time instants. A first tech-
nique relies on feature point tracking at the decoder, each frame
being processed independently at the encoder. In addition to the
key frames, the encoder extracts and transmits a limited set of
feature points on each key frame, which are then linked tempo-
rally at the decoder. Feature point tracking at the decoder greatly
reduces misalignments, hence, increases the side information
PSNR, which has a significant impact on the RD performances
of the 3-D model-based DVC system. A second technique fur-
ther improves these RD performances by tracking points at the
encoder. The encoder, thus, shares some limited information be-
tween frames under the form of intensity patches to construct
the tracks sent to the decoder. The latter technique has the ad-
ditional advantage of giving the encoder a rough estimation of
the video motion content, which is sufficient to decide when to
send key frames. The problem of key frame selection has al-
ready been studied in the context of SfM [20] and predictive
coding [21]. However, the approaches described rely on epipolar
geometry estimation at the encoder, which DVC cannot afford.
An alternative to tracking has been proposed in [22], where the
authors advocate the use of statistics on intensities and frame
differences.

The remainder of the article is organized as follows. Section II
presents the estimation of the 3-D model, while Sections III and
IV describe the model-based frame interpolation, using the as-
sumption of linear motion in the former and using point tracks in
the latter. Finally, Section V presents our experimental results.
Preliminary results were presented in [23].

II. THREE-DIMENSIONAL MODEL CONSTRUCTION

A. Overview

We begin by presenting a codec based on the assumption of
linear motion, that is, without point tracking. This codec, called

Fig. 1. Outline of the codec without point tracking (3-D DVC). The proposed
codec benefits from an improved motion estimation and frame interpolation
(gray boxes).

3-D DVC and outlined in Fig. 1, derives from the DVC codec
described in [16] and [24]. At the encoder, the input video is split
into groups of pictures (GOP) of fixed size. Each GOP begins
with a key frame, which is encoded using a standard intracoder
(H.264/AVC, in our case) and then transmitted. The remaining
frames (WZ frames) are transformed, quantized, and turbo-en-
coded. The resulting parity bits are punctured and transmitted.

At the decoder, the key frames are decompressed and the
side information is generated by interpolating the intermediate
frames from pairs of consecutive key frames. The turbo-decoder
then corrects this side information using the parity bits. The
proposed decoder differs from classical DVC by its novel 3-D
model construction and model-based frame interpolation.

In this section, we first describe the 3-D model construction,
whose overall architecture is presented in Fig. 2. Unlike the SfM
techniques it extends, the proposed model construction focuses
on the PSNR of the interpolated frames to maximize the quality
of the side information. Toward that goal, we present a novel ro-
bust correspondence estimation with subpixel accuracy. In par-
ticular, correspondences are scattered over the whole frames and
are dense in areas of high gradients. Furthermore, the 3-D model
construction is robust to quantization noise.

After introducing some notation, we shall first describe the
camera parameter estimation and then the correspondence esti-
mation.

B. Notation

We shall use the typesettings , , to denote, respectively,
scalars, column vectors, and matrices. In the following,
denotes the scalar entry of the vector of a set at time
. Likewise for matrices, denotes the scalar entry at

row and column, while represents its row vector.
Moreover, denotes the transpose of matrix , the
column vector obtained by stacking the together and
the cross-product operator. The identity matrix shall be denoted
by and the norms 1 and 2 by, respectively, and .

We shall use homogeneous vectors, where and
represent, respectively, a 2-D and a 3-D

point. These entities are defined up to scale, i.e., is
equivalent to for any non-null scalar . Without
loss of generality, the two key frames delimiting the current
GOP are assumed to have been taken at times and
and are, respectively, denoted by and .
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Fig. 2. Outline of the 3-D model construction. Camera parameters estimation is performed by the top line blocks. Correspondence estimation is performed by the
bottom line blocks.

C. Camera Parameter Estimation

We assume here that an initial set of point correspondences
is available between the two key frames. It is used to

estimate both the camera parameters, e.g., translation and rota-
tion, and the depth associated with each point correspondence.

1) Robust Weak-Calibration: The assumption of static
scene introduces a constraint on correspondences given by the
following:

(1)

where is the so-called fundamental matrix, from which the
camera parameters shall be extracted.

The robust weak-calibration procedure aims at estimating this
fundamental matrix. As an additional feature, it identifies erro-
neous correspondences. It consists of three steps:

1) an initial estimation of and the set of inliers using
MAPSAC [25];

2) a first refinement of and the set of inliers using
LO-RANSAC [26];

3) a second refinement of over the final set of inliers by a
nonlinear minimization of the Sampson distance [18].

2) Quasi-Euclidean Self-Calibration and Triangulation:
The next step is to recover the projection matrices and the
depths . We choose the World Coordinate System (WCS) of
the 3-D scene to be the camera coordinate system at time ,
leading to . This leaves four degrees of freedom in the
WCS. They appear in the relation between and the projection
matrix of the second key frame , given by

and (2)

where is an arbitrary 3-vector and has an arbitrary norm.
For the time being, these degrees of freedom are fixed by
choosing with unit norm and setting , where the
epipoles and are recovered from the singular value
decomposition (SVD) of the matrices and , respectively
[18]. Since the projection matrices are defined up-to-scale, they
are normalized so that their Frobenius norm will be .

The depths are then recovered. Let a 2-D point be the pro-
jection of a 3-D point on the camera image plane. These two
points are related by where is the projective depth.
Therefore, correspondences allow the recovery of a cloud of 3-D
points by triangulation, solving the system of equations

(3)

for each correspondence.
The initial choice of WCS is refined by quasi-euclidean self-

calibration [27] so that the WCS is as euclidean as possible.

We constrain the depths in the new WCS to be bounded by 1
and to reduce numerical issues during the bundle adjust-
ment detailed later. Assuming that the camera parameters do
not undergo large variations between key frames, we look for a
matrix as close as possible to the identity matrix and com-
patible with the fundamental matrix . The optimal vector is
then found by minimizing under the linear
constraints

(4)
A lower bound on the value of is given by

. The self-calibration starts with this value and
increases it until the linear programming problem admits a
solution.

3) Bundle Adjustment: The camera parameters and the
depths obtained so far are refined by minimizing their euclidean
reprojection error on the key frames. First, the basis of the
projective space has to be fixed to prevent it from drifting. This
is done by fixing two 3-D points and performing the optimiza-
tion over a reduced parameter space. As shown in Appendix I,
the 12-D projection matrix can be expressed as a linear
combination of an 8-D unit vector , i.e.,
where is an orthonormal matrix.

The minimization of the euclidean reprojection error is de-
fined as

such that (5)

where is the euclidean reprojection error given by

(6)

The minimization is solved using the alternated reweighted
linear least square approach detailed in Appendix II.

D. Correspondence Estimation

We now turn to the estimation of the set of point correspon-
dences between the two key frames.

1) Feature Point Detection: First, feature points are de-
tected on each key frame independently. We use the Harris–
Stephen corner detector [28] to find feature points. Its sensitivity
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is adapted locally to spread feature points over the whole frame
[18], which improves the weak calibration detailed previously.

2) Feature Point Matching: Feature points are then matched
across key frames to form correspondences. All pairs of feature
points are considered as candidate correspon-
dences. A first series of tests eliminates blatantly erroneous
correspondences.

1) Correspondences with very large motion are discarded.
2) Correspondences with dissimilar intensity distributions in

the neighborhoods around feature points are discarded.
Distributions are approximated using Parzen windows [29,
Section 4.3] and sampled uniformly to obtain histograms.
The similarity of histograms is tested using the -test
[30, Section 14.3].

3) Subpixel Refinement: The locations of the remaining
correspondences are then refined locally by searching for the
least mean-square error (MSE) between neighborhoods around
feature points. The minimization is solved using the Leven-
berg–Marquardt algorithm [30, Section 15.5]. This refinement
compensates for errors from the Harris–Stephen detector and
computes feature point locations with subpixel accuracy.

4) Outlier Removal: A second series of tests is applied to
eliminate erroneous correspondences. These tests are performed
as soon as the camera parameter estimation provides the relevant
information, as shown by the workflow in Fig. 2.

1) Correspondences with large MSE are discarded.
2) Each feature point is only allowed to belong to at most one

correspondence. This unicity constraint is enforced using
the Hungarian algorithm [31, Section I.5], which keeps
only the correspondences with the least MSE when the
unicity constraint is violated.

3) Correspondences identified as outliers during the robust
weak-calibration are discarded.

4) Correspondences with aberrant motion are removed
by testing the difference between their motion and the
weighted median of the motions of their neighbors posi-
tioned on Delaunay triangles [32, Chap. 9]. Neighbors are
assigned weights inversely proportional to their distances.

5) Correspondences with large reprojection errors are
discarded.

6) Correspondences for which the sign of the product of pro-
jective depths is different from the majority are
removed [33, Th. 17].

7) Correspondences too close to the epipoles are discarded, to
avoid ill-conditioned triangulation equations.

8) Correspondences with aberrant depths compared to the
depths of their neighbors are removed.

5) Correspondence Propagation: The set of correspon-
dences obtained so far is reliable and accurate but still fairly
sparse. It is first densified over unmatched feature points by
increasing the tolerance of the tests described previously and
enforcing motion smoothness using the weighted median of
neighboring motions.

Correspondences are then propagated along edges, under the
epipolar constraint. The goal of this procedure is to get accurate
motion information in edge regions, where even a slight mis-
alignment can lead to large MSE, degrading the side informa-
tion PSNR.

Fig. 3. Correspondences and epipolar geometry between the two first loss-
less key frames of the sequences street and stairway. Feature points are rep-
resented by red dots, motion vectors by magenta lines ending at feature points,
and epipolar lines by green lines centered at the feature points. (a) Epipolar
geometry after robust weak calibration. (b) Correspondences after propagation
along edges.

TABLE I
THRESHOLDS USED IN THE TESTS FOR OUTLIER REMOVAL

Edges are found in the first key frame using the Canny edge
detector [34]. Correspondences are propagated along edges,
starting from correspondences between the feature points. At
each iteration, edge points around previously known correspon-
dences are selected and their motions are initialized to those
of their nearest neighbors. Their motions are then improved
by full search over small windows along associated epipolar
lines, minimizing the MSE between intensity neighborhoods.
Their motions are finally refined by a Golden search [30,
Section 10.1] to obtain subpixel accuracy. The robustness of
this procedure is increased by removing edge-points too close
to the epipole, as well as those whose edge tangents are close
to epipolar lines or which have large MSE.

E. Results

Fig. 3(a) and (b) shows the correspondences obtained be-
tween the first two key frames of the sequences street and
stairway after, respectively, robust weak-calibration and cor-
respondence propagation. The parameters used for outlier
removal are summarized in Table I. In both cases, the epipolar
geometry was correctly recovered and correspondences are
virtually outlier-free. Moreover, propagation greatly increases
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the correspondence density, from 394 correspondences to
9982 for the street sequence and from 327 correspondences to
6931 for the stairway sequence. These figures also underline
some intrinsic limitation of the SfM approach. First, the street
sequence has epipoles inside the images, as can be seen by
the converging epipolar lines. Since triangulation is singular
around the epipoles, there are no correspondences in their
neighborhoods. Second, the stairway sequence contains strong
horizontal edges whose tangents are nearly parallel to the
epipolar lines. This explains why so few correspondences are
found in this region.

III. THREE-DIMENSIONAL MODEL-BASED INTERPOLATION

The frame interpolation methods developed in this paper rely
on the projection of the 3-D scene onto camera image planes.
This projection requires the knowledge of the projection ma-
trices associated with the interpolated frames, as well as the
knowledge of a dense motion field between the frame being in-
terpolated and each of the two key frames. We consider two mo-
tion models to obtain dense motion fields from the correspon-
dences and the projection matrices: one block based and one
mesh based, both being constrained by the epipolar geometry.

A. Projection-Matrix Interpolation

The projection matrices at intermediate time instants are re-
covered by generalizing the bundle-adjustment equation (5) to
three or more frames

such that (7)

In this equation, the projection matrices are independent
of one another given the depths. They are, therefore, solutions
of simple reweighted linear least square problems.

Since the locations of the feature points on the interme-
diate frames are unknown to the decoder, they are interpolated
by assuming linear motion, that is

(8)

Section IV shall present two other codecs which make use of ad-
ditional information from the encoder to avoid this assumption.

B. Frame Interpolation Based on Epipolar Blocks

In the first motion model, each intermediate frame is divided
into blocks whose unknown texture is to be estimated. The
search space of the motion vectors is limited by the epipolar
constraint and trifocal transfer [35]. As shown in Fig. 4, given a
block located at in the intermediate frame, its corresponding
blocks in the key frames lie along the epipolar lines and

. For a given candidate location in a reference key frame, say
in , the location of the corresponding block in the

other key frame is uniquely defined via trifocal transfer:

Fig. 4. Trifocal transfer for frame interpolation based on epipolar blocks.

Fig. 5. Outline of the frame interpolation based on epipolar blocks.

Using (3) with and gives the 3-D point , which is
then projected onto to give as .
The key frame whose optical center is the furthest away from
the optical center of the interpolated frame is chosen as the
reference key frame so that the equations of trifocal transfer are
best conditioned.

As outlined in Fig. 5, the algorithm initializes the motions of
the blocks using the motions of the nearest correspondences. It
then refines them by minimizing the MSE of the block textures
in the key frames, using a local full search along the epipolar
lines, followed by a Golden search [30, Section 10.1] to ob-
tain subpixel accuracy. Since trifocal transfer is singular around
epipoles, the motions of the blocks too close to the epipoles are
not refined. Finally, the block textures from the key frames are
linearly blended with weights based on time instants to obtain
the texture of the block in the interpolated frame.

C. Frame Interpolation Based on 3-D Meshes

In the second motion model, the first key frame is divided into
blocks which are themselves subdivided into pairs of triangles,
thus forming a triangular mesh. Each vertex is associated with
two locations , one in each key frame. Due to
the epipolar geometry, the second location is constrained to lie
on an epipolar line such that

(9)

where is a line tangent vector, a point on the epipolar
line and a scalar. All these quantities are stacked together
to form a matrix and two vectors and . Likewise, the point
correspondences obtained in Section II are stacked into two lo-
cation vectors and . Equation (9) rewrites

(10)
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Fig. 6. Outline of the frame interpolation based on 3-D meshes.

As outlined in Fig. 6, the mesh is first fitted to the set
of correspondences. Mesh fitting is cast into a minimization
problem using a Tikhonov regularization approach [36]. The
motion inside each triangle is assumed to be affine, which
approximates the projection of a piecewise-planar 3-D mesh.
Therefore, the motion of any point in the first key frame can
be written as a linear combination of the motions of the mesh
vertices. Let us represent these linear combinations by the
matrix , such that . The mesh also has an
internal smoothness, which favors small differences between
the motion of a vertex and the average motion of its four
neighbors. Since the average is a linear operation, it can be
represented by a matrix . Let be a scalar controlling the
smoothness of the mesh, set to 0.5 in the experiments. The
minimization problem is then

(11)

This is a linear least-square (LLS) problem, which can readily
be solved.

Since LLS is not robust to outliers, an additional step removes
them. Outliers are detected by testing whether the mesh triangles
abide by these two criteria:

1) they must have the same orientation in both key frames;
2) the motion compensation errors must be small.

Correspondences inside triangles failing these tests are consid-
ered outliers. They are removed and the mesh is fitted again.
This process is iterated until all triangles pass the tests.

Finally, the mesh is reprojected onto intermediate frames
using trifocal transfer. The key frames are warped using 2-D
texture mapping [37] and linearly blended.

D. Comparison of the Motion Models

Epipolar block motion fields approximate well depth discon-
tinuities but only provide a fronto-parallel approximation of the
3-D surfaces. On the other hand, mesh-based motion fields are
able to approximate 3-D surfaces with any orientation and are
more robust to outliers due to their internal smoothness. At the
same time, they tend to over smooth depth discontinuities and
they do not model occlusions. These properties are clearly vis-
ible in Fig. 7, which shows the norm of the motion vectors on
the stairway sequence. This figure also displays the motion field
obtained using a classical 2-D block-based motion estimation
minimizing the sum of absolute differences (SAD) at integer
locations. In comparison, both proposed motion estimations ex-
hibit a reduced number of outliers.

Fig. 7. Norm of the motion vectors between the first two lossless key frames
of the stairway sequence for (a) epipolar block matching, (b) 3-D mesh fitting,
and (c) classical block matching.

IV. THREE-DIMENSIONAL MODEL-BASED INTERPOLATION

WITH POINT TRACKING

A. Rationale

As will be shown in the experimental result section, the above
3-D model-based interpolation techniques barely increase the
PSNR of the side information. This comes from the underlying
assumption that the tracks have linear motion (8) during the
estimation of the intermediate projection matrices (7), which
gives inaccurate projection matrices. Since the motion fields are
obtained by projecting 3-D points or a 3-D mesh onto image
planes, inaccurate projection matrices lead to misalignments be-
tween the interpolated frames and the actual WZ frames. These
misalignments then create large errors in regions with textures
or edges, which penalizes the PSNR.

Instead of interpolating correspondences to obtain tracks, it is
proposed here to detect actual tracks from the original frames.
The linear motion assumption represented by (8) is, thus, not
used anymore. We propose two methods to achieve this goal:
one tracking points at the decoder and one tracking them at the
encoder. In both methods, a set of feature points is extracted at
the encoder with a Harris–Stephen feature-point detector [28].
When the tracking is performed at the decoder, the set of fea-
ture points is encoded and transmitted to the decoder. When the
tracking is done at the encoder, a list of tracked positions per
feature point is encoded and transmitted. Unlike previous works
[16], [17], no information is sent about the actual intensities of
the WZ frames.

Computing and transmitting the feature points or tracks in-
troduces overheads on the encoder complexity and on the band-
width. However, these overheads are minor because only a small
number of feature points is required to estimate the eleven pa-
rameters of each intermediate projection matrix. Moreover, in
the case of tracking at the encoder, statistics on tracks allow the
encoder to select key frames based on the video motion content,
thus increasing bandwidth savings.
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Fig. 8. Outline of the codec with tracking at the decoder (3-D DVC-TD).

B. Tracking at the Decoder

This codec, called 3-D DVC-TD, builds upon the 3-D DVC
solution based on the frame interpolation techniques presented
in Section III, and includes in addition a Harris–Stephen feature-
point detector [28], a feature point encoder and a point tracker
at the decoder (see Fig. 8).

The set of feature points is encoded and transmitted as a list,
defined for each time instant t as , by
scanning the image column by column. Due to the chosen scan-
ning order, the horizontal component of the feature-point coor-
dinates varies slowly, so it is encoded using differential pulse
code modulation (DPCM) followed by arithmetic coding. On
the other hand, the vertical component varies rapidly and is en-
coded using fixed-length codes.

The decoder receives these points and matches them to form
tracks. It starts by matching points between key frames using
three constraints: the epipolar geometry, motion smoothness
with previously matched correspondences and the MSE. It then
creates temporal snakes [38] between key frames, with one
control point at each time instant. It initializes them assuming
a linear motion and optimizes them to fit the set of received
points. The optimization procedure solves a LLS problem with
equations similar to the ones of mesh fitting (11). To make it
more robust to outliers, points are given weights which decrease
as the square of their distance to the snakes. The final locations
of the snake control points define the tracks in (7).

C. Tracking at the Encoder

This codec, called 3-D DVC-TE, extends the 3-D DVC so-
lution presented in Section III by adding at the encoder the
Harris–Stephen feature-point detector [28], a point tracker and
a point-track encoder (see Fig. 9). Therefore, unlike the two pre-
vious codecs, some information is shared between the frames.

The encoder detects feature points on the current key frame
and tracks them in the following frames. Tracking relies on the
minimization of SAD between small blocks around point tracks.
The minimization only considers integer pixel locations and is
biased toward small motions to avoid the uncertainty due to
large search regions. It begins by a spiral search around the lo-
cation with null motion. Once a small SAD is detected, it con-
tinues by following the path of least SAD, until a local min-
imum is found. Tracks for which no small SAD can be found
are discarded.

Fig. 9. Outline of the codec with tracking at the encoder (3-D DVC-TE).

Tracking is used to select the key frames based on the fol-
lowing two stopping criteria: either the longest track becomes
too long or the number of lost tracks becomes too large. In the
experiments, the thresholds are set, respectively, to 20px and
75%. The former criterion enforces that key frames sufficiently
differ from one another, while the latter criterion ensures that
the estimation of intermediate projection matrices is always a
well-posed problem. Once a stopping criterion is met, a new
key frame is transmitted and the process is reiterated.

For each feature point at location in the first
key frame, a list of tracked positions is
encoded using DPCM followed by arithmetic coding and trans-
mitted. The decoded tracks define in (7).

V. EXPERIMENTAL RESULTS

We have assessed the performance of the 3-D DVC incorpo-
rating the two interpolation methods based on the SfM paradigm
as well as the variants of this codec augmented with the feature
point tracking either at the encoder (3-D DVC-TE) or at the de-
coder (3-D DVC-TD). These codecs have been implemented by
replacing the frame interpolation of the 2-D DVC codec [24]
and adding point tracking. The key frame frequency was esti-
mated automatically in 3-D DVC-TE and set to one key frame
every ten frames in 3-D DVC and 3-D DVC-TD, which intro-
duces a delay of about one third second.

Experimental results are presented on three sequences: street,
stairway and statue. They correspond to augmented reality ap-
plications. The first two, shown in Fig. 3, are CIF at 30 Hz
with 50 frames. The third one, shown in Fig. 10, is CIF 25 Hz
with 50 frames. These sequences contain drastically different
camera motions, as can be seen from the motion vectors and the
epipolar geometries. In the first one, the camera has a smooth
motion, mostly forward. In the second one, the camera has a
lateral translational motion with hand jitter, creating motions of
up to 7 pixels between consecutive frames. In the last one, the
camera has a lateral rotational motion with hand jitter, which
creates a large occlusion area around the statue.

A. Frame Interpolation Without Tracking (3-D DVC)

In DVC, the key frames are first quantized and encoded. It is,
thus, essential to assess the performance of the different tech-
niques designed in this context. Fig. 10 shows that the 3-D
model estimation behaves well even with coarsely quantized key
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Fig. 10. Correspondences and epipolar geometry between the two first key
frames of the sequence statue. Feature points are represented by red dots, motion
vectors by magenta lines ending at feature points, and epipolar lines by green
lines centered at the feature points. (a) Lossless key frames; (b) quantized key
frames (QP = 42).

Fig. 11. PSNR of interpolated frames, without parity-bit correction, using loss-
less key frames (from top to bottom: sequences street, stairway, and statue).
Missing points correspond to key frames (infinite PSNR).

frames. The motion vectors and the epipolar geometries for the
intraframe quantization parameter remain similar to
those of lossless coding, the major difference lying in the den-
sity of correspondences.

Fig. 11 shows the PSNR of the interpolated frames obtained
with the different interpolation methods. As for 3-D DVC, the
only introduction of the epipolar or 3-D geometry constraints in

Fig. 12. Correlation noise for GOP 1, frame 5 (center of the GOP) of the
stairway sequence, using lossless key frames: (a) 2-D DVC with classical block
matching, (b) 3-D DVC with mesh model and linear tracks, (c) 3-D DVC-TE
with mesh model and tracking at the encoder, and (d) 3-D DVC-TD with mesh
model and tracking at the decoder . The correlation noise is the difference be-
tween the interpolated frame and the actual WZ frame.

TABLE II
AVERAGE PSNR (IN DECIBELS) OF INTERPOLATED

FRAMES USING LOSSLESS KEY FRAMES

the interpolation process does not have a significant impact on
the PSNR of the interpolated frames compared to classical block
matching. This can be explained by the fact that the resulting in-
terpolated motion fields create misalignments between the side
information and WZ frames (see Fig. 12). We will see in Sec-
tion V-D that this translates into poor RD performances of the
3-D DVC solution.

B. Frame Interpolation With Tracking at the Encoder (3-D
DVC-TE)

Fig. 11 shows that 3-D frame interpolation aided by point
tracks consistently outperforms both 3-D frame interpola-
tion without point tracks (3-D DVC) and classical 2-D block
matching (2-D DVC), bringing at times improvements of more
than 10 dB. This results from the fact that misalignments between
the side information and WZ frames are greatly reduced by esti-
mating the intermediate projection matrices from actual tracks,
instead of assuming linear track motion (see Fig. 12). Table II
summarizes the average PSNR of the different interpolation
methods. It shows that, when used jointly with the feature point
tracking to correct misalignments, the mesh-fitting interpolation
method is superior to the epipolar block-based method in both
sequences, bringing average PSNR gains up to 0.7 dB.
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Fig. 13. PSNR of key frames and interpolated frames, without parity-bit cor-
rection, of the street sequence using 3-D DVC-TE with mesh fitting on lossy
key frames. Peaks correspond to key frames.

Fig. 14. Comparison of the subjective quality and the correlation noise between
(a) a key frame and (b) an interpolated frame, using key frames quantized at
QP = 26. In spite of a PSNR drop of 8.1 dB, both frames have a similar
subjective quality. (a) Zoom on frame 1 (PSNR: 36.5 dB); (b) zoom on frame 5
(PSNR: 28.4 dB).

Tracking has two drawbacks: it introduces a bit-rate overhead
and increases the coder complexity. The bit-rate overhead rep-
resents less than 0.01b/pixel. Compared to classical 2-D BBMC
coders, the complexity overhead is very limited due to the small
number of tracks. Assuming 8 8 blocks for 2-D BBMC, a CIF
frame has blocks. On the other hand,
the average number of tracks is 128. Therefore, the complexity
of the proposed tracking is only 8% of a 2-D BBMC.

Fig. 13 shows the robustness of the proposed frame interpola-
tion to quantization noise, the quality of the interpolated frames
degrading gracefully as the bitrate is decreased. Unlike in quan-
tization, where a larger quantization step size decreases both the
bitrate and the PSNR, this was not a straightforward result in
frame interpolation, where a larger bitrate does not necessarily
imply a larger PSNR.

This figure also shows that the PSNR of interpolated frames
actually decreases more slowly than the one of key frames.
Since quantization reduces the high-frequency content of the
key frames, it reduces the impact of interpolation misalign-
ments. It also reduces the impact of the low-pass effects of
warping, both spatial and temporal.

The PSNR of interpolated frames has a ceiling value at about
30 dB. It is quickly attained as the QP of key frames is de-
creased: this PSNR is about the same whether key frames are
losslessly encoded or quantized at .

Finally, although the objective quality strongly peaks at key
frames, the subjective quality is nearly constant in the street
sequence, as illustrated in Fig. 14. Both sources of errors,
misalignments and low-pass effects, are barely noticeable. This
does not mean, however, that they are not a limiting factor
of the codec overall performances because parity bits correct
objective errors, not subjective ones. The subjective quality also
remains stable in the stairway sequence and statue sequences,
except in the occlusion area around the statue where the frame
interpolation introduces noticeable artifacts.

Fig. 15. Rate-distortion curves for H.264/AVC intra, H.264/AVC inter-IPPP
with null motion vectors, H.264/AVC inter-IPPP, 2-D DVC I-WZ-I and the three
proposed 3-D codecs (top left: street; top right: stairway; bottom: statue).

C. Frame Interpolation With Tracking at the Decoder (3-D
DVC-TD)

Figs. 11 and 12 show that point tracking at the decoder is
also able to greatly reduce misalignments and to consistently
outperform 2-D DVC and 3-D DVC. PSNR values obtained
by 3-D DVC-TD are nearly constant inside each GOP on the
street sequence. The superiority of tracking at the encoder (3-D
DVC-TE) is, in part, due to the possibility of inserting new key
frames and restarting tracking in case of difficult motions. Like
in the 3-D DVC-TE case, overheads are also limited. An average
of 176 feature points are detected at the encoder, which leads to
a bitrate overhead of 0.02b/pixel. The complexity is similar to
the one of intracoding.

D. Rate-Distortion Performances

Fig. 15 compares the rate-distortion performances of the pro-
posed mesh-based codecs, the 2-D DVC codec [24] upon which
they are based and the H.264/AVC reference software version JM
9.6. The proposed codecs only differ from the 2-D DVC codec
by their side information generation, the 2-D DVC codec relying
on an advanced 2-D block-based motion estimation designed
specifically for DVC. In all the DVC codecs, the key frames are
coded using H.264/AVC intra. The 2-D DVC software has GOPs
I-WZ-I, while H.264/AVC is tested in three modes: pure intra,
inter-IPPP with motionsearch and IPPPwith nullmotion vectors.

The 3-D codecs with alignment (3-D DVC-TD and 3-D
DVC-TE) strongly outperform the 3-D codec without alignment
(3-D DVC), confirming the need for precise motion alignment.
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Compared to 2-D DVC, 3-D DVC-TE is superior over the whole
range of bitrates on all sequences, while 3-D DVC-TD is superior
on the street sequence over the whole range of bitrates, on the
stairway sequence up to 990 kb/s and on the statue sequence up
to 740 kb/s. Note, however, that this RD gain was achieved at
the expense of the generality of the codec, 2-D DVC being able
to handle sequences with generic 2-D motion.

Finally, compared to H.264/AVC, both 3-D codecs with
alignment outperform intracoding and underperform inter-
coding with motion search. Since 3-D DVC-TE benefits from
a limited interframe information at the encoder, it is also com-
pared to H.264/AVC with intercoding without motion search.
The 3-D codec is superior for bitrates up to 890 kb/s on the
street sequence, over the whole range of bitrates on the stairway
sequence and up to 1.4 Mb/s on the statue sequence.

VI. CONCLUSION

In this paper, we have explored the benefits of the SfM par-
adigm for distributed coding of videos of static scenes cap-
tured by a moving camera. The SfM approach allows intro-
ducing geometrical constraints in the side information gener-
ation process. We have first developed two frame interpolation
methods based either on block matching along epipolar lines or
3-D mesh fitting. These techniques make use of a robust fea-
ture-point matching algorithm leading to semi-dense subpixel
correspondences between pairs of consecutive key frames. The
resulting interpolated motion fields show a reduced number of
outliers compared with motion fields obtained from 2-D block-
based matching. It has been observed that this property does
not translate into significant side information PSNR gains, be-
cause of misalignments problems between the side information
and the WZ encoded frames. This limitation has been overcome
by estimating the intermediate projection matrices from point
tracks obtained either at the encoder or at the decoder. It has led
to major side information PSNR improvements with only lim-
ited overheads, both in terms of bitrate and encoder complexity.
As an additional feature, point tracking at the encoder enables a
rough estimation of the video motion content, which is sufficient
to select the key frames adaptively. The RD performance of the
three DVC schemes has been assessed against several state-of-
the-art methods, showing the benefits of the 3-D model-based
interpolation methods augmented with feature point tracking for
the type of application and content considered. An interesting
issue would be to extend the proposed frame interpolation tech-
niques to videos with more generic motion fields and to assess
such methods against solutions in which limited motion search
would be considered at the encoder.

APPENDIX I
FIXING THE PROJECTIVE BASIS

During the nonlinear optimization of projection matrix ,
the projective basis is fixed by setting and choosing

two points and their projections. We would like
to obtain a minimum parameterization of . The two points
induce six constraints on , four of which are independent.
Each point is associated with an equation of the form

. Using the third component to solve for , we obtain
and . These equations

can be rewritten as where is defined as

(12)

Taking the SVD of gives

(13)

where , , and are three matrices. Therefore, the projec-
tion matrices can be parameterized by a vector such that

.

APPENDIX II
BUNDLE ADJUSTMENT

The bundle adjustment problem given by (5) is solved using
an alternated reweighted linear least square approach. First, the
denominators are factored out and treated as constant weights,
only updated at the end of each iteration. These weights, denoted

, are defined as

(14)

and initialized to 1. The problem then becomes biquadratic in
its parameters

such that (15)

which is solved by alternatively fixing either the projective
depths or the camera parameters and minimizing
over the free parameters.

When the projective depths are fixed, the problem is
equivalent to finding the unit-norm vector which minimizes
the squared norm of , where matrix is obtained by stacking
together submatrices of the form in (16), shown at the bottom of
the page. The solution is obtained by taking the SVD of matrix

and choosing the vector with the smallest singular value.

(16)
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When the camera parameters are fixed, the problem is
unconstrained and its Hessian is diagonal. Taking the derivative
with regard to a particular and setting it to 0 leads to the
solution

where (17)
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